
Composite Finite Elements for
3D Image Based Computing

Florian Liehr, Tobias Preusser, Martin Rumpf,
Stefan Sauter, Lars Ole Schwen

no. 372

Diese Arbeit ist mit Unterstützung des von der Deutschen Forschungs-

gemeinschaft getragenen Sonderforschungsbereichs 611 an der Universität

Bonn entstanden und als Manuskript vervielfältigt worden.

Bonn, Januar 2008

Composite Finite Elements for 3D Image Based Computing

Florian Liehr, Tobias Preusser1, Martin Rumpf2, Stefan Sauter3, and Lars Ole Schwen2

1 CeVis, Center for Complex Systems and Visualization, University of Bremen, Germany, tp@cevis.uni-bremen.de
2 INS, Institute for Numerical Simulation, University of Bonn, Germany, {martin.rumpf, ole.schwen}@ins.uni-bonn.de
3 Institute for Mathematics, University of Zurich, Switzerland, stas@math.unizh.ch

Abstract. We present an algorithmical concept for
modeling and simulation with partial differential equa-
tions (PDEs) in image based computing where the com-
putational geometry is defined through previously seg-
mented image data. Such problems occur in applications
from biology and medicine where the underlying image
data has been acquired through e. g. computed tomog-
raphy (CT), magnetic resonance imaging (MRI) or elec-
tron microscopy (EM). Based on a level-set description
of the computational domain, our approach is capable
of automatically providing suitable composite finite el-
ement functions that resolve the complicated shapes in
the medical/biological data set. It is efficient in the sense
that the traversal of the grid (and thus assembling ma-
trices for finite element computations) inherits the ef-
ficiency of uniform grids away from complicated struc-
tures. The method’s efficiency heavily depends on pre-
computed lookup tables in the vicinity of the domain
boundary or interface. A suitable multigrid method is
used for an efficient solution of the systems of equations
resulting from the composite finite element discretiza-
tion. The paper focuses on both algorithmical and im-
plementational details. Scalar and vector valued model
problems as well as real applications underline the us-
ability of our approach.

AMS Subject Classifications: 65N30, 65N55,
65N50.

1 Introduction

Frequently, physical modeling and simulation rely on the
solution of partial differential equations (PDEs). In par-
ticular for applications in the field of biological and med-
ical simulation, these PDEs have to be solved on domains
with complicated boundaries or internal geometric struc-
tures. The coefficients of the PDEs represent a material
property of the physical process or an inhomogeneous
physical object, which consists of different homogeneous
parts. Consequently the coefficients are often discontin-
uous across the boundaries of internal object structures.

On one hand, resolving the microscale in a simulation
results in more reliable results for physical or biologi-
cal phenomena. On the other hand, macroscopic medical
simulations provide radiologists and surgeons with infor-
mation for treatment planning. Such application scenar-
ios have become very popular during the last decade.
Here, we mention only a few examples: Simulations of
electric fields and heat diffusion, as e. g. in hyperthermia
[15] and RF-ablation [25], yield therapy parameters. The
computation of elastic stresses in the femur and vertebra
estimates the risk of fractures [18]. The computation of
brain-shift helps to improve the results of neuro-surgeries
[51].

Finite element discretizations are very flexible with
respect to the computational domain because they allow
the use of various geometrical primitives for a discretiza-
tion of the computational domain. To apply standard fi-
nite elements, a certain adaptivity has to be employed to
treat problems with complicated geometrical structures.
For this purpose, it is popular to use unstructured grids
and to refine the computational grid in the vicinity of
the interfaces or boundaries until a sufficient approxi-
mation quality is reached. While it is well known and
understood in two dimensions (2D), the automatic gen-
eration of proper grids and the resolution of complicated
structures still means a challenge for three-dimensional
(3D) geometries [49].

Several authors have investigated numerical meth-
ods on interfaced domains. The “Immersed Interface
Method” (IIM) [5,27,50,45] uses adaptive finite differ-
ence stencils near the interface. Efficient solvers are pre-
sented in [28,1]. A combination with finite volume meth-
ods is discussed in [8,7] and an extension to “Immersed
Finite Elements” in 1D and 2D is proposed in [29,30].
The “Partition of Unity Method” (PUM) [32,3] uses a
priori knowledge about the solution (discontinuities at
interfaces) to obtain special PUM finite element spaces.
In the “Generalized Finite Element Method” (GFEM)
[48,46], the PUM and classical FEM basis functions are
used together to improve the approximation. Starting
from classical FEM and “enriching” the FE spaces by
additional basis functions to incorporate discontinuities
has been exploited with the “Extended Finite Element

2 Florian Liehr et al.

Methods” (XFEM) [4]. The “Finite Cell Method” [35]
is based on the idea of extending the PDE outside the
actual object domain such that a domain-independent
mesh for FEM can be used.

In this paper, we present an approach for the au-
tomatic generation of 3D composite finite elements for
problems of the class mentioned above. Our approach
is inspired by [20] for composite finite elements (CFE)
in 2D. It combines the idea of CFE with the efficiency
of structured grids as they are used in image processing
[36].

Composite finite elements do not require an adap-
tivity of the computational grid. Instead, they build the
necessary adaption into basis functions, which are then
used in a standard Galerkin method [20]. Far from the
complicated structures (domain boundaries or interfaces
between internal object structures), the basis functions
coincide with the standard basis functions on the struc-
tured grid. In the vicinity of the interface or the bound-
ary, the standard basis is modified to resolve either the
shape of the domain boundary or to meet the jump con-
dition imposed by the material coefficient. In contrast to
the web-spline approach [22], the CFE method can be
used both for problems with discontinuous coefficients
and for problems with a complicated domain boundary.

The particular focus of this paper lies on an efficient
implementation, which substantially borrows methodol-
ogy from the area of scientific visualization. To generate
a virtual grid that resolves complicated structures, we
proceed as in the well known marching cubes/marching
tetrahedra algorithms [31,33]: We create a lookup ta-
ble that contains all possible topological variants of a
surface intersecting hexahedral elements. When assem-
bling matrices, only a proper scaling of the pre-computed
topological variants is needed.

The remainder of the paper is organized as follows: In
Section 2 we review segmentation methods from the area
of mathematical image processing. They provide level-set
functions describing the domain and internal structures
of the domain and thus are needed for the generation of
a virtual grid. The virtual grid is needed locally for the
construction of a composite finite element space only. In
Section 3, we describe a suitable multigrid hierarchy for
the composite finite element approach. The algorithmical
and computational aspects of the method are discussed
in detail in Section 4. In particular, an efficient algo-
rithm for the assembly of system matrices is discussed.
There, we also present algorithms for the construction of
lookup tables. In Section 5 applications are presented for
scalar as well as for vector valued problems in medical
simulation. Finally, we draw conclusions in Section 6.

2 Construction of the composite finite element
space

2.1 Extracting geometries from images

On the domain Ω ⊂ IR3, we assume an image inten-
sity u0 : Ω → IR to be given. This may be the result
of computed tomography (CT) or magnetic resonance

imaging (MRI) of a part of the human body, or it might
come from electron miscroscope (EM) imaging of biolog-
ical phenomena. The basis for a further quantification
or physical simulation is given by the partition of the
image into segments that represent the original objects
of interest. Examples range from the segmentation and
successive volumetry of liquor spaces in the brain [21], or
lung nodules [26] over the identification of liver segments
and vascular structures draining these segments [42] to
the segmentation and computation of mechanical loads
in human joints [24].

To achieve the segmentation of the image data, vari-
ous approaches have been discussed in the past. Simple
thresholding works well in very few cases and in the ab-
sence of noise only. Other approaches are based on edge
indicators of the image. A discrete hierarchical segmen-
tation algorithm that combines several boundary indi-
cators has been presented in [16]. The most prominent
approach of discrete segmentation is the morphological
watershed transform which creates a tessellation of the
domain Ω into segments by simulating rainfall. To rem-
edy an oversegmentation, various modifications of the
watershed transform and hybrid approaches have been
proposed [44].

More flexible with respect to inhomogeneities in the
image data are active contour models and snakes [9,10,
14,23,52]. These are based on the evolution of curves and
surfaces, respectively, which are driven by certain forces
towards the boundaries of the corresponding segments.
The driving forces are designed such that in the limit of
the evolution, the curves/surfaces yield a proper approx-
imation of the segment boundary. Active contour models
incorporate a wide range of driving forces which result
from the minimization of energy functionals. Those ener-
gies balance the smoothness and curvature of the result-
ing geometric objects with the force attracting towards
the object boundaries of interest.

In explicit implementations of snake approaches, a
major problem results from the fact that topological
changes of the initial curves/surfaces are hard to realize.
Implicit approaches through level-set functions [34] do
not suffer from this limitation. In the level-set approach,
the corresponding object boundary is given by the zero
level-set of a function φ(t, ·) : Ω → IR. The evolution of
the level-set function with time is then controlled by a
partial differential equation of the type

∂tφ− f(t, x)|∇φ| = 0, (1)

where f(t, x) is the driving force. Using the level-set ap-
proach corresponds to an embedding of the snakes into
a higher dimensional space in which necessary topology
changes can be achieved easily.

A diffuse segment boundary is achieved by using a
phase-field approach: the sharp object boundary is ap-
proximated by a smooth phase-field function that is zero
on object boundaries only and attains the value one away
from these boundaries. The level-set and phase-field ap-
proaches have been used to approximate the Mumford-
Shah functional for the joint image-denoising and seg-
mentation [2,11].

Composite Finite Elements for 3D Image Based Computing 3

2.2 A virtual grid

Let us now describe how a computational grid can be ef-
ficiently generated in the case of a geometry determined
by previously acquired image data u0 : Ω → IR. In the
following, we assume that φ : Ω → IR is a level-set func-
tion resulting from a segmentation process based on the
image u0. Here, φ is usually considered as the asymptotic
limit of the solution of some level-set propagation (1). We
emphasize that this is not a restriction, because starting
from a variety of other segmentation results (paramet-
ric surfaces, characteristic functions, phase-field etc.), a
level-set function can be generated e. g. by computing
signed distance functions [6,40] or simple algebraic op-
erations like in the case of solid modeling. Furthermore, a
combination of different segments can be easily achieved
by min and max operations on the respective level-set
functions.

Let us refer to

– the set Ω− := {x ∈ Ω |φ(x) < 0} as the interior of
the segment(s),

– the set Ω+ := {x ∈ Ω |φ(x) > 0} as the exterior of
the segment(s),

– γ := Ω ∩ ∂Ω− = {x ∈ Ω |φ(x) = 0} as the interface,
i. e. the interior boundary portion of Ω− which lies
inside Ω.

In the following, the set Ω− is the physical domain of
interest.

In the remainder of this section, we work with dis-
cretized data and thus identify images with their nodal
values (voxels) and a corresponding set of basis functions
or interpolation rules. Since images are typically given on
cuboid domains, we assume the computational domain
Ω ⊂ [0, 1]3 ⊂ IR3 to be discretized by a hexahedral grid
G� of dimension {0, . . . , Nx}×{0, . . . , Ny}×{0, . . . , Nz},
with Nx, Ny, Nz ∈ IN. We define the grid-width h as

h = min
{

1
Nx

,
1
Ny

,
1
Nz

}
.

The image voxels of u0 and the nodal values of the level-
set function φ are defined on the vertices of this grid,
which we order lexicographically. Thus, u0 and φ are
assumed to be piecewise trilinear. For the later use of
hierarchical approaches or multigrid solvers it is conve-
nient to assume that Nx = Ny = Nz = 2L + 1 for some
L ∈ IN, such that the resulting grid comes along with an
octree structure.

Since we are going to define the geometry for our
PDE problem (cf. Section 2.3) based on the given im-
age data u0, the accuracy is limited by the resolution
Nx, Ny, Nz of the image. However, if it is possible to
take further information into account, one might as well
start from a finer initial resolution or incorporate adap-
tive mesh refinement below the initial resolution.

Let us divide each hexahedral element of G� into 6
tetrahedra (cf. Figure 1) such that a regular tetrahedral
grid G� of the domain Ω is obtained. We denote the
elements of this grid by T ∈ G�, and the set of nodes of

Fig. 1. The subdivision of a hexahedron into 6 tetrahedra.
The diagonals on the left and right, top and bottom, and front
and back faces are pairwise consistent. Hence the resulting
tetrahedral grid G� is admissible in the usual sense (cf. [13]).

Grid G� Grid G�

Ω�
−

Ω�
+

γ�γ

Ω−

Ω+

Fig. 2. The approximation of the interface γ by a reinter-
pretation of the level-set function is sketched in 2D. On the
left, the level-set γ is evaluated using tri-linear interpolation
of the function φ on the hexahedral grid G�. On the right,
the level-set function φ is re-interpreted on a regular tetra-
hedral grid and the approximated interface γ4 results from
the linear interpolation on the tetrahedral grid G�.

G� by N�. Note that the hexahedral grid G� and the
tetrahedral grid G� have the same set of nodes.

If we re-interpret the image function u0 prescrib-
ing the original voxel values on G� to the tetrahedral
grid G�, we get a piecewise linear representation u�

0 ,
whereas, on the hexahedral grid, the original image u0

was interpreted as piecewise trilinear. Analogously, the
re-interpretation of the level-set function φ yields ap-
proximations γ4, Ω�

+ and Ω�
− of the interface as well

as the interior and exterior regions. In particular, γ4 is
a piecewise planar approximation of the original inter-
face γ (cf. Figure 2). Let us assume that each hexahe-
dron in G� is intersected by the interface γ4 at most
once. Finally, we define N�

± := Ω�
± ∩ N� such that

N� = N�
+ ∪N�

− .
Obviously, the re-interpretation of the trilinear data

as linear data on the tetrahedra leads to an incorrect
position of the interface. But we emphasize that these
errors are of sub-voxel size and thus dominated by the
inaccuracy of the image-data acquisition process and the
segmentation (cf. Section 2.1).

If a tetrahedral element T ∈ G� is intersected by the
interface approximation γ4, it is split (cf. Figure 3)

4 Florian Liehr et al.

0 1 2 3

4 5 6 7

Fig. 3. We show the eight different cases of how the approxi-
mate interface γ4 can cut a tetrahedron. A tetrahedron is cut
by γ4 either into a smaller tetrahedron and a prism (cases
1, 2, 4, 7) or into two prisms (cases 3, 5, 6).

– either into one prism and one tetrahedron, or
– into two prisms.

Our goal is to split the resulting prisms further to ob-
tain a virtual grid G4 that contains only tetrahedra T .
To achieve this, we split each quadrilateral face of the
prisms into two triangles. Consistency at faces of the
tetrahedra is obtained by requiring that the tetrahedral
vertex with the smallest global index does not belong
to both triangles. Repeating this procedure for all inter-
faced tetrahedra yields the desired grid G4 whose ele-
ments resolve the approximated interface γ4 due to the
construction.

A better aspect ratio of the resulting tetrahedra could
be obtained by always using the shortest diagonal. This
splitting strategy, however, depends on the values of the
level set function and not merely on their signs, so pre-
computing the splitting as described in Section 4.1 would
become more complicated.

To avoid extremely small tetrahedra in the resulting
fine grid, we shift the level set function away from zero
by φ(x) ± δ, δ � 1 if |φ(x)| < ε � 1. In our compu-
tations, we use δ = ε = 2 · 10−4 times the grid spacing
h. Thus, we avoid configurations in which the interface
γ4 intersects grid nodes. In real world applications, the
errors introduced by this modification can be neglected
compared to errors of the segmentation process.

We refer to this grid G4 as the virtual grid, since for a
suitable CFE space, it is only needed in the initial phase
for the construction of basis functions (cf. Section 2.3).

The intersection of γ4 with the tetrahedra of G�

generates virtual nodes at the intersections of γ4 with
the edges of G�. For later use we denote the set of the
virtual nodes by Nv and the set of all fine grid nodes
by N4 := N� ∪ Nv. In the following we furthermore
refer to the nodes N� of the regular grid G� as the
regular nodes. In Figure 4 we depict the virtual nodes of
a domain which has been segmented from CT-data.

In summary, we construct three intertwined grids:

– the original hexahedral voxel grid G� of the given
image data u0,

– the tetrahedral grid G� that defines the approxi-
mated interface γ4 as well as Ω�

± , and

Fig. 4. The virtual nodes for an interface γ are depicted as
red dots. By the construction of the virtual grid the inter-
face γ has been approximated by γ4 and thus appears non-
smooth in the image. Intentionally, we do not use a smooth
shading of the interface to enhance the visibility of the under-
lying hexahedral grid. The interface shown here represents a
detail of a vascular tree extracted from CT-data of the human
liver (cf. Section 5.3 and Figures 12, 14 and 15).

– the virtual grid G4 that resolves the approximated
interface γ4.

As described above, G4 is a refinement of G� and G�

is a refinement of G�. In the following section we use
the virtual grid G4 for the construction of a CFE space
for problems on domains with complicated boundaries
(cf. [20]). The multigrid method presented in Section 3
leads to convergence rates which are independent of the
grid width h. Later, in Section 5 we present an outlook
for the use of the virtual grid to define a CFE space for
problems with discontinuous coefficients.

2.3 Composite finite element basis functions for
problems on domains with complicated boundary

For an elliptic operator of second order

L = −
3∑

α,β=1

∂β(aαβ∂α·)

let us consider the scalar PDE

Lu = f (2)

on the domain Ω− described by the level-set function
φ and for boundary data to be specified later. For the
numerical solution of this problem, we want to construct
a finite element space whose degrees of freedom (DOF)
reside on the coarse grid nodes N� but which resolves
the complicated structure γ4.

Composite Finite Elements for 3D Image Based Computing 5

In a straightforward and well-known fashion the grids
G4 and G� define finite element spaces of piecewise lin-
ear functions

V4h
:=

{
v ∈ C0(Ω)

∣∣∣ v|T is affine ∀T ∈ G4
}
,

V�h
:=

{
v ∈ C0(Ω)

∣∣∣ v|T is affine ∀T ∈ G�
}
.

Bases for these spaces are given by the standard “hat-
functions” on G4 and G� respectively:

V4h
= span

{
ψ4i ∈ C0(Ω)

∣∣∣ψ4i |T is affine ∀T ∈ G4

and ψ4i (xj) = δij ∀xj ∈ N4
}
,

V�h
= span

{
ψ�

i ∈ C0(Ω)
∣∣∣ψ�

i |T is affine ∀T ∈ G�

and ψ�
i (xj) = δij ∀xj ∈ N�

}
,

(3)
Obviously V�h

has its DOF on the nodes N�, but
it does not resolve γ4. Conversely, V4h does resolve γ4
but it has DOF on virtual nodes which are not nodes of
the coarse grid. The construction of the composite finite
element space uses both V4h and V�h

. In fact, we define
the space that resolves the interface γ4 by

Vh
cfe := span{ψcfe

i } with ψcfe
i := ψ�

i χΩ�
−
, (4)

where χΩ�
−

is the characteristic function of the sub-
domain. Obviously, this construction removes all basis
functions from V�h

whose support lies completely out-
side Ω�

− . Basis functions ψ� that are completely sup-
ported inside the subdomain are not modified, and ba-
sis functions whose support crosses the interface γ4 are
cut-off. Let us remark that there are also DOF at nodes
outside the domain of interest but whose corresponding
basis functions are supported inside the domain only.

The construction of the finite element space (4) can
be simplified by using the virtual grid G4 and the space
V4h. Since the grids G4 ⊂ G� are nested and since both
bases are partitions of unity, every basis function ψ�

i can
be expressed as a linear combination of virtual grid basis
functions ψ4j . So, for each xi ∈ N� there exists a set of
fine grid nodes Ci := {xi1 , . . . , xici

} ⊂ N4 and weights
µi,l ∈ R such that

ψ�
i =

ci∑
l=1

µi,lψ
4
il
. (5)

Obviously the inclusion Nv ⊂
⋃

i Ci holds. This means,
that in the composite finite element space the virtual
nodes do not appear as degrees of freedom because a
virtual node xv ∈ Cj is constrained by the node xj ∈ N .
We emphasize that the construction (5) is only needed
for basis functions whose support crosses γ4. The basis
functions of Vh

cfe which are completely supported in the
interior of the domain Ω�

− coincide with the correspond-

ing standard basis functions of V�h
. For later use let us

introduce the set Dj ⊂ N which is complementary to
Ci: For a fine grid node xj ∈ N4 the set Dj contains
the regular nodes in N which constrain xj .

To derive a standard Galerkin approach (multiplying
with a test function v ∈ Vh

cfe and integrating over Ω�
−),

we consider the weak form

a(u, v) = l(v) (6)

of the boundary value problem (2), where

a(u, v) :=
∫

Ω�
−

3∑
α,β=1

aαβ∂αu ∂βv dx and l(v) :=
∫

Ω�
−

fv dx.

(7)

For basis functions in (4) which are not affected by
the cut-off by χΩ�

−
, the computation of the linear and

bilinear form in (7) is standard. For basis functions in
(4) whose support is intersected by the interface γ4, the
integration makes use of (5) so that∫

Ω�
−

ψi dx =
ci∑

l=1

µi,l

∑
T∈G4∩Ω�

−

∫
T

ψ4il
dx

and for products of derivatives appearing in a(·, ·)∫
Ω�
−

∂αψi ∂βψj dx

=
ci∑

l=1

µi,l

cj∑
k=1

µj,k

∑
T∈G4∩Ω�

−

∫
T

∂αψ
4
il
∂βψ

4
jk
dx. (8)

The CFE approach benefits from the fact that we do
not need to assign global indices to the virtual nodes
and we can work with the very simple and efficient lex-
icographical ordering induced by the underlying image
data. Nodes outside the subdomain that are no DOF can
easily be masked out in the iterative solver. In Section 4,
we will have a closer look at the algorithmic construction
of the composite finite element space and the assembly
of mass and stiffness matrices.

2.4 Boundary Conditions

On the interior boundary γ = ∂Ω−∩Ω (see Section 2.2),
we allow homogeneous Neumann boundary conditions
only. On the exterior boundary ∂Ω∩∂Ω− =: ΓD∪̇ΓN , we
impose Dirichlet boundary conditions on ΓD and Neu-
mann boundary conditions on ΓN . This means in par-
ticular that Dirichlet boundary conditions can only be
applied to the exterior boundary of our physical object.
As for our meshes, we assume that the set ΓN ∩ ΓD is
contained in the set of regular nodes of G�. For the treat-
ment of complicated Dirichlet boundaries, i. e. γ ∩ΓD 6=
∅, we refer to [39].

6 Florian Liehr et al.

2.5 Quality of the tetrahedral meshes

Due to the construction of the virtual grid G4, tetrahe-
dra can have very small diameter and furthermore very
small angles between edges. It is well known that this can
pose problems for the solution of linear systems result-
ing from Galerkin FE discretizations of PDE [47]. This
will be relaxed by the multigrid method presented in the
next section. See [38] for an example where tetrahedra
of bad aspect ratio and/or small size lead to linear sys-
tems with large condition numbers which do not affect
the efficiency of our multigrid solver.

A basic property of the construction presented in the
last paragraphs is that regular and virtual nodes can
only lie on edges of the six tetrahedra forming one cube.
Consequently we observe that, among tetrahedra with
all vertices close to a line, spires and splinters can oc-
cur whereas spears, spikes and spindles cannot, if we
follow the classification of badly shaped tetrahedra in
[12]. Moreover, among tetrahedra with all vertices close
to a plane but no line, wedges and slivers can occur but
spades and caps cannot.

3 A CFE multigrid solver

The geometric structure of the grids defined in Sec-
tion 2.2 comes along with a natural octree structure if
we assume that Nx = Ny = Nz = 2L + 1 for some
grid-depth L ∈ IN. This octree structure defines a natu-
ral hierarchy of hexahedral grids F l and corresponding
sets of nodes Ml for l ∈ {0, . . . , L}. Obviously the in-
clusion M0 ⊂ · · · ⊂ ML holds, moreover, FL = G�

and ML = N�. As in Section 2.2, the sets of nodes
also describe a regular tetrahedral grid if we divide each
hexahedron into 6 tetrahedra as shown in Figure 1.

For a node xl
i ∈Ml, we denote the set of neighboring

fine-grid nodes by Al
i ⊂ Ml+1. It is the set of at most

14 nodes which are connected to xl
i by the edge of one

of these tetrahedra including the node itself.
In this section we use the hierarchical octree struc-

ture to define a geometric CFE multigrid method. I. e.
the basis functions on coarse grids are supposed to re-
solve the boundary. First we construct a two-grid method
starting on the finest grid and explain how to obtain a
multigrid solver by recursion. We are inspired by [17] for
1D composite finite elements.

3.1 Structure Coarsening

In the following, we denote a CFE-grid on level l ∈
{0, . . . , L} by Gl and the corresponding set of nodes by
N l. Recall that we constructed the CFE basis functions
on the fine grid by selecting DOF from the set of nodes
N� = ML and cutting off the standard basis functions
such that they resolve γ4. So we have

NL := {xj ∈ N� | suppψ�
j ∩Ω�

− 6= ∅} ⊂ ML,

GL := {T ∈ G� |T ∩Ω�
− 6= ∅}

ΓD

D

D

ΓD

N

N

D

D

Fig. 5. When coarsening the CFE grid for the domain shown
here, we obtain newly introduced DOF at positions marked
by • and Dirichlet nodes at positions marked by �. DOF
already present in the fine grid are marked with ◦ and ut,
respectively. The fine grid is depicted on the left, and the
coarse grid is shown on the right. Faces on the right bound-
ary portion of the domain are marked as “Dirichlet” (D) or
“Neumann” (N).

for the finest level of the hierarchy.
To define the CFE multigrid-structure, we proceed

similarly by choosing corresponding nodes (DOF) from
the octree nodes Ml and by defining the corresponding
basis functions. For a fine grid Gl we define the nodes of
Gl−1 by

N l−1 := {xi ∈Ml−1 |xi ∈ N l or Al
i ∩N l 6= ∅}. (9)

So a node in Ml−1 is a DOF in N l−1 if it is a fine
grid node as well, or if one of its 14 fine-grid neighbors
is a DOF in N l−1. The last part of this definition is
the peculiarity of the definition of the CFE-multigrid
hierarchy: It leads to non-nestedness of the grids. One
layer of nodes outside the domain of computation may
be assigned DOF, so nodes in the coarse grid may have
DOF whereas the geometrically corresponding node in
the fine grid does not (cf. Figure 5).

Let us remark that for grid cells of the coarse grid
that are intersected by a half plane interface, the coars-
ened basis functions are exactly the same as those we
would obtain if we constructed them from the interface
resolved on the coarse grid.

If we are dealing with a Dirichlet boundary on the
finest grid, we require the assumptions on the mesh from
Section 2.4 to be satisfied for all grids in our hierar-
chy. For newly introduced nodes on coarsened grids, we
need to decide whether to make them Dirichlet nodes or
not. For this purpose, consider the hierarchy of bound-
ary faces (objects of codimension 1): a face on the finest
grid is labeled “Dirichlet” if at least one of its vertices
is a Dirichlet node, “Neumann” otherwise. When coars-
ening, a coarse boundary face is labeled “Dirichlet” if at
least one of the face’s children is “Dirichlet”; it is labeled
“Neumann” otherwise. Dirichlet nodes are those nodes
that are vertices of Dirichlet boundary faces (cf. Fig-
ure 5).

3.2 Operator Coarsening

We define the coarse grid basis functions and the pro-
longation and restriction operators respectively by local

Composite Finite Elements for 3D Image Based Computing 7

Galerkin products [19] on regular tetrahedral meshes.
This involves the weights 1, 1/2, and 0 in the prolonga-
tion matrices Pl→l+1 for the interpolation from grid-level
l to grid-level l + 1. As usual, we set Rl+1→l := PT

l→l+1
for the corresponding restriction.

Coarse grid basis functions ψcfe,l
i are obtained by

the corresponding weighted sums of the fine grid ba-
sis ψcfe,l−1

j , where ψcfe,L
j := ψcfe

j . This standard ap-
proach leads to piecewise affine basis functions ψcfe,l

i on
the coarse tetrahedral grids (induced by the Ml) which
are cut-off through the multiplication with a character-
istic function χΩ� of the computational domain.

Note that in general the coarse grids are not able
to resolve the computational domain Ω�

− . Consequently,
the support of a coarse grid basis function may consist of
several disconnected components. However, it is easy to
see that the basis functions ψcfe,l

i still form a partition
of unity on the computational domain Ω�

− .
Finally, if Al denotes the matrix representation of the

discrete bilinear form (cf. (7)) on grid level l, the stan-
dard Galerkin coarsening leads us to the corresponding
coarse grid discrete forms by

Al = Rl+1→l Al+1 Pl→l+1. (10)

3.3 Multigrid-Cycles

In our multigrid solver, we first construct a hierarchy of
grids and coarsened operators (starting from the finest
grid) up to some coarse level by recursively applying the
procedure described above.

We then use a multigrid method with symmetric
Gauß-Seidel iterations as a smoother. For scalar prob-
lems, the Gauß-Seidel smoother is a standard one, for
vector valued problems, we use a Block-Gauß-Seidel
method. The unknowns are (implicitly reordered and)
indexed in such a way that we treat the spatial compo-
nents of our solution simultaneously. I. e. in the case of
a three-dimensional problem, we use Gauß-Seidel itera-
tions on 3× 3 blocks.

In our computations in Section 5, V-cycles with no
more than 3 pre- and post-smoothing steps turned out
to be a reasonable choice.

4 Algorithmical aspects

The intention of this paper is in particular to present
the effective and efficient algorithmic setup to use CFE
methods in image based computing. Thus, let us now
focus on the algorithmical aspects behind the general
concept described in the last section. This section dis-
cusses how to efficiently compute the intersection of the
approximated interface γ4 with the tetrahedral grid G�

and how to assembly finite element matrices. For this
purpose, we adopt methodology that has been used ear-
lier in the field of scientific visualization in form of the
marching cubes/marching tetrahedra algorithms for iso-
surface extraction [31,33].

4.1 Hashing topology

Creating the grid G4 can be simplified enormously by
observing that only few topologically different configu-
rations of the interface γ4 cutting an element E ∈ G
can occur (cf. Figure 3). The topological type of a local
configuration is determined by the values of the level-set
function φ at the vertices of the hexahedron E. Based
on this observation, a lookup table can be created that
contains the topological information (cf. Algorithm 1).

To make this more precise, let us introduce the sig-
nature σ(E) of a hexahedral element E ∈ G

σ(E) = (σ0, . . . , σ7), with σi = sign(φ(xi)) ∈ {−1,+1},

where the xi are the nodes of E. Since each hexahedron
has 8 vertices, obviously at most 28 = 256 different sig-
natures can occur. In an implementation the signature
can be easily stored in one byte in which the bits are
set if e. g. the level-set function φ has negative sign at
the corresponding vertex. Furthermore, the topology of
sub-tetrahedra resolving the interface can be determined
from the signature (i. e. the signs of the level-set func-
tion φ) only. In fact, as shown previously in Figure 3,
only 8 distinct cases have to be considered. All other
configurations can be transformed into one of those 8 by
a rotation or an inversion of the sign of φ.

The splitting of elements E into tetrahedra T and
moreover local reference matrices and derivatives of basis
functions ψ4i can be pre-computed and stored. For the
later assembly of finite element mass or stiffness matri-
ces, the actual contributions can be obtained by a simple
scaling of the pre-computed data.

Algorithm 1 describes the generation of a topology
lookup table. In the main loop (lines 2-6), we run a split-
ting algorithm for every signature σ = 0, . . . , 255. For
reasons of simplicity, we do not take into account the
symmetries mentioned above in this part of the code.
The splitting itself checks the signature of the tetrahe-
dron (lines 11+12) and creates a local set of nodes N loc

±
on either side of the interface γ4. To create the topology,
we assume that γ4 splits edges in the middle and cor-
respondingly a set of local virtual nodes is constructed
(lines 13-18). We refer to the local virtual nodes by the
local indices of their constraining parent nodes. A virtual
node located at 1

2 (xjk
+xjl

) is referred to as (jk, jl). This
implicitly gives us the set of constraining parent nodes
Dj from Section 2.3.

To split either configuration (tetrahedron/tetrahe-
dron or tetrahedron/prism) we now take symmetries into
account: The local setting is transformed by reordering
the vertices of the tetrahedron and by swapping the (+)
and (−) sides of the local configuration (lines 19-33).
Since we are interested in the tetrahedra resolving the
computational domain Ω�

− , we store the splitting of the
(−) side in the lookup table only.

In our algorithms, we do not save coordinates of the
(virtual) sub-tetrahedra, but local index pairs of their
constraining vertices only. Thus, a tetrahedron

T = {a0a1, b0b1, c0c1, d0d1}

8 Florian Liehr et al.

Algorithm 1 Create topology lookup table
1: procedure createLookupTable
2: for σ ← 0, . . . , 255 do . For each topological type σ
3: for j ← 0, . . . , 5 do . For each standard tetrahedron of E with σ(E) = σ
4: if Tetrahedron Tj is interfaced then
5: SplitTetrahedron(σ|Tj , Tj)
6: end if
7: end for
8: end for
9: end procedure

10: procedure SplitTetrahedron(signature σ = {σ0, . . . , σ3}, tetrahedron T = {xj0 , . . . , xj3})
11: N loc

+ ← {xji |σi = +1, i = 0, . . . , 3} . Positive vertices
12: N loc

− ← {xji |σi = −1, i = 0, . . . , 3} . Negative vertices

13: N loc
v ← ∅ . Create the set of local virtual nodes

14: for each edge (xjk , xjl) of T do
15: if σk 6= σl then . If the edge is interfaced
16: N loc

v ← N loc
v ∪ {(jk, jl)}

17: end if
18: end for

19: if |N loc
− | = 1 then . T splits into a tetrahedron inside Ω�

− and a prism outside
20: Reorder vertices such that

• N loc
− = {xj0} and N loc

+ = {xj1 , xj2 , xj3}
• j1 < j2 < j3

21: T0 ← {j0j0, j0j1, j0j2, j0j3} . T0 has vertices {xj0 , xj0xj1 , xj0xj2 , xj0xj3}
22: else
23: if |N loc

− | = 2 then . T splits into two prisms
24: Reorder vertices such that

• N loc
− = {xj0 , xj1} and N loc

+ = {xj2 , xj3}
• j0 = min{ji} and j2 < j3

25: T0 ← {j0j0, j1j1, j1j3, j1j2} . T0 has vertices {xj0 , xj1 , xj1xj3 , xj1xj2}
26: T1 ← {j0j0, j0j2, j0j3, j1j2} . T1 has vertices {xj0 , xj0xj2 , xj0xj3 , xj1xj2}
27: T2 ← {j0j0, j1j3, j0j3, j1j2} . T2 has vertices {xj0 , xj1xj3 , xj0xj3 , xj1xj2}
28: else . T splits into a prism inside Ω�

− and a tetrahedron outside
29: Reorder vertices such that

• N loc
− = {xj1 , xj2 , xj3} and N loc

+ = {xj0}
• j1 < j2 < j3

30: T0 ← {j1j1, j1j0, j2j0, j3j0} . T0 has vertices {xj1 , xj1xj0 , xj2xj0 , xj3xj0}
31: T1 ← {j1j1, j2j2, j2j0, j3j0} . T1 has vertices {xj1 , xj2 , xj2xj0 , xj3xj0}
32: T2 ← {j2j2, j3j3, j1j1, j3j0} . T2 has vertices {xj2 , xj3 , xj1 , xj3xj0}
33: end if
34: end if
35: end procedure

has the vertices

xa0xa1 , xb0xb1 , xc0xc1 , xd0xd1

where we use the abbreviation xixj = 1
2 (xi + xj). Us-

ing this notation, we can easily refer to virtual nodes
if two different constraining indices exist. Furthermore
we fix the notational convention that the first index
always refers to the regular node inside the domain
Ω�
− . E. g. the tetrahedron T0 in line 21 has the in-

dices {j0j0, j0j1, j0j2, j0j3} which means that it contains
one regular node xj0 ∈ N− and three virtual nodes
1
2 (xj0 + xj1),

1
2 (xj0 + xj2),

1
2 (xj0 + xj3).

After the lookup table has been created, the set of
virtual nodes Nv can be easily generated from the sets
of local virtual nodes N loc

v . Let us mention that, in a
final sweep over the lookup table, the tetrahedra should

be checked for positive orientation in the usual mathe-
matical sense.

For each tetrahedron T obtained by the split-
ting algorithm we compute a reference mass matrix
Mref = ((ψi, ψj))i,j=1,...,4 and a Jacobian Jref =
(∂αψi)i=1,...,4, α=1,2,3 of the vector of standard linear ba-
sis functions on T . Both Mref and Jref, which are stored
in the lookup table, are needed later for an efficient as-
sembly of global matrices.

4.2 Hashing virtual nodes

For the CFE approach presented in Section 2.3, it is nec-
essary to store additional geometric information associ-
ated with individual virtual nodes. Therefore an efficient

Composite Finite Elements for 3D Image Based Computing 9

storage method for data associated with virtual nodes is
needed. It is not possible to store virtual nodes per ele-
ment since the same virtual node may be present in ad-
jacent elements as well, being used in an earlier or later
stage of a grid traversal. Instead, we choose a hashing
strategy in which we build the hash key from the global
indices of the DOF that geometrically constrain a vir-
tual node. The hash key for a virtual node z = (xi, xj)
is created from idx(i) and idx(j), where idx(k) gives
the global index of node xk. As a simple hash-function
is given by the concatenation of the bits of idx(i) and
idx(j) where idx(i) < idx(j).

4.3 Matrix assembly

The key algorithmic building block of any finite element
scheme is the assembly of matrices and vectors used in
the resulting linear systems of equations to be solved.
We deal here with the matrix assembly. The case of a
vector assembly is then straightforward.

Making use of the above introduced hashing con-
cept, a global finite element matrix is assembled from
pre-computed local reference matrices. These reference
matrices correspond to the set of all (virtual) reference
tetrahedra resulting from the subdivision (as obtained
by Algorithm 1) of the 6 tetrahedra in a reference cube
E according to all possible signatures σ(E).

Algorithm 2 describes this assembly: For each hex-
ahedral element of the octree G�, which is intersected
by the computational domain Ω�

− , we run over all sub-
tetrahedra (line 5). The set of sub-tetrahedra can easily
be taken from the lookup table corresponding to the sig-
nature σ(E).

Next, the weights λi,0, λi,1 represent the actual in-
tersection point with the interface on an edge and are
computed correspondingly (lines 34-42). A local matrix
(M loc

T [i][j])ij for the sub-tetrahedron T is retrieved from
a lookup table and scaled according to the actual geom-
etry of T (line 7). Below we describe how this scaling is
performed in the case of mass and stiffness matrices. The
entries of the local matrix are weighted and accumulated
into the global one (lines 8-23).

The local matrices refer to piecewise affine basis func-
tions which attain values 0 or 1 on the virtual nodes. In
the case of the composite finite element basis functions
the nodal value 1 is replaced by the properly interpo-
lated value. These interpolation values are given by the
weights µ·,· in (5). However, locally for a virtual node
i = (i0i1) which resides on the edge between two nodes
xidx(i0), xidx(i1) ∈ N only two weights are relevant. Those
relevant weights correspond to the intersection points
with the interface λi,0, λi,1.

To distribute the entries of the local matrices, we
loop over all local vertices of the sub-tetrahedron and
check whether those are virtual nodes. If a virtual node
occurs, its contribution from the local matrix has to be
weighted by products of the λi,· and distributed on the
constraining nodes. Here, we use the fact that we refer
to vertices of tetrahedra by pairs of indices as described
in Section 4.1.

xj2 xj3

T1

T40

T41

T0

xj0xj3

xj0 xj1xj0xj1

xj0xj2

γ�

λ·,0

Fig. 6. The transformation from the reference configuration
stored in the lookup table to the actual local geometric set-
ting is sketched in two dimensions. On the left we depict a
reference configuration for an element E with (2D) signature
{−1, 1, 1, 1} having three virtual nodes and two elements T1,2

inside the computational domain. In the reference configura-
tion the virtual nodes are assumed to reside in the middle of
the edges of E. On the right we show an actual geometrical
configuration. For the assembly of matrices the virtual nodes
are moved according to the weights λ·,0 and thus the virtual
elements T41,2 are obtained. Pre-computed local mass matri-
ces Mref and Jacobians Jref are scaled to reflect the actual
geometrical setting.

We achieve a speedup by not running over the sub-
tetrahedra of elements not intersected by the interface,
but by providing again a lookup table for such hexahe-
dra (lines 26-29). In the applications considered here, a
simple mid-point quadrature rule is sufficient for the co-
efficients of the bilinear form. These local matrices are
also pre-computed in a set-up phase. Let us finally men-
tion that the weights λi,· are computed in advance as
well and stored in a hash table.

Algorithm 3 describes how to obtain the scaled local
matrices based on information stored in the lookup ta-
bles. The procedure is very simple and straightforward in
the case of mass matrices: For each tetrahedron obtained
through the splitting Algorithm 1 we compute and store
the mass matrix in advance. In Algorithm 3 this matrix is
retrieved (line 3). Then we construct up a scaling matrix
B built from the weights λ·,0 (lines 4-9) which reflects
the transformation from the stored topological tetrahe-
dron to the actual geometry. Here the splitting weights
λ·,0 come into play to move the virtual nodes (so far as-
sumed to be in the middle of edges) to the right position
(cf. Figure 6). The volume of a virtual tetrahedron T
is given by vol(T) = det(B)vol(T), where T is the refer-
ence tetrahedron from the lookup table. Thus, the scaled
mass matrix M is obtained by scaling the stored version
Mref with the determinant of B (line 10).

For the assembly of stiffness matrices we proceed sim-
ilarly. For the local stiffness matrix L = (Lij)i,j=1,··· ,4 on
a virtual tetrahedron T we obtain

L =

∫
T

3∑
α,β=1

aαβ∂αψ
4
i ∂βψ

4
j

i,j=1,...,4

= vol(T)J4A(J4)T

10 Florian Liehr et al.

Algorithm 2 Assembly of system matrix for composite finite elements
1: procedure Assemble
2: for each hexahedral element E of the grid G do
3: if E ∩Ω�

− 6= ∅ then . If element intersects domain
4: if E ∩ γ4 6= ∅ then . If element is interfaced
5: for T = (a0a1, b0b1, c0c1, d0d1) ∈ LookupTable(σ(E)) do . For each sub-tetrahedron T ∈ G4 ∩ E
6: ComputeWeights(λ, φ, E, T)
7: ComputeLocalTetraMatrix(E, T , λ, M loc

T)
8: for i, j ← {a, b, c, d} do . For each pair of vertices
9: if i, j are regular nodes then

10: Mglobal[idx(i0)][idx(j0)]←Mglobal[idx(i0)][idx(j0)] + M loc
T [i][j]

11: else if i is virtual node, j is regular node then
12: Mglobal[idx(i0)][idx(j0)]←Mglobal[idx(i0)][idx(j0)] + λi,0M

loc
T [i][j]

13: Mglobal[idx(i1)][idx(j0)]←Mglobal[idx(i1)][idx(j0)] + λi,1M
loc
T [i][j]

14: else if i is regular node, j is virtual node then
15: Mglobal[idx(i0)][idx(j0)]←Mglobal[idx(i0)][idx(j0)] + λj,0M

loc
T [i][j]

16: Mglobal[idx(i0)][idx(j1)]←Mglobal[idx(i0)][idx(j1)] + λj,1M
loc
T [i][j]

17: else if i, j are virtual nodes then
18: Mglobal[idx(i0)][idx(j0)]←Mglobal[idx(i0)][idx(j0)] + λi,0λj,0M

loc
T [i][j]

19: Mglobal[idx(i1)][idx(j0)]←Mglobal[idx(i1)][idx(j0)] + λi,1λj,0M
loc
T [i][j]

20: Mglobal[idx(i0)][idx(j1)]←Mglobal[idx(i0)][idx(j1)] + λi,0λj,1M
loc
T [i][j]

21: Mglobal[idx(i1)][idx(j1)]←Mglobal[idx(i1)][idx(j1)] + λi,1λj,1M
loc
T [i][j]

22: end if
23: end for
24: end for
25: else . If E is not interfaced
26: LookUpLocalHexaMatrix(E,M loc

E)
27: for i, j ← 0, . . . , 7 do . For each pair of local DOF
28: Mglobal[idx(i)][idx(j)]←Mglobal[idx(i)][idx(j)] + M loc

E [i][j]
29: end for
30: end if
31: end if
32: end for
33: end procedure

34: procedure ComputeWeights(weights λ, level-set-function φ, hexahedron E, tetrahedron T)
35: Assume E = {x0, . . . , x7} and T = {a0a1, . . . , d0d1}
36: for each vertex (jkjl) ∈ T do
37: if jk 6= jl then . Vertex is virtual node

38: λj,0 ←
φ(xjk)

φ(xjk)− φ(xjl)
. Intersection with interface = zero of φ

39: λj,1 ← 1− λj,0

40: end if
41: end for
42: end procedure

where A = (aαβ)α,β=1,2,3 is the coefficient matrix and
J4 = (∂αψ

4
i)i=1,...,4, α=1,2,3 the Jacobian of the vector

of local basis functions. This Jacobian on the virtual el-
ement T can be obtained via scaling from pre-computed
Jacobians Jref stored again in a lookup table (line 14).
In fact, we obtain J4 = JrefB−1 for the above scaling
matrix B (lines 15-20). Thus, we end up with (line 21)

L = vol(T)det(B)JrefB−1AB−1(Jref)T .

Let us emphasize that B is invertible since in Section 2.2
we have assumed that the virtual nodes never coincide
with coarse grid nodes, thus λ·,0 6= 0. Moreover, the com-
putation of det(B) and B−1 is trivial since B is diagonal.

4.4 Multigrid

To use the standard coarsening, the basis for the fine
grid is extended by hat functions of height zero centered
at all nodes in Ml \ N l, i. e. nodes outside the domain
Ω�
− whose standard basis function do not cross the in-

terface. After standard coarsening, all hat functions with
empty support (i. e. being zero everywhere) are removed
to obtain a basis for the coarse grid CFE functions.

For the construction of the coarse grid operators of
the multigrid we have to compute various matrix prod-
ucts as in (10). On the finest grid we use vectors of length
nL = (2L + 1)3 such that we have entries for all regu-
lar nodes (and mask out those entries corresponding to
non-DOF). Then the prolongation operator Pl−1→l can
be represented by a nl−1 × nl matrix. Due to the spar-

Composite Finite Elements for 3D Image Based Computing 11

Algorithm 3 Computation of local matrices from lookup table
1: procedure ComputeLocalTetraMassMatrix(hexahedron E, tetrahedron T , weights λ, local matrix M)
2: Assume T = {a0a1, . . . , d0d1}
3: RetrieveReferenceMassMatrixFromLookupTable(Mref, E, T)
4: B ← Id3×3

5: for each vertex (jkjl) ∈ T do
6: if jk 6= jl then . Vertex is virtual node
7: Bjj ← 2λj,0 . Store scaling factor in matrix
8: end if
9: end for

10: M ← det(B) Mref . Scale pre-integrated mass matrix
11: end procedure

12: procedure ComputeLocalTetraStiffnessMatrix(hexahedron E, tetrahedron T , weights λ, local matrix L)
13: Assume T = {a0a1, . . . , d0d1}
14: RetrieveReferenceJacobianFromLookupTable(Jref, E, T)
15: B ← Id3×3

16: for each vertex (jkjl) ∈ T do
17: if jk 6= jl then . Vertex is virtual node
18: Bjj ← 2λj,0 . Store scaling factor in matrix
19: end if
20: end for
21: L← vol(T)det(B)JrefB−1AB−1(Jref)T . Scale Jacobian and compute stiffness matrix
22: end procedure

Fig. 7. On a sample geometry consisting of parallel pillars we show the diffusion of heat. From left to right the complexity
increases (4 × 4 up to 32 × 32 pillars, resolved on a 2573 grid). In the top row results are depicted at time t = 5 and in the
bottom row at time t = 30. A color ramp from blue to green to red renders the temperature u on the boundary of the domain
Ω−. The number of virtual nodes is from left to right: 1 192 986, 1 875 326, 3 188 938 and 5 521 294, where the number of DOF
is 4 350 226, 4 545 512, 4 990 894 and 6 010 360, respectively.

sity structure of prolongation and restriction, the matrix
product (10) can be computed efficiently. For each en-
try of the coarse grid operator Al−1, at most 15 entries
of Rl→l−1 and Pl−1→l = RT

l→l−1 need to be considered
(for two multiplications and one addition). Thus the to-
tal workload for generating Al−1 from Al is bounded by
3 · 152 · nl = O(nl) flops. Finally let us mention that for
the block Gauss-Seidel iteration in the multigrid method
for vector valued problems, we can improve the computa-
tional efficiency by caching the inverses of 3×3 matrices

arising. This, however, is at the cost of a higher memory
requirement.

4.5 Computational and storage costs

The computation and storage of lookup table adds a
fixed amount to the computational and storage costs. In
fact, it is possible to compute the lookup table once for
all times and then reload the corresponding data from
a file. In our implementation the lookup table is of size

12 Florian Liehr et al.

2.261 KB and it takes less than 0.05 seconds to build it
on a standard PC.

For storing additional information for virtual nodes
as needed by our CFE algorithm presented in Section 2.3,
the implementation uses approximately 220 Bytes per
virtual node. Thus, it is possible to run simulations on
standard PCs, even for large data-sets and geometries
inducing many virtual nodes.

5 Applications

5.1 Heat diffusion

As a first model problem we consider the heat diffusion
in a homogeneous material. Thus, we consider the heat
equation on D ⊂ Ω and search for u : [0, T] × D → IR
such that

∂tu− λ∆u = 0 in [0, T]×D,

∂νu = 0 on [0, T]× ∂D,

u(0, ·) = g in D,

for a diffusion constant λ > 0 and initial data g ∈ L2(D).
Let us suppose we have determined a level-set function
φ describing D such that D = Ω− (cf. Section 2.2). Let
us furthermore discretize the domain Ω and its subdo-
mains Ω± by the algorithm described in Section 2.2. We
discretize the problem in time by a backward Euler ap-
proach with time step size τ > 0. For the spatial dis-
cretization we employ the standard Galerkin procedure
as described in Section 2.3. This leads to the bilinear
forms

a(u, v) :=
∫

Ω�
−

(
uv + τλ∇u · ∇v

)
dx,

f(u, v) :=
∫

Ω�
−

uv dx.

Taking the ansatz space Vh
cfe into account as introduced

in Section 2.2, and starting with u0 = g we have to solve

a(un, v) = f(un−1, v)

in each timestep n and for all test-functions v ∈ V h
cfe.

In Figure 7 we show the result of the computation of
the heat equation on a sample geometry consisting of an
array of pillars. Note that—due to the one-dimensional
pillar-structure—the heat isosurfaces do not approxi-
mate spheres but diamond-shapes (i. e. spheres in the
l1-norm). In the finest computations the number of regu-
lar DOF and virtual nodes is approximately equal. Thus,
in this case the CFE-approach needs only half the num-
ber of DOF compared to a standard FE approach on the
virtual grid.

Moreover, in Figure 8 the computational domain is
based on segmented CT-data of the human liver. We
compute heat diffusion on the segmented liver from
which the segmented vascular tree has been removed.
This application scenario is of interest in the so called

Fig. 8. The diffusion of heat is depicted on a domain which
has been segmented from CT-data of a human liver. The
upper row shows the result at time t = 5 whereas the bottom
row shows the result at time t = 30. Again, color indicates the
temperature (cf. Figure 7). To better visualize the internal
structures of the domain we depict the temperature on a cut
through the domain in the left column. In the right column
the internal vascular structures are shown, which are not part
of the computational domain.

ablation therapy of liver cancer, where energy is applied
inside the organ to cause a local heating (cf. Section 5.3).
Transport of heat on the vascular system is not consid-
ered here.

5.2 Elasticity

As a second model problem, we consider linear elasticity
in the case of an isotropic material. Thus we are dealing
with the vector valued problem on D ⊂ Ω: Find u : D →
IR3 such that

−div CE(u) = f in D
ν · CE(u) = 0 on ∂D \ Γ0

u(x) = 0 on Γ0

(11)

for f ∈ IR3 where C is the elasticity tensor and E(u) :=
1
2 (∇uT + ∇u) the linearized strain tensor and Γ0 ⊂ Ω
has positive surface measure. In the case of an isotropic
material, we have Cijmn = λδijδmn +µ(δimδjn + δinδjm)
with the so called Lamé constants λ and µ. In this case,
the PDE (11) becomes

−div
(
λ(tr E(u))Id + 2µE(u)

)
= f.

Again let us suppose we have a level-set function φ
describing D such that D = Ω− (cf. Section 2.2). We
follow the general discretization approach presented in
Section 2.2. In this case, the resulting bilinear and linear

Composite Finite Elements for 3D Image Based Computing 13

forms are given by

a(u, v) := λ

∫
Ω�
−

div u div v dx+ 2µ
∫

Ω�
−

E(u) : E(v) dx

l(v) :=
∫

Ω�
−

f · v dx.

Since we have a vector valued problem here, we take
the ansatz space (Vh

0)3 into account. Thus, the basis
functions for the vector valued problem are ψcfe

i ej ∈
(Vh

0)3 with j = 0, 1, 2, where {e0, e1, e2} is the standard
basis of IR3. Note that this leads to three times as many
DOF compared to the scalar problem.

In Figure 9 we show the elastic deformations of the
pillar-structures which we have already used for the
scalar test problem in Figure 7. We apply a force that
shears the upper boundary of the volume to the right,
whereas the lower boundary plate is kept fixed.

In Figures 10 and 11 we show the elastic deformation
of the different samples of the internal structure (spon-
giosa) of a porcine vertebral bone. The corresponding
level-set function φ has been obtained by a segmentation
of micro-CT image data. Again we apply a force f that
shears the upper boundary of the bone volume to the
right. The lower boundary plate is kept fixed. The red
boxes in the lower right image of Figure 10 correspond
to zoomed version in Figure 11. For further details on
elasticity computation for human vertebra we refer to
[43].

5.3 Ablation in liver cancer therapy

Let us finally consider a scalar model problem with non-
continuous coefficients to demonstrate the use of the
composite finite element method in this case. The ex-
planation is rather brief here and we refer the reader to
[37] for details.

We consider the electrostatic equation in a domain
containing two different materials. Consequently, the
electric conductivity σ is discontinuous across the ma-
terial interface γ. It is well known that the solution is
continuous across the interface ([u]γ = 0), its gradient is
continuous in tangential to the interface ([∂τu]γ = 0) but
discontinuous in normal direction, satisfying the jump
condition

[σ∂νu]γ = 0 a. e. on Γ. (12)

For this problem we use the virtual grid G4 to resolve
γ4 and to define a CFE space whose DOF lie on the
vertices of the tetrahedral grid G� and which fulfil the
jump condition (12) in an approximate sense.

So we assume Ω = Ω− ∪ Ω+, Γ0 ⊂ ∂Ω to be of
positive surface measure and we consider the following
scalar valued problem: Find u : Ω → IR such that

−div(σ(x)∇u) = 0 in Ω
ν · ∇u = 0 on ∂Ω \ Γ0

u(x) = g(x) on Γ0

(13)

Fig. 11. Detailed view of the upper right corner of the elastic
stress plot in Figure 10 in the lower right sample.

Fig. 12. The geometrical configuration for our computations
is shown. The domain contains a vascular structure (red) and
a tumor (brown) which have complicated shape. These struc-
tures form the set Ω−. An RF-probe (blue) with two elec-
trodes (gray) is placed into the vicinity of the domain. The
electrodes form the Dirichlet boundary Γ = Γ− ∪ Γ+. The
vascular structure as well as the tumor have been segmented
from image data acquired with CT.

for boundary data g ∈ L2(Γ0). Here, the electric conduc-
tivity σ is uniformly positive and piecewise smooth. In
our model problem, we consider a conductivity piecewise
constant in the material regions Ω±, i. e.

σ(x) =

{
σ+ if x ∈ Ω+,

σ− else.

As usual we transform (13) to homogeneous bound-
ary conditions and consider the weak form∫

Ω

σ∇u · ∇v dx =
∫

Ω

σ∇ĝ · ∇v dx,

for a test function v ∈ H1
0 (Ω) with appropriate boundary

values on Γ0 where ĝ ∈ H1(Ω) is an extension of g onto
whole Ω.

In analogy to the procedure in Section 2, we discretize
the domain Ω = Ω+ ∪ Ω− by the virtual grid G4 such
that the approximated interface γ4 is resolved. We build
a set of composite basis functions on the original tetra-

14 Florian Liehr et al.

Fig. 9. The elastic deformation of a sample structure is depicted. From left to right the number of pillars increases (4× 4 up
to 32 × 32 resolved on a regular grid with 2573 grid points). A color ramp from blue to green to red indicates the von Mises
surface stress.

Fig. 10. The elastic deformation of the internal structure of a porcine vertebral bone is depicted. From left to right the level
of detail (and thus the grid-depth) increases (h = 2−j , j = 5, . . . , 8). The top row shows the original non-deformed structure,
whereas the bottom row shows the deformed structure. A color ramp from blue to green to red indicates the von Mises surface
stress. The number of virtual nodes was from left to right: 16 887, 142 234, 1 004 417, and 5 606 274. The corresponding number
of DOF was 27 921, 243 477, 1 847 286 and 10 124 160, respectively.

hedral grid G� in the spirit of (5), i. e. such that

ψcfe
i :=

cl∑
l=1

µi,lψ
4
il

The set of weights {µi,l} is chosen such that the linear
combination of fine grid basis functions in the vicinity
of γ4 respects the appropriate jump condition (12). For
details we refer the reader to [37,41].

We proceed with the space spanned by the CFE func-
tions

Vh := span{ψcfe
i }

which has fewer DOF than V4h but which still resolves
the interface γ4 in the sense that its functions satisfy the

jump condition (12). The standard Galerkin approach
with the ansatz u ∈ Vh delivers a linear system of equa-
tions which can be solved numerically.

Obviously both CFE approaches—the one for do-
mains with complicated boundary and the one for dis-
continuous coefficients—can be combined. The algo-
rithm for matrix assembly differs from Algorithm 2 only
in the weights which are used.

In Figures 14 and 15 we show results where struc-
tures Ω− of the computational domain have been seg-
mented from CT-data of the human liver. The geomet-
rical configuration is depicted in Figure 12: Ω− has two
components and consists of a segmented vascular system
and a tumor. The boundary Γ0 consists of two separate

Composite Finite Elements for 3D Image Based Computing 15

Fig. 13. A “swiss cheese” type domain with 323 holes in un-
deformed and deformed configuration, using 49 448 025 DOF.

small cylinders Γ0 = Γ+ ∪ Γ− such that g(Γ+) = +1V
and g(Γ−) = −1 V. Such a configuration arises from the
simulation of the electrostatic field of a radio-frequency
probe in RF-ablation [25]. RF-ablation is a therapy for
the thermal destruction of lesions/tumors in e. g. the
human liver. Thereby, one considers a second parabolic
PDE for the energy-density in the biological tissue

∂t(cρT)− div(λ∇T) = ρ|∇u|2. (14)

The density ρ, the heat capacity c and the heat conduc-
tivity λ are piecewise constant in the regions of tumor,
blood-vessel and native tissue.

In Figure 14 we depict isosurfaces of the potential
u as the solution of (13). In this computation we set
σ+ = 1 S/m and σ− = 0.1 S/m. It is clearly visible from
the pictures how the different conductivities of the tissue
leads to iso-surfaces with kinks at the interfaces. Finally,
in Figure 15 we depict isosurfaces of the solution tem-
perature T . Here we choose c± = 1 J/kg K, ρ± = 1 kg/m3

and λ+ = 1 W/Km, λ− = 0.1 W/Km.

5.4 Multigrid Performance

As a stopping criterion for the multigrid solver we con-
sidered the reduction of the norm of the residual by 10−8

relative to the norm of the initial residual. In the liver
example in Figure 8 (resolved on a 1293 grid), the first
diffusion time step takes 12 V cycles, the convergence
rate in the last cycle is 0.219 and one cycle requires 4.3
seconds of cputime. The corresponding numbers for the
4×4 and 32×32 pillar example (leftmost and rightmost
picture) in Figure 7 (resolved on a 2573 grid) are 12 and
142 V cycles, convergence rates 0.251 and 0.944, and 37
and 40 seconds, respectively.

For the elasticity example in Figure 13 (resolved on
a 2573 grid), we need 19 V cycles (taking 579 seconds
each) and obtain a final onvergence rate of 0.580. The
corresponding numbers for the bone examples on 333

and 1293 grids (left and second-to-right example in Fig-
ure 10) are 71 and 384 V cycles (0.5 and 56 seconds each)
with final convergence rates 0.860 and 0.978.

The poor performance of the multigrid solver in some
of the examples is due to the shape of the geometry. If
they are shaped such that supports of coarse grid ba-
sis functions have at least two connected components

Fig. 14. Numerical results for the electrostatic potential are
shown. From top left to bottom right isosurfaces for the val-
ues 0, 0.05, 0.14, and 0.16 (Volt) of the potential are shown.
To underline how the non-continuous conductivity leads to
kinks in the isosurfaces, the images are supplemented with a
transparent rendering of the geometrical configuration of the
domain (cf. Figure 12.)

of large geodesic distance in the object, our coarsen-
ing scheme produces poor coarse grid corrections. An
improved coarsening scheme splitting and recombining
coarse grid DOF is currently being investigated.

6 Conclusions

We have presented an approach for the solution of par-
tial differential equations on complicated computational
domains where the geometry is defined by previously
segmented image-data. Starting from a hexahedral dis-
cretization induced by the underlying image data, the
method generates a virtual tetrahedral grid that resolves
the domain boundaries or approximated interior inter-
faces. The virtual grid is used to define a composite finite
element space, whose functions respect the complicated
domain boundaries or jump sets of coefficients.

The resulting composite finite element approach re-
tains the efficiency of a finite element methods on struc-
tured hexahedral grids far from interfaces or domain
boundaries. In the vicinity of such structures the ef-
ficiency is increased by hashing the local intersection
topology as well as additional information associated
with virtual nodes. The resulting linear systems of equa-
tions can be solved by standard numerical solvers. A suit-
able multigrid method has been presented which yield
convergence rates independent of the grid size and hier-
archical grid level. A further analysis and improvement of
the multigrid method presented here as well as a multi-
grid method for the CFE in the case of discontinuous
coefficients will be discussed in a forthcoming paper.

16 Florian Liehr et al.

Fig. 15. Temperature isosurfaces are rendered at different
times of a heat diffusion simulation. From top left to bottom
right the isosurface T = 333 K (≈ 60◦C) is rendered at times
0.01, 0.03, 0.06, and 0.1 (seconds) respectively. Again the
images are supplemented with a transparent rendering of the
geometrical configuration of the domain.

Acknowledgements

Lars Ole Schwen was supported by the DFG project
“Multiscale Simulation and Validation of the Elastic Mi-
crostructures of Vertebral Bodies”.

The authors would like to thank Dipl.-Ing. Uwe Wol-
fram from the Institute of Orthopaedic Research and
Biomechanics, University of Ulm, for providing the data
sets shown in Figure 10. Furthermore we acknowledge
Ulrich Weikard for fruitful discussions on the CFE meth-
ods.

References

1. L. Adams and Z. Li. The immersed interface / multi-
grid methods for interface problems. SIAM Journal on
Scientific Computing, 24(2):463–479, 2002.

2. L. Ambrosio and V. M. Tortorelli. On the approximation
of free discontinuity problems. Bollettino dell’Unione
Matematica Italiana, Sezione B, 6(7):105–123, 1992.

3. I. Babuška and J. Melenk. The partition of unity method.
International Journal for Numerical Methods in Engi-
neering, 40:727–758, 1997.

4. T. Belytschko, N. Moës, S. Usui, and C. Parimi. Ar-
bitrary discontinuities in finite elements. Interna-
tional Journal for Numerical Methods in Engineering,
50(4):993–1013, 2001.

5. R. P. Beyer and R. J. LeVeque. Analysis of a one-
dimensional model for the immersed boundary method.
SIAM Journal on Numerical Analysis, 29(2):332–364,
1992.

6. F. Bornemann and C. Rasch. Finite-element discretiza-
tion of static hamilton-jacobi equations based on a local
variation principle. Computing and Visualization in Sci-
ence, 9(2):57–69, 2004. arXiv:math.NA/0403517.

7. D. Calhoun. A Cartesian grid method for solving the two-
dimensional streamfunction-vorticity equations in irreg-
ular regions. Journal of Computational Physics, 176:231–
275, 2002.

8. D. Calhoun and R. J. LeVeque. A Cartesian grid finite-
volume method for the advection-diffusion equation in
irregular geometries. Journal of Computational Physics,
157:143–180, 2000.

9. V. Caselles, F. Catté, T. Coll, and F. Dibos. A geomet-
ric model for active contours in image processing. Nu-
merische Mathematik, 66:1–31, 1993.

10. V. Caselles, R. Kimmel, and G. Sapiro. Geodesic ac-
tive contours. International Journal of Computer Vision,
22(1):61–79, 1997.

11. T. Chan and L. Vese. A level set algorithm for minimizing
the Mumford-Shah functional in image processing. In
Proceedings of the 1st IEEE Workshop on Variational
and Level Set Methods in Computer Vision, pages 161–
168, 2001.

12. S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello,
and S.-H. Teng. Sliver exudation. Journal of the ACM,
47(5):883–904, September 2000.

13. P. G. Ciarlet. The finite element method for elliptic prob-
lems. Number 40 in Classics in applied mathematics.
SIAM, 2002.

14. D. Cremers, C. Schnörr, and J. Weickert. Diffusion-
snakes: Combining statistical shape knowledge and image
information in a variational framework. IEEE Work-
shop on Variational and Levelset Methods, pages 137–
144, 2001.

15. P. Deuflhard, M. Weiser, and M. Seebaß. A new nonlinear
elliptic multilevel FEM applied to regional hyperthermia.
Computing and Visualization in Science, 3(3):115–120,
2000.

16. M. Droske, T. Preusser, and M. Rumpf. A multilevel seg-
mentation method. In Proceedings of Vision, Modeling
and Visualization (VMV), pages 327–336, Saarbrücken,
Germany, 2000.

17. N. Frauböse and S. Sauter. Composite finite elements
and multi-grid. part I: Convergence theory in 1-d. In
Proceedings of the 17th GAMM-Seminar Leipzig on Con-
struction of Grid Generation Algorithms, pages 69–86,
2001.

18. M. Goméz-Benito, J. Garćıa-Aznar, and M. Doblaré. Fi-
nite element prediction of proximal femoral fracture pat-
terns under different loads. Journal of Biomechanical
Engineering, 127(1):9–14, 2005.

19. W. Hackbusch. Multi-Grid Methods and Applications,
volume 4 of Springer Series in Computational Mathe-
matics. Springer, 1985.

20. W. Hackbusch and S. Sauter. Composite finite elements
for the approximation of PDEs on domains with compli-
cated micro-structures. Numerische Mathematik, 75:447–
472, 1997.

21. H. K. Hahn, M. G. Lentschig, M. Deimling, B. Terwey,
and H.-O. Peitgen. MRI-based volumetry of intra- and
extracerebral liquor spaces. In CARS, pages 401–407,
2001.

22. K. Höllig, U. Reif, and J. Wipper. Weighted extended B-
spline approximation of Dirichlet problems. SIAM Jour-
nal on Numerical Analysis, 39(2):442–462, 2001.

23. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Ac-
tive contour models. International Journal of Computer
Vision, 1:321–331, 1988.

Composite Finite Elements for 3D Image Based Computing 17

24. R. Kornhuber, R. Krause, O. Sander, P. Deuflhard, and
S. Ertel. A monotone multigrid solver for two body con-
tact problems in biomechanics. Computing and Visual-
ization in Science, 2006. accepted for publication.

25. T. Kröger, I. Altrogge, T. Preusser, et al. Numerical
simulation of radio frequency ablation with state depen-
dent material parameters in three space dimensions. In
MICCAI 2006, volume 4191 of LNCS, pages 380–388.
Springer, 2006.

26. J. M. Kuhnigk, V. Dicken, L. Bornemann, A. Bakai,
D. Wormanns, S. Krass, and H. O. Peitgen. Morpho-
logical segmentation and partial volume analysis for vol-
umetry of solid pulmonary lesions in thoracic CT scans.
IEEE Transactions on Medical Imaging, 25(4):417–434,
2006.

27. R. J. LeVeque and Z. L. Li. The immersed interface
method for elliptic equations with discontinuous coeffi-
cients and singular sources. SIAM Journal on Numerical
Analysis, 31(4):1019–1044, 1994.

28. Z. Li. A fast iterative algorithm for elliptic interface prob-
lems. SIAM Journal on Numerical Analysis, 35(1):230–
254, 1998.

29. Z. Li. The immersed interface method using a finite
element formulation. Applied Numerical Mathematics,
27:253–267, 1998.

30. Z. Li, T. Lin, and X. Wu. New Cartesian grid methods for
interface problems using the finite element formulation.
Numerische Mathematik, 1996(1):61–98, November 2003.

31. W. E. Lorensen and H. E. Cline. Marching cube: A high
resolution 3D surface construction algorithm. Computer
Graphics, 21(4), 1987.

32. J. M. Melenk and I. Babuška. The partition of unity finite
element method. Research Report 96-01, Eidgenössische
Technische Hochschule Zürich, Seminar für angewandte
Mathematik, January 1996.

33. H. Müller and M. Wehle. Visualization of implicit sur-
faces using adaptive tetrahedrizations. In Proceedings of
Scientific Visualization Conference (Dagstuhl ’97), 1997.

34. S. Osher and J. A. Sethian. Fronts propagating
with curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations. Journal of Computational
Physics, 79:12–49, 1988.

35. J. Parvizian, A. Düster, and E. Rank. Finite cell method.
Computational Mechanics, Online First, 2007.

36. T. Preusser and M. Rumpf. An adaptive finite element
method for large scale image processing. Journal of Vi-
sual Communication and Image Representation, 11:183–
195, 2000.

37. T. Preusser, M. Rumpf, S. Sauter, L. O. Schwen, et al.
Three-dimensional composite finite elements for scalar
problems with jumping coefficients. 2007. in preparation.

38. T. Preusser, M. Rumpf, and L. O. Schwen. Finite element
simulation of bone microstructures. In Proceedings of the
14th Finite Element Workshop. University of Ulm, July
2007. To appear.

39. M. Rech, S. Sauter, and A. Smolianski. Two-scale Com-
posite Finite Element method for the Dirichlet problem
on complicated domains. Numerische Mathematik, 102,
2006.

40. G. Russo and P. Smereka. A remark on computing
distance functions. Journal of Computational Physics,
163(1):51 – 67, 2000.

41. S. A. Sauter and R. Warnke. Composite finite elements
for elliptic boundary value problems with discontinuous

coefficients. Computing, 77:29–55, 2006.
42. A. Schenk, G. Prause, and H.-O. Peitgen. Efficient semi-

automatic segmentation of 3D objects in medical images.
In Proceedings of MICCAI, volume 1935 of LNCS, pages
186–195. Springer, 2000.

43. L. O. Schwen et al. Computing elastic deformation of
vertebrae using composite finite elements. in preparation,
2007.

44. F. Segonne, A. M. Dale, E. Busa, M. Glessner, D. Salat,
H. K. Hahn, and B. Fischl. A hybrid approach to the skull
stripping problem in MRI. Neuroimage, 22(3):1060–1075,
2004.

45. J. A. Sethian and A. Wiegmann. Structural boundary de-
sign via level set and immersed interface methods. Jour-
nal of Computational Physics, 163(2):489 – 528, 2000.

46. F. L. Stazi, E. Budyn, J. Chessa, and T. Belytschko.
An extended finite element method with higher-order
elements for curved cracks. Computational Mechanics,
31:38–48, 2003.

47. G. Strang and G. J. Fix. An Analysis of the Finite Ele-
ment Method. Wellesey-Cambridge Press, 1973.

48. T. Strouboulis, K. Copps, and I. Babuška. The gener-
alized finite element method. Computer Methods in Ap-
plied Mechanics and Engineering, 190:4081–4193, 2001.

49. S.-H. Teng and C. W. Wong. Unstructured mesh gen-
eration: Theory, practice and applications. Interna-
tional Journal of Computational Geometry & Applica-
tions, 10(3):227–266, 2000.

50. A. Wiegmann and K. P. Bube. The immersed interface
method for nonlinear differential equations with discon-
tinuous coefficients and singular sources. SIAM Journal
on Numerical Analysis, 35(1):177–200, Feb. 1998.

51. A. Wittek, R. Kikinis, S. K. Warfield, and M. K. Brain
shift computation using a fully nonlinear biomechanical
model. In Proceedings of MICCAI, LNCS, pages 583–
590. Springer, 2005.

52. C. Xu and J. L. Prince. Snakes, shapes, and gradient
vector flow. IEEE Transactions on Image Processing,
7(3):359–369, 1998.

Bestellungen nimmt entgegen:

Institut für Angewandte Mathematik
der Universität Bonn
Sonderforschungsbereich 611
Wegelerstr. 6
D - 53115 Bonn

Telefon: 0228/73 4882
Telefax: 0228/73 7864
E-mail: link@wiener.iam.uni-bonn.de http://www.sfb611.iam.uni-bonn.de/

Verzeichnis der erschienenen Preprints ab No. 355

355. Löbach, Dominique: On Regularity for Plasticity with Hardening

356. Burstedde, Carsten; Kunoth, Angela: A Wavelet-Based Nested Iteration – Inexact
 Conjugate Gradient Algorithm for Adaptively Solving Elliptic PDEs

357. Alt, Hans-Wilhelm; Alt, Wolfgang: Phase Boundary Dynamics: Transitions between Ordered
 and Disordered Lipid Monolayers

358. Müller, Werner: Weyl's Law in the Theory of Automorphic Forms

359. Frehse, Jens; Löbach, Dominique: Hölder Continuity for the Displacements in Isotropic
 and Kinematic Hardening with von Mises Yield Criterion

360. Kassmann, Moritz: The Classical Harnack Inequality Fails for Non-Local Operators

361. Albeverio, Sergio; Ayupov, Shavkat A.; Kudaybergenov, Karim K.: Description of
 Derivations on Measurable Operator Algebras of Type I

362. Albeverio, Sergio; Ayupov, Shavkat A.; Zaitov, Adilbek A.; Ruziev, Jalol E.: Algebras of
 Unbounded Operators over the Ring of Measurable Functions and their
 Derivations and Automorphisms

363. Albeverio, Sergio; Ayupov, Shavkat A.; Zaitov, Adilbek A.: On Metrizability of the Space of
 Order-Preserving Functionals

364. Alberti, Giovanni; Choksi, Rustum; Otto, Felix: Uniform Energy Distribution for Minimizers
 of an Isoperimetric Problem Containing Long-Range Interactions

365. Schweitzer, Marc Alexander: An Adaptive hp-Version of the Multilevel Particle-Partition of
 Unity Method

366. Frehse, Jens; Meinel, Joanna: An Irregular Complex Valued Solution to a Scalar Linear
 Parabolic Equation

367. Bonaccorsi, Stefano; Marinelli, Carlo; Ziglio, Giacomo: Stochastic FitzHugh-Nagumo
 Equations on Networks with Impulsive Noise

368. Griebel, Michael; Metsch, Bram; Schweitzer, Marc Alexander: Coarse Grid Classification:
 AMG on Parallel Computers

369. Bar, Leah; Berkels, Benjamin; Rumpf, Martin; Sapiro, Guillermo: A Variational Framework
 for Simultaneous Motion Estimation and Restoration of Motion-Blurred Video;
 erscheint in: International Conference on Computer Vision 2007

370. Han, Jingfeng; Berkels, Benjamin; Droske, Marc; Hornegger, Joachim; Rumpf, Martin;
 Schaller, Carlo; Scorzin, Jasmin; Urbach Horst: Mumford–Shah Model for
 One-to-one Edge Matching; erscheint in: IEEE Transactions on Image Processing

371. Conti, Sergio; Held, Harald; Pach, Martin; Rumpf, Martin; Schultz, Rüdiger: Shape
 Optimization under Uncertainty – a Stochastic Programming Perspective

372. Liehr, Florian; Preusser, Tobias; Rumpf, Martin; Sauter, Stefan; Schwen, Lars Ole:
 Composite Finite Elements for 3D Image Based Computing

