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OPTIMIZED GENERAL SPARSE GRID APPROXIMATION

SPACES FOR OPERATOR EQUATIONS

M. GRIEBEL AND S. KNAPEK

Abstract. This paper is concerned with the construction of optimized sparse
grid approximation spaces for elliptic pseudodifferential operators of arbitrary
order. Based on the framework of tensor-product biorthogonal wavelet bases
and stable subspace splittings, we construct operator-adapted subspaces with
less dimension than the standard full grid spaces that keep the approxima-
tion order of the standard full grid spaces provided that certain additional
regularity assumptions on the solution are fulfilled. Specifically for operators
of positive order, its dimension is O(2J ) independent of the dimension n of
the problem compared to O(2Jn) for the full grid space. Also, for operators of
negative order the overall complexity is significantly in favor of the new approx-
imation spaces. We give complexity estimates for the case of continuous linear
information. We show these results in a constructive manner by proposing a
Galerkin method together with optimal preconditioning. The theory covers
elliptic boundary value problems as well as boundary integral equations.

1. Introduction

In this paper we deal with the construction of finite element spaces for the approxi-
mate solution of elliptic problems in Sobolev spaces Hs(Ω), s ∈ IR. It is well-known
that the ε-complexity [49, 51] of solving e.g. Poisson’s equation in n dimensions in
the Sobolev space H1

0 ∩H2 on a bounded domain is O(ε−n), i.e., it is exponentially
dependent on n. This dependence on n is called the curse of dimensionality. Hence,
for higher-dimensional problems, a direct numerical solution on a regular uniform
mesh is prohibitive [49]. The curse of dimensionality can be overcome if additional
assumptions on the regularity of the solution of the elliptic problem are posed, i.e. if
we further restrict the space from which the solution is allowed to be.1 To this end,
if the solution is in the space of functions with dominating mixed second derivative
the complexity reduces to O(ε−1) [5, 6, 21].
However, standard finite element algorithms that use regular full grids for the dis-
cretization lead to a cost of O(ε−n). Hence they are not suited for such problems.
A corresponding algorithm that realizes the cost of O(ε−1) up to an additional
logarithmic term has been presented in [18, 53]. It uses tensor-products of linear
splines as basis functions, and the so called regular sparse grid space/hyperbolic
cross space as approximation space in the finite element method. Together with
an optimal multigrid solver for sparse grid discretizations [27, 19], the cost of this

2000 Mathematics Subject Classification. Primary 41A17, 41A25, 41A30, 41A65, 45L05,
45L10, 65D99, 65N12, 65N30, 65N38, 65N55.

1Note that is translates to a restriction on the data of the problem, i.e. on its right hand side
and/or boundary conditions.
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algorithm is O(ε−1 · | ln ε|n−1). See also the subsequent papers [29, 3]. For a survey
on sparse grids see [6].
This regular sparse grid scheme is well established in approximation and interpo-
lation theory. It continues to attract significant attention and has also been used
successfully in connection with other hierarchical basis functions, for example pre-
wavelets, interpolets and higher order splines. It was successfully employed for the
solution of partial differential equations [3, 4, 6, 17, 20, 29, 26]. Furthermore, the
sparse grid approach together with prewavelets was used in [28] for the solution of
boundary integral equations of order between −1/2 and 1/2. For a study of the com-
plexity of integral equations with smooth kernels we refer to [16, 32, 33, 34, 35, 41].
The regular sparse grid approach still involves a Jn−1-term in its cost complexity.
Therefore the curse of dimensionality is still somewhat present, albeit only for the
logarithmic J-term. In practice this limits the method to problems with up to
about 12 dimensions. In [5] it was shown shown how to get rid of the additional
logarithmic term by the use of a subspace of the sparse grid space. This results
in so called energy-norm based sparse grid spaces. Then the overall cost for the
solution of Poissons equation is indeed of the order O(ε−1).
In this paper we generalize the construction of [5] to differential and pseudo-
differential operators of arbitrary order s ∈ IR, compare also [22, 23, 24, 25, 30,
32, 33, 34, 35]. We construct operator adapted finite-element subspaces of lower di-
mension than the standard full-grid spaces which preserve the approximation order
of the standard full-grid spaces, provided that certain additional regularity assump-

tions are fulfilled, i.e. we assume that the solution possesses Ht,l
mix-regularity. To

this end, we analyse the approximation of the embedding Ht,l
mix → Hs on the n-

dimensional torus, i.e. we measure the approximation error in Hs and estimate

it from above by terms involving the Ht,l
mix-norm of the solution. Here Ht,l

mix is
a certain intersection of classes of functions with bounded mixed derivatives, see

(2.25) below, and Hs is the standard Sobolev space. The parameter l in Ht,l
mix

governs the isotropic smoothness whereas t governs the dominating mixed smooth-
ness. We use norm equivalences to facilitate the decoupling of the subspaces arising
from the tensor-product ansatz and to ensure the stability of the resulting subspace
splittings. Hence, the analysis is reduced to diagonal mappings between Hilbert se-
quence spaces. It turns out that the optimal approximation space in terms of the
ratio of cost versus accuracy is only dependent on the quotient s−l

t of isotropic
smoothness s− l to dominating mixed smoothness t. We will identify those approx-
imation spaces that lead to algorithms with minimal cost. Specifically we show
that one can break the curse of dimension in the case s−l

t > 0 and get rid of all

asymptotic dependencies2 on n. In the case s−l
t < 0 (i.e. for operators of nega-

tive order and spaces with dominating mixed derivative) there remains a certain
moderate dependence on the dimension.
The remainder of this paper is as follows. Section 2 introduces some notation,
collects basic facts about biorthogonal wavelet bases and tensor-product spaces
and gives the motivations for the construction of optimized sparse grids. Section 3

2Note that the constant in the order notation still depend on the dimension n. In a very special
case, i.e. for the parameters s = 1, t = 2, l = 0, for the unit cube as domain and for the hierarchical
Faber basis as expansion system, it was shown that it can be bounded by Cn20.97515n‖u‖

H
t,l
mix

,

i.e. the part of the constant related to the approximation scheme decays exponentially with n

which is a manifestation of the concentration of measure phenomenon. For details see [21].
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contains some theory about norm equivalences in Sobolev spaces. In Section 4
the optimized spaces are defined and estimates on the dimension of the optimized
spaces and their order of approximation are given. Section 5 contains remarks
on the complexity of solving elliptic equations for the case that continuous linear
information is permissible, i.e. that the stiffness matrix as well as load vector
can be computed exactly. We show these results in a constructive manner by
proposing a Galerkin method working with the optimized approximation spaces
together with a multilevel preconditioned iterative solver. Section 6 discusses two
elliptic problems as examples of our theory, the Poisson problem and the single layer
potential equation. Section 7 collects further generalizations for the construction
of optimized grids. Some concluding remarks close the paper.

2. Motivation and Assumptions

Let us denote by Ht(Tn), t ∈ IR, a scale of Sobolev spaces on the n-dimensional
torus, and L2(Tn) the space of L2-integrable functions on T n, see [1]. For ease
of presentation and in order to avoid restrictions on the smoothness exponent t
we restrict ourselves to the n-dimensional torus in the first parts of this paper.3

Applications to non-periodic problems will be discussed in section 6. We represent
Tn by the n-dimensional cube T := [0, 1], T n = T × T × · · · × T where opposite
faces are identified. If t < 0,Ht(Tn) is defined as the dual of H−t(Tn), i.e.,

(2.1) Ht(Tn) := (H−t(Tn))′.

When the meaning is clear from the context, we will write Ht instead of Ht(Tn)
and we proceed analogously for other function spaces.
Consider an elliptic variational problem: Given f ∈ H−s, find u ∈ Hs such that

(2.2) a(u, v) = (f, v) ∀v ∈ Hs,

where a is a symmetric positive definite form satisfying4

(2.3) a(v, v) ≈ ‖v‖2
Hs .

Here x ≈ y means that there exist C1, C2 independent of any parameters x or y may
depend on, such that C1 · y ≤ x ≤ C2 · y.
In the rest of the paper C denotes a generic constant which may depend on the
smoothness assumptions and on the dimension n of the problem, but does not
depend on the number of levels J . In the following multi-indices (vectors) are
written boldface, for example j for (j1, . . . , jn). Inequalities like l ≤ t or l ≤ 0 are
to be understood componentwise.
Model examples for (2.2) would be the variational form of the biharmonic equation
(s = 2)

∆2u = f,

3Note that the non-periodic case with e.g. Dirichlet or Neumann boundary conditions can
be basically treated in the same way. Then, basis functions whose support intersects with the
boundary have to fulfil special boundary conditions.

4Clearly, the lower estimate a(u, u) ≥ α · ‖u‖2
Hs in (2.3) is in general not fulfilled for problems

on the torus without additional constraints ensuring uniqueness of the solution of (2.2). In the
following we will assume that the solution of the variational problem (2.2) is unique. Note however
that for the construction of optimized grids, we will only need the upper estimate in (2.3).
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which has applications in plate bending and shell problems or the (anisotropic)
Helmholtz equation (s = 1)

(2.4) −∇ ·K∇u+ cu = f on T n,

where K(x) ≈ I and ∃C > 0 : 0 ≤ c(x) ≤ C, modeling for example the single phase
flow in a porous medium with permeability K, or a diffusion process in a (possibly)
anisotropic medium characterized by the diffusion tensor K. Other examples would
be the hypersingular equation (s = 1

2 )

1

c

∫

T n

∂

∂nx

∂

∂ny

(
1

|x− y|

)
· g(y)dy = f(x),

Fredholm equations of the second kind (s = 0) g(x) −
∫

T n

k(x, y) g(y)dy = f(x),

with given kernel function k defined on T n × Tn, specifically the double layer
potential equation

g(x) −
1

c

∫

T n

ny · (y − x)

|x− y|3
g(y)dy = f(x),

arising from a reformulation of Laplace’s equation via the indirect method, or the
single layer potential equation (s = − 1

2 )

(2.5)
1

c

∫

T n

g(y)

|x− y|
dy = f(x).

The Galerkin method to solving problem (2.2) numerically is to select a finite
dimensional subspace from Hs ∩ L2 and to solve the variational problem in this
subspace instead of Hs. It is well-known that the most efficient way of solving such
problems exploits the interaction of several scales of discretization. These multilevel
schemes use a sequence of closed nested subspaces S0 ⊂ S1 ⊂ · · · ⊂ Hs ∩ L2 of the
basic Hilbert space Hs, whose union is dense in Hs. Fixing a basis of SJ finally
leads to a linear system of equations

(2.6) AJxJ = bJ

of dimension dim(SJ). Here AJ is called stiffness matrix and bJ is the load vec-
tor. Storage requirements and computation time mostly exclude the use of direct
solvers, since dim(SJ) is usually very large. Specifically for full grid spaces with
subdivision rate two it holds dim(SJ) = O(2J·n). That is, the dimension of SJ

grows exponentially with the dimension n.
In order to iteratively solve (2.2) or (2.6), respectively, the following problems and
questions arise. Accuracy requirements necessitate a fine partitioning of T n , i.e.,
dim(SJ) is large. Is it possible to select SJ as a subspace of the full grid space
with dim(SJ) only polynomially dependent on the dimension n, compared to an
exponential dependence on n of the dimension of the full grid space? Such a choice of
a finite element space would require that one can identify those basis functions that
add most to an accurate representation of the solution of the variational problem.
For differential operators, the resulting linear systems are sparse if the basis func-
tions have local support. However, the discretization of integral operators results
in most cases in discrete systems that are dense. I.e., on a regular full grid, with
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O(2nJ) unknowns the discrete operator has O(22nJ ) entries. This makes matrix-
vector multiplications, as they are needed in iterative methods, prohibitively expen-
sive for large n and enforces the use of bases that result in nearly sparse matrices,
e.g. biorthogonal wavelet bases with a sufficient number of vanishing moments.
Then, most entries in these matrices are close to zero and can be replaced by zero
without destroying the order of approximation (compression) [11, 13, 15, 44, 48].
Let us recall the definition of the tensor-product of two separable Hilbert-spaces H
with associated bilinear form a(., .) and Ĥ with bilinear form â(., .), see for example

[50]. Let {ej}
m
j=1, {êi}

m̂
i=1 be complete orthonormal systems in H and Ĥ . Then

{ej ⊗ êi} is a complete orthonormal system in

(2.7) H ⊗ Ĥ := {
∑

j,i

γij ej ⊗ êi :
∑

j,i

γ2
ij <∞}

with scalar product a⊗â
(∑

j,i γij ej ⊗ êi,
∑

k,` γ
′
k` ek ⊗ ê`

)
=
∑

j,i γjiγ
′
ji.We iden-

tify the tensor-productH⊗Ĥ with a function space over the corresponding product

domain via the mapping f ⊗ f̂ 7→ f(x)f̂(x̂). E.g., a basis in H ⊗ Ĥ is given by
{ψj(x) = ej1(x1)êj2(x2) : 1 ≤ j ≤ (m, m̂)}. These definitions extend naturally to
higher dimensions n > 2.
The finite element spaces considered here are tensor-products of univariate function
spaces. Starting from a one-dimensional splitting L2 =

⊕
j≥0 Sj we assume that

the complement spaces

(2.8) Wj = Sj 	 Sj−1

of Sj−1 in Sj are spanned by some L2-stable bases

(2.9) Wj = span{ψjk, k ∈ τj},

where τj is some finite dimensional index set defined from the subdivision rate of
successive refinement levels. Here we stick to dyadic refinement. Furthermore we
assume that

(2.10) ‖
∑

k∈τj

Ckψjk‖L2 ≈ ‖{Ck}k‖`2(τj)

where as usual ‖
∑

k∈τj
Ckψjk‖L2 denotes the norm induced from the scalar product

on L2 and ‖{Ck}k‖
2
`2(τj)

=
∑

k∈τj
|Ck|

2.

Let there be given a biorthogonal system ∪{ψ̃jk, k ∈ τj , j ∈ IN0}, i.e.,

(2.11) 〈ψjk , ψ̃j′k′〉 = δjj′δkk′ , j, j′ ∈ IN0, k ∈ τj , k
′ ∈ τj′ .

Assuming that ∪{ψjk , k ∈ τj , j ∈ IN0, } forms a Riesz-basis in L2, i.e.,

(2.12) ‖
∑

j,k∈τj

Cjkψjk‖L2 ≈ ‖{Cjk}jk‖`2(j∈IN,k∈τj),

every u ∈ H has a unique expansion

(2.13) u =

∞∑

j=0

∑

k∈τj

〈u, ψ̃jk〉ψjk =

∞∑

j=0

∑

k∈τj

〈u, ψjk〉ψ̃jk

and the biorthogonal system also forms a Riesz-basis in L2.
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Let us recall the notion of vanishing moments. In one dimension ψjk and ψ̃jk are

said to have vanishing moments of order N, Ñ respectively, if

(2.14)

∫

IR

xrψjk(x)dx = 0, r = 0, . . . , N − 1,

∫

IR

xrψ̃jk(x)dx = 0, r = 0, . . . , Ñ − 1.

Note that due to the biorthogonality of the basis functions (i.e. due to (2.13))

the number of vanishing moments N of the biorthogonal basis {ψ̃jk} is exactly the
order of polynomial reproduction of the wavelet basis {ψjk} and vice versa. It is
well known [13, 44] that the number of vanishing moments governs the compression
capacity of a wavelet and that the order of polynomial reproduction governs the
approximation power. Estimates of the order of approximation are mainly based on
the local L2-stability (2.3) and an inequality of Jackson type which in turn depends

on estimates of the coefficients 〈u, ψ̃jk〉, i.e. on a moment condition for the dual
wavelet. For purposes of compression, one usually assumes specific decay properties
of the Schwarz-kernel of the pseudodifferential operator under consideration. Then
estimates of the size of the entries a(ψjk , ψlm) of the Galerkin stiffness matrix are
obtained by expansions of the Schwarz-kernel in a polynomial basis together with
the cancellation properties of the primal wavelets ψjk [10, 15].
One of the merits of biorthogonal wavelets is that the number of vanishing moments
can be chosen independently of the order of polynomial exactness. We will see later
on that it is the number of vanishing moments of the dual wavelets ψ̃jk that governs
the form of the resulting optimized grids, if we pose specific assumptions on the
solution of the variational problem.
Let

S = ∪∞
i=0Si and S̃ = ∪∞

i=0S̃i

with S̃i := ∪i
j=0{ψ̃jk, k ∈ τj}. Moreover, we assume that the ψjk and ψ̃jk are scaled

and delated versions of single scale functions (mother wavelets) ψ0 and ψ̃0, i.e.

(2.15) ψjk(x) = 2
j
2ψ0(

x− k

2−j
) and ψ̃jk(x) = 2

j
2 ψ̃0(

x− k

2−j
).

We assume the following conditions to hold: First, we need a direct estimate (esti-
mate of Jackson type, approximation order m)

(2.16) inf
uj∈Sj

‖u− uj‖L2 ≤ C2−jm|u|Hm ∀u ∈ Hm

for some m ∈ IN with 1 ≤ m, and second, we need an inverse estimate (Bernstein
inequality)

(2.17) ‖uj‖Hr ≤ C2jr‖uj‖L2 ∀uj ∈ Sj

for some r ∈ IR with r ∈ (0,m]. We also assume that similar relations hold for the

dual system S̃ with parameters m̃ and r̃. Then the validity of the following norm
equivalences can be infered from (2.16) and (2.17), see [9, 39]:5

(2.18) ‖u‖2
Ht ≈

∞∑

j=0

‖wj‖
2
Ht ≈

∞∑

j=0

22tj‖wj‖
2
L2

5Here, for t < 0, the L2-convergence has to be replaced by distributional convergence.
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for t ∈ (−r̃, r) where u =
∑∞

j=0 wj , wj ∈ Wj . Note that (2.18) with t = 0 together

with the local stability (2.10) enforces the global stability

‖u‖L2 ≈ ‖{〈u, ψ̃jk〉}jk‖`2(j∈IN,k∈τj),

i.e., (2.12). The two-sided estimate (2.18) allows to characterize smoothness prop-
erties of a function from the properties of a multiscale decomposition. It is a
consequence of approximation theory in Sobolev spaces together with interpolation
and duality arguments [39, 9]. Moreover, it states that bilinear forms a(., .) satisfy-
ing the two-sided estimate (2.3) are spectrally equivalent to the sum of the bilinear
forms 22sj(., .)L2 on Wj ×Wj induced from the right hand side of (2.18). A similar
result holds for the analogous construction using the dual wavelets instead of the
primal ones. This leads to the range t ∈ (−r, r̃). See [10] for an overview over
multiscale methods dealing with biorthogonal wavelets.
For the higher-dimensional case n > 1, let j ∈ ZZn

+, j ≡ (j1, . . . , jn), be given,

and consider the tensor-product partition with uniform step size 2−ji into the i-th
coordinate direction. By Wj we denote the corresponding function space of tensor-
products of one dimensional function spaces, i.e.

Wj := Wj1 ⊗ · · · ⊗Wjn .

A basis of Wj is given by ∪k∈Ij{ψjk(x) = ψj1k1(x1) · · · · · ψjnkn(xn)}.
Given an index set IJ ⊂ ZZn

+, J ∈ IN, we consider the approximation spaces

(2.19) VJ :=
∑

j∈IJ

Wj.

Here, J is the maximal level in VJ , i.e. ji ≤ J, i = 1, . . . , n, ∀j ∈ IJ . Associated
with rectangular index sets I−∞

J := {|j|∞ ≤ J} are the full grid spaces

(2.20) V −∞
J :=

⊕

|j|∞≤J

Wj, J > 0.

The so called sparse grid space

(2.21) V 0
J :=

⊕

|j|1≤J+n−1

Wj, J > 0

is associated with the index set I0
J := {|j|1 ≤ J+n−1}. The approximation spaces

V −∞
J and V 0

J will later turn out to be special choices of a family of approximation
spaces V T

J that are adapted to Sobolev spaces. Specifically, V 0
J will turn out to be

the appropriate choice for H0. See Figure 1 for the index sets of the full and the
sparse grid spaces V −∞

3 and V 0
3 in the two-dimensional case. The dimensions of

Wj, V
−∞
J and V 0

J are (note that we count only interior grid points)

(2.22) |Wj| = 2|j|1−n,

(2.23) |V −∞
J | = (2J − 1)n = O(2Jn)

and

(2.24) |V 0
J | = 2J

(
Jn−1

(n− 1)!
+O(Jn−2)

)
,

see [3, 5, 25, 6, 21], e.g. The estimates of |Wj| and |V −∞
J | are clear. The estimate

of |V 0
J | is straightforward and will follow as a byproduct of the estimate of the

dimensions of the spaces from a more general class of spaces in section 4.2.
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(1,2) (2,2)

(2,1) (3,1)

(3,2)

(3,3)(2,3)(1,3)

(1,1)

1

1

2 3

2

3

j
1

j
2

(1,2)

(3,1)

(1,3)

(1,1)

1

1

2 3

2

3

j
1

j
2

(2,2)

(2,1)

Figure 1. Index sets of the full grid space V −∞
3 (left) and of the

sparse grid space V 0
3 (right), case n = 2.

In this paper we introduce index sets that are optimized with respect to Sobolev
norms and spaces with specific bounded mixed derivatives. To this end, we consider
smoothness assumptions on the solution u or on the right hand side f (that in turn
leads to smoothness assumptions on u) of the variational problem. This leads us to

the definition of more general spaces Ht,l
mix than the standard Sobolev spaces Ht.

They are defined as follows:

Definition 2.1. Let t ∈ IR+
0 , l ∈ IR, t + l ≥ 0, denote 1 = (1, . . . , 1) and let

ei = (0, . . . , 0, 1, 0, . . . , 0) be the i-th unit-vector in IRn.

(2.25) Ht,l
mix(Tn) := Ht1+le1

mix (Tn) ∩ · · · ∩ Ht1+len

mix (Tn),

where

Hk
mix(Tn) := Hk1(T ) ⊗ · · · ⊗ Hkn(T ).

Furthermore we write

(2.26) Ht
mix(Tn) := Ht(T ) ⊗ · · · ⊗ Ht(T ), t ≥ 0.

These are spaces of dominating mixed derivative. For t ∈ INn the space Ht
mix

possesses the equivalent norm

(2.27) ‖u‖2
Ht

mix
≈

∑

0≤k≤t

‖u(k)‖2
L2 .

Here, u(k) is the generalized mixed derivative ∂|k|1

∂k1 ···∂kn
u. For example, u(t,...,t) is the

nt-th order mixed derivative and describes the additional smoothness requirements
for the space Ht

mix compared to the larger isotropic Sobolev space Ht.
Note that the relations

Ht
mix ⊂ Ht ⊂ H

t/n
mix for t ≥ 0 and H

t/n
mix ⊂ Ht ⊂ Ht

mix for t ≤ 0

hold. See [43] for problems connected with these spaces and further references.

The spaces Ht,l
mix are special cases of the spaces

(2.28) H
(t1,...,tn)
mix,∩ (Tn) := Ht1

mix(Tn) ∩ · · · ∩ Htn

mix(Tn),

where ti ∈ IRn, ti ≥ 0, 1 ≤ i ≤ n. On the other hand the standard Sobolev
spaces Ht(Tn) as well as the spaces Ht

mix(Tn) with dominating mixed derivative

are special cases of the spaces Ht,l
mix(Tn) defined in (2.25). We have

(2.29) Ht(Tn) = H0,t
mix(Tn) and Ht

mix(Tn) = Ht,0
mix(Tn).
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Indeed, for t ∈ IR+
0 we have the representation

H0,t
mix(Tn) = H

(t,0,...,0)
mix (Tn) ∩ · · · ∩ H

(0,...,0,t)
mix (Tn)

= Hte1

mix(Tn) ∩ · · · ∩ Hten

mix(Tn)

= Ht(Tn)(2.30)

where

H
(0,··· ,0,1,0,··· ,0)
mix (Tn) := L2(T ) ⊗ · · · ⊗ L2(T ) ⊗Ht(T ) ⊗L2(T ) ⊗ · · · ⊗ L2(T ).

To show the last equality in (2.30), choose an orthogonal basis of Ht(T ) and use
the definition of the tensor-product via orthonormal systems (2.7). More precisely,
using periodic continuation to IR and the fact that for example {sin(n(2xπ − π))}
defines a complete orthonormal system in L2(T ) and Ht(T ) it is clear that every
u ∈ Ht(Tn) can be represented as a Fourier sine series and (2.30) follows directly
from the definition of the tensor product (2.7) and the definition of intersection
of Hilbert spaces. Note that similar results hold for problems with Dirichlet or
Neumann boundary conditions and certain cases of mixed boundary conditions.
See [27] for more details and some examples. Equation (2.29) (right) is clear from

the definition of Ht
mix(Tn) in (2.26). A norm on Ht,l

mix(Tn) can be defined directly
via

‖u‖2
Ht,l

mix

≈
∑

1≤i≤n

‖u‖2

H
t1+lei
mix

.

Hence, the spaces Ht,l
mix from (2.25) give a unified framework for the study of the

special cases Ht = H0,t
mix and Ht

mix = Ht,0
mix.

3. Norm equivalences

To get norm equivalences analogous to (2.18) in n ≥ 2 dimensions, we use the above
representation of Ht and Ht

mix as tensor-products of 1D spaces and intersections.
We use the notation {V ; a} to denote a Hilbert space V equipped with the scalar
product a(., .). Consider a collection of Hilbert spaces Hl, l = 1, . . . , n, n ∈ IN
and a collection of closed subspaces Vli ⊂ Hl such that topologically Hl =

∑
i Vli.

An additive subspace splitting {Hl; al} =
∑

i{Vli; bli} is called stable if the norm
equivalence al(u, u) ≈ |‖u‖|2 ≡ infui∈Hli:u=

P
i ui

(bli(ui, ui)) holds true, i.e. if the
characteristic numbers

λmin,l = min
06=u∈Hl

al(u, u)

|‖u‖|2
, λmax,l = max

06=u∈Hl

al(u, u)

|‖u‖|2
, κl =

λmax,l

λmin,l

are finite and positive. We have the following two Propositions.

Proposition 1. If the splittings

{Hl; al} =
∑

i

{Vli; bli}, l ∈ {1, . . . , n}, n ∈ IN

are stable and possess the condition numbers κl then the tensor-product splitting

{H1 ⊗H2 ⊗· · ·⊗Hn; a1 ⊗· · ·⊗an} =
∑

i1

· · ·
∑

in

{V1i1 ⊗· · ·⊗Vnin ; b1i1 ⊗· · ·⊗ bnin}

is also stable and possesses the condition number
∏n

l=1 κl.

See [27] for a proof in the case n = 2. The extension to the n-dimensional case is
straightforward.
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Proposition 2. Let there be given sequences {αli}i, l = 1, . . . , n, n ∈ IN. Suppose
that the splittings

{Hl; al} =
∑

i

{Vi;αlib}, l = 1, . . . , n,

are stable and that the sums are direct. Then, for all αl > 0, l = 1, . . . , n, the
splitting

(3.1) {H1 ∩ · · · ∩Hn;α1a1 + · · · + αnan} =
∑

i

{Vi; (α1α1i + · · · + αnαni)b}

is stable with condition number κ ≤
max{λmax,1,...,λmax,n}
min{λmin,1,...,λmin,n} .

Proof. See [27] for a proof in the case n = 2. The n-dimensional case is analogous.
�

Combining the above representation (2.30) of Ht(Tn), t ≥ 0, with these Proposi-
tions and the stability result (2.18) in one dimension we come up with the following
norm equivalence and stable splitting of Ht(Tn).

Theorem 1. Let u ∈ Ht(Tn), u =
∑

j wj, wj ∈ Wj (for t < 0 with distributional

convergence) and let the above assumptions (2.16) and (2.17) on the validity of a
Jackson and a Bernstein inequality for the primal as well as the dual system hold.
Then

‖u‖2
Ht ≈

∑

j

22t|j|∞‖wj‖
2
L2 for t ∈ (−r̃, r), where |j|∞ = max

1≤i≤n
ji.(3.2)

Proof. In the one-dimensional case we have from (2.18)

‖u‖2
Ht(T ) ≈

∞∑

j=0

22tj‖wj‖
2
L2(T ), 0 ≤ t < r, u =

∞∑

j=0

wj , wj ∈ Wj , u ∈ Ht(T )

and from (2.12)

‖u‖L2 ≈ ‖{〈u, ψ̃jl〉}jl‖`2(j∈IN,l∈Ij), u =

∞∑

j=0

wj , wj ∈Wj , u ∈ L2(T ).

This shows the stability of the 1D splittings

{Ht(T ); ‖.‖2
Ht(T )(T )} =

∑

j

{Wj ; 2
2tj‖.‖2

L2(T )}

and

{L2(T ); ‖.‖2
L2(T )} =

∑

j

{Wj ; ‖.‖
2
L2(T )}.

From Proposition 1 we obtain the stability of the splittings

{H
(0,...,0,t,0,...,0)
mix ; (., .)L2 ⊗ · · · ⊗ (., .)L2 ⊗ a(., .) ⊗ (., .)L2 ⊗ · · · ⊗ (., .)L2}

=
∑

j{Wj1 ⊗ · · · ⊗Wjn ; 22tji(., .)L2 ⊗ · · · ⊗ (., .)L2}.

Now we represent Ht(Tn) as in (2.30) and we apply Proposition 2. Then, we obtain
the stability of the splitting

{Ht(Tn); ‖.‖2
Ht} =

∑

j

{Wj ; (
n∑

i=1

22tji)‖.‖2
L2}
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for nonnegative t < r. Because of 22t|j|∞ ≤
∑n

i=1 22tji ≤ n22t|j|∞ for t ≥ 0 we
then have (3.2) for positive t. To obtain the validity of (3.2) for −r̃ < t < 0 note
that the same reasoning as above applied to the representation of u in the dual
wavelet system shows that we have a similar result for the spaces spanned by the
dual wavelets for 0 ≤ t < r̃. By duality (Ht)′ = H−t the assertion follows then for
the range −r̃ < t < 0 and hence for the whole range t ∈ (−r̃, r). �

For the space Ht
mix the following norm equivalence holds:

Theorem 2. Let u ∈ Ht
mix, u =

∑
j wj, wj ∈Wj and let the assumptions (2.16) and

(2.17) on the validity of a Jackson and a Bernstein inequality for the primal as well
as the dual system hold. Then

(3.3) ‖u‖2
Ht

mix
≈
∑

j

22t|j|1‖wj‖
2
L2 for t ∈ (−r̃, r).

Proof. The two-sided estimate (3.3) is a direct consequence of Proposition 1 and the
definition of the space Ht

mix as tensor-product of one-dimensional Hilbert spaces.
Again we use the stable 1D splittings

{Ht(T ); ‖.‖2
Ht(T )} =

∑

j

{Wj ; 2
2tj‖.‖2

L2} and {L2(T ); ‖.‖2
L2} =

∑

j

{Wj ; ‖.‖
2
L2}

(which we get from (2.18) and (2.12)) and Proposition 1 to obtain the stability of
the splitting

{Ht
mix; a(., ) ⊗ · · · ⊗ a(., .)}

= {Ht(T ) ⊗ · · · ⊗ Ht(T ); a(., .) ⊗ · · · ⊗ a(., .)}

=
∑

j

{Wj1 ⊗ · · · ⊗Wjn ; 22tj1(., .)L2 ⊗ · · · ⊗ 22tjn(., .)L2}

=
∑

j

{Wj1 ⊗ · · · ⊗Wjn ; 22t|j|1(., .)L2 ⊗ · · · ⊗ (., .)L2}.

This shows (3.3). �

Note that under the assumptions of the Theorems 1 and 2 there hold similar rela-
tions for the subspace splittings induced by the dual wavelets.

Remark 1. The norm equivalences in Theorems 1 and 2 are special cases of norm

equivalences for the spaces H
(t1,...,tn)
mix,∩ from (2.28). Again using Propositions 1 and 2

it is straightforward to show that

(3.4) ‖u‖2

H
(t1,...,tn)
mix,∩

≈
∑

j

(
n∑

i=1

22〈ti, j〉

)
‖wj‖

2
L2 for ti ≥ 0,−r̃ < ti < r.

Specifically for the spaces Ht,l
mix, l ≥ 0,−r̃ < t + l < r, 0 ≤ t < r, the norm

equivalence (3.4) reads

(3.5) ‖u‖2
Ht,l

mix

≈
∑

j

(
n∑

i=1

22t|j|1+2lji

)
‖wj‖

2
L2 ≈

∑

j

22t|j|1+2l|j|∞‖wj‖
2
L2 .

Compared to (3.2), (3.3), the additional factors 22t|j|1 or 22l|j|∞ in (3.5) reflect the
different smoothness requirements. Note that for t = 0 or l = 0 we regain (3.2)
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from Theorem 1 and (3.3) from Theorem 2, respectively. Analogous relations hold
for the dual spaces.

Remark 2. For the construction of optimized approximation spaces, we will use the
upper estimate from (3.2) and the lower estimate in (3.3) and (3.5).

Remark 3. One of the merits of the norm equivalences (3.2), (3.3) or the more
general one (3.5) is the fact that they lead directly to optimal preconditioning. For
example, if one chooses the scaled system {2−s|l|∞ψlk : |l|∞ ≤ J,k ∈ τl} as the
basis in the finite element approximation space V −∞

J , then the spectral condition

numbers κ(AJ) of the discretization matrices AJ = {2−s|l+l′|∞a(ψlk, ψl′k′)}l,l′,k,k′

are bounded uniformly in J , i.e.

(3.6) κ(AJ) = O(1),

see [12, 31]. This leads to fast iterative methods with convergence rates independent
of the number of unknowns of the approximation space. Note that this result can
be trivially extended to the case of discretization matrices built from arbitrary
collections of scaled basis functions.

4. Optimized approximation spaces for Sobolev spaces

Suppose a symmetric elliptic problem (2.2) and its variational formulation

(4.1) a(uFE , v) = (f, v) ∀v ∈ VFE

on a finite element approximation space VFE ⊂ Hs are given. Then, we have due
to the Hs-ellipticity condition (2.3) and Cea’s Lemma

√
a(u− uFE, u− uFE) ≈ ‖u− uFE‖Hs ≈ inf

v∈VF E

‖u− v‖Hs

for the error
√
a(u− uFE , u− uFE) between the solution u of the continuous prob-

lem (2.2) and the solution uFE of the approximate problem (4.1) measured in the
energy norm. In this section we give bounds on the term

inf
v∈VF E

‖u− v‖Hs

for various choices of the approximation space VFE , under the constraint

u ∈ Ht,l
mix, where − r̃ < s < t+ l < r, 0 ≤ t < r and l ≥ 0.

We define grids and associated approximation spaces that are adapted to the pa-
rameter s and to the constraint on the smoothness of the solution and give estimates
on their dimension and the order of approximation. The definition of the grids is
motivated by the results of section 3, specifically on the norm equivalence (3.5) and
the special cases (3.2) and (3.3). We are particularly interested in constructing ap-
proximation spaces that break the curse of dimensionality, that is whose dimension
is at most polynomially dependent on n.

4.1. Approximation spaces for problems with constraint on the solution.

We first deal with the cases u ∈ Ht and u ∈ Ht
mix. More general cases will be

discussed at the end of section 4.1.2, see Theorem 3. In this section let u =
∑

j wj,

where wj ∈ Wj. Furthermore let −r̃ < s < t < r. Then Ht ⊂ Hs. For notational
convenience we restrict ourselves to the case t > 0. Note that the case t < 0 could
be covered with analogous reasoning.
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4.1.1. Estimates on the order of approximation for the spaces V −∞
J and V 0

J . First,
we consider the order of approximation for the full grid case. Let u ∈ Hs. Applying
the norm equivalence (3.2) gives us

inf
v∈V −∞

J

‖u− v‖2
Hs ≤ ‖u−

∑

|j|∞≤J

wj‖
2
Hs

(3.2)
≈

∑

|j|∞>J

22s|j|∞‖wj‖
2
L2

=
∑

|j|∞>J

22(s−t)|j|∞22t|j|∞‖wj‖
2
L2

≤ max
|j|∞>J

22(s−t)|j|∞
∑

|j|∞>J

22t|j|∞‖wj‖
2
L2 .(4.2)

To continue, we assume additional smoothness of the solution, i.e. u ∈ Ht. Then
we can apply (3.2) once more, now with u ∈ Ht. This yields

max
|j|∞>J

22(s−t)|j|∞
∑

|j|∞>J

22t|j|∞‖wj‖
2
L2

(3.2)

≤ C · max
|j|∞>J

22(s−t)|j|∞‖u‖2
Ht(4.3)

≤ C · 22(s−t)(J+1)‖u‖2
Ht .

Altogether we have the standard error estimate

(4.4) inf
v∈V −∞

J

‖u− v‖2
Hs ≤ C · 22(s−t)(J+1)‖u‖2

Ht for u ∈ Ht and − r̃ < s < t < r.

From the exponent on the right hand side we get O((s − t)J) as order of approx-
imation. It is easy to see that the order of approximation does not change when
u ∈ Ht

mix ⊂ Ht, i.e.6

inf
v∈V −∞

J

‖u− v‖2
Hs ≤ C · 22(s−t)(J+1)‖u‖2

Ht
mix

for − r̃ < s < t < r.

Note that we are implicitly using several times the vanishing moment condition of
the dual wavelets, which is implicitly contained in the Jackson inequality (2.16).
Changing from the full grid space V −∞

J to the approximation space V 0
J changes the

situation significantly. Applying again the norm equivalence (3.2) gives for u ∈ Hs

inf
v∈V 0

J

‖u− v‖2
Hs ≤ ‖u−

∑

|j|1≤J+n−1

wj‖
2
Hs

(3.2)
≈

∑

|j|1>J+n−1

22s|j|∞‖wj‖
2
L2

=
∑

|j|1>J+n−1

22(s−t)|j|∞22t|j|∞‖wj‖
2
L2

≤ max
|j|1>J+n−1

22(s−t)|j|∞
∑

|j|1>n+J−1

22t|j|∞‖wj‖
2
L2 .

Now we again require u to be of higher regularity, i.e. u ∈ Ht. This yields

max
|j|1>J+n−1

22(s−t)|j|∞
∑

|j|1>n+J−1

22t|j|∞‖wj‖
2
L2

(3.2)

≤ C · max
|j|1>J+n−1

22(s−t)|j|∞‖u‖2
Ht ≤ C · 22(s−t)(1− 1

n )22(s−t) J
n ‖u‖2

Ht

6For t < 0 we would have to assume u ∈ Ht

mix
∩Hs here.



14 M. GRIEBEL AND S. KNAPEK

where we used in the last but one step that the maximum is obtained for |j|∞ =
dJ+n−1

n e. Altogether we have for u ∈ Ht and −r̃ < s < t < r

(4.5) inf
v∈V 0

J

‖u− v‖2
Hs ≤ C · 22(s−t)(1− 1

n )22(s−t) J
n ‖u‖2

Ht .

Compared to the result for the full grid approximation space, the order of approx-
imation deteriorates from O((s − t)J) to O((s− t)J/n).
However, for the smaller space Ht

mix ⊂ Ht and operators of positive order, i.e.,
s ≥ 0, no loss in the order of approximation occurs, if the full grid space is replaced
by the space V 0

J . This is due to the fact that we can apply norm equivalence (3.3)
instead of (3.2).7 We apply (3.2) for functions from Hs and (3.3) for u ∈ Ht

mix and
get

inf
v∈V 0

J

‖u− v‖2
Hs ≤ ‖u−

∑

|j|1≤J+n−1

wj‖
2
Hs

(3.2)
≈

∑

|j|1>J+n−1

22s|j|∞‖wj‖
2
L2

=
∑

|j|1>J+n−1

22s|j|∞−2t|j|122t|j|1‖wj‖
2
L2

≤ max
|j|1>J+n−1

22s|j|∞−2t|j|1
∑

|j|1>n+J−1

22t|j|1‖wj‖
2
L2(4.6)

(3.3)

≤ C · max
|j|1>J+n−1

22s|j|∞−2t|j|1‖u‖2
Ht

mix

≤ C · 2−2tn22s22(s−t)J‖u‖2
Ht

mix
for u ∈ Ht

mix,

where we used in the last step that the term 22s|j|∞−2t|j|1 takes its maximum in
(J + 1, 1, . . . , 1). Altogether we have for u ∈ Ht

mix and −r̃ < s < t < r, t > 0

inf
v∈V 0

J

‖u− v‖2
Hs ≤ C · 2−2tn22s22(s−t)J‖u‖2

Ht
mix

.

That is, there appears no loss in the order of approximation compared to the result
for the full grid approximation space.
For operators of negative order, i.e. s < 0, the situation is different. Here, com-
pared to the estimate (4.4) for u ∈ Ht, the order of approximation improves when
changing to the space Ht

mix, but in contrast to the case s ≥ 0, the optimal order
of convergence cannot be retained. Applying (3.2) for functions from Hs and (3.3)
we have for u ∈ Ht

mix

inf
v∈V 0

J

‖u− v‖2
Hs ≤ ‖u−

∑

|j|∞>J+n−1

wj‖
2
Hs

(3.2)
≈

∑

|j|1>J+n−1

22s|j|∞‖wj‖
2
L2

=
∑

|j|1>J+n−1

22s|j|∞−2t|j|122t|j|1‖wj‖
2
L2

≤ max
|j|1>J+n−1

22s|j|∞−2t|j|1
∑

|j|1>n+J−1

22t|j|1‖wj‖
2
L2(4.7)

(3.3)

≤ C · max
|j|1>J+n−1

22s|j|∞−2t|j|1‖u‖2
Ht

mix

≤ C · 22s(1− 1
n )2−2tn22(s/n−t)J‖u‖2

Ht
mix

,

7Remember the different exponents of the forefactors in (3.2) and (3.3).



OPTIMIZED GENERAL SPARSE GRID APPROXIMATION SPACES 15

where we used in the last step that 22s|j|∞−2t|j|1 takes its maximum for |j|∞ =
dJ+n−1

n e and |j|1 = J + n for s < 0. That is, although the order of approximation
is improved when changing from Ht to Ht

mix there still appears a loss in the order of
approximation of s(1−1/n) compared to the full grid. This fact has been described
already in [28] for the case −1 ≤ s < 0 and prewavelets (i.e., wavelets that are L2-
orthogonal between different subspaces Wj and build a Riesz basis in the subspaces
Wj), where this behavior is explained in more detail. In summary we have that for
operators with s ≥ 0 the order of approximation is kept for u ∈ Ht

mix, s < t, when
changing from the approximation space V −∞

J to the sparse grid space V 0
J . For

operators of negative order a deterioration of the order of approximation appears.

4.1.2. Definition and order of approximation of the approximation spaces V T
J . In

the following we construct approximation spaces for functions from Ht,l
mix,−r̃ < s <

t + l < r, l ≥ 0, and operators of positive or negative order by carefully selecting
subspaces of the full grid space. They are chosen in such a way that the order of
approximation of the full grid space is kept. The sparse grid space V 0

J and the

full grid space V −∞
J are special cases. We start with the space Ht

mix = Ht,0
mix.

Inequality

max
j6∈I0

J

22s|j|∞−2t|j|1‖u‖2
Ht

mix
≤ C · 22(s−t)J‖u‖2

Ht
mix

for u ∈ Ht
mix, 0 ≤ s < t,

from (4.6) reveals that for s ≥ 0 one could discard indices from the index set I0
J

without destroying the optimal order of approximation. Consider an index set
IJ ⊂ I0

J such that

(4.8) max
j6∈IJ

22s|j|∞−2t|j|1 ≤ C · 22(s−t)J

where C 6= C(s, t, J). Then the order of approximation is kept for the approxima-
tion space defined from the index set IJ . Taking logarithms on both sides of (4.8)
and dividing by 2t (remember that we have t > 0) shows that (4.8) is equivalent to

(4.9) j ∈ IJ ⇔ −|j|1 +
s

t
|j|∞ ≥ −J +

s

t
J + c,

where c 6= c(j, J) is essentially the logarithm of the constant C on the right hand
side of the asymptotic estimate (4.8). For operators of negative order we deduce
from (4.7) that we have to add indices to the index set I0

J to keep the optimal order
of approximation. Again, the order is kept if IJ is such that (4.8) and hence (4.9)
holds.
Therefore we define the optimized grid as the minimal index set for which (4.9)
holds. Fixing (J, 1, · · · , 1) to be the index with maximal |.|∞-norm to be included
into the index sets leads to c = n− 1 and the index sets

I
s
t

J := {j : −|j|1 +
s

t
|j|∞ ≥ −(n+ J − 1) +

s

t
J}.

They are dependent on the parameter J and on the quotient s/t.
In order to give the results more flexibility we parametrize the index sets with a
new parameter T and get finally

(4.10) IT
J := {j : −|j|1 + T |j|∞ ≥ −(n+ J − 1) + TJ}
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Figure 2. Index sets IT
J for T > 0, T = 0 and T < 0.

with the related approximation spaces

V T
J :=

⊕

j∈IT
J

Wj =
⊕

−|j|1+T |j|∞≥−(n+J−1)+TJ

Wj.

The new parameter T allows us to decouple the definition of the index sets and
the resulting grids from the smoothness parameters s and t and to investigate more
closely into the relation between smoothness assumptions, the choice of approxima-
tion space and the order of approximation. In the following we will consider terms
like

inf
v∈V T

J

‖u− v‖2
Hs ,

now for varying T , where we assume again that u ∈ Ht or u ∈ Ht
mix. Definition

(4.10) ensures that the optimal order of approximation is kept for T ≤ s
t and func-

tions from Ht
mix (compare (4.8) and (4.9)). For T > s

t the order of approximation
deteriorates. We discuss this point in more detail below.
Note that for T = 0 we have V T

J = V 0
J and for T → −∞ we have V T

J → V −∞
J ,

i.e. the full grid space. Furthermore we have the natural restriction to T ≤ 1.
Obviously the inclusions

V 1
J ⊂ V T1

J ⊂ V T2

J ⊂ V 0
J ⊂ V T3

J ⊂ V T4

J ⊂ V −∞
J for T4 ≤ T3 ≤ 0 ≤ T2 ≤ T1 ≤ 1

hold. Schematically the behavior of the index sets IT
J is depicted in Figure 2 with

varying T for the two-dimensional case. Figures 3-6 show some examples for the
two-dimensional case.
We now discuss the dependence of the order of approximation of the approximation
space V T

J on the parameter T in more detail. Let us first consider the case u ∈ Ht.
Remember that Ht ⊂ Hs. Then we have (similar to (4.5))

inf
v∈V T

J

‖u− v‖2
Hs ≤ ‖u−

∑

j∈IT
J

wj‖
2
Hs

(3.2)

≤ C · max
j6∈IT

J

22(s−t)|j|∞‖u‖2
Ht

(4.10)
= C · max

T |j|∞−|j|1<TJ−(n+J−1)
22(s−t)|j|∞‖u‖2

Ht

= C · 22(s−t) (1−T )J−n+1
n−T ‖u‖2

Ht = C · 22(s−t) J
n

1−T
1−T/n ‖u‖2

Ht .(4.11)

In the last but one step we used that maxT |j|∞−|j|1<TJ−(n+J−1) 22(s−t)|j|∞ takes

its maximum at |j|∞ = d (1−T )J−n+1
n−T e. Compared to the result (4.5) for the space

V 0
J , the order of approximation deteriorates in case T > 0, when changing from

the space V 0
J to the space V T

J , now by the factor 1−T
1−T/n . For T < 0 the order of

approximation is improved by the factor 1−T
1−T/n . Compared to the full grid V −∞

J
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equation (4.11) indicates a loss in the order of approximation by the factor 1−T
n−T .

Note that for T = 0 we regain estimate (4.5).
For u ∈ Ht

mix we have (compare (4.8) and remember that Ht
mix ⊂ Hs)

inf
v∈V T

J

‖u− v‖2
Hs ≤ ‖u−

∑

j∈IT
J

wj‖
2
Hs

(3.2),(3.3)

≤ C · max
j6∈IT

J

22s|j|∞−2t|j|1‖u‖2
Ht

mix

= C · max
T |j|∞−|j|1<TJ−(n+J−1)

22s|j|∞−2t|j|1‖u‖2
Ht

mix
.(4.12)

It is straightforward to show that for T ≥ s
t the maximum is obtained for |j|∞ =

d (1−T )J−n+1
n−T e, and for T ≤ s

t the maximum is obtained in j = (J + 1, 1, · · · , 1).

We continue (4.12) and have for T ≥ s
t

(4.13)

inf
v∈V T

J

‖u− v‖2
Hs ≤ C · 22(s−nt) (1−T )J−n+1

n−T ‖u‖2
Ht

mix
= C · 22(s−t+(Tt−s) n−1

n−T )J‖u‖2
Ht

mix
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and for T ≤ s
t

(4.14) inf
v∈V T

J

‖u− v‖2
Hs ≤ C · 2−2t(n−1)22(s−t)J‖u‖2

Ht
mix

= C · 22(s−t)J‖u‖2
Ht

mix
.

Note that for T = s
t both estimates give the same result.

This estimate shows once more that for u ∈ Ht
mix there appears no loss of asymp-

totic approximation power if the full grid is replaced by an optimized grid induced
by the index set IT

J with T ≤ s
t . Note that IT

J is of lower dimension than the

index set I−∞
J of the full grid. However, a further reduction of the number of grid

points by using an index set IT
J with T > s

t results in a deterioration of the order of

approximation. In this case the order of approximation is reduced by (T t− s) n−1
n−T .

Note that smoothness assumptions on the right hand side f in the variational
problem (2.2) imply smoothness properties of the solution. Consider for example

the case of a differential operator. Then for example f ∈ Ht
mix implies u ∈ Ht,s

mix.

Therefore we now deal also with the more general case u ∈ Ht,l
mix, l ≥ 0,−r̃ < s <

t+ l < r. We summarize the discussion in a Theorem.

Theorem 3. Let −r̃ < s < t + l < r, l ≥ 0 and 0 ≤ t < r. Then for u ∈ Ht,l
mix it

holds

(4.15) inf
v∈V T

J

‖u− v‖2
Hs ≤





C · 22(s−l−t+(Tt−s+l) n−1
n−T )J‖u‖2

Ht,l
mix

for T ≥ s−l
t

C · 22(s−l−t)J‖u‖2
Ht,l

mix

for T ≤ s−l
t .

Specifically for u ∈ Ht = H0,t
mix it holds

(4.16) inf
v∈V T

J

‖u− v‖2
Hs ≤ C · 22(s−t) 1−T

n−T J‖u‖2
Ht

and for u ∈ Ht
mix = Ht,0

mix it holds

(4.17) inf
v∈V T

J

‖u− v‖2
Hs ≤

{
C · 22(s−t+(Tt−s) n−1

n−T )J‖u‖2
Ht

mix
for T ≥ s

t

C · 22(s−t)J‖u‖2
Ht

mix
for T ≤ s

t .

Proof. Let u ∈ Ht,l
mix. To show (4.15) we use the upper estimate from the norm

equivalence (3.2) and the lower estimate from (3.5). Then

inf
v∈V T

J

‖u− v‖2
Hs ≤ ‖u−

∑

j∈IT
J

wj‖
2
Hs

(3.2)
≈

∑

j6∈IT
J

22s|j|∞‖wj‖
2
L2

≤ max
j6∈IT

J

22(s−l)|j|∞−2t|j|1 ·
∑

j6∈IT
J

22l|j|∞+2t|j|1‖wj‖
2
L2

(3.5)

≤ C · max
j6∈IT

J

22(s−l)|j|∞−2t|j|1‖u‖2
Ht,l

mix

.

Evaluating the maximum with respect to IT
J shows (4.15). The inequalities (4.16)

and (4.17) are special cases of the inequality (4.15), with t = 0 and l = 0, re-
spectively. See also inequalities (4.11) and (4.13). (4.14) together with the above
discussion. �

Theorem 3 shows that the optimal order of approximation of a function in Ht,l
mix

is kept when changing from the full grid approximation space V −∞
J to an approx-

imation space V T
J with T ≤ (s − l)/t. The use of approximation spaces V T

J with
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T > (s− l)/t leads to a deterioration of the optimal order of convergence. Hence,
for purposes of discretization of large scale problems with solution in the space

Ht,l
mix, the spaces V

(s−l)/t
J with T ≤ (s − l)/t are well suited. From the nestedness

of the spaces V T
J we conclude that the choice T = (s − l)/t will lead to the most

economical algorithms. This holds true especially in higher dimensions where the
benefits of the spaces V T

J with T large become most obvious, as we will see in
section 4.2.

4.2. Dimension of the approximation spaces V T
J . The following Lemma dis-

cusses the dimension of the spaces V T
J . We split the basis functions into two sets.

One with those functions that correspond to the interior of the unit cube and the
other with those functions that correspond to the boundary. For ease of exposition
we restrict ourselves to homogeneous boundary conditions in this section, that is,
we count only those basis functions/indices that correspond to the interior of the
unit cube. Hence the index j with minimal |.|∞ and |.|1-norm in an index set IT

J is
j = (1, . . . , 1). Note that other boundary conditions could be dealt with analogous
reasoning. But we would have to count also indices j with ji = 0 for some 1 ≤ i ≤ n.

Lemma 1. It holds

dim
(
V T

J

)
≤





n · 2J for T = 1,

n
2

(
1

1−2
− 1

1/T−1

)n

· 2J = 0(2J) for 0 < T < 1,

O(2
T−1

T/n−1J) for T < 0.

(4.18)

The case T = 0 is covered by the estimate

(4.19) dim
(
V T

J

)
≤

(
Jn−1

(n− 1)!
+O(Jn−2)

)
· 2J = O(2JJn−1) for 0 ≤ T ≤ 1/J.

Proof. The case T ≥ 0:
Let |j|1 = n + J − 1 − i and 0 < T ≤ 1. Then Wj ⊂ V T

J ⇔ −|j|1 + T |j|∞ ≥

−(n+ J − 1) + TJ ⇔ |j|∞ ≥ J − 1
T i. Since

∑
|j|1=n+J−1−i 1 =

(
|j|1−1
n−1

)
and

(4.20)
∑

|j|1=n+J−1−i,

|j|∞=`1≥J−i/T

1 ≤

(
d|j|1 − (J − i/T )e

n− 1

)
=

(
dn− 1 + (1/T − 1)ie

n− 1

)

the number of subspaces Wj with |j|1 = n+ J − 1 − i belonging to V T
J is bounded

by n
(dn−1+( 1

T −1)ie
n−1

)
.

Hence, with the definition of V T
J ,

|V T
J | =

J−1∑

i=0

∑

|j|1=n+J−1−i,

|j|∞=`1≥J−i/T

|Wj | ≤

J−1∑

i=0

2J−1−in

(
dn− 1 + (1/T − 1)ie

n− 1

)

= 2J−1n

J−1∑

i=0

2−i

(
dn− 1 + (1/T − 1)ie

n− 1

)
.(4.21)
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In the case T − 1 = 0 we get |V T
J | ≤ 2J−1n

∑J−1
i=0 2−i ≤ 2Jn, hence (4.18). For

T < 1 the substitution i→ i
1/T−1 leads to

|V T
J | ≤ 2J−1n

d(1/T−1)(J−1)e∑

i=0

2−
i

1/T−1

(
n− 1 + i

i

)
.

Since (xn−1+i)(n−1) = (n−1+i)!
i! xi ∀x ∈ IR, we get

|V T
J | ≤ 2J−1n

1

(n− 1)!

d(1/T−1)(J−1)e∑

i=0

(xn−1+i)(n−1)

∣∣∣∣
x=2

− 1
1/T−1

= 2J−1n
1

(n− 1)!


xn−1

d(1/T−1)(J−1)e∑

i=0

xi




(n−1) ∣∣∣∣
x=2

− 1
1/T−1

= 2J−1n
1

(n− 1)!

(
xn−1 1 − xd(1/T−1)(J−1)e+1

1 − x

)(n−1) ∣∣∣∣
x=2

− 1
1/T−1

= 2J−1n
1

(n− 1)!

[(
xn−1

1 − x

)(n−1)

−

(
xd(1/T−1)(J−1)e+n

1 − x

)(n−1)
] ∣∣∣∣

x=2
− 1

1/T−1

.

Since

1

(n− 1)!

(
xk 1

1− x

)(n−1)

=
1

(n− 1)!

n−1∑

i=0

(
n− 1

i

)
(xk)(i)

(
1

1 − x

)(n−i−1)

=
1

(n− 1)!

n−1∑

i=0

(
n− 1

i

)
k!

(k − i)!
xk−i(n− 1 − i)!

(
1

1 − x

)n−i

= xk−n
n−1∑

i=0

(
k

i

)(
x

1 − x

)n−i

(4.22)

we get

|V T
J | ≤ 2J−1n

[(
1

1 − x

)n

− xd(1/T−1)(J−1)e+1

·

n−1∑

i=0

(
d(1/T − 1)(J − 1)e + n

i

)(
x

1 − x

)n−i
] ∣∣∣∣

x=2
− 1

1/T−1

≤ 2J−1n

(
1

1 − 2−
1

1/T−1

)n

.

Hence we obtain (4.18).

To prove (4.19) let again |j|1 = n + J − 1 − i and T ≤ 1/J . Then Wj ⊂ V T
J ⇔

−|j|1+T |j|∞ ≥ −(n+J−1)+TJ ⇔ |j|∞ ≥ 0. I.e., everyWj with |j|1 ≤ n+J−1−i,
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Figure 7. Schematical representation of IT
J (left) and IT

bJ (right)

for T < 0, n = 2.

is in V T
J . Hence

∣∣V T
J

∣∣ =
∑

|j|1≤n+J−1

|Wj | =

J−1∑

i=0

2J−1−i
∑

|j|1=n+J−1−i

1

=

J−1∑

i=0

2J−1−i

(
n− 1 + J − 1 − i

n− 1

)
=

J−1∑

i=0

2i

(
n− 1 + i

n− 1

)
.

This results in (see [5], proof of Lemma 7 for details)

∣∣V T
J

∣∣ = (−1)n + 2J
n−1∑

i=0

(
n+ J − 1

i

)
(−2)n−1−i =

(
Jn−1

(n− 1)!
+O(Jn−2)

)
· 2J .

This completes the proof for the case T ≥ 0.

The case T < 0:
Now we deal with the approximation spaces V T

J , T < 0. We introduce an auxiliary
index set IT

bJ with IT
bJ ⊂ I0

J given by

IT
bJ = {j : −|j|1 + T |j|∞ ≥ −(n+ J − 1) + TJ/n}

and the related approximation spaces V T
bJ :=

⊕
j∈IT

bJ
Wj. Note that IT

bJ is just a

shifted version of IT
J . See Figure 7 for a schematic comparison of the index sets IT

J

and IT
bJ in the case n = 2.

Obviously dim(IT
bJ ) = O(2J ). Equation (4.7) shows that the order of approximation

of the approximation space V T
bJ , T ≤ s

t , for functions from Ht
mix is the same as for

the space V 0
J , i.e. O(2(s/n−t)J ). On the other hand we have from inequality (4.17)

that the order of approximation of the space V
s/t
bJ is O(2(s−t) bJ ). This shows that

O(2(s/n−t)J ) = O(2(s−t) bJ ) must hold. Hence we have that J = s−t
s/n−t Ĵ + C and

therefore dim(V
s/t
bJ ) = O(2

s−t
s/n−t

bJ ) and dim(V
s/t
J ) = O(2

s−t
s/n−t

J ).

This completes the proof. �

Note that the coefficient in the asymptotic estimate of the first inequality in (4.18)
is unbounded for T → 0 whereas the coefficient in the estimate (4.19) remains
bounded. Asymptotically, for T > 0, the estimate (4.18) is sharper than (4.20).
However, for computationally relevant sizes of J , (4.20) might be sharper than
(4.18) for T near 0. Similar results have been obtained in [5] for s = 1, t = 2, l = 0
and approximation spaces spanned by piecewise linear functions.
The estimates (4.18) and (4.19) should be compared to the results for the full grid
spaces V −∞

J with dimension dim(V −∞
J ) = (2J − 1)n. The first two estimates in
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(4.18) show that for T > 0 the dependence of the dimension of the approximation
space on the dimensionality n of the problem has been reduced from 2nJ to nCn ·2J ,
with some constant C independent of n and J . Note that C is explicitly given by
Lemma 1 for this case. For the case T < 0 we have again that using the above
spaces in the Galerkin method leads to a significant reduction of the numbers of
unknowns, and hence the number of entries in the stiffness matrices. Note that
dim(V T

J ) << dim(V −∞
J ) for large n or large T . Here we did not compute the

forefactors explicitly, as the asymptotic estimate depends itself on the dimension
n. Now, using the above spaces in the Galerkin method leads to a significant
reduction of the numbers of unknowns and hence the number of entries in the
stiffness matrices.
In summary, Theorem 3 and Lemma 1 show that for approximation problems with

u ∈ Ht,l
mix, l ≥ 0,−r̃ < s < t+ l < r, the use of the approximation spaces V T

J with
T ≤ (s − l)/t leads to a significant reduction of the number of degrees of freedom
compared to the full grid, while the order of approximation remains the same as for
the full grid. This will become even more clear in section 5 where we consider the
overall complexity of solving the operator equations up to a prescribed tolerance.

4.3. Optimization procedures and subspace selection. In this section we
present another way of obtaining the approximation spaces V T

J . The idea is to
explicitly use an optimization procedure to select subspaces. We describe this
briefly in the following. See [5] for a longer discussion in the case of s = 1 and basis
functions of piecewise linear splines. Further details can be found in [6, 21].
As we already noticed several times we have from the norm equivalence (3.2) and
the ellipticity condition (2.3) together with the local stability (2.10) the two-sided
estimate for s ∈ (−r̃, r)

a(u, u)
(2.3)
≈ ‖u‖2

Hs

(3.2)
≈
∑

j

22s|j|∞‖wj‖
2
L2

(2.10)
≈

∑

j

22s|j|∞



∑

m∈τj

〈u, ψ̃jm〉2


 .

From this we see that the contribution of the subspace Wj to a(u, u) is bounded by
Workj · C, where

(4.23) Workj := 22s|j|∞‖wj‖
2
L2 ≈ 22s|j|∞

∑

m∈τj

〈u, ψ̃jm〉2.

Together with an upper estimate of ‖wj‖
2
L2 or of the coefficients 〈u, ψ̃jm〉, the re-

sulting upper estimate of Workj can be considered a measure of the profit gained
in approximation power when Wj is included into the approximation space. Note

that such an estimate of ‖wj‖
2
L2 or an upper estimate of 〈u, ψ̃jm〉 by ‖u‖2

Ht,l
mix

can

be obtained easily for elements of the considered smoothness classes by exploiting
the vanishing moment condition on the dual wavelets ψ̃jm (compare the Jackson
inequality). Implicitly we used this several times in the last sections.
On the other hand the inclusion of Wj into the approximation space causes some
cost in the discretization and hence in the solution procedure. The easiest measure
for this cost is the dimension of the subspace |Wj|. The task is now to find a grid
(i.e. to select subspaces Wj) such that a given error bound gets minimal for some
fixed cost, that is, the dimension of the approximation space is bounded by some
given value b. This problem of deciding which subspaces should be included into
the approximation space given some prescribed overall cost can be reformulated as
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a classical binary knapsack problem. Restricting the range of possible subspaces
Wj to |j|∞ ≤ J for some integer J , and arranging the possible indices j in some
linear order, the optimization problem reads as follows:

Find a binary vector y ∈ {0, 1}n×J such that
∑

|j|∞≤J

Workj · yj constrained to
∑

|j|∞≤J

|Wj| · yj ≤ b(4.24)

is maximal.

Here the binary array y indicates which subspaces are to be included into the
approximation space. Unfortunately such a binary knapsack problem is NP-hard.
However, the situation changes, when we allow the array y to be a rational array in
([0, 1] ∩ Q)n×J . Then we know that the solution can be obtained by the following
algorithm [37]:

(1) Arrange the possible indices in some linear order such that {Workj/|Wj |}j

is decreasing in size, that is

Worki1

|Wi1 |
≥
Worki2

|Wi2 |
≥ · · · .

(2) Let M := max{i :
∑i

k=1 |Wjk
| ≤ b}.

(3) The solution of the rational knapsack problem is given by

y1 = · · · = yM = 1;

yM+1 =
b−

∑M
i=1 |Wji |

|WjM+1 |
;

yM+2 = yM+3 = · · · = 0;

Hence, yM+1 may be rational in [0, 1]. Therefore the solution of the rational knap-
sack problem is in general no solution of the binary knapsack problem. However,
we still have the freedom of slightly changing the size of the cost b. We can do this
in such a way that yM+1 is in {0, 1}. Then, y is also a solution of the corresponding
binary knapsack problem. We refer to [5, 6, 21] for more details of this optimization
procedure. The optimization process can thus be reduced to the discussion of the
profit/cost quotients of the subspaces (or upper bounds of these)

(4.25) γj :=
Workj
|Wj|

.

That is, for an optimal grid in this sense one has to include those Wj into the
approximation space that have γj bigger than some threshold. Note that the op-
timization has to be performed with the use of upper bounds for Workj and not
with the exact (but unknown) values. Hence, the optimization procedure is optimal
only in this sense. Combining (4.23), (4.25) and using the moment condition on
the dual wavelets together with the smoothness assumptions on the solution, we
end up with the same spaces V T

J as in section 4.1.2.

5. Complexity estimates

In this section we deal with the complexity of solving the elliptic variational prob-
lem (2.2) up to some prescribed error when using the approximation spaces V T

J

and preconditioners arising from the norm equivalences from section 3, compare
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Remark 3. We consider the worst case setting, that is the error of an approxima-
tion uFE from a finite element approximation space VFE compared to the exact
solution u is measured in the Hs-norm. The cost of computing an approximation to
the solution of the variational problem (2.2) can be divided into two parts, namely
the cost to obtain the discrete system (2.6) and the cost to compute an approxi-
mate solution to this discrete system. The price for these two parts is often called
informational and combinatorial cost, respectively.
Note that due to the larger supports of the wavelets from coarser scales, the resulting
stiffness matrices AJ are rather densely populated. Here we have to distinguish two
cases, namely integral and differential operators. In the case of integral operators
AJ is dense and thus has O(dim(VFE)2) entries. In the case of differential operators
AJ has O (dim(VFE) (log (dim(VFE)))

n
) entries and is therefore much sparser than

in the case of integral operators.
Let us take a closer look at the case of integral operators first. There are techniques
to estimate the size of the entries in the stiffness matrix a-priori and to avoid the
computation of entries below a prescribed threshold [13, 44]. See [28] for numerical
experiments regarding compression with respect to the single layer potential equa-
tion and approximation spaces built with the index sets I0

J . Here we refrain from
incorporating the effect of additional compression on the overall complexity as not
to mix the effects of the use of the approximation spaces V T

J and of compression.
Note moreover that additional compression provides us with purely asymptotic es-
timates only, whereas the choice of optimized approximation spaces pays already
for computationally relevant problem sizes especially in higher dimensions.
For differential operators it is important to note that one needs not to assemble the
stiffness matrix, because all that is required in an iterative scheme is the application
of the preconditioned stiffness matrix to a vector. Exploiting the pyramid structure
of the multiscale transformations and the tensor-product structure of our wavelet
basis functions, the matrix-vector product can be performed with O(dim(VFE))
operations for example for differential operators with constant or separable coeffi-
cients. The same holds true in the case of general coefficient functions on uniform
grids, i.e. for the approximation space V −∞

J . Note however that the implemen-
tation of the matrix-vector product with linear complexity is a very involved and
delicate task.
In the following we assume that the matrix-vector product can be performed with
O(dim(VFE)) operations. We furthermore assume that arbitrary continuous linear
information [49, 51] is permissible, i.e. that the stiffness matrix as well as the load
vector have been computed exactly (or at least with sufficient accuracy). Once the
stiffness matrix and the load vector have been computed, we are left with the issue
of proposing an algorithm for the approximate solution of the discrete problem.
We discuss an algorithm whose complexity is O(dim(VFE)) for differential operators
and O(dim(VFE)2) for integral operators. Concerning the computational cost we
mentioned already in Remark 3 that a simple diagonal scaling of the stiffness matrix
is enough to obtain optimal preconditioning, if the related norm equivalences hold.
This allows to construct solvers with a complexity of the order of the number of
entries in the stiffness matrix. To be a bit more precise, let us estimate the cost to
solve (4.1) up to discretization error ε, which is of order O(2−cJ ), with some c > 0
depending on the order of approximation of the wavelet basis. From (3.6) in sec-
tion 3 we have that the preconditioned (diagonally scaled) Galerkin stiffness matrix
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{2−s|l+l′|∞a(ψlk, ψl′k′)}l,l′,k,k′ has a condition number which is bounded indepen-
dent of the number of levels involved. Hence, the convergence rate ξ of a gradient
method is independent of the dimension of the finite element approximation space
VFE if the stiffness matrix is symmetric. Applied to the preconditioned system, the
initial error is reduced at least by the factor ξ in every iteration step and the number
of iterations necessary to obtain an approximation within the prescribed accuracy
is then | logξ(ε)| = cJ . Hence, the overall ε-complexity of computing a solution of

the variational problem (2.2) within discretization accuracy ε is O(J ·dim(VFE)2) if
the stiffness matrix is dense and O(J · dim(VFE)) if the matrix-vector product can
be performed with O(dim(VFE)) operations. Note that it is possible to get rid of
the J-term in the complexity estimate by embedding the solver in a nested iteration
scheme [36]. The idea is to compute a suitable start value by first applying some
iteration steps to the problem on a coarser level and to apply this procedure re-
cursively starting from the coarsest level. This makes the optimized spaces defined
in section 4 good candidates for the approximation space VFE provided that the
required regularity assumptions on the solution of the variational problem hold.
To obtain an approximation of the exact solution that has an error of O(ε) in the
energy-norm the number of levels J has to be chosen such that the approximation
error is smaller than O(ε). Combining the results about the approximation error

from Theorem 3 with the estimate of the dimension of the space V
(s−l)/t
J in sec-

tion 4.2 gives us the ε-complexities. Tables 1 and 2 summarize the above discussion.

There the complexity of solving the problem (2.2) in the space Ht,l
mix up to an error

of the order of ε is given for positive and for negative smoothness parameters s.

Table 1. Complexity of solving an Hs-elliptic variational problem
with a differential operator up to an error of O(ε) measured in the

Hs-norm under the constraint that the solution is in Ht,l
mix.

V
(s−l)/t
J V −∞

J

s > l O(ε
1

s−l−t ) O(ε
n

s−l−t )

s = l O

(
ε−

1
t

(
ln(ε−

1
t )
)n−1

)
O(ε−

n
t )

s < l O(ε
1

(s−l)/n−t ) O(ε
n

s−l−t )

Table 2. Complexity of solving an Hs-elliptic variational problem
with an integral operator up to an error of O(ε) measured in the

Hs-norm under the constraint that the solution is in Ht,l
mix.

V
(s−l)/t
J V −∞

J

s > l O(ε
2

s−l−t ) O(ε
2n

s−l−t )

s = l O

(
ε−

2
t

(
ln(ε−

1
t )
)2(n−1)

)
O(ε−

2n
t )

s < l O(ε2
1

(s−l)/n−t ) O(ε
2n

s−l−t )



26 M. GRIEBEL AND S. KNAPEK

Tables 1 and 2 show that for problems with solution u ∈ Ht,l
mix and optimized

approximation spaces, the asymptotic complexity is independent of the dimension
n if s − l > 0. For fixed dimension n and 1 − (s − l)/t < n, the complexity is in

favor of the approximation space V
(s−l)/t
J also for the case s− l < 0.

Note that the complexities for integral operators in Table 2 are not yet optimal,
as we made no use of the potential of further compression of the stiffness matrix
[11, 13, 15, 32, 33, 34, 35, 44, 48].

6. Examples

In this section we give some applications of the above ideas. We deal with the
Poisson problem with homogeneous Dirichlet boundary conditions and with the
screen problem. These are two prominent examples of the class of elliptic problems
that show the conceptual ideas and may therefore serve as a guideline for dealing
with other elliptic variational problems. First of all, we are looking for candidates
of univariate wavelet bases that fulfill our requirements. Note that because of our
tensor-product ansatz we can reduce the questions to the one-dimensional case.
Specifically, those basis functions whose support intersects with the boundary have
to fulfill special boundary conditions. To this end, we refer the interested reader
to the literature and state that these problems can be settled. See e.g. [7, 8] for
appropriate constructions of localized functions and their boundary adaptation.
Sobolev spaces of interest for the study of integral and differential equations on the
n-dimensional unit square In = [0, 1]n are defined by

Hs(In) = {f ∈ D′(In) : ∃g ∈ Hs(IRn) : g|In = f and ‖f‖Hs(In) = inf
f=g|In

‖g‖Hs(IRn)}

and

H̃s(In) = {f = g|In : g ∈ Hs(IRn) and supp g ⊂ In}

equipped with the norm

‖f‖H̃s(In) = ‖g‖Hs(IRn).

The interpolation spaces Hs(In) and H̃s(In) are dual to each other, i.e.

(Hs(In))′ = H̃−s(In), (H̃s(In))′ = H−s(In), −∞ < s <∞.

Furthermore

H̃s(In) = Hs
0(I

n) ≡ closHs(In)C
∞
0 (In) for s >

1

2
, s 6= k +

1

2
, k ∈ IN,

i.e. H̃s(In) is the appropriate space for problems with homogeneous essential

boundary conditions and H̃s(In) = Hs for −1/2 < s < 1/2. Which of these spaces

is appropriate depends on the application. For example H̃1(In) = H1
0(I

n) is the
appropriate space for the Poisson problem with homogeneous essential boundary
conditions. For the screen problem the space H̃1/2 is appropriate.
Sobolev spaces of functions in other spaces of interest, like those with dominating
mixed derivative on In are analogously defined. For example we have

Hs
mix(In) := Hs(I) ⊗ · · · ⊗ Hs(I) and H̃s

mix(In) := H̃s(I) ⊗ · · · ⊗ H̃s(I).

To be able to repeat the above reasoning function spaces fulfilling the required
boundary conditions and a Jackson and a Bernstein inequality have to be con-
structed. Then the argumentation of section 4 can be repeated with obvious mod-
ifications.
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Figure 8. Left: Semi-orthogonal linear spline prewavelet, nodal
basis function ψ1,0 corresponding to the coarsest level W1 (mid-
dle) and boundary wavelet for the left boundary for homogeneous
Dirichlet boundary conditions (right).

Here, we concentrate on semi-orthogonal linear spline wavelets (prewavelets) on
uniform dyadic grids as introduced in [7]. Figure 8 (left) shows a prewavelet in
the interior of the domain. Concerning our cases of interest, suitable boundary
constructions have been given for example in [2, 8, 27] and [28], respectively.

6.1. Example: The Poisson equation. We consider the problem

(6.1) ∆u = f

with homogeneous Dirichlet boundary conditions in its variational form on H1
0(I

n).
In this case we have s = 1. Estimates of the ε-complexities8 of solving (6.1) for
u ∈ H2

mix and continuous linear information have been given in [5]. The authors
constructed a finite element method using tensor-products of piecewise linear splines

and index sets that are asymptotically equal to I
2/5
J . They proposed the use of a

multilevel method to solve the resulting discrete problems. The resulting overall
complexity is then O(ε−1) because of the optimality of the proposed multilevel

method and dim(I
2/5
J ) = O(2J ).

Let us discuss our method in more detail. The basis function assigned to the coars-
est level is the usual nodal basis function, see Figure 8 (middle). The orthogonal
complement spaces Wj , j ≥ 2, are spanned by scaled and delated versions of the
functions shown in Figure 8 (left) for the interior grid points and Figure 8 (right)
for the left boundary and an analogous construction for the right boundary. The re-
sulting multilevel system incorporating homogeneous Dirichlet boundary conditions
is a semi-orthogonal Riesz basis in Hs

0(I) for 0 ≤ s < 3/2.

We assume that the solution of the variational problem is in the space Ht,l
mix for some

parameters t, l with t+ l ≥ 1. From Table 1 we take the following ε-complexities.

comp(ε) ≤





O(ε
1

1−l−t ) for l < 1,

O

(
ε−

1
t

(
ln(ε−

1
t )
)n−1

)
for l = 1,

O(ε
1

(1−l)/n−t ) for l > 1.

Specifically for the cases u ∈ H2 = H0,2
mix,H

2
mix = H2,0

mix and H1,1
mix we obtain the

complexities

comp(ε) ≤





O(ε−1) for u ∈ H2
mix,

O
(
ε−1

(
ln(ε−1)

)n−1
)

for u ∈ H1,1
mix,

O(ε−n) for u ∈ H2.

8Estimates of the ε-complexities of solving (6.1) with f ∈ Ht

mix
and standard information can

be found in [52].
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Figure 9. Basis functions ψ0,0, ψ0,1 and ψ1,0 corresponding to the
spaces W0 and W1 (left and middle), boundary wavelet for the left
boundary (right).

Hence we regain the complexity result O(ε−1) of [5] as a special case. It is interesting

to note that for u ∈ Ht,1
mix the resulting optimized approximation space is V 0

J . Hence

the complexity is O
(
ε−

1
t (ln(ε−

1
t ))n−1

)
.

6.2. Example: Single layer potential equation. The second example we con-
sider is the single layer potential equation

1

c

∫

In

g(y)

|x− y|
dy = f(x)

in its variational form on H̃−1/2(In). Here we have s = − 1
2 . The corresponding

bilinear form

a(u, v) = (
1

c

∫

In

g(y)

|x− y|
dy, v)H1/2×H̃−1/2 , u, v ∈ H̃−1/2(In),

is symmetric and H̃−1/2-elliptic. For problems in H̃− 1
2 the basis does not have to

fulfill special boundary conditions. The bases for W0 and W1 are shown in Figure 9
(left and middle). The orthogonal complement spaces Wj , j ≥ 2 are spanned by
scaled and delated versions of the functions shown in Figure 8 (left) for the interior
grid points and Figure 9 (right) for the left boundary and an analogous construction
for the right boundary. The resulting multilevel system is a semi-orthogonal Riesz
basis in Hs(I) for 0 ≤ s < 3/2, and for H̃s(I) for −3/2 < s < 0. Hence this example
is fully covered by the theory of sections 3 and 4. Especially the preconditioning
and approximation results and the complexity estimates of section 5 can be applied.
Regularity theory for the screen problem shows that if the right hand side vector f
is smooth enough, then the solution u can be decomposed into a regular part ureg

and a singular part due to corner and edge singularities, compare also [28]. Here
we restict ourselves to an approximation of the regular part of the solution. For a
treatment of the singular parts see [28, 40].

Hence we assume that the solution of the variational problem is in the space H̃t,l
mix

for some parameters t, l with t + l ≥ 1. From Table 2 we take the following ε-
complexities.

comp(ε) ≤





O(ε−
2

1/2+l+t ) for l < −1/2,

O

(
ε−

2
t

(
ln(ε−

1
t )
)2(n−1)

)
for l = −1/2,

O(ε−
2

(1/2+l)/n+t ) for l > −1/2.



OPTIMIZED GENERAL SPARSE GRID APPROXIMATION SPACES 29

Note that a further reduction of the complexity can be achieved by compression
strategies as described in [11, 13, 15, 32, 33, 34, 35, 44, 48].

7. Further aspects

We now give some hints on extensions to problems with large ellipticity constants,
non-stable splittings and other expansion systems than wavelet-type multilevel
bases. Specifically we derive modifications of the optimized spaces by incorporating
additional information from the operators considered. This leads to the definition
of anisotropic sparse grids [42]. Furthermore we discuss the potential possibilities of
incorporating a-priori known information about singularities of the solution into the
construction process of optimized grids. Finally, we show how non-stable multilevel
splittings which only allow for an upper estimate instead of a full norm equivalence
still may be used to construct optimal sparse grid approximation spaces.

7.1. Anisotropic sparse grids. For problems with large ellipticity constants, the
constants in the estimates of the approximation error do become large and badly
influence the behavior of the approximation in actual implementations as the con-
stants may dominate the error approximation for practical problem sizes. In these
cases, the asymptotic estimates do not provide full insight into the behavior of the
approximants. It is advisable to spare the detour via the Hs-norm and to make use
of norm estimates applied directly to a(., .). Then a further adaptation of the ap-
proximation space to the operator at hand can be obtained. This is of importance
for preconditioning purposes also.
As a simple example consider the anisotropic elliptic problem

−
n∑

i=1

di
∂2

∂2xi
u = f, di > 0,(7.1)

in its variational form on H1(Tn). Tensor-product approximation spaces are well
suited for such problems as they allow easily for anisotropic refinement. Let a(., .)
denote the corresponding H1-elliptic variational form. The problem with the nu-
merical solution of (7.1) is that the condition number of the Galerkin stiffness
matrix on a isotropic full grid is linearly dependent on max1≤i≤n(d)/min1≤i≤n(d).
The same is true for the coefficient in the asymptotic estimate of the approximation
error. Hence, for fixed refinement level J and varying coefficients d, the convergence
rate of iterative methods as well as the error of approximation depend on d. For
problems with large anisotropies this leads to a slow down of convergence and a
deterioration of approximation. It is well known that some kind of semi-coarsening
in the subspace splittings or in the construction of the approximation spaces can
remedy these problems. These ideas can also be used for the approximation spaces
defined here. It amounts to the use of a norm estimate on a(., .)

1
2 instead of ‖.‖H1 .

A consideration analogously to that in the Proof of Theorem 1 shows (use again
Propositions 1 and 2)

a(u, u) ≈
∑

j

(
n∑

i=1

di 22ji

)
‖wj‖

2
L2 ≈

∑

j

max
1≤i≤n

(di2
2ji)‖wj‖

2
L2(7.2)
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for u ∈ H1, u =
∑

j wj.
9 Compared to the norm equivalence (3.2) (set s = 1) the

weight 22|j|∞ is substituted by the weight max1≤i≤n(di2
2ji) including information

from the anisotropy. Let u ∈ Ht,l
mix, r > t+ l ≥ 1, 0 ≤ t < r, IJ a subset of I−∞

J and
VFE the corresponding approximation space. Then (7.2) together with (3.5) shows

(7.3) inf
v∈VF E

a(u− v, u− v) ≤ C · max
j6∈IJ

(
max

1≤i≤n
(di2

2ji) · 2−2l|j|∞−2t|j|1

)
‖u‖2

Ht,l
mix

.

Without loss of generality we may assume that

d1 = argmax1≤i≤n{di} and dn = argmin1≤i≤n{di}.

Fixing (J, 1, · · · , 1) to be the index with maximal |.|∞-norm to be included into the
index sets leads to c = 1

2t ln2(d12
2J) − n+ 1 − 1

t J and the index sets

I l,t,d
J := {j : −|j|1 −

l

t
|j|∞ +

1

2t
ln2( max

1≤i≤n
(
di

d1
22(ji−2J))) ≥ −(n+ J − 1) −

l

t
J}

where the index d indicates the dependence on the parameters di, 1 ≤ i ≤ n. Fixing
(1, · · · , 1, J) to be the index with maximal n-th component to be included into the
index sets leads to c = 1

2t ln2(dn22J) − n+ 1 − 1
t J and the index sets

Î l,t,d
J := {j : −|j|1 −

l

t
|j|∞ +

1

2t
ln2( max

1≤i≤n
(
di

dn
22(ji−2J))) ≥ −(n+ J − 1) −

l

t
J.

Then the corresponding approximation spaces keep the order of approximation of
the full grid approximation space. Estimates on the dimension and the order of
approximation can be derived in the spirit of the preceding sections. We obtain

the same orders of approximation as for the approximation spaces V
(1−l)/t
J from

the preceding section but with different coefficients. Note that in the case of the

index set I l,t,d
J the coefficient is dependent on d1 = argmax1≤i≤n{di} and the

number of unknowns is further reduced, as I l,t,d
J ⊂ I

(1−l)/t
J . For the case Î l,t,d

J

the number of unknowns is increased compared to I
(1−l)/t
J , but the coefficient is

only depending on dn = argmin1≤i≤n{di}. The norm equivalence (7.2) leads also
to robust preconditioners, compare [27]. In the case of extreme anisotropy, the
resulting grid consists of extremely stretched grids in the direction of the anisotropy,
corresponding to semicoarsening. Figures 10 and 11 show some examples in two
dimensions.
At this point note that there is a close relation to the so-called weighted spaces
from [45, 46] where weights are introduced into Sobolev norms. There, the curse
of dimensionality does no longer show up if certain conditions on the weights are
fulfilled. Thus strong tractability [49] of integration can be achieved. These weights
resemble to some extent our diffusion coefficients di.

7.2. Adaptive sparse grids. So far, our theory involves an a-priori approach, i.e.
we beforehand assume the solution to be from a specific function class and we then
determine the best approximation space with respect to cost and accuracy. For
practical purposes however such an a-priori approach is not always feasible. This
may be due to the fact that the class of data and thus the regularity of the solution of
the problem is not known beforehand or due to the fact that the smoothness needed
is just not present. Then, our previous algorithms need to be complemented with

9See [27] for a proof in the case of prewavelets. There this norm estimate was used to obtain
robust preconditioners for anisotropic problems.
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Figure 10. Index sets I2,0,d
10 for d1/d2 = 1, d1/d2 = 10 and

d1/d2 = 1000 from left to right, two dimensional case.
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Figure 11. Index sets Î2,0,d
10 for d1/d2 = 1, d1/d2 = 10 and

d1/d2 = 1000 from left to right, two dimensional case.

some special treatment of singular parts of the solution of the variational problem.
The idea is that a few wavelets of high level clustered around the singularity will
suffice, while the optimized grids of the above sections are enough to treat the
smooth parts of the solution. To this end, it is helpful to refine the selection
criteria to the atomic level, i.e., to allow for single basis functions/grid points to be
selected. From (4.25) together with (4.23) we obtain the profit/cost quotient of a
single basis function

(7.4) γjl := 22s|j|∞〈u, ψ̃jl〉
2.

Suppose for example the leading singularity component χ of the solution u is known.
Decomposing χ with respect to the given basis, we can use the weights |〈χ, ψ̃jl〉| in

(7.4) instead of the weights |〈u, ψ̃jl〉|. This leads to the definition of grids adapted
to χ by choosing those indices that have

(7.5) γjl := 22s|j|∞〈χ, ψ̃jl〉
2

bigger than some threshold. This a-priori adaptivity leads to a relatively high
degree of adaptivity without complicated mesh refinement strategies especially for
problems in higher dimensions. Nevertheless, for singularly perturbed problems
with large ellipticity constants and problems that exhibit boundary singularities
where χ is not known beforehand, a-posteriori adaptivity is still necessary. Locally
adaptive sparse grid methods can be found in [3, 4, 6, 17, 20]. We further refer to
[10, 14] for results on nonlinear approximation and adaptivity and to [38] for results
on nonlinear approximation with sparse grids.

7.3. Other multilevel systems. The constructions of the approximation spaces
presented in this paper are not restricted to biorthogonal wavelets as basis functions,
but can be carried over to other multiscale basis functions as well. Specifically, the
above construction of optimized grids is not limited to stable multilevel splittings,
that is to multilevel finite element spaces that possess norm equivalences like those
described in section 4. Instead only an upper estimate is needed. Consider for



32 M. GRIEBEL AND S. KNAPEK

example the case of an H1-elliptic operator and multiscale basis functions of tensor-
products of piecewise linear splines φjk. Let Wj = span{φjk,k ∈ τj} denote the
hierarchical difference space between two successive spaces spanned by piecewise n-
linear functions. It is easy to see that in this case there holds a Bernstein inequality

(7.6) ‖wj‖H1 ≤ C2|j|∞‖wj‖L2 ∀wj ∈Wj, j ∈ ZZn,

and there holds an estimate

(7.7) ‖wj‖L2 ≤ C2−2|j|1 |u|H2
mix

∀u =
∑

j

wj ∈ H2
mix,

see [5]. Inequality (7.7) can again be infered from decay properties of the coefficients
in the representation of u in the bases of piecewise linear splines. Then, applying
the triangle inequality together with (7.6) and (7.7) yields for example for u ∈ H2

mix

inf
v∈V T

J

‖u− v‖H1 ≤ ‖
∑

j6∈IT
J

wj‖H1 ≤
∑

j6∈IT
J

‖wj‖H1

(7.6),(7.7)

≤ C
∑

j6∈IT
J

2|j|∞−2|j|1‖u‖H2
mix

.

Summing up gives after a longer calculation for T < 1/2 a generalized Jackson
inequality

(7.8) inf
v∈V T

J

‖u− v‖H1 ≤ C2−J‖u‖H2
mix

,

where C = C(T ). Hence the optimal order of approximation is kept as long as
T < 1/2. That is, we obtain a similar result for a multilevel approximation space
without the direct use of norm equivalences. This can also be used as the starting
point for enlarging the range of the validity of the estimates presented in this paper.
Especially the upper range of the parameters t and l which were restricted from
above by t + l < r and t < r could be enlarged to the whole range t + l ≤ m and
t ≤ m, see (2.17). Apart from eventual logarithmic terms in the extremal cases,
the results remain the same.

8. Concluding remarks

In this paper we constructed approximation spaces for elliptic variational problems

with solution in Ht,l
mix, r > t + l > s > −r̃, l ≥ 0, 0 ≤ t < r. We gave complexity

estimates for the case of continuous linear information. We showed these results
in a constructive manner by proposing a Galerkin method together with optimal
preconditioning. Specifically, we identified smoothness assumptions that make it
possible to choose the approximation space in such a way that the number of degrees
of freedom is O(2J ) compared to O(2nJ) for the full grid space, while keeping the
optimal order of approximation.
A disadvantage of the approaches described in this paper is that generalizations
to more general geometries are not easy to handle. Research in this direction is
mainly based either on domain transformation techniques or on some kind of domain
decomposition approach where the computational domain is decomposed locally
and transformed to unit cubes. On these local domains the wavelet techniques can
be applied. Note however that [0, 1]n is a natural computational domain for many
higher-dimensional physical applications.
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