An Irregular Complex Valued Solution to a Scalar Linear Parabolic Equation

Jens Frehse, Joanna Meinel

no. 366

Diese Arbeit ist mit Unterstützung des von der Deutschen Forschungsgemeinschaft getragenen Sonderforschungsbereichs 611 an der Universität Bonn entstanden und als Manuskript vervielfältigt worden.

Bonn, November 2007
An Irregular Complex Valued Solution to a Scalar Linear Parabolic Equation

Jens Frehse∗†, Joanna Meinel‡

November 16, 2007

Abstract: We show that Nash’s celebrated regularity result [Nas58] does not hold for partial differential operators with complex valued coefficients. In detail, we present a linear scalar parabolic equation on $[0, T] \times \mathbb{R}^n$, $n \geq 3$, with complex valued measurable coefficients whose solution $\in L^\infty(L^2) \cap L^2(H^1)$ is discontinuous or may be unbounded.

Keywords: parabolic equations, counterexample, Hölder continuity

Classification: primary 35R05, secondary 35K10

∗Universität Bonn, Institut für Angewandte Mathematik, Beringstraße 6, D-53115 Bonn
†corresponding author: erdbeere@iam.uni-bonnde
‡Universität Bonn, Institut für Angewandte Mathematik, Beringstraße 6, D-53115 Bonn
1 Introduction

A famous result of John Nash [Nas58] states that a weak solution
\[u \in L^\infty(0, T; L^2(\Omega)) \cap L^1(0, T; H^1(\Omega)) , \]
\(\Omega = \) open subset of \(\mathbb{R}^n \), to a scalar parabolic equation
\[u_t - \sum_{j,k=1}^{n} D_j (a_{jk}(t, x) D_j u) = f , \] (1)
is Hölder continuous in \(\Omega \) provided that the coefficients \(a_{jk} \) are only bounded and measurable and satisfy the condition of uniform ellipticity and, say, \(f \in L^r(L^r) \) with \(r > 1 + n/2 \), cf. [LSU67] for further results. In the present paper we present an example of a scalar parabolic equation of type (1) with \(f = 0 \) and complex valued coefficients
\[a_{jk} : (0, T) \times \mathbb{R}^n \rightarrow \mathbb{C} \]
having an irregular complex valued solution
\[u \in L^\infty(0, T; L^2_{loc}(\mathbb{R}^n; \mathbb{C})) \cap L^2(0, T; H^1_{loc}(\mathbb{R}^n; \mathbb{C})) , \]
provided \(n > 2 \). Here the \(a_{jk} \) satisfy a condition of uniform ellipticity adapted to the complex case
\[\text{Re} \sum_{j,k=1}^{n} a_{jk}(t, x) \zeta_j \bar{\zeta}_k \geq c_0 |\zeta|^2 , \quad a_{ik} \in L^\infty , \] (2)
with some positive constant \(c_0 \in \mathbb{R} \). For the definition of the usual spaces \(L^p(0, T; V) \) cf. [LSU67], [Lio69]. So, the complex valued analog to the Nash-Theorem does not hold in more than two space dimensions. Note that the scalar problem with complex valued coefficients can also be considered as a real valued parabolic system in two unknown functions.

Other examples, together with further references, can be found in John and Stará [JoS95]. They present a system with coefficients depending analytically on the unknown function \(u \), which can be interpreted as a linear system with measurable coefficients.
This paper is motivated also by the corresponding elliptic case: In their book [MNP91] Mazja, Plamenevsky, and Nasarov present a general approach of how to construct uniformly elliptic equations with complex valued measurable coefficients having an irregular complex valued H^1-solution. This approach has so far been successfully applied for dimensions $n \geq 5$. Furthermore, in a recent paper [Fre07], the first author presents an example of a linear uniformly elliptic equation with an irregular H^1-solution for dimension $n \geq 3$, in the case with complex valued coefficients.

The parabolic counterexample presented here is significantly different from the analogous elliptic counterexample. Due to the additional dependence on the variable t we have to introduce certain so called decontamination terms, see (6) and (7), which would vanish in the purely elliptic case.

2 Construction of the Example

By elementary calculations which may be found in the appendix we obtain for

$$u = x_1 \exp \left(\lambda \ln(|x|^2 + T - t) \right)$$

with $\lambda \in \mathbb{C}$:

$$u_t = -\lambda \frac{u}{|x|^2 + T - t},$$

$$\Delta u = \left[(4\lambda + 2n\lambda) + (4\lambda^2 - 4\lambda) \frac{|x|^2}{|x|^2 + T - t} \right] \frac{u}{|x|^2 + T - t},$$

$$L_1 u := \sum_{j=1}^n D_j \left(\frac{|x|^2}{|x|^2 + T - t} D_j u \right) - \sum_{j,k=1}^n D_j \left(\frac{x_j x_k}{|x|^2 + T - t} D_k u \right) = (1 - n) \frac{u}{|x|^2 + T - t},$$

$$= (1 - n) \frac{u}{|x|^2 + T - t},$$
\begin{equation}
L_2 u := \sum_{j=1}^{n} D_j \left(\frac{|x|^4}{(|x|^2 + T - t)^2} D_j u \right) - \sum_{j,k=1}^{n} D_j \left(\frac{x_j x_k |x|^2}{(|x|^2 + T - t)^2} D_k u \right) = \end{equation}

\begin{equation}
= (1 - n) \left(\frac{|x|^2}{(|x|^2 + T - t)^2} \right) u.
\end{equation}

The terms $L_1 u$, $L_2 u$ are used as decontamination terms.

From (3) up to (6) we obtain

\begin{equation}
u_t + \alpha \Delta u + \beta L_1 u + \gamma L_2 u = \end{equation}

\begin{equation}
= \left\{ \left[- \lambda + \alpha(4\lambda + 2n\lambda) + \beta(1 - n) \right] + \left[\alpha(4\lambda^2 - 4\lambda) + \gamma(1 - n) \right] \frac{|x|^2}{|x|^2 + T - t} \right\} \times
\end{equation}

\begin{equation}
\times \frac{u}{|x|^2 + T - t}.
\end{equation}

By an appropriate choice of β and γ the brackets $[\ldots]$ in (8) vanish; we have to choose

\begin{equation}
\beta = -\frac{\lambda}{n - 1} + \alpha \frac{4\lambda + 2n\lambda}{n - 1}, \quad \gamma = \alpha \frac{4\lambda^2 - 4\lambda}{n - 1},
\end{equation}

and the right hand side of (8) vanishes.

We define

\begin{equation}
-a_{jk}(t, x) = \alpha \delta_{jk} + \beta \frac{|x|^2}{|x|^2 + T - t} \delta_{jk} - \beta \frac{x_j x_k}{|x|^2 + T - t} + \gamma \frac{|x|^4}{(|x|^2 + T - t)^2} \delta_{jk} - \gamma \frac{|x|^2 x_j x_k}{(|x|^2 + T - t)^2}
\end{equation}

and obtain

Theorem 2.1 The function

\begin{equation}
u = x_1 \exp \left(\lambda \ln(|x|^2 + T - t) \right)
\end{equation}

solves the equation

\begin{equation}
u_t - \sum_{j,k=1}^{n} D_j (a_{jk} D_k u) = 0 \quad \text{for } 0 \leq t \leq T, x \neq 0,
\end{equation}

where a_{jk} is defined in (10) and $\alpha, \beta, \gamma, \lambda$ satisfy the equations in (9).
3 Discussion of the Example

We want an irregular solution \(u \); so we require either

\[
\text{Re} \lambda = -\frac{1}{2},
\]

which leads to a bounded discontinuous solution or

\[
\text{Re} \lambda < -\frac{1}{2},
\]

which gives an unbounded solution. We further want

\[
u \in L^\infty(L^2_{\text{loc}}(\mathbb{R}^n)).
\]

This is the case if

\[x_1 |x|^{2 \text{Re} \lambda} \in L^2_{\text{loc}}(\mathbb{R}^n),\]

which follows from

\[
\text{Re} \lambda > -\frac{1}{2} - \frac{n}{4}.
\]

For \(n = 2 \) this implies that the solution \(u \) above is Hölder continuous and (13) cannot be satisfied.

In order to have

\[
u \in L^2(H^{1,2}_{\text{loc}}(\mathbb{R}^n)),
\]

we need

\[(|x|^2 + T - t)^{2 \text{Re} \lambda} \in L^1(L^1_{\text{loc}}(\mathbb{R}^n))\]

which is satisfied, if (14) holds.

Now we want that our equation is parabolic, i.e. the coefficients \(a_{jk} \) defined in (10) satisfy the ellipticity condition (2). Since the operators \(\Delta, L_1, L_2 \) are symmetric and have real valued coefficients, the imaginary parts of \(\alpha, \beta, \gamma \) do not influence the ellipticity condition (c.f. the paper [Fre07] concerning
the counter example in the elliptic case), so we have only to prove

\[E_0 := (\text{Re} \alpha)|\xi|^2 + (\text{Re} \beta) \left(\frac{|x|^2}{|x|^2 + T - t} \right)|\xi|^2 - \\
- (\text{Re} \beta) \sum_{j,k=1}^{n} \frac{x_j x_k}{|x|^2 + T - t} \xi_j \xi_k + (\text{Re} \gamma) \left(\frac{|x|^4}{(|x|^2 + T - t)^2} \right)|\xi|^2 - \\
- (\text{Re} \gamma) \sum_{j,k=1}^{n} \frac{|x|^2 x_j x_k}{(|x|^2 + T - t)^2} \xi_j \xi_k \leq -c_0|\xi|^2 \] \hspace{2cm} (15)

for all \(\xi \in \mathbb{R}^n \), with some \(c_0 > 0 \). Since \(x \) may vanish, we certainly need

\[\text{Re} \alpha < 0. \] \hspace{2cm} (16)

We rewrite (15) in the form

\[E_0|\xi|^{-2} = \text{Re} \alpha + \frac{|x|^2}{|x|^2 + T - t} \left(1 - \frac{(\xi \cdot x)^2}{|\xi|^2} \right) \left[\text{Re} \beta + (\text{Re} \gamma) \frac{|x|^2}{|x|^2 + T - t} \right]. \]

So, uniform ellipticity holds if (16) and

\[\text{Re} \beta + (\text{Re} \gamma) \frac{|x|^2}{|x|^2 + T - t} \leq 0. \] \hspace{2cm} (17)

We set \(\alpha = \alpha_0 + i\alpha_1, \lambda = \lambda_0 + i\lambda_1, \alpha_0, \alpha_1, \lambda_0, \lambda_1 \in \mathbb{R} \) and use (9) to reformulate (17). This leads to the condition

\[C_0 := \frac{1}{n-1} \left[-\lambda_0 + \alpha_0(4\lambda_0 + 2n\lambda_0) + \alpha_1(-2n - 4)\lambda_1 + \\
+ \frac{|x|^2}{|x|^2 + T - t} \alpha_0(-4\lambda_0 + 4\lambda_0^2 + 4\lambda_1^2) + \frac{|x|^2}{|x|^2 + T - t} \alpha_1(4\lambda_1 - 8\lambda_1 \lambda_0) \right] \leq 0. \]

If \(C_0 \leq 0 \) and (16), then ellipticity holds.

Let us analyze the term \(T_0 \) with coefficient \(\alpha_1 \):

\[T_0 = \alpha_1 \lambda_1 \left[-2n - 4 + (4 - 8\lambda_0) \frac{|x|^2}{|x|^2 + T - t} \right]. \]

We want that the term in the brackets is strictly less then 0. Since \(\lambda_0 \) is negative (in order to have a singularity), we may estimate

\[T_0(\alpha_1 \lambda_1)^{-1} = -2n - 4 + (4 - 8\lambda_0) \frac{|x|^2}{|x|^2 + T - t} \leq -2n - 4 + 4 - 8\lambda_0 = \\
= -2n - 8\lambda_0 < k_0 < 0 \]
if $\Re \lambda > -n/4$. Thus we arrive at
\[C_0 \leq K(\alpha_0, \lambda_0, \lambda_1, n) + \alpha_1 \lambda_1 k_0 \]
and it follows that for given $\alpha_0, \lambda_0, \lambda_1, n$, with $\lambda_0 > -n/4$, $\lambda_1 \neq 0$, one may choose $\alpha_1 \lambda_1 > 0$ and $|\alpha_1|$ so large such that (17) holds and we have obtained

Theorem 3.1 The equation (11) from Theorem 2.1 is parabolic in $[0, T] \times \mathbb{R}^n$ in the sense that the elliptic condition (2) holds provided that $\Re \alpha < 0$, $\Im (\lambda) \neq 0$, $\Re \lambda > -\frac{n}{4}$ and $\Im (\lambda) \geq K(\Re (\alpha), \lambda)$ with some constant $K(\Re (\alpha), \lambda)$ being large enough.

In order to have the correct function space for u, we have to satisfy condition (14), i.e.
\[\Re \lambda > -\frac{1}{2} - \frac{n}{4}. \]
That is why the condition
\[-\frac{1}{2} \geq \Re \lambda > -\frac{n}{4} \]
allows the solution u to be contained in a better function space than $L^\infty(L^2_{loc} \cap L^2(H^1_{loc}))$ and still to be irregular.

For $n = 2$ the condition $\Re \lambda > -\frac{n}{4}$ implies that the solution u of Theorem 2.1 is Hölder continuous, so there is no example of an irregular solution for $n = 2$. For $n \geq 3$, both bounded and unbounded irregular solutions can be constructed by our approach.

Remark: By the usual theory of parabolic equations the solution u can be extended as a weak solution to any larger interval $[0, T_1]$, $T_1 > T$, if the coefficients are extended preserving ellipticity say $a_{jk} = \delta_{jk}$ (Kronecker Symbol) on $[T, T_1] \times \mathbb{R}^n$.

References

[Fre07] Jens Frehse. *An Irregular Complex Valued Solution to a Scalar Uniformly Elliptic Equation.* Sonderforschungsbereich

4 Appendix

We present some elementary calculations. With \(u = x_1 \exp(\lambda \ln(|x|^2 + T - t)) \) we get

\[
 u_t = \frac{-\lambda x_1}{|x|^2 + T - t} \exp(\lambda \ln(|x|^2 + T - t))
\]

and

\[
 \Delta u = 2D_1 \exp(\lambda \ln(|x|^2 + T - t)) + x_1 \Delta \exp(\lambda \ln(|x|^2 + T - t))
\]

\[
 = \frac{4\lambda x_1}{|x|^2 + T - t} \exp(\lambda \ln(|x|^2 + T - t))
\]

\[
 + x_1 \left[\frac{4\lambda^2 |x|^2}{(|x|^2 + T - t)^2} + \frac{2n\lambda}{|x|^2 + T - t} - \frac{4\lambda |x|^2}{(|x|^2 + T - t)^2} \right] \exp(\lambda \ln(|x|^2 + T - t))
\]

\[
 = (4\lambda + 2n\lambda) \frac{x_1 |x|^2}{|x|^2 + T - t} \exp(\lambda \ln(|x|^2 + T - t))
\]

\[
 + (4\lambda^2 - 4\lambda) \frac{x_1 |x|^2}{(|x|^2 + T - t)^2} \exp(\lambda \ln(|x|^2 + T - t))
\]

Now we introduce two semi-elliptic operators \(L_1, L_2 \) in order to have a sufficiently large degree of freedom.

\[
 L_1 u := \sum_{j=1}^{n} D_j \left(\frac{|x|^2}{|x|^2 + T - t} D_j u \right) - \sum_{j,k=1}^{n} D_j \left(\frac{x_j x_k}{|x|^2 + T - t} D_k u \right)
\]

\[
 = \left[D_1 \left(\frac{|x|^2}{|x|^2 + T - t} \exp(\lambda \ln(|x|^2 + T - t)) \right) + \sum_{j=1}^{n} D_j \left(\frac{2\lambda x_1 x_j |x|^2}{(|x|^2 + T - t)^2} \exp(\lambda \ln(|x|^2 + T - t)) \right) \right]
\]

\[
 - \left[\sum_{j=1}^{n} D_j \left(\frac{x_1 x_j}{|x|^2 + T - t} \exp(\lambda \ln(|x|^2 + T - t)) \right) \right]
\]

\[
 + \sum_{j=1}^{n} D_j \left(\frac{2\lambda x_1 x_j |x|^2}{(|x|^2 + T - t)^2} \exp(\lambda \ln(|x|^2 + T - t)) \right)
\]
Hence,

\[L_1 u = \left[\frac{2x_1}{|x|^2 + T - t} - \frac{2x_1|x|^2}{(|x|^2 + T - t)^2} + \frac{2\lambda x_1|x|^2}{(|x|^2 + T - t)^2} \right] \exp \left(\lambda \ln(|x|^2 + T - t) \right) \]

\[- \left[\frac{(n + 1)x_1}{|x|^2 + T - t} - \frac{2x_1|x|^2}{(|x|^2 + T - t)^2} + \frac{2\lambda x_1|x|^2}{(|x|^2 + T - t)^2} \right] \exp \left(\lambda \ln(|x|^2 + T - t) \right) \]

\[= \frac{(1 - n)x_1}{|x|^2 + T - t} \exp \left(\lambda \ln(|x|^2 + T - t) \right) \]

We remark that two ugly terms of the form \(\pm \sum_{j=1}^{n} D_j[2\lambda \ldots] \) cancel.

\[L_2 u := \sum_{j=1}^{n} D_j \left(\frac{|x|^4}{(|x|^2 + T - t)^2} D_j u \right) - \sum_{j,k=1}^{n} D_j \left(\frac{x_j x_k|x|^2}{(|x|^2 + T - t)^2} D_k u \right) \]

\[= \left[D_1 \left(\frac{|x|^4}{(|x|^2 + T - t)^2} \exp \left(\lambda \ln(|x|^2 + T - t) \right) \right) \right. \]

\[+ \sum_{j=1}^{n} D_j \left(\frac{2\lambda x_1 x_j|x|^4}{(|x|^2 + T - t)^3} \exp \left(\lambda \ln(|x|^2 + T - t) \right) \right) \]

\[- \left[\sum_{j=1}^{n} D_j \left(\frac{x_1 x_j|x|^2}{|x|^2 + T - t} \exp \left(\lambda \ln(|x|^2 + T - t) \right) \right) \right) \]

\[+ \sum_{j=1}^{n} D_j \left(\frac{2\lambda x_1 x_j|x|^4}{(|x|^2 + T - t)^3} \exp \left(\lambda \ln(|x|^2 + T - t) \right) \right) \]

We see again that the two terms \(\pm \sum_{j=1}^{n} D_j[2\lambda \ldots] \) cancel:

\[L_2 u = \left[\frac{4x_1|x|^2}{(|x|^2 + T - t)^2} - \frac{4x_1|x|^4}{(|x|^2 + T - t)^3} + \frac{2\lambda x_1|x|^4}{(|x|^2 + T - t)^3} \right] \exp \left(\lambda \ln(|x|^2 + T - t) \right) \]

\[- \left[\frac{x_1|x|^2}{(|x|^2 + T - t)^2} - \frac{2x_1|x|^2}{(|x|^2 + T - t)^2} + \frac{nx_1|x|^2}{(|x|^2 + T - t)^2} - \frac{4x_1|x|^4}{(|x|^2 + T - t)^3} \right] \]
\[+ \frac{2\lambda x_1 |x|^4}{(|x|^2 + T - t)^2} \exp \left(\lambda \ln(|x|^2 + T - t) \right) \]
\[= \frac{(1 - n) x_1 |x|^2}{(|x|^2 + T - t)^2} \exp \left(\lambda \ln(|x|^2 + T - t) \right). \]

Considering now
\[u_t + \alpha \Delta u + \beta L_1 u + \gamma L_2 u \]
\[= - \frac{\lambda x_1}{|x|^2 + T - t} \exp \left(\lambda \ln(|x|^2 + T - t) \right) + \alpha \left[\frac{(4\lambda + 2n\lambda)x_1}{|x|^2 + T - t} \exp \left(\lambda \ln(|x|^2 + T - t) \right) \right. \]
\[+ \left. \frac{(4\lambda^2 - 4\lambda)x_1 |x|^2}{(|x|^2 + T - t)^2} \exp \left(\lambda \ln(|x|^2 + T - t) \right) \right] \]
\[+ \beta \left[\frac{(1 - n)x_1}{|x|^2 + T - t} \exp \left(\lambda \ln(|x|^2 + T - t) \right) \right] \]
\[+ \gamma \left[\frac{(1 - n)x_1 |x|^2}{(|x|^2 + T - t)^2} \exp \left(\lambda \ln(|x|^2 + T - t) \right) \right] \]
\[= \frac{x_1}{|x|^2 + T - t} \left[- \lambda + \alpha (4\lambda + 2n\lambda + \beta (1 - n)) \exp \left(\lambda \ln(|x|^2 + T - t) \right) \right] \]
\[+ \frac{x_1 |x|^2}{(|x|^2 + T - t)^2} \left[\alpha (4\lambda^2 - 4\lambda) + \gamma (1 - n) \right] \exp \left(\lambda \ln(|x|^2 + T - t) \right) = 0, \]

we obtain
\[\beta = \frac{-\lambda}{n - 1} + \alpha \frac{4\lambda + 2n\lambda}{n - 1} \]
\[\gamma = \alpha \frac{4\lambda^2 - 4\lambda}{n - 1} \]
Verzeichnis der erschienenen Preprints ab No. 340

341. Frehse, Jens; Ružička, Michael: Non-Homogeneous Generalized Newtonian Fluids

342. Braun, Jürgen; Griebel, Michael: On a Constructive Proof of Kolmogorov's Superposition Theorem

343. Frehse, Jens: An Irregular Complex Valued Solution to a Scalar Uniformly Elliptic Equation

344. Albeverio, Sergio; Polischook, Vladimir: Prüfer's Ideal Numbers as Gelfand's Maximal Ideals

345. Griebel, Michael; Oeltz, Daniel: A Sparse Grid Space-Time Discretization Scheme for Parabolic Problems; erscheint in: Computing

347. Frehse, Jens; Steinhauer, Mark; Weigant, Wladimir: The Dirichlet Problem for Steady Viscous Compressible Flow in 3-D

348. Albeverio, Sergio; Kozyrev, Sergei: Multidimensional Ultrametric Pseudodifferential Equations

349. Frehse, Jens; Ružička, Michael: Existence of a Regular Periodic Solution to the Rothe-Approximation of the Navier-Stokes Equation in Arbitrary Dimension

350. Fackeldey, Konstantin; Krause, Rolf: Multiscale Coupling in Function Space – Weak Coupling between Molecular Dynamics and Continuum Mechanics

351. Albeverio, Sergio; Alt, Wolfgang: Stochastic Dynamics of Viscoelastic Skeins: Condensation Waves and Continuum Limits

353. Löbach, Dominique: Interior Stress Regularity for the Prandtl Reuss and Hencky Model of Perfect Plasticity Using the Perzyna Approximation
354. Frehse, Jens; Specovius-Neugebauer, Maria: Re-Normalized Estimates for Solutions to the Navier-Stokes Equation I

355. Löbach, Dominique: On Regularity for Plasticity with Hardening

356. Burstedde, Carsten; Kunoth, Angela: A Wavelet-Based Nested Iteration – Inexact Conjugate Gradient Algorithm for Adaptively Solving Elliptic PDEs

357. Alt, Hans-Wilhelm; Alt, Wolfgang: Phase Boundary Dynamics: Transitions between Ordered and Disordered Lipid Monolayers

358. Müller, Werner: Weyl's Law in the Theory of Automorphic Forms

359. Frehse, Jens; Löbach, Dominique: Hölder Continuity for the Displacements in Isotropic and Kinematic Hardening with von Mises Yield Criterion

360. Kassmann, Moritz: The Classical Harnack Inequality Fails for Non-Local Operators

361. Albeverio, Sergio; Ayupov, Shavkat A.; Kudaybergenov, Karim K.: Description of Derivations on Measurable Operator Algebras of Type I

362. Albeverio, Sergio; Ayupov, Shavkat A.; Zaitov, Adilbek A.; Ruziev, Jalol E.: Algebras of Unbounded Operators over the Ring of Measurable Functions and their Derivations and Automorphisms

363. Albeverio, Sergio; Ayupov, Shavkat A.; Zaitov, Adilbek A.: On Metrizability of the Space of Order-Preserving Functionals

364. Alberti, Giovanni; Choksi, Rustum; Otto, Felix: Uniform Energy Distribution for Minimizers of an Isoperimetric Problem Containing Long-Range Interactions

366. Frehse, Jens; Meinel, Joanna: An Irregular Complex Valued Solution to a Scalar Linear Parabolic Equation