
The Classical Harnack Inequality Fails for 
Non-Local Operators 

 
 

Moritz Kassmann 
 

 
 

no. 360 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Diese Arbeit ist mit Unterstützung des von der Deutschen Forschungs-

gemeinschaft getragenen Sonderforschungsbereichs 611 an der Universität 

Bonn entstanden und als Manuskript vervielfältigt worden. 

Bonn, Oktober 2007 



THE CLASSICAL HARNACK INEQUALITY FAILS FOR NON-LOCAL

OPERATORS

M. KASSMANN

Abstract

In the last years, several variants of the Harnack inequality have been studied for integro-
differential operators of the form

L u(x) =

∫
˘

u(y) − u(x) − 1{|y−x|≤1}(y − x)∇u(x)
¯

ν(x, dy) ,

where ν(x, dy) is a measure with singularity at y = x and L generates a Markov jump
process. It has remained open so far whether the classical Harnack inequality holds or
not. In this note, we show that the classical Harnack inequality fails even in the most
simple case. We construct a counter-example for α ∈ (0, 2) and

L u(x) = −(−∆)
α
2 u(x) = p.v.

∫

Rd

u(y) − u(x)

|y − x|d+α
dy .

1. Introduction

In 1887 Carl-Gustav Axel von Harnack published his book [13] on potential theory in two
spatial dimensions. In Section 19 of Chapter 1, he proves the following assertion: If u : BR(x0) ⊂
R

2 → R is harmonic and does not change its sign, then the values of u(x) for x ∈ Br(x0),
r < R, are bounded between

u(x0)
R − r

R + r
and u(x0)

R + r

R − r
.

One of its consequences, the so-called Harnack convergence result, became immediately well-
known and important, partly due to the influential article [22]. The estimate itself had its
glorious renaissance in the second half of the 20th century. It was extended to more general
elliptic and parabolic operators and various underlying spaces. Given an operator A : S (Rd) →
S ′(Rd), one can phrase it abstractly as follows:

If Au(x) = 0 and u(x) ≥ 0 for almost any x ∈ BR(x0), then

ess-sup
x∈BR/2

u(x) ≤ c ess-inf
x∈BR/2

u(x) with c > 0 independent of u, x0, R . (1.1)

Here, in dependence of A the equation Au(x) = 0 needs to be interpreted in the right way.
The main features of this inequality are its scale invariance and its pure locality, i.e., under
assumptions on the behavior of u in BR(x0) a property of u is established in BR/2(x0). The
parabolic version of (1.1) looks quite different, see [15].

The validity of the Harnack inequality is of great importance for several reasons. Hölder reg-
ularity a priori estimates follow, and together with an assumption on the underlying measure,
the parabolic version of the inequality is equivalent to a L2-Poincaré inequality. For various
aspects of the inequality and (nonlinear) partial differential equations we refer to [21], [18],
[12]. We refer to [15] for an introduction to the field of Harnack inequalities.
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2 M. KASSMANN

In the last years, several variants of the Harnack inequality have been studied for integro-
differential operators of the form

L u(x) =

∫

Rd

[
u(x + h) − u(x) − 1{|h|<1}〈h,∇u(x)〉

]
ν(x, dh) , (1.2)

where

ess-sup
x∈Rd

∫

Rd

min
(
|h|2, 1

)
ν(x, dh) < ∞ .

For fixed x the measure ν(x, ·) is called Lévy-measure. Processes generated by L are called
Lévy processes if ν(x, dh) does not depend on x. Basically, x 7→ ν(x, dh) plays the same role
as the coefficient functions x 7→ aij(x) for diffusion operators. In our form, the operator L

generates quite general Markov jump processes and regularity of harmonic functions is closely
linked to properties of the underlying stochastic process like the Feller property. Let us look
at a simple case. For α ∈ (0, 2) set

ν(x, dh) = n(x, h) dh = A (d,−α)|h|−d−α dh , (1.3)

where A (d,−α) =
Γ( d−α

2 )

2απd/2Γ(α/2)
is a normalization constant. With this choice of ν one obtains

(
L̂ u

)
(ξ) = |ξ|α =

(
∆̂

α
2

)
(ξ) .

The potential theory for L = ∆
α
2 has been worked out in [23], [3], [19], see also [24]. M.

Riesz obtained precise Poisson formulae, thereby proving the following generalized Harnack
inequality:

Theorem 1.1. (generalized Harnack inequality) Assume α ∈ (0, 2) and R > 0. Let ν(x, dh)
and L be defined by (1.3) and (1.2). There exists c > 0 such that for any u ∈ L∞(Rd) ∩
C2(BR(0)) with

(
L u

)
(x) = 0 for x ∈ BR(x0) ,

u(x) ≥ 0 for x ∈ R
d ,

the following estimate holds true:

sup
BR/2(x0)

u(x) ≤ c inf
BR/2(x0)

u(x) .

The constant c > 0 can be computed explicitely; it is independent of u, x0, and R.

One could also prove this result using [20] or [10] together with results from degenerate
partial differential operators. The aim of this note is to show that the assumption of u being
non-negative in all of Rd cannot be relaxed to u ≥ 0 in BR(x0). This question has recently
attracted some attention, see the discussion below. Here is our result.

Theorem 1.2. Assume α ∈ (0, 2) and R > 0. Let ν(x, dh) and L be defined by (1.3) and
(1.2). Then there exists a function u ∈ L∞(Rd) ∩ C2(BR(0)) satisfying

(
L u

)
(x) = 0 for x ∈ BR(0) ,

u(x) > 0 for x ∈ BR(0) \ {0} ,

|u(x)| ≤ 1 for x ∈ R
d ,

but at the same time u(0) = 0. Therefore, the classical Harnack inequality as well as the local
maximum principle fail for the operator L .
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Note that, for any s with |s| < 1, we could construct an example with u(0) = s.
Let us briefly discuss the significance of Theorem 1.2. The functions u considered above need

to be defined on R
d for L u(x) to make sense in BR(x0) but this is not our main point here.

Theorem 1.1 is still good enough for a uniform convergence theorem and a Liouville theorem.
But it is weaker than (1.1) since one requires u to be non-negative in all of R

d. This is a
strong restriction and it rules out the possibility to derive Hölder regularity estimates, at least
directly. These observations are one of the driving forces behind the research of local regularity
for nonlocal operators. Under the assumption

ν(x, dh) = n(x, h) dh, κ0|h|−d−α ≤ n(x, h) ≤ κ1|h|−d−α (1.4)

where κ0 and κ1 are positive constants the assertion of Theorem 1.1 is proved in [7]. Extensions
of this are worked out in [26]. In [5] examples of measures ν(x, dh) are given where a result like
Theorem 1.1 fails because the constant c would need to depend on R. The relation of parabolic
versions of Theorem 1.1, heat kernel bounds and certain geometric conditions for random walks
of unbounded range is currently of interest, see [4], [2]. In [9] the authors show for Lévy-stable
measures ν(x, dh) = ν(dh) which are scale invariant, but otherwise pretty general, that a
generalized Harnack inequality is equivalent to the so-called relative Kato condition.

As mentioned above, Theorem 1.1 does not imply Hölder regularity by Moser’s iteration
procedure. Nevertheless such regularity estimates are established and discussed in [17], [7]
[26],[6], [25], [14].

Knowing that continuity a priori estimates can be proved under much weaker assumptions
than (1.4) and for all cases where a generalized Harnack inequality holds, it is a natural
question whether the classical Harnack inequality (1.1) holds true. This question is raised by
several authors, see for example [17]. The classical Harnack inequality would explain the above
phenomenon nicely. The aim of this note is to give a negative answer to this question. More
precisely, we show that, even for the most simple case L = ∆

α
2 , α ∈ (0, 2), local assumptions,

i.e., assumptions on u(x) for x ∈ BR(x0) do not ensure finiteness of ess-sup{u(x)
u(y) : x, y ∈ BR

2
(0)}

in general.

2. Proof of Theorem 1.2

We prove Theorem 1.2. Although the proof is purely analytic, it has a probabilistic motiva-
tion.

Proof Theorem 1.2. We prove the result in dimension d = 2. As will become clear, the
idea and method of proof carry over to any dimension d ∈ N. The main idea is to construct
a function g : R2 \ BR(0) → R and to define u(y) for y ∈ BR(0) by the Poisson formula for
α-harmonic functions. The function u(y) = u(y)1y∈BR(0) + g(y)1y/∈BR(0) then becomes the
desired function. Define g : R2 \ BR(0) → R as follows:

g(x) =





1 ; R ≤ |x| < S ,

−1 ; S ≤ |x| < T ,

0 ; T ≤ |x| .

(2.1)

We choose S > 0 and T > S further down, see the remarks following the proof. The Poisson
formula for α-harmonic functions reads as follows [3, 19, 23]:

u(y) = Cα

(
R2 − |y|2

)α
2

∫

R2\BR(0)

g(x)
∣∣R2 − |x|2

∣∣−α
2 |x − y|−2 dx , y ∈ BR(0) ,

where Cα =
sin( πα

2 )

π2 .
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The probabilistic motivation behind this proof becomes clear if one notes that u(y) =

E
y
(
g(XτBr(0)

)
)

where Xt is the rotational symmetric α-stable process and τBr(0) the first

time when Xt exits Br(0), r < R. Let us compute u(y) for y ∈ BR(0) and g as above.

u(y) = Cα

(
R2 − |y|2

)α
2

∫

BS(0)\BR(0)

∣∣R2 − |x|2
∣∣−α

2 |x − y|−2 dx

− Cα

(
R2 − |y|2

)α
2

∫

BT (0)\BS(0)

∣∣R2 − |x|2
∣∣−α

2 |x − y|−2 dx

= IR,S(y) − IS,T (y) .

The tricks used in the following computations seem to be well-known among specialists in
potential theory. Since they are far from being trivial, we provide all details. Using polar
coordinates we compute

A(y) =

∫

BT (0)\BS(0)

∣∣R2 − |x|2
∣∣−α

2 |x − y|−2 dx

=

T∫

S

r
∣∣R2 − r2

∣∣α
2

( 2π∫

0

dθ

r2 + |y|2 − 2r|y|
(

y1

|y| cos(θ) + y2

|y| sin(θ)
)
)

dr

Assume now y 6= 0. Choose γ ∈ [0, 2π) such that y1

|y| = cos(γ) and y2

|y| = sin(γ). Note that

cos(γ) cos(θ) + sin(γ) sin(θ) = cos(γ − θ). Set φ = γ − θ. We obtain

A(y) =

T∫

S

r
∣∣R2 − r2

∣∣α
2

( γ∫

γ−2π

dφ

r2 + |y|2 − 2r|y| cos(φ)

)
dr

Setting r = t|y| we obtain t > 1 and

A(y) =

T
|y|∫
S
|y|

t
(
t2|y|2 − R2

)α
2

( 2π∫

0

dφ

t2 + 1 − 2t cos(φ)

)
dt (2.2)

The interior integral B(t) =
2π∫
0

dφ
t2+1−2t cos(φ) can be computed explicitely as follows. Set δ =

2t
1+t2 < 1. Then

B(t) =
1

t2 + 1

2π∫

0

dφ

1 − δ cos(φ)
=

1

t2 + 1

2π√
1 − δ2

=
2π

t2 − 1
,

where we used

∫
dφ

1 − δ cos(φ)
=





2√
1−δ2

arctan
(√

1+δ
1−δ tan(φ

2 )
)

+ 2π√
1−δ2

[
x+π
2π

]

for x /∈ {π + 2kπ}, k ∈ Z ,
π√

1−δ2
(2k + 1)

for x = π + 2kπ, k ∈ Z .
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which follows after the substitution z = tan(φ
2 ). Setting R

|y| = ρ > 1 we obtain from (2.2)

A(y) =
2π

|y|α

T
|y|∫
S
|y|

t
(
t2 − ρ2

)α
2 (t2 − 1)

dt ,

IS,T (y) = 2Cαπ
(
ρ2 − 1

)α
2

T
|y|∫
S
|y|

t
(
t2 − ρ2

)α
2 (t2 − 1)

dt .

Setting t2 − ρ2 = κ and then κ
ρ2−1 = τ we obtain

IS,T (y) = Cαπ
(
ρ2 − 1

)α
2

T2−R2

|y|2∫

S2−R2

|y|2

dκ

κ
α
2 (κ + ρ2 − 1)

= Cαπ

T2−R2

R2−|y|2∫

S2−R2

R2−|y|2

dτ

τ
α
2 (τ + 1)

,

which implies IR,∞(y) = CαπB(1 − α
2 , α

2 ) = Cα
π2

sin( πα
2 ) = 1 for all y ∈ BR(0), y 6= 0. The case

y = 0 is similar:

IS,T (0) = Cα2πRα

T∫

S

dr

r(r2 − R2)
α
2

= Cα2π

T∫

S

dr

r( r2

R2 − 1)
α
2

= Cα2π

T
R∫
S
R

dv

v(v2 − 1)
α
2

= Cαπ

( T
R )2−1∫

( S
R )2−1

dw

(w + 1)w
α
2

Altogether we obtain

u(y) = πCα

S2−R2

R2−|y|2∫

0

dτ

τ
α
2 (τ + 1)

−

T2−R2

R2−|y|2∫

S2−R2

R2−|y|2

dτ

τ
α
2 (τ + 1)

(2.3)

Define J(a, b) =
b∫
a

dτ

(τ+1)τ
α
2

, E = ( S
R )2 − 1, F = (T

R )2 − 1 and q = R2

R2−|y|2 . Then

u(y) = πCα

{
J(0, qE) − J(qE, qF ) ; y 6= 0 ,

J(0, E) − J(E, F ) ; y = 0 .

Now the task is to find E∗ > 0, F ∗ > E∗ such that

J(0, qE∗) − J(qE∗, qF ∗)

{
= 0 , q = 1 ,

> 0 , q > 1 .
(2.4)

First, we study the function q 7→ J(0, qE∗) − J(qE∗, qF ∗), q ≥ 1. Note

d

dq

[
J(0, qE) − J(qE, qF )

]
=

2E

(qE + 1)(qE)
α
2
− F

(qF + 1)(qF )
α
2

,
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and

2E

(qE + 1)(qE)
α
2
− F

(qF + 1)(qF )
α
2
≥ 0 ⇔ F

(qF + 1)(qF )α/2
≤ 2E

(qE + 1)(qE)α/2

⇔ F
2−α

2 (qE + 1) ≤ 2E
2−α

2 (qF + 1) ⇔ F
2−α

2 − 2E
2−α

2 ≤ q
(
2E

2−α
2 F − EF

2−α
2

)

⇔ E
α−2

2 − 2F
α−2

2 ≤ q
(
2Fα/2 − Eα/2

)
.

In particular we obtain that the function q 7→ J(0, qE) − J(qE, qF ), q ≥ 1, is non-decreasing
for F ≥ E if

E
α−2

2 − 2F
α−2

2 ≤
(
2Fα/2 − Eα/2

)

⇔ Eα/2(1 + E−1) ≤ 2Fα/2(1 + F−1) . (2.5)

Next, let us prove the following two observations:

α ≤ 1 : J(1,∞) ≥ J(0, 1) ⇔ J(0,∞) ≥ 2J(0, 1) . (2.6)

α > 1 : J(1,∞) < J(0, 1) ⇔ J(0,∞) < 2J(0, 1) . (2.7)

Inequality (2.6) follows from

J(1,∞) =

∞∫

1

dτ

τα/2(1 + τ)
≥

∞∫

1

dτ√
τ (1 + τ)

θ=1/τ
=

1∫

0

dθ√
θ(1 + θ)

≥
1∫

0

dθ

θα/2(1 + θ)
≥ J(0, 1) .

The proof of inequality (2.7) is analogous. Now we are in the position to prove (2.4). First,
consider α > 1. Choose F > 1. Next, choose E < 1 such that J(0, F ) = 2J(0, E) or equivalently
J(E, F ) = J(0, E). Such choice is possible because of the intermediate value theorem, J(0, 0) =
0 and (2.7). Choose F ∗ > 1 large enough such that (2.5) holds which is possible because the
right-hand side tends to infinity. Note that (2.5) still holds if E is replaced by any E′ ∈ [E, 1]
because the left-hand side is non-increasing for E ∈ (0, 1]. Now, choose E∗ ∈ [E, 1] such that
J(0, F ∗) = 2J(0, E∗) or equivalently J(E∗, F ∗) = J(0, E∗). Again, such choice is possible
because of (2.7). The tuple (E∗, F ∗) now has the desired properties. The case α ≤ 1 is much
simpler. Note that (2.5) holds true if E = 1 and F > 1. Now, choose E∗ = 1 and F ∗ so large
such that (2.6) holds. Then we are done.

Setting S = R
√

E∗ + 1 and T = R
√

F ∗ + 1, we have constructed g defined in (2.1). Finally,
set u(x) = u(x)1x∈BR(0) + g(x)1x/∈BR(0). Then L u(x) = 0 for all x ∈ BR(x0) following from
standard results, see Theorem 3.9 of [1] or [19]. The function u : Rd → R is bounded by the
values of g which follows from the maximum principle. The proof of Theorem 1.2 is complete.

Let us make some remarks.

(1) In the proof of Theorem 1.2, the closer α is to 2, the closer one needs to choose S to R.
Already for α = 1.5 and R = 1 one would need to choose S so close to R such that the
difference would hardly been visible in a figure. This reflects the fact that smaller jumps
of the corresponding stochastic process outweigh large jumps for values of α close to 2.

(2) One could choose a function g : R2 \ BR(0) → R which is continuous. This would lead
to a continuous function u : R2 → R. The function u shows a sharp increase for |y| ր R
and does not seem to be regular at the boundary of BR(0).

(3) The counter-example can be constructed without using very far jumps of the underlying
process but just jumps across the boundary ∂Ω. Hence the classical Harnack inequality
presumably also fails for truncated kernels resp. truncated stable processes.
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