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Abstract

We consider in this article a class of systems of second order partial dif-
ferential equations with non-linearity in the first order derivative and zero
order term which can be super-quadratic. These problems are motivated by
differential geometry and stochastic differential games. Up to now, in the case
of systems, only quadratic growth had been considered.
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1 Introduction

In differential geometry and in the theory of stochastic differential games one finds

many examples of systems of the type

(uνt )−
n∑

i,k=1

Di

(
aik(x)Dku

ν
)

+ λν(x, u,∇u) = Hν(x, u,∇u), ν = 1, . . . , N (1)

or equations which can be transformed to this type of system. The right hand side

Hν frequently is called Hamiltonian due to the application in stochastic control

theory. The coefficients aik ∈ L∞(Ω) are assumed to satisfy a condition of uniform

ellipticity. For applications to differential geometry see Hildebrandts survey [Hil82],

books on geometric analysis, say [Jos02], for applications to stochastic differential

games see Bensoussan-Frehse [BF02a] and [BF84]. In differential geometry, due to

scaling invariance, the functions Hν(x, u,∇u) are usually quadratic in ∇u. This

is not the case in the theory of stochastic differential games where sub-quadratic,

quadratic and even super-quadratic growth of Hν(ν, u,∇u) with respect to ∇u may

occur in natural settings.

From the point of view of regularity theory the case of sub-quadratic growth is

simple. The quadratic growth case is already difficult and creates a lot of interesting

problems ([Fre01],[BF02b], [BF84], [BF95], [BF02a]).

Up to now, there is no result at all for the case of systems where the Hamiltonian

grows super-quadratically in ∇u. In the scalar case (N = 1), L∞-bounds for ∇u
can be archived via barrier methods, thus cases of super quadratic Hamiltonians

can be treated. See e.g. [Lio82].

In this note we present a special system of type (1) where the Hamiltonian

Hν = Hν(∇u) may have any polynomial growth and, nevertheless, there exist

regular solutions. We have to confine to a periodic setting. We consider the method

of proof as very simple and believe that there should be a lot of possibilities to

generalize our conditions.

2 Formulation of the Theorem

Let Q = [0, L]n ⊂ Rn be a cube and Hk,q
] = Hk,q

] (Q; RN) be the usual Sobolev space

of L-periodic functions u = (u1, . . . , uN) : [0, L]n → RN with generalized derivatives

up to order k ∈ N in the Lebesgue space Lq, q ∈ [1,∞]. We look for solutions
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u ∈ H2,q
] of the system

−∆uν + λνu
ν = Gν(|∇u|2) +Go(|∇u|2) · ∇uν + fν(x) , ν = 1, . . . , N (2)

where

λν = const > 0 , (3)

fν ∈ H1,∞
] (Q) , (4)

Gν ∈ C1(R) , ν = 1, . . . , N , (5)

Go ∈ C1(R; Rn) , (6)

and we assume the growth conditions∣∣∣ ∂
∂η
Gν(η)

∣∣∣+
∣∣∣ ∂
∂η
Go(η)

∣∣∣ ≤ K|η|q−1 +K , η ∈ R , (7)

with some exponent q ≥ 1 and a constant K. Note that q >> 1 is admitted. From

(7) obviously we have

|Gν(η)|+ |Go(η)| ≤ K|η|q +K (8)

with some constants K.

Theorem 2.1 Under the above regularity and growth assumption (3)–(8) for the

data there exists a periodic solution u : Q→ RN of the system (2) which is contained

in H2,2
] ∩ C2+α for α ∈ [0, 1).

There is also a parabolic analogue of Theorem 2.1. We treat initial value problems

uνt −∆uν = Gν(|∇u|2) +G0(|∇u|2) · ∇uν + fν(t, x) , ν = 1, . . . , N (9)

with Gν , Go as before and

fν ∈ L∞
(
0, T ;H1,∞

]

)
(10)

in the space-time cylinder [0, T ] × Q and look for smooth solutions

u ∈ C(0, T ;L2
] ) ∩ L2(0, T,H1

] ) which are periodic in the space variables and sat-

isfy the initial condition

u|t=0 = u0 ∈ H2,∞
] (Q), . (11)
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Theorem 2.2 Let Gν; Go, fν, u0 satisfy the regularity (5), (6), (10), (11) and the

growth condition (7), (8). Then there exists a solution

u ∈ Lr
(
0, T,H2,r

] (Q)
)

of (9), (11) with

ut ∈ Lr
(
0, T ;Lr](Q)

)
for all r <∞ and T > 0.

Remark:Even in the case where Gν(|∇u|2) and Go(|∇u|2)∇u grow only quadrati-

cally in |∇u| Theorem 2.1 and Theorem 2.2 seem to be “new” and are not contained

in [BF02b] and [Fre01]

Let us sketch how to get estimates in the case of Neumann boundary conditions.

We pose additional assumptions

G1(η) ≥ c0|η|q
′ −K, G2(η) ≥ c0|η|q

′ −K.

For simplicity, q′ > n/2.

G1(η) ≥ (1− δ0)|G0(η)||η|1/2 −K , δ0 > 0

G2(η) ≥ (1− δ0)|G0(η)||η|1/2 −K , δ0 > 0

By maximum principle arguments one can achieve bounds from below

u1 ≥ −K, u2 ≥ −K.

Then one can use the function 1
uν+K+1

as a test function, and if the Gν have a

stronger growth and coerciveness behaviour than G0 we obtain an estimate∫
Ω

|∇uν |2

(uν +K + 1)2
dx+

∫
Ω

|∇uν |2q′

uν +K + 1
dx ≤ K. (12)

Unfortunately, no bound for u itself is available. (We may treat a variational in-

equality with convex set −c ≤ uν ≤ c ; in this case the main estimates of our proof

would work.) Approximating the system such that structure is maintained is also a

delicate task. One can approximate the problem adding ε times the p̂-Laplacian of

u, p̂ > 2p. Then one has an approximate solution. Unfortunately, we were not able

3



to localize the estimates in the proof of theorem 2.1 and 2.2, yet.

3 Proof of the Theorems

We approximate (8) by replacing the functions Gν(η) and Go(η) with

Gν
δ (η) := (1 + δη)−qGν(η)

Go
δ(η) := (1 + δη)−q−1Go(η) ,

where η ≥ 0, δ > 0, δ → 0.

Since Gν
δ and Go

δ(|∇u|2)∇uν are bounded for any, say, H1-function u, if δ is fixed,

there is a solution uδ ∈ H2,p
] of the system

−∆uνδ + λνu
ν
δ = Gν

δ (|∇uδ|2) +Go
δ(|∇uδ|2) · ∇uδ + fν(x) , (13)

where p ∈ [1,∞).

We will establish a uniform bound for |∇uδ|2 exp(|∇uδ|2r) in L1, r large enough, as

δ → 0, and we will estimate related quantities.

A simple estimate shows, that∣∣∣ ∂
∂η
Gν
δ

∣∣∣ ≤ Kδ ,
∣∣∣ ∂
∂η
Go
δ

∣∣∣ ≤ Kδ

and, uniformly as δ → 0,∣∣∣ ∂
∂η
Gν
δ (η)

∣∣∣+
∣∣∣ ∂
∂η
Go
δ(η)

∣∣∣ ≤ K|η|q−1 +K .

We now differentiate equation (13), i. e. apply D, and use the function

Duνδ exp(|∇uδ|2r)

as a test function where r ≥ 1 will be chosen later. Here D stands for the first partial

derivatives Di, i = 1, . . . , n. Note that we have sufficient regularity for justifying

these operations since ∇uδ ∈ L∞ ∩H1,p due to regularity and imbedding theorems.
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We obtain, dropping the index δ of the function during the estimates∫
Q

|∇Duν |2 exp(|∇u|2r) dx+
1

2

∫
Q

∇|Duν |2∇ exp(|∇u|2r) dx+

+ λν

∫
Q

|Duν |2 exp(|∇u|2r) dx =

=

∫
Q

D
(
|∇u|2

){
Gν′
δ (|∇u|2) +Go′

δ (|∇u|2) · ∇uν
}
Duν exp(|∇u|2) dx+

+
1

2

∫
Q

Go
δ(|∇u|2)∇(Duν)2 exp(|∇u|2) dx+

∫
Q

DfνDu
ν exp(|∇u|2r) dx .

(14)

We sum with respect to ν = 1, . . . ,M and i = 1, . . . , n, D = Di, and use vector

notation and perform simple estimates. This yields, with λ0 = minλν ,∫
Q

|∇2u|2 exp(|∇u|2r) dx+ r

∫
Q

∣∣∇(|∇u|2)∣∣2|∇u|2r−2 exp(|∇u|2r) dx+

+ λ0

∫
Q

|∇u|2 exp(|∇u|2r) dx ≤

≤
∫
Q

∣∣∇(|∇u|2)∣∣{K(|∇u|2q−2) +K
}

(|∇u|+ |∇u|2) exp(|∇u|2r) dx+

+

∫
Q

{
K|∇u|2q +K

}∣∣∇(|∇u|2)∣∣ exp(|∇u|2r) dx+K

∫
Q

|∇u| exp(|∇u|2r) dx ≤

≤ A+B + C ,

(15)

where

A = K

∫
Q

∣∣∇(|∇u|2)∣∣2|∇u|2q exp(|∇u|2r) dx ,

B = K

∫
Q

∣∣∇(|∇u|2)∣∣ exp(|∇u|2r) dx ,

C = K

∫
Q

|∇u| exp(|∇u|2r) dx,

uniformly as δ → 0, and K does not depend on r.
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Note that we used

∣∣∣ n∑
i=1

N∑
ν=1

Go
δ∇(Diu

ν)2 exp(|∇u|2)
∣∣∣ =

∣∣Go
δ∇
(
|∇u|2

)∣∣ exp(|∇u|2) ≤

≤ (K|∇u|2q +K)
∣∣∇(|∇u|2)∣∣ exp(|∇u|2) .

We estimate
(

exp = exp(|∇u|2r)
)
:

A ≤ r

2

∫
(|∇u|≥1)

∣∣∇(|∇u|2)∣∣2|∇u|2r−2 exp dx+

+
K

2r

∫
(|∇u|≥1)

|∇u|4q+4−2r+2 exp dx+

+ ε0

∫
|∇u|≤1

|∇2u|2 exp dx+Kε0

∫
|∇u|≤1

exp dx =

= A1 + A2 + A3 + A4 .

If we choose r ≥ 2q + 3 we have that

A2 ≤
K

2r

∫
|∇u|≥1

exp(|∇u|2r) dx

The term A1 is absorbed by a corresponding one on the left hand side of (15). The

term A3 (the one with ε0) is absorbed by the left hand side, too. The term A4 is

obviously bounded. Thus we arrive at

(1− ε0)

∫
Q

|∇2u|2 exp dx+
r

2

∫
Q

∣∣∇(|∇u|2)∣∣2|∇u|2r−2 exp dx+

+ λ0

∫
Q

|∇u|2 exp dx ≤ K

2r

∫
|∇u|≥1

exp dx+ C +K .
(16)

The first summand on the left hand side of (16) can be absorbed by the term with

factor λ0 if r is chosen larger than 2λ0/K since K does not depend on r here. The
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term C is estimated by

C = K
( ∫
|∇u|≤Λ

+

∫
|∇u|≥Λ

)
|∇u| exp dx ≤

≤ KΛ +K

∫
|∇u|≥Λ

|∇u| exp dx ≤ KΛ +
1

2
λ0

∫
Q

|∇u|2 exp dx

if we choose Λ = 2K/λ0.

Again, the term 1
2
λ0

∫
|∇u|2 exp dx is absorbed by a corresponding term at the

left hand side and we arrive at the inequality

r

2

∫
Q

∣∣∇(|∇u|2)∣∣2|∇u|2r−2 exp(|∇u|2r) dx+

+
1

2

∫
Q

|∇2u|2 exp(|∇u|2r) dx+
1

4
λ0

∫
|∇u|2 exp(|∇u|2r) dx ≤

≤ K .

This holds uniformly for u = uδ, δ → 0. We need only the summand with factor λ0

and fix

Proposition 3.1 The approximate solutions

uδ ∈ H2,p
] (Q,RN)

of equation (13) obey the uniform bound∫
Q

|∇uδ|2 exp(|∇uδ|2r) dx ≤ K

uniformly for δ → 0.

Firstly, integrating the equation over the periodicity cube, one sees that propo-

sition 3.1 yields that the mean values of the uν are bounded. Then one obtains

bounds for ‖uδ‖p.
From linear elliptic regularity theory we then obtain

‖uδ‖p + ‖∇uδ‖p + ‖∇2uδ‖p ≤ Kp
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uniformly for δ → 0, for any fixed p <∞. This allows us to subtract a subsequence

(uδ)δ∈Γ where Γ is a sequence of positive numbers tending to zero such that

∇2uδ → ∇2u , weakly

uδ → u ,∇uδ → ∇u strongly

in all Lp, p <∞.

Thus we may pass to the limit δ → 0 in (13) and obtain that the weak limit

u ∈ H2,p
] (Q; RN)

satisfies the primal equation (2). Further regularity −u ∈ C2+α follows from (4)–(6)

and elliptic regularity theory. This proves Theorem 2.1. z

Let us indicate the proof of Theorem 2.2 concerning the parabolic system.. With

the new unknown variable

v = e−tu

the function v satisfies the system

vνt −∆vν + vν = e−tGν
(
e2t|∇v|2

)
+Go

(
e2t|∇v|2

)
· ∇vν + e−tfν(t, x) .

We replace Gν , Go by Gν
δ , G

o
δ as in the proof of Theorem 2.1 and obtain a regular

solution v = vδ. Then one applies the operation D = Dj, j = 1, . . . , n, i. e. the

derivatives in space direction, and uses the test function

Dvν exp
(
|∇v|p

)
.

Then the calculations run as in the proof of Theorem 2.1; we only have to handle

with the factors e−t, e2t, which is simple since only space derivatives are involved in

the calculation.

This finally gives an estimate

T∫
0

∫
Q

|∇v|2 exp
(
|∇v|2p

)
dx dt ≤ KT

uniformly as δ → 0 and the Lr-estimate for ∇u follows. Integrating the equation

with respect to x, we derive a differential equation for the mean value of u and hence

a bound. Thereafter, from the theory of linear parabolic equations we obtain the
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Theorem. z

4 Further Generalization

It is a challenging task to generalize Theorem 2.1 and 2.2 for a richer class of

Hamiltonians.

In this section we present one of the lot of possibilities to do so. The technique

of proof reminds somewhat to our papers [BF02a], [BF84], [Fre01], using iterated

exponential functions of u as test functions, although the situation here is completely

different.

For describing the new situation let

F (η) =

η∫
1

exp(sp) ds , p ≥ 1 , η ≥ 0 ,

and we assume that the unknown functions consist of two groups of variables

u = (u1, u2, . . . , uN) , v = (v1, v2, . . . , vM)

and we consider the system

−∆uν + λνu
ν = Guν

(
|∇u|2

)
+Guo

(
|∇u|2

)
· ∇uν + L

(
F (|∇u|2) + F (|∇v|2)

)
· ∇uν + fuν

ν = 1, . . . , N

−∆vν + λvνv
ν = Gvν

(
|∇v|2

)
+Gvo

(
|∇v|2

)
· ∇vν + L

(
F (|∇u|2) + F (|∇v|2)

)
· ∇vν + f vν

ν = 1 . . . ,M ,

(17)
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and we pose the following conditions on Gu, Gv, Gov, L

Gu, Gv : R→ R are locally Lipschitz (18)

Gou, Gov, L : R→ Rn are locally Lipschitz (19)

|L(η)| ≤ Kη1/2 +K , η ≥ 0 (20)

|L′(η)| ≤ Kη−1/2
(

log(2 + |η|)
)−r0 (21)

with some r0 >
1

2p
+

1

2
,∣∣Gu(η)

∣∣+
∣∣Gv(η)

∣∣ ≤ K|η|q +K ,∣∣Gu′(η)
∣∣+
∣∣Gv′(η)

∣∣ ≤ K|η|q−1 +K , (22)∣∣Gou(η)
∣∣+
∣∣Gov(η)

∣∣ ≤ K|η|q−1/2 +K (23)∣∣Gou′(η)
∣∣+
∣∣Gov′(η)

∣∣ ≤ K|η|q−3/2 +K , (24)

where q <
1 + p

2
.

The sign ′ on Gu, Gov, ..., L denotes the derivative.

Since q >> 2 is admissible we see that a strong super-quadratic growth of the

Hamiltonian is possible.

Furthermore, we see that the term L
(
F (|∇u|2) + F (|∇v|2)

)
has even exponential

growth in |∇u| and |∇v|. This follows from the following simple calculation:

F (η) =

η∫
1

1

p

(
exp(sp)

)′
s1−p ds =

1

p
η1−p exp(ηp)− e

p
+
p− 1

p

η∫
1

s−p exp(sp) ds .

Since 0 ≤
η∫
1

s−p exp(sp) ds ≤
η∫
1

exp(sp) dx for η ≥ 1, we conclude

F (η) ≤ η1−p exp(ηp)− e , η ≥ 1 (25)

and

F (η) ≥ 1

p
η1−p exp(ηp)− e

p
, η ≥ 1 . (26)

Clearly, one has to admit that the term L does not look very natural, however

one has a lot of possibilities modifying the test functions to obtain other structure
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conditions.

Theorem 4.1 Assume the growth and Lipschitz conditions (4), and (19) up to

(24) for the functions occurring at the right hand side of equation (17) and let

λuν , ν = 1, . . . , N , λvν, ν = 1, . . . ,M be non-negative. Then there is a solution

(u, v) ∈ H2,2
] (Q) ∩ C2+α, α ∈ [0, 1).

Proof of Theorem 4.1: We approximate the problem as in the proof of Theo-

rem 2.1 as far as Guv, Guν , Guo, Gvo concerns. The factor L
(
F (|∇u|2) + F (|∇v|2)

)
is approximated by

Lδ =
(
1 + δL

(
F (|∇u|2) + F (|∇v|2)

))−2
L
(
F (|∇u|2) + F (|∇v|2)

)
.

Again, it is clear that the approximate problem where Gu, Gv, Guo, Gvo, L are

approximated by corresponding terms with index δ, has a solution (u, v) = (uδ, vδ)

uδ ∈ H2,∞
] (Q; RN) , vδ ∈ H2,∞

] (Q,Rn) .

We apply to the operation D = Dj and use the function

Duν exp
(
|∇u|2p

)
exp

(
F (|∇u|2) + F (|∇v|2)

)
for the system in u and

Dvν exp
(
|∇v|2p

)
exp

(
F (|∇u|2) + F (|∇v|2)

)
for the system in v as test functions.

We then sum with respect to ν = 1, . . . , N , for the components of u, ν = 1, . . . ,M

for the components of v, and with respect to j (from D = Dj), then we obtain

an equation like (14), but the integrals have the additional factor exp
(
F (|∇u|2) +

F (|∇v|2)
)

and on the left hand side there occurs an additional summand

1

2

∫
Q

∇
(
|∇u|

)2
e|∇u|

2p∇ exp
(
F (|∇u|2) + F (|∇v|2)

)
+ a corresponding term with v .

This leads to, an additional term

Z0 :=

∫
Q

|∇
(
F (|∇u|2) + F (|∇v|2)

)2
exp

(
F (|∇u|2) + F (|∇v|2)

)
dx

11



arises. Again, on the left hand side of the analogue of equation (14),there occurs

the term

2p

∫
Q

∣∣∇|∇u|∣∣2|∇u|2p exp
(
|∇u|2p

)
exp

(
F (|∇u|2) + F (|∇u|2)

)
.

On the right hand side of the analogue of equation (14) there arise the terms

T u1 =

∫
Q

N∑
ν=1

∇
(
|∇u|2

)
Guν′
δ

(
|∇u|2

)
∇uν exp

(
|∇u|2p

)
exp

(
F (|∇u|2) + F (|∇v|2)

)
dx

T u0 =

∫
Q

N∑
ν=1

∇
(
|∇u|2

)(
Goν′
δ

(
|∇u|2

)
· ∇uν

)
∇uν exp(.) exp

(
F (.) + F (.)

)
dx+

+Goν
δ

(
|∇u|2

)
· ∇
(
|∇u|2

)
exp

(
|∇u|2p

)
exp

(
F (|∇u|2) + F (|∇v|2)

)
dx

(27)

and corresponding terms T vν1 , T v0 , and further

T uL =

∫
Q

N∑
v=1

∇
(
F (|∇u|2) + F (|∇v|2)

)(
L′(F (|∇u|2) + F (|∇v|2)

)
· ∇uν

)
· ∇uν×

× exp
(
|∇u|2

)
exp

(
F (|∇u|2) + F (|∇v|2)

)
dx+

+
1

2

∫
Q

L
(
F (|∇u|2) + F (|∇v|2)

)
· ∇F

(
|∇u|2

)
exp

(
F (|∇u|2) + F (|∇v|2)

)
dx .

The terms T u1 , T v1 are treated as in the proof of Theorem 2.1. The difference is that

p is not a free parameter anymore. We estimate∣∣∇(|∇u|2)Guν′
δ (|∇u|2)∇uν

∣∣ ≤
ε0

∣∣∇|∇u|∣∣2|∇u|2p +Kε0 |∇u|4+4q−4−2p ,
(
|∇u| ≥ 1

)
.

Thus we may dominate both terms by the right hand side if 4q − 2p < 2 which is

true due to the hypothesis (one uses also the terms with factor λ0).

For estimating T u0 we observe that the term

N∑
ν=1

∇
(
|∇u|2

)(
Goν′(|∇u|2)∇uν)∇uν

12



which occurs in the integrand of the first summand in 27 is estimated for |∇u| ≥ 1

by

K
∣∣∇|∇u|∣∣|∇u|3∣∣Goν′(|∇u|2) ≤ K

∣∣∇|∇u|∣∣|∇u|3|∇u|2q−3 =

= K
∣∣∇|∇u|∣∣|∇u|2q ≤ ε

∣∣∇|∇u|∣∣2|∇u|2p +K|∇u|4q−2p ,

so, this part of T u0 (and T v0 ) is estimated by the right hand side if ε is small and

4q − 2p < 2. (Again, for dominating the second summand of the last inequality for

u, the term with λ0 is used.)

The second summand in the expression defining T u0 (and T v0 ) is estimated anal-

ogously. Thus the terms T u1 , T u0 and T v1 , T v0 can be dominated by the left hand side.

This is also true for the terms containing fu, f v (see Section 3.1).

There remains the term T uL which is estimated in the following way: The factor

FaktuL :=
N∑
ν=1

∇
(
F (|∇u|2) + F (|∇v|2)

)(
L′(F (|∇u|2) + F (|∇v|2))

)
· (∇uν)×

×∇uν exp(|∇u|2p))
)

is estimated by

|FaktuL| ≤ ε
∣∣(F (|∇u|2) + F (|∇v|2)

∣∣2+

+Kε

∣∣L′(F (|∇u|2) + F (|∇v|2)
∣∣2)|∇u|4 exp

(
2|∇u|2p

)
=

= F u
21 + F u

22 .

The term with F u
21 then is absorbed by the left hand side. For |∇u| ≥ K0 the term

with F u
22 is estimated by

ε|∇u|2 exp
(
|∇u|2p

)
since, by assumption on L′ and inequality (25), (26)∣∣L′(F (|∇u|2) + F (|∇v|2)

)∣∣2|∇u|4 ≤ K
(
F (|∇u|2) + 1

)−1|∇u|4
(

log(1 + F ((|∇u|2)))
)−2r0 ≤

≤ K exp
(
− |∇u|2p

)
|∇u|2p+2|∇u|−4pr0 ≤

≤ K exp
(
− |∇u|2p

)
|∇u|2−δ0

13



since r0 >
1
2p

+ 1
2
. Thus, the term is absorbed by the term with factor λ0. The terms

F v
21, F v

22 are estimated analogously.

The second term in T uL + T vL is estimated by∣∣∣1
2

∫
Q

L
(
F (|∇u|2) + F (|∇v|2)

)
∇
(
F (|∇u|2) + F (|∇v|2)

)
exp

(
F (|∇u|2) + F (|∇v|2)

)
dx
∣∣∣ ≤

≤ 1

2

∫
Q

∣∣∇(F (|∇u|2) + F (|∇v|2)
)∣∣2 exp

(
F (|∇u|2) + F (|∇v|2)

)
dx+

+
1

8

∫
Q

∣∣L(F (|∇u|2) + F (|∇v|2)
)∣∣2 exp

(
F (|∇u|2) + F (|∇v|2)

)
dx .

Due to the hypothesis on L and inequality (25), we may estimate∣∣L(F (|∇u|2) + F (|∇v|2)
)∣∣2 ≤ K|∇u|1−p exp

(
|∇u|2p

)
+

+K|∇v|1−p exp
(
|∇v|2p

)
+K , |∇u| ≥ 1 , |∇v| ≥ 1 ,

and also this term can be absorbed. Thus, finally, we habe established an Lp-bound

for ∇u,∇v. We then procees in a similar way as we did in the proof of 2.1 and after

proposition 3.1

The proof of Theorem 4.1 is now complete. z

References

[BF84] A. Bensoussan and J. Frehse. Nonlinear elliptic systems in stochastic game

theory. J. Reine Angew. Math., 350:23–67, 1984.

[BF95] A. Bensoussan and J. Frehse. Ergodic Bellman systems for stochastic games

in arbitrary dimension. Proc. Roy. Soc. London Ser. A, 449(1935):65–77,

1995.

[BF02a] Alain Bensoussan and Jens Frehse. Regularity results for nonlinear elliptic

systems and applications, volume 151 of Applied Mathematical Sciences.

Springer-Verlag, Berlin, 2002.

[BF02b] Alain Bensoussan and Jens Frehse. Smooth solutions of systems of quasi-

linear parabolic equations. ESAIM Control Optim. Calc. Var., 8:169–193

(electronic), 2002. A tribute to J. L. Lions.

14



[Fre01] J. Frehse. Bellman systems of stochastic differential games with three play-
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