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The Concertina Pattern

–

From Micromagnetics to Domain

Theory

Felix Otto, Jutta Steiner∗

This is a continuation of a series of papers on the concertina pattern.
The concertina pattern is a ubiquitous metastable, nearly periodic magnetization
pattern in elongated thin film elements. In previous papers, a reduced variational
model for this pattern was rigorously derived from 3-d micromagnetics. Numerical
simulations of the reduced model reproduce the concertina pattern and show that
its optimal period w is an increasing function of the applied external field hext. The
latter is an explanation of the experimentally observed coarsening. Domain theory,
which can be heuristically derived from the reduced model, predicts and quantifies
this dependence of w on hext. In this paper, we rigorously extract these heuristic
observations of domain theory directly from the reduced model. The main ingredient
of the analysis is a new type of estimate on solutions of a perturbed Burgers equation.

Mathematics Subject Classification: 78A99, 49K20, 74G60

1 Introduction

The concertina pattern is a domain pattern frequently appearing in ferromagnetic
thin-film elements of low crystalline anisotropy (like Permalloy) with an elongated
cross-section. The pattern-forming quantity is the magnetization. The concertina
pattern consists of an almost periodic array of folds separated by low-angle Néel
walls. It is experimentally generated as follows: With the help of a strong homoge-
neous external field Hext, the magnetization is saturated along the long axis, then
the external field is slowly reduced and eventually reversed. At some critical strength
of the external field, the uniform magnetization buckles into the concertina pattern.

∗Institute for Applied Mathematics, University of Bonn, Germany
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Figure 1 shows such a pattern seen from above, observed in an elongated Permal-
loy thin-film. The magnetization is in-plane and constant in the direction of the
film thickness. The grey scales in the experimental picture allow to reconstruct the
magnetization angle as shown in the schematical picture by the small arrows.

}
w

Hext

Figure 1: Experimentally observed concertina pattern

As the strength of the reversed external field is slowly increased after the concertina
pattern has already formed, coarsening events are observed: A fold collapses, in-
creasing the average period of the concertina pattern. Several generations of these
coarsening events by which the average period increases can be observed before the
pattern disappears; cf. Figure 2, which shows the same sample as Figure 1 after two
coarsening events.

Figure 2: Coarsened concertina pattern

In this paper, we study the formation and coarsening of the concertina domain-wall
pattern. We investigate the dependence of the optimal period w of the pattern and
of the average inclination of the magnetization on the external field and prove in
particular that the optimal period increases if the strength of the reversed external
field is increased. This a first step towards the understanding of the coarsening
phenomena.

1.1 Micromagnetic energy

The experiments described above, which lead to the formation of the concertina pat-
tern and the subsequent coarsening, are quasi-static processes. The states observed
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in a quasi-static experiment are related to stationary points of some suitable energy.
The analysis of the concertina pattern, which was started in [CÁO06a] and was pur-
sued in [CÁOS07], is based on the 3-d micromagnetic energy which we introduce now.
For a sample Ω ⊂ R

3 and a magnetization m : Ω → R
3 the energy is given by

E(m) = d2

∫

Ω

|∇m|2 dx +

∫

R3

|∇um|2 dx − 2

∫

Ω

Hext · m dx. (1.1)

The magnetization m is constrained to |m|2 = 1. We note that the energy is non-
dimensional except for length and comment on the energy terms:

• The first contribution is the exchange energy. The exchange length d, a material
parameter, is of the order of a few nanometers (for Permalloy).

• By the static Maxwell equations in a medium, the stray field −∇um is deter-
mined by:

∫

R3

∇um · ∇ϕ =

∫

Ω

m · ∇ϕ for all test functions ϕ.

It is thus generated by two types of “magnetic charges”,

volume charges : −∇ · m in Ω, and
surface charges : ν · m on ∂Ω,

(1.2)

where ν is the outward normal. The stray-field energy can equivalently be
written as ∫

R3

|∇um|2 dx =

∫

R3

||∇|−1∇ · m|2 dx,

where |∇|−1 denotes the pseudo-differential operator with symbol |k|−1.

• If a magnetic field Hext : R
3 → R

3 is applied, there is a contribution due to the
Zeeman effect.

1.2 Previous results

In [CÁO06a] an idealized sample geometry of width ` and of thickness t with t � `
was considered. This sample geometry is idealized in the sense that instead of a finite
extent in x1-direction, we impose an (artificial) periodicity L, i.e.

Ω = R × (0, `) × (0, t) L-periodic w.r.t. x1.

The idea is that L is chosen so large that it does not interfere with the intrinsic period
of the pattern. This setting has the advantage that m ≡ (1, 0, 0) is a stationary point
of E for all values of the external field Hext = (−hext, 0, 0).

The experimental observations suggest that a bifurcation at a critical value hext = hcrit

of the external field Hext = (−hext, 0, 0) is at the origin of the concertina pattern.
Hence in [CÁO06a] a linear stability analysis of the saturated state m ≡ (1, 0, 0) was
carried out. Since the Hessian of E is not explicitly diagonalizable, the analysis is not

3



obvious and several Ansätze for unstable modes, i.e. infinitesimal perturbations δm,
have been proposed in the physics literature. In [CÁO06a], it was proven that there
are exactly four qualitatively different regimes depending on the non-dimensional
parameters t

d
and `

d
. In the regime d2

`
� t �

√
d` the unstable mode is in-plane

and does not depend on the thickness direction, i.e. x3, and displays an oscillatory
behavior named “oscillatory buckling”:

δm2 = cos(2π x1

w
) sin(π x2

l
).

Obviously, this regime is the potentially relevant regime for the concertina pattern.
The optimal period w = w∗ of the oscillation is determined by the balance of ex-
change and stray-field energy and asymptotically behaves as

w∗ ≈
(
32 π `2d2

t

) 1

3

, (1.3)

cf. [CÁO06b]. The experimentally observed period of the concertina pattern agrees
with this theoretically predicted period of the unstable mode up to a factor of about
2 over a wide range of sample sizes t and `. However, the experimentally observed
period is systematically larger than the theoretically predicted one. It is natural to
conjecture that this is due to coarsening: The experiments discern the low-amplitude
concertina pattern only after the external field has been increased beyond its critical
value - and thus after a certain number of coarsening events has occurred.

In [CÁOS07] the type of bifurcation in the oscillatory buckling regime was inves-
tigated. The goal was to find local minimizers near m ≡ (1, 0, 0) for hext > hcrit

which are of concertina type. This required to take a parameter limit and to zoom
in near m ≡ (1, 0, 0) simultaneously. We used Γ-convergence to carry out this double
limit. We performed an anisotropic rescaling of space variables and a rescaling of
magnetization, field and energy:

• x1 and in particular L and w∗ are measured in units of
(

`2d2

t

) 1

3

, cf. (1.3),

• x2 is measured in units of the width `,

• x3 is measured in units of the thickness t,

• m2 and m3 are measured in units of
(

d2

`t

)1/3

,

• hext is measured in units of
(

d t
`2

)2/3
, and

• E is measured in units of
(

d8t2

`

)1/3

.

In the limit d2

`
� t �

√
d`, the magnetization indeed becomes in-plane and x3-

independent, i.e.

m3 = 0 and m = m(x1, x2).
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For rescaled L of order 1, i.e. L ∼ 1, the Γ-limit w.r.t. the L2-topology is given by
minimizing

E0(m2) =

∫ L

0

∫ 1

0

(∂1m2)
2 dx2 dx1

+ 1
2

∫ L

0

∫ 1

0

||∂1|−1/2(−∂1(
1
2
m2

2) + ∂2m2)|2 dx2 dx1

− hext

∫ L

0

∫ 1

0

m2
2 dx2 dx1 (1.4)

among all m2(x1, x2) with

m2(x1, x2) = 0 for x2 ∈ {0, 1},
m2(x1 + L, x2) = m2(x1, x2),∫ L

0
m2(x1, x2) dx1 = 0,

(1.5)

where |∂1|−1/2 denotes the pseudo-differential operator with symbol |k1|−1/2, [CÁOS07,
Theorem 3].

Clearly, (1.4) has much reduced complexity compared to the original (1.1): The
reduced functional just contains a single non-dimensional parameter hext, the con-
figuration space consists of functions of two variables, and the non-locality is just a
non-locality in the x1-variable.

Notice that the appearance of Burgers’ operator −∂1

(
1
2
m2

2

)
+ ∂2m2 (if we think of x2

as the time variable and −x1 as the space variable) is not surprising: Because of

m1 =
√

1 − m2
2 − m2

3 ≈ 1 − 1

2
m2

2 for |m3| � |m2| � 1,

the volume charge density (1.2) turns into

σ := −∇ · m ≈ −( −∂1

(
1
2
m2

2

)
+ ∂2m2). (1.6)

Notice that m2 is rescaled in such a way that (1.6) is preserved. As in the 3-d model,
the (volume) charge density σ is penalized in a non-local way by (1.4).

On the level of the reduced energy (1.4), the following two statements were proven in
[CÁOS07]:

• On the one hand, the bifurcation is subcritical. A particular implication of
subcriticality is that at slightly supercritical fields, there are no local minimizers
close to m ≡ (1, 0, 0).

• On the other hand, the reduced energy E0 is coercive for all values of hext (at
fixed L). Thus given L there always exists an absolute minimizer of E0, also
for supercritical fields. Hence by the properties of Γ-convergence, there exists a
local minimizer of the 3-d energy E near m = (1, 0, 0).
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Hence there are non-trivial local minimizers, but in view of the subcritical bifurcation,
it is not clear whether these minimizers inherit properties of the unstable mode, like
for instance its period.

The numerical simulations presented in [CÁOS07], where the magnetization was re-
stricted to be w∗-periodic, i.e. L = w∗, show:

• Although the bifurcation is subcritical, the bifurcating branch has a turning
point, see Figure 3. Beyond the turning point, the configurations along the
branch are stable, at least under w∗-periodic perturbations.

• As the field hext increases, the w∗-periodic configurations along the branch de-
velop the concertina domain pattern with the (almost) piecewise constant mag-
netization in the triangular and quadrangular domains which are separated by
thin transition layers, cf. Figure 3.

external field

average magnetization

Figure 3: Bifurcation diagram and corresponding magnetization patterns

Moreover, the numerical simulations showed that the minimizers are indeed forced by
the (reduced) stray-field energy to be close to weak solutions to the Burgers equation,
i.e.

−∂1(
1
2
m2

2) + ∂2m2 = 0. (1.7)

The shocks (in the language of the theory of conservation laws) of (1.7) correspond
of the (mesoscopically) sharp walls of the concertina pattern.

In order to get a better understanding of the experimentally observed coarsening
and to determine the dependence of the optimal period w of the concertina on the
external field hext, let us now present some new numerical results based on the finite
difference discretization of the energy introduced in [CÁOS07]. For details we refer
to Appendix A. The numerical simulations showed that for given external field hext,
there is an energetically optimal period of the concertina pattern, which increases
with increasing field, see Figure 4. This is a first explanation why the experimentally
observed period increases with increasing hext.
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However, the experimentally observed period is rather expected to be the largest
period that is still stable under long-wave length modulation of the pattern. This
instability under long-wave length modulations can be related to the concavity of the
energy of the concertina pattern as a function of the imposed period w. In a simplified
context, this instability has been analyzed in [Sei08].
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Figure 4: Optimal period w(hext) of the concertina pattern

1.3 Domain theory

To gain more insight into the properties of global minimizers of the reduced model
(1.4), we apply domain theory. On the level of domain theory, which is a sharp-
interface model, admissible magnetizations are given by weak solutions to the Burgers
equation (1.7). In view of the boundary conditions (1.5), the method of characteristics
shows that non-trivial weak solutions of (1.7) cannot be continuous. Typically, they
will have line discontinuities, i.e. a one-dimensional jump set J . The energy which
discriminates between these solutions is given by an appropriate line energy density
e integrated over the jump set J , augmented by Zeeman energy:

Edomain(m2) =

∫

J

e
( [m2]

2

)
dH0 dx2 − hext

∫
m2

2 dx1 dx2.

Not surprisingly, the specific line energy e is a function of the jump [m2] of m2 across J .
Due to the “shear invariance”, cf. (2.8), of (1.4), the specific line – or wall – energy
density e can be derived by restricting (1.4) to 1-d configurations with prescribed
boundary data ±m0

2, i.e.

ENéel(m2) =

∫
(∂1m2)

2 dx1 + 1
8

∫
||∂1|1/2m2

2|2 dx1. (1.8)
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The optimal transition layers are low-angle Néel walls whose line energy density is
given by

e
( [m2]

2

)
= e(m0

2) =
π

8
(m0

2)
4 ln−1 wtail

wcore

, (1.9)

where wtail and wcore are the two characteristic length scales of the Néel wall, namely
the tail and core width, see [Mel03] and [DKMO05, Section 6]. For the scaling of
these two parameters in case of the concertina pattern, see below.

We use an Ansatz which mimics the concertina pattern with its quadrangular and
triangular domains and which is determined by just two parameters, namely the
period w and the inclination m2 = ±m0

2 in the quadrangular domains (m2 = 0 in the
triangular domains), cf. Figure 5. Indeed, the angles in the pattern are fixed by the

Jump set J

ν

−m0
2 m0

2m0
2

0

0 }
w

m0

2}
1 − w

m0

2

}
w

Figure 5: Domain theory: Ansatz function

constraint that m2 is a weak solution to Burgers’ equation: If ν is the normal of one
of the diagonal jumps, then for a weak solution the jump of the normal component
of the magnetization has to vanish:

0 = [ν · (−1
2
m2

2,m2)] = ν · (−1
2
(m0

2)
2,m0

2).

We note that it is always necessary to impose 2 m0
2 > w to avoid a degenerated

pattern.

We claim that with our Ansatz, the energy per length in x1 becomes a function of
only two parameters, namely m0

2 and w. For that purpose, we first turn to the two
parameters wtail and wcore in (1.9). The tails of the Néel wall spread as much as
possible; in case of the concertina pattern, they are only limited by the neighboring
walls – thus wtail ∼ w. A more careful inspection of (1.8) shows that the core width
increases with increasing jump size, more precisely wcore ∼ 1

(m0

2
)2

, see [Ste06]. Hence

(1.9) turns into

e(m0
2) =

π

8
(m0

2)
4 ln−1 w(m0

2)
2. (1.10)

Notice that one period of the pattern in Figure 5 contains
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• two vertical walls of height 1 − w
m0

2

and of jump size 2 m0
2, leading to an energy

contribution of 2 (1 − w
m0

2

) e(m0
2),

• four diagonal walls of projected height w
m0

2

and of jump size m0
2, leading to an

energy contribution of 4 w
m0

2

e(
m0

2

2
),

• two quadrangular domains of total area w − w2

m0

2

, leading to a Zeeman energy of

−hext(m
0
2)

2 (w − w2

m0

2

).

Hence, the total energy per unit length in x1 is given by

Edomain(m0
2, w) =

1

w

(
2
(
1 − w

m0

2

)
e(m0

2) + 4
w

m0
2

e
(

m0

2

2

)
− hext(m

0
2)

2
(
w − w2

m0

2

))
.

(1.11)

In Appendix B we argue that for hext � 1

a) the minimal energy per length in x1-direction scales as −h3
ext ln2 hext,

b) the optimal inclination of the magnetization scales as m0
2 ∼ hext ln hext, and

c) the optimal period scales as w ∼ hext ln hext.

We point out that c) is the domain theoretic explanation why a larger period is pre-
ferred for a stronger external field, as observed in the experiments and the numerical
simulations.

Until now there is no rigorous derivation of domain theory. Instead in this paper, we
rigorously prove the above predictions by domain theory starting from the reduced
energy E0 and show in addition that global minimizers are close to weak solutions of
Burgers’ equation.

1.4 Main results

Theorem 1 below addresses: a) the scaling behavior of the minimal energy, b) the
scaling behavior of the average inclination of minimizing magnetizations, and c) the
scaling behavior of the period of global minimizers as predicted by domain theory –
all statements including the logarithm.

Theorem 1. Let hext � 1 and L ≥ hext ln hext. Then for E0 and m2 as in (1.5):

a) min
m2

L−1E0 ∼ −h3
ext ln2 hext.

For any m2 with L−1E0(m2) ∼ minm2
L−1E0 we have

b) A2 := L−1

∫ L

0

∫ 1

0

m2
2 dx2 dx1 ∼ h2

ext ln2 hext,
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c1) L−1

∫ L

0

∫ 1

0

(m2(x1 + w, x2) − m2(x1, x2))
2 dx2 dx1 .

(
w

hext ln hext

)α

A2,

for α ∈ [0, 2
5
), and

c2) L−1

∫ L

0

∫ 1

0

|(m2)w(x1, x2)| dx2 dx1 .
(

hext ln hext

w

)1/2
A.

Here (m2)w denotes the mean of m2 over cells of size w, i.e. for any L-periodic
f(x1, x2)

fw(x1, x2) := w−1

∫ w
2

−w
2

f(x1 + x′
1, x2) dx′

1. (1.12)

Remark 1. Instead of a separate definition for the asymptotic relations ∼, . and so
forth, we explain their meaning in the context of Theorem 1:

There exist universal constants 1 ≤ C, Ca, Cb1, Cb2 < +∞ such that for all hext ≥ C
all L ≥ hext ln hext,

a) −Ca h3
ext ln2 hext ≤ min

m2

L−1E0 ≤ − 1

Ca

h3
ext ln2 hext.

For any m2 with L−1E0(m2) ≤ 1
Cb1

minm2
L−1E0 we have

b)
1

Cb2

h2
ext ln2 hext ≤ A2 := L−1

∫ L

0

∫ 1

0

m2
2 dx2 dx1 ≤ Cb2 h2

ext ln2 hext.

For any α ∈ [0, 2
5
) there exists Cα > 0 such that for all hext ≥ C and all L ≥

hext ln hext,

c1) L−1

∫ L

0

∫ 1

0

(m2(x1 + w, x2) − m2(x1, x2))
2 dx2 dx1 ≤ Cα

(
w

hext ln hext

)α

A2.

There exists Cc2 > 0 such that for all hext ≥ C and for all L ≥ hext ln hext,

c2) L−1

∫ L

0

∫ 1

0

|(m2)w(x1, x2)| dx2 dx1 ≤ Cc2

(
hext ln hext

w

)1/2
A.

The upper bound on the minimal energy for large external fields hext in a) is proven
on the basis of the Ansätze from domain theory, where the discontinuities are replaced
by the optimal 1-d transitions layers (low-angle Néel walls). The proof of the lower
bound and b) and c1) is based on a non-linear interpolation estimate, cf. Lemma 4.
As opposed to the result in [CÁOS07, Theorem 4], the new interpolation estimate
provides also L-independent coercivity of the reduced energy E0. The proof of c2) is
based on standard convolution estimates combined with the coercivity of the energy,
treated in Lemma 5, which is derived from Lemma 4.

In Theorem 2 we use again Lemma 4 to prove that global minimizers are close to
weak solutions of Burgers’ equation for hext � 1.
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Theorem 2. Let hext � 1 and L ∼ hext ln hext. Then for E0 and any m2 as in (1.5)
with L−1E0(m2) ∼ −h3

ext ln2 hext there exists m∗
2 with

−∂1
1
2
(m∗

2)
2 + ∂2m

∗
2 = 0 distributionally

and

L−1

∫ L

0

∫ 1

0

(m2 − m∗
2)

2 dx2 dx1 � L−1

∫ L

0

∫ 1

0

m2
2 dx2 dx1.

Although the lower and the upper bound on the energy in Theorem 1 agree in terms of
scaling with the simple Ansatz from domain theory (see above), it cannot be excluded
that additional substructures in the concertina Ansatz, such as branched structures
sometimes observed in the experiments, further reduce the energy.

To our knowledge, Theorem 2 is the first example of a rigorous connection between
minimizers of the 3-d micromagnetic energy functional and solutions to a (linearized)
eikonal equation – Burgers’ equation – via the Γ-convergence in [CÁOS07, Theorem
3] and Theorem 2 in this paper.

Rescaling. In view of Theorem 1, it is convenient to rescale length, magnetization
and energy according to

x1 = hext (ln hext) x̂1,

x2 = x̂2,

m2 = hext (ln hext) m̂2,

L−1E0 = h3
ext (ln2 hext) L̂−1Ê.

In these new variables we obtain

L̂−1Ê(m̂2) = h−3
ext (ln−2 hext) L̂−1

∫ bL

0

∫ 1

0

(∂̂1m̂2)
2 dx̂2 dx̂1

+ (ln hext)
1
2
L̂−1

∫ bL

0

∫ 1

0

||∂̂1|−1/2(−∂̂1(
1
2
m̂2

2) + ∂2m̂2)|2 dx̂2 dx̂1

− L̂−1

∫ bL

0

∫ 1

0

m̂2
2 dx̂2 dx̂1.

It is convenient to introduce
ε := h−3

ext ln−2 hext

such that for hext � 1

ln 1
ε

= 3 ln hext + 2 ln ln hext ≈ 3 ln hext.

Hence, to leading order

Ê(m̂2) = ε

∫ bL

0

∫ 1

0

(∂̂1m̂2)
2 dx̂2 dx̂1

+ (ln 1
ε
) 1

6

∫ bL

0

∫ 1

0

||∂̂1|−1/2(−∂̂1(
1
2
m̂2

2) + ∂2m̂2)|2 dx̂2 dx̂1

−
∫ bL

0

∫ 1

0

m̂2
2 dx̂2 dx̂1.
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With this rescaling, Theorem 1 assumes the form:

Theorem 3. Let 0 < ε � 1 and L̂ ≥ 1. Then

a) min
bm2

L̂−1Ê ∼ −1.

For any m̂2 with L̂−1Ê(m̂2) ∼ −1 we have

b) L̂−1

∫ bL

0

∫ 1

0

m̂2
2 dx̂2 dx̂1 ∼ 1,

c1) L̂−1

∫ bL

0

∫ 1

0

(m̂2(x̂1 + ŵ, x̂2) − m̂2(x̂1, x̂2))
2 dx̂2 dx̂1 . ŵα

for α ∈ [0, 2
5
), and

c2) L̂−1

∫ bL

0

∫ 1

0

|(m̂2) bw(x̂1, x̂2)| dx̂2 dx̂1 .
(

1
bw

)1/2
,

where (m̂2) bw is defined as in (1.12).

With the rescaling above, Theorem 2 assumes the form:

Theorem 4. Let 0 < ε � 1 and L̂ ∼ 1. Then for any m̂2 with L̂−1Ê(m̂2) ∼ −1
there exists m̂∗

2 with

−∂̂1
1
2
(m̂∗

2)
2 + ∂̂2m̂

∗
2 = 0 distributionally

and

L̂−1

∫ bL

0

∫ 1

0

(m̂2 − m̂∗
2)

2 dx̂2 dx̂1 � 1.

2 Proofs

For notational convenience, we drop the hats ·̂. In the following we will write u instead
of m2, x instead of x1, and t instead of x2.

2.1 Upper bound

Proposition 1. For any 0 < ε � 1 and any L ≥ 1

min
u

L−1E . −1. (2.1)

Proof of Proposition 1. Let us explain the main features of our construction.
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Symmetry. Our Ansatz will have the following symmetry properties, cf. Figure 6:

• It will be periodic in x with period w ∼ 1 , i.e.

u(x + w, t) = u(x, t).

The parameter w ∼ 1 will be chosen later such that L is an integer multiple
of w. (By w ∼ 1 we mean that w ∈ ( 1

C
, C] for some universal constant

1 < C < ∞.)

• It will be odd w.r.t. reflection at x = 0 (one of the vertical walls), i.e.

u(−x, t) = −u(x, t).

• It will be even w.r.t. rotation in (w
4
, 1

2
) (the center of mass of one of the quad-

rangular domains), i.e.

u(w
4

+ x, 1
2

+ t) = u(w
4
− x, 1

2
− t).

Hence, u will be determined by its values

u(x, t) on the fundamental domain (x, t) ∈ (0, w
2
) × (0, 1

2
).

Mesoscopic pattern. On a mesoscopic level, our u will be of the form

umeso(x, t) =

{
0 for t ≤ x

s
,

−2 s for t ≥ x
s
,

where the parameter s ∼ 1 will be chosen later. Notice that s > w
2

is necessary
to avoid a degenerated pattern. In favor of a clear presentation we only show the
construction for the case s ≥ w in detail. This will be enough to obtain the desired
upper bound on the minimal energy. We will comment on the differences for the case
w
2

< s < w at the end of the proof.

The mesoscopic Ansatz umeso satisfies

−∂x(
1
2
u2

meso) + ∂tumeso = 0

distributionally. Notice that umeso has the following discontinuity lines within (0, w
2
)×

(0, 1
2
):

• a jump between 2 s and −2 s across x = 0 for 0 ≤ t ≤ 1
2
,

• a jump between −2 s and 2 s across x = w
2

for t ≥ w
2 s

,

• a jump between −2 s and 0 across t = x
s

for 0 ≤ x ≤ w
2
.

The first two discontinuity lines carry a weight of 1
2
, since they also belong to the

neighboring cell, cf. Section 1.3.
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Néel walls. We must choose appropriate transition layers, i.e. walls, in order to
construct a microscopic u starting from umeso. The construction will additionally
depend on two parameters α and β, with ε � α � β � w, which will be chosen later
in function of ε. In fact, we distinguish 3 regions, cf. Figure 6:

• Bulk: Here we set u = umeso.

• Walls: Here we use a one-dimensional construction. Within the fundamental
domain (0, w

2
) × (0, 1

2
) the wall region is given by

{(x, t) | 0 ≤ x ≤ β, 2 β
s

≤ t ≤ 1
2
}

∪{(x, t) | w
2
− β ≤ x ≤ w

2
, w

2s
≤ t ≤ 1

2
}

∪{(x, t) | s t − β ≤ x ≤ s t + β, 2 β
s

≤ t ≤ w
2s

− β
s
}.

Notice that β ≤ w
4

is necessary.

• Corners: Here, we interpolate the x-dependent boundary data linearly in t.
Within the fundamental domain (0, w

2
)× (0, 1

2
) the corner region is described by

(
(0, 3 β) × (0, 2 β

s
)
)
∪
(
(w

2
− 2 β, w

2
) × ( w

2s
− β

s
, w

2 s
)
)
.

Notice that 3 β ≤ w
2

is necessary.

The function u will be constructed to be continuous across the regions. These regions
contribute differently to the three parts of the energy:

• Exchange energy: This local energy contribution behaves in an additive way;
only the walls and the corners contribute.

• Magnetostatic energy: Only walls and corners contribute to the charge density
σ, i.e. the support of the charge density is a subset of the wall and corner region.
Since the magnetostatic energy is non-local in the charge density σ, it behaves
in a non-additive way. However, if σ = σ1 + σ2 + σ3 is a decomposition, we
have an upper bound by the triangle inequality

∫ ∣∣|∂x|−1/2σ
∣∣2 dx

≤ 3

∫ ∣∣|∂x|−1/2σ1

∣∣2 dx + 3

∫ ∣∣|∂x|−1/2σ2

∣∣2 dx + 3

∫ ∣∣|∂x|−1/2σ3

∣∣2 dx, (2.2)

where we have to ascertain
∫ w

2

−w
2

σ1 dx =
∫ w

2

−w
2

σ2 dx =
∫ w

2

−w
2

σ3 dx = 0, so that the

r.h.s. is finite. Since modulo w-periodicity in x, there are at most 3 walls or
corners at a given t-value, (2.2) suffices.

• Zeeman energy: Here, we seek a lower bound for
∫∫

u2 dt dx. The main contri-
bution will come from the bulk.

14



Bulk region

Wall region

Corner region

3β0 w
2

w
2s}

Figure 6: The Ansatz u

Vertical Néel walls. In this section, we construct the vertical Néel walls. W.l.o.g.
we focus on the construction in the region

{
(x, t)

∣∣ − β ≤ x ≤ β, 2 β
s

≤ t ≤ 1
2

}
. (2.3)

We consider the exchange and magnetostatic energy Eex+ma. Within (2.3), u coincides
with an odd function v of the form

u = −2 s v(x), v(±β) = ±1,

which we think of as being w-periodic and v(x + w
2
) = −v(x). In terms of v, we have

the estimate

Eex+ma = (1
2
− 2β

s
)

(
4 s2 ε

∫ w
2

−w
2

(∂xv)2 dx + 8
3
s4 (ln 1

ε
)

∫ w
2

−w
2

∣∣|∂x|−1/2∂x(−1
2
v2)
∣∣2 dx

)

. s2 ε

∫ w
2

−w
2

(∂xv)2 dx + s4 (ln 1
ε
)

∫ w
2

−w
2

∣∣|∂x|1/2 v2
∣∣2 dx

. s2 ε

∫ w
2

−w
2

1
v2 (∂xv

2)2 dx + s4 (ln 1
ε
)

∫ w
2

−w
2

∣∣|∂x|1/2 v2
∣∣2 dx.

It is convenient to think in terms of % = v2 which satisfies

% = 1 for β ≤ |x| ≤ w
2
− β,

% = 0 for x = 0,

% is w
2
-periodic,

so that

Eex+ma . s2 ε

∫ w
4

−w
4

1

%
(∂x%)2 dx + s4 ln

1

ε

∫ w
4

−w
4

∣∣|∂x|1/2%
∣∣2 dx.
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We make the Néel-wall Ansatz, cf. [Mel03] and [DKMO05, Section 6],

%(x) =





ln
α2+x2

α2

ln
α2+β2

α2

for |x| ≤ β,

1 for β ≤ |x| ≤ w
4
,

(2.4)

where ε and α with ε � α � β � w will be chosen later. We first turn to the
magnetostatic part and use the trace characterization of the homogeneous H1/2-norm,
i.e.
∫ w

4

−w
4

∣∣|∂x|1/2%
∣∣2 dx = inf{

∫ w
4

−w
4

∫ ∞

0

(∂x%̄)2 + (∂z%̄)2 dz dx|

%̄(x, z) is w
2
-periodic in x and %̄(x, 0) = %(x)}, (2.5)

which yields by extending % in a radially symmetric way in the (x, z)-plane:
∫ w

4

−w
4

∣∣|∂x|1/2%
∣∣2 dx .

1

ln2 α2+β2

α2

∫∫

x2+z2 ≤β2

(
∂x

(
ln α2+x2+z2

α2

))2

+
(
∂z

(
ln α2+x2+z2

α2

))2

dx dz

α�β

.
1

ln2 β
α

∫ β

0

(∂r(ln
α2+r2

α2 ))2r dr

=
1

ln2 β
α

∫ β

α

0

(∂br ln(1 + r̂2))2r̂ dr̂

.
1

ln2 β
α

∫ β

α

0

r̂3

(1 + r̂2)2
dr̂

∼ 1

ln β
α

.

We now turn to the exchange energy. Since

d%

dx
=

1

ln α2+β2

α2

{
2x

α2+x2 for |x| < β,

0 for β < |x| < w
4
,

and

1

%

(
d%

dx

)2

=
1

ln α2+β2

α2





1

ln
α2+x2

α2

4x2

(α2+x2)2
for |x| < β,

0 for β < |x| < w
4
,

we have
∫ w

4

−w
4

1

%

(
d%

dx

)2

dx
α�β

.
1

ln β
α

∫ β

−β

1

ln α2+x2

α2

x2

(α2 + x2)2
dx

=
2

α ln β
α

∫ β

α

0

1

ln(1 + x̂2)

x̂2

(1 + x̂2)2
dx̂

∼ 1

α ln β
α

. (2.6)
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Hence we obtain

Eex+ma . s2 ε
1

α ln β
α

+ s4
(
ln 1

ε

) 1

ln β
α

≈ s4
(
ln 1

ε

) 1

ln β
α

, (2.7)

where the last asymptotic identity follows from ε � α � w ∼ 1 and s ∼ 1.

Diagonal Néel walls. We now address the construction in the region

{(x, t)|s t − β ≤ x ≤ s t + β, 2 β
s
≤ t ≤ w

2 s
− β

s
}.

Since exchange and magnetostatic energy Eex+ma are invariant under the shear trans-
form

x = s t + x̃, t = t̃, u = ũ − s, (2.8)

we can reduce this construction to a construction of a vertical Néel wall in

{(x̃, t̃)| − β ≤ x̃ ≤ β, 2 β
s

≤ t̃ ≤ w
2 s

− β
s
}.

The only difference to the vertical Néel wall before is that the construction connects
−s to s instead of −2s to 2s. Hence we obtain as there

Eex+ma . s4
(
ln 1

ε

)
1

ln
β
α

. (2.9)

Corners. W.l.o.g. we consider the corner (−3 β, 3 β) × (0, 2 β
s

). In view of (2.4) (for
% = v2) and (2.8), we have to interpolate

u(x, 0) = 0

and

u(x, 2 β
s

) =





s (v(x + 2 β) + 1) for − 3 β ≤ x ≤ −β,

−2 s v(x) for − β ≤ x ≤ β,

s (v(x − 2 β) − 1) for β ≤ x ≤ 3 β

(2.10)

in t, where

v(x) = (sign x)

(
ln

α2+x2

α2

ln
α2+β2

α2

)1/2

.

We opt for a linear interpolation, i.e.

u(x, t) = s t
2 β

u(x, 2 β
s

).

We consider the exchange Eex and the magnetostatic energy Ema separately.

We first turn to the exchange energy Eex. Because of the linear interpolation, we
have

Eex = ε

∫ 2 β

s

0

(
s t

2 β

)2

dt

∫ 3 β

−3 β

(∂xu(x, 2 β
s

))2 dx

. ε
β

s

∫ 3 β

−3 β

(∂xu(x, 2 β
s

))2 dx

(2.10)

. ε β s

∫ β

−β

(∂xv(x))2 dx.
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From (2.6) we infer ∫ β

−β

(∂xv(x))2 dx . 1

α ln
β
α

, (2.11)

so that we obtain

Eex .
β ε s

α ln β
α

.

We now address the magnetostatic energy Ema. Notice

σ(x, t) = (−∂x(
1
2
u2) + ∂tu)(x, t) = −( s t

2 β
)2∂x(

1
2
u2)(x, 2 β

s
) + s

2 β
u(x, 2 β

s
). (2.12)

Because of the symmetry property

u(−x, 2 β
s

) = −u(x, 2 β
s

),

which entails
∂x(

1
2
u2)(−x, 2 β

s
) = −∂x(

1
2
u2)(x, 2 β

s
),

we have in particular for all t ∈ (0, 2 β
s

)

∫ w
2

−w
2

σ(x, t) dx = 0. (2.13)

Since supp σ(·, t) ⊂ [−3 β, 3 β], we claim that

∫ w
2

−w
2

∣∣(|∂x|−1/2σ)(·, t)
∣∣2 dx . β

∫ w
2

−w
2

σ(x, t)2 dx. (2.14)

Let us give the argument for (2.14). By duality, this is equivalent to

∫ w
2

−w
2

ζ(x)σ(x, t) dx .

(
β

∫ 3 β

−3 β

σ(x, t)2 dx

∫ w
2

−w
2

∣∣|∂x|1/2ζ(x)
∣∣2 dx

)1/2

,

for all w-periodic functions ζ(x). By the trace characterization of the homogeneous
H1/2-norm (2.5), this estimate is equivalent to

∫ w
2

−w
2

ζ(x, 0)σ(x, t) dx .

(
β

∫ 3 β

−3 β

σ(x, t)2 dx

∫ w
2

−w
2

∫ ∞

0

(∂xζ)2 + (∂zζ)2 dx dz

)1/2

for all functions ζ(x, z) which are w-periodic in x. Because of (2.13) and supp σ(·, t) ⊂
[−3 β, 3β], this estimate in turn follows from

∫ 3 β

−3 β

(ζ(x, 0) − 1
6 β

∫ 3 β

−3 β

ζ(x̃, 0) dx̃)2 dx . β

∫ w
2

−w
2

∫ ∞

0

(∂xζ)2 + (∂zζ)2 dx dz,

for all functions ζ(x, z). By rescaling length with β, this is equivalent to

∫ 3

−3

(ζ(x̂, 0) − 1
6

∫ 3

−3

ζ(x̃, 0) dx̃)2 dx̂ .

∫ w
2 β

− w
2 β

∫ ∞

0

(∂bxζ)2 + (∂bzζ)2 dx̂ dẑ,
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which because of β � w, thus w
2 β

� 1, follows from a standard trace estimate. This

establishes (2.14).

Inserting (2.12) into (2.14) yields
∫ w

2

−w
2

∣∣(|∂x|−1/2σ)(·, t)
∣∣2 dx

st
2β

≤ 1

. β

(∫ 3 β

−3 β

(∂x(u
2)(x, 2 β

s
))2 dx + ( s

β
)2

∫ 3 β

−3 β

(u(x, 2 β
s

))2 dx

)

. β sup
x∈(−3 β,3 β)

{u2(x, 2 β
s

)}
∫ 3 β

−3 β

(∂xu(x, 2β
s

))2 dx + s2

β
sup

x∈(−3 β,3 β)

{u2(x, 2 β
s

)}

(2.10)

. β

(
s4

∫ β

−β

(∂xv(x))2 dx + s4

β

)

(2.11)

. β

(
s4

α ln
β
α

+ s4

β

)

=

(
β
α

ln β
α

+ 1

)
s4

α�β∼
β
α

ln β
α

s4.

Therefore

Ema = 1
6
(ln 1

ε
)

∫ 2 β

s

0

∫ w
2

−w
2

∣∣|∂x|−1/2σ
∣∣2 dx dt .

β2 s3

α

ln 1
ε

ln β
α

.

Hence, we obtain for the sum Eex+ma of exchange and magnetostatic energies

Eex+ma .
β ε s

α ln β
α

+
β2 s3

α

ln 1
ε

ln β
α

=
β s

α ln β
α

(ε + β s2 ln 1
ε
),

so that because of ε � β � w ∼ 1 and s ∼ 1, this estimate asymptotically turns into

Eex+ma .
β2 s3

α

ln 1
ε

ln β
α

. (2.15)

Optimizing in the parameters. We first consider the exchange and magnetostatic
energy Eex+ma in (−w

2
, w

2
) × (0, 1). Collecting (2.7), (2.9) and (2.15) we obtain

Eex+ma . s4 ln 1
ε

ln β
α

+
β2 s3

α

ln 1
ε

ln β
α

.

Choosing for instance
α = ε2/3, β = ε1/2,

which is compatible with ε � α � β � w ∼ 1, the estimate asymptotically turns
into

Eex+ma . s4 + ε1/3 s3 ε�1≈ s4.
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Since β � w, we have for the Zeeman contribution that

∫ 1

0

∫ w
2

−w
2

u2 dx dt ≈
∫ 1

0

∫ w
2

−w
2

u2
meso dx dt = (2 s)2 w (1 − w

2 s
).

Choosing s = w, we obtain for the total energy

E ≤ C1 w4 − 1
2
C2 w3.

Hence we obtain for the total energy per length x

e(w) ≤ C1 w3 − 1
2
C2 w2.

Obviously, there is a w̃ ≤ 1 s.t. for all w ∈ ( w̃
2
, w̃]

e(w) . −1. (2.16)

Hence we can always choose w such that L is an integer multiple of w and (2.16)
holds. The corresponding Ansatz function provides the upper bound on the energy.

The case w > s > w
2
. Notice that the three discontinuity lines of the mesoscopic

pattern have a common triple point at ( 1
2
, w

2s
) in the fundamental domain, cf. Figure 6.

If we allowed for w > s > w
2

this triple point would be at (0, 1− w
2s

) in the fundamental
domain. The construction of the microscopic pattern with smooth transition layers
can be carried out in the same way as in the case s ≥ w. For the upper bound on
the magnetostatic energy, we have to take into account (at most) 4 walls or corners
at a given t-value modulo w-periodicity.

2.2 Lower bounds

Remark 2. We introduce the notation for the average of an L-periodic function
ζ(x, t) in x

〈ζ〉 := L−1

∫ L

0

ζ dx,

and the average both in x and t

〈〈ζ〉〉 := L−1

∫ 1

0

∫ L

0

ζ dx dt.

Proposition 2. Let 0 < ε � 1 and L > 0. Then

min
u

L−1E & −1.

The main ingredient for the lower bound is a new estimate on smooth solutions u of
the inhomogeneous, inviscid Burgers equation, i.e.

∂tu − ∂x(
1
2
u2) = σ. (2.17)
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This type of estimate was introduced in [Ott08, Section 2.6]; it relies on a generaliza-
tion of Oleinik’s E-principle [Ole63]. That principle states that for smooth solutions
of the homogeneous inviscid Burgers equation, i.e.

∂tu − ∂x(
1
2
u2) = 0, (2.18)

a one-sided Lipschitz bound improves over time in the sense that for any τ > 0

∂xu(t = 0, ·) ≥ −τ−1 ⇒ ∂xu(t, ·) ≥ −(τ + t)−1. (2.19)

In fact, the main insight of [Ott08] is that in addition, the L2-distance to the set of
functions ζ with a one-sided Lipschitz bound improves over time. To make this more
precise, we need

Definition 1. Let u(x) be L-periodic in x. Define

D−(u, τ) := inf { 〈(ζ − u)2〉 | ζ smooth and L-periodic, τ∂xζ ≥ −1 },
D+(u, τ) := inf { 〈(ζ − u)2〉 | ζ smooth and L-periodic, τ∂xζ ≤ 1 }.

If u(x, t) is L-periodic in x we use the abbreviation

D±(t, τ) := D±(u(·, t), τ).

For D± we denote the average w.r.t. t by

〈D±〉(τ) :=

∫ 1

0

D±(t, τ) dt.

It was shown in [Ott08] that if u satisfies the homogeneous Burgers equation (2.18),
D− satisfies the linear homogeneous differential inequality

∂tD− + ∂τD− + τ−1 D− ≤ 0. (2.20)

Obviously, (2.20) contains (2.19), which follows from ∂tD− + ∂τD− ≤ 0. The new
and crucial feature is the τ−1D−- term in (2.20).

It was also shown in [Ott08] that (2.20) survives for the inhomogeneous Burgers
equation (2.17) in the form

∂tD− + ∂τD− + τ−1 D− ≤ 2 〈
∣∣|∂x|−1/2σ

∣∣2〉1/2 〈
∣∣|∂x|1/2u

∣∣2〉1/2. (2.21)

However, (2.21) is not of use to us since we do not control 〈
∣∣|∂x|1/2u

∣∣2〉 independently
of ε. The idea is to replace u on the r.h.s. of (2.21) by the optimal ζ in the definition
of D−(u, τ), since a ζ with a one-sided Lipschitz bound has (up to a logarithm) half
of a derivative in L2. This is the content of the next two lemmas.

Lemma 1. Let ζ(x, t) be smooth, L-periodic in x and satisfy

τ∂xζ ≥ −1

for some τ > 0. Then for 0 < r ≤ R

〈
∣∣|∂x|1/2ζ

∣∣2〉 . r 1
2
〈(∂xζ)2〉 + (ln R

r
) τ−1 〈|ζ|〉 + R−1 1

2
〈ζ2〉

≤ r 1
2
〈(∂xζ)2〉 + (ln R

r
) τ−1 〈|ζ|2〉1/2 + R−1 1

2
〈ζ2〉. (2.22)
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This interpolation inequality in turn relies on

Lemma 2. Let ζ(x, t) be smooth, L-periodic in x and satisfy

τ ∂xζ ≥ −1

for some τ > 0. Then
sup
∆>0

1
∆
〈|ζ∆ − ζ|2〉 . τ−1 〈|ζ|〉. (2.23)

Let us comment on both lemmas: The estimate sup∆>0
1
∆
〈|ζ∆ − ζ|2〉 . sup |∂xζ| 〈|ζ|〉

is obvious. The insight of (2.23) is that the two-sided control sup |∂xζ| can be replaced
by the one-sided control.

We now turn to Lemma 1: Although 〈
∣∣|∂x|1/2ζ

∣∣2〉 and sup∆>0
1
∆
〈|ζ∆ − ζ|2〉 have the

same scaling, the estimate

〈
∣∣|∂x|1/2ζ

∣∣2〉 . sup
∆>0

1
∆
〈|ζ∆ − ζ|2〉

fails. However, if very short wave lengths (≤ r) and very long wave lengths (≥ R)
are treated separately, one obtains the logarithmic estimate (2.22).

Mimicking the proof of (2.21), using Lemma 1, we will derive

Lemma 3. For any smooth L-periodic u(x, t) and 0 < ε ≤ 1

∂t
1
2
(D− − 〈u2〉) + ∂τ

1
2
D− + τ−1 1

2
D−

. 〈
∣∣|∂x|−1/2σ

∣∣2〉1/2 [ ε1/2 〈(∂xu)2〉1/2 〈u2〉1/2 + (ln 1
ε
) τ−1 〈u2〉1/2 ]1/2. (2.24)

Note that the second factor on the r.h.s of (2.24) is related to the r.h.s. of (2.22) by
optimizing in r ≤ R while keeping ε = r

R
fixed.

We use Lemma 3 to derive the following interpolation inequality:

Corollary 1. For any smooth L-periodic u(x, t) with u(·, 0) = u(·, 1) = 0 and
0 < ε ≤ 1 it holds

∫ 1

0

〈u2〉 dt .

(
(ln 1

ε
)

∫ 1

0

〈
∣∣|∂x|−1/2σ

∣∣2〉 dt

)2/3

+

(∫ 1

0

〈
∣∣|∂x|−1/2σ

∣∣2〉 dt

)2/3 (
ε

∫ 1

0

〈(∂xu)2〉 dt

)1/3

. (2.25)

We also use Lemma 3 to derive a regularity estimate:

Corollary 2. For any smooth L-periodic u(x, t) with u(·, 0) = u(·, 1) = 0 and
0 < ε ≤ 1 it holds

sup
τ>0

τ−1/2

∫ 1

0

D+ dt + sup
τ>0

τ−1/2

∫ 1

0

D− dt .

(
(ln 1

ε
)

∫ 1

0

〈
∣∣|∂x|−1/2σ

∣∣2〉 dt

)2/3

+

(∫ 1

0

〈
∣∣|∂x|−1/2σ

∣∣2〉 dt

)2/3 (
ε

∫ 1

0

〈(∂xu)2〉 dt

)1/3

. (2.26)
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Not surprisingly, the control of the L2-distance to the set of functions with a (one-
sided) Lipschitz-bound gives control of some fractional derivative in some Lp-norm.

More precisely, supτ>0 τ−1/2
∫ 1

0
D+ dt + supτ>0 τ−1/2

∫ 1

0
D− dt has the same scaling

as sup∆>0 ∆−1/2
∫ 1

0
〈|u∆ − u|5/2〉 dt. Using ideas from [Ott08, Proposition 4] and in-

terpolation with Corollary 1 we indeed obtain:

Lemma 4. For any smooth L-periodic u(x, t) with u(·, 0) = u(·, 1) = 0 and 0 <
ε ≤ 1 it holds

sup
∆>0

∆−(p−2)

∫ 1

0

〈|u∆ − u|p〉 dt .

(
(ln 1

ε
)

∫ 1

0

〈
∣∣|∂x|−1/2σ

∣∣2〉 dt

)2/3

+

(∫ 1

0

〈
∣∣|∂x|−1/2σ

∣∣2〉 dt

)2/3 (
ε

∫ 1

0

〈(∂xu)2〉 dt

)1/3

(2.27)

with p ∈ [2, 5
2
).

Remark 3. In [CÁOS07, Section 3.3], it was shown that admissible functions u as in
(1.5) of finite energy can always be approximated by a sequence of smooth admissible
functions {uα}α↓0 in the energy topology. Therefore Corollary 1 and Corollary 2 and
Lemma 4, which were established for a smooth u, extend to our finite-energy u.

We will apply Corollary 1 to derive the coercivity of the energy. To facilitate the
notation we introduce the abbreviations

Σ := 〈〈
∣∣|∂x|−1/2σ

∣∣2〉〉,
DU := 〈〈 (∂xu)2〉〉, and

U := 〈〈u2〉〉.
(2.28)

Lemma 5. Let 0 < ε � 1. Then for any L-periodic u(x1, x2) with u(·, 0) = u(·, 1)
which is of finite energy, i.e.

L−1E(u) = εDU + (ln 1
ε
)Σ − U < +∞,

we have

εDU, (ln 1
ε
)Σ, U .

{
1 for L−1E(u) ≤ 1,

L−1E(u) for L−1E(u) ≥ 1.
(2.29)

Proof of Lemma 1. We fix t. The fractional Sobolev norm can be expressed as
a suitable average of the L2-modulus of continuity of ζ (this can easily be seen in
Fourier space, cf. [LM68, p.59]):

∫ L

0

∣∣|∂x|1/2ζ
∣∣2 dx ∼

∫ ∞

0

1
∆

∫ L

0

(ζ(x + ∆) − ζ(x))2 dx 1
∆

d∆. (2.30)
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We split the r.h.s. into a small scale part, an intermediate scale part, and a large scale
part:

∫ ∞

0

1
∆

∫ L

0

(ζ(x + ∆) − ζ(x))2 dx 1
∆

d∆ =

∫ r

0

1
∆

∫ L

0

(ζ(x + ∆) − ζ(x))2 dx 1
∆

d∆

+

∫ R

r

1
∆

∫ L

0

(ζ(x + ∆) − ζ(x))2 dx 1
∆

d∆

+

∫ ∞

R

1
∆

∫ L

0

(ζ(x + ∆) − ζ(x))2 dx 1
∆

d∆,

(2.31)

where 0 < r ≤ R < +∞.

The most interesting term is the intermediate one, which we estimate as follows:

∫ R

r

1
∆

∫ L

0

(ζ(x + ∆) − ζ(x))2 dx 1
∆

d∆ ≤ (ln R
r
) sup

∆>0

1
∆

∫ L

0

(ζ(x + ∆) − ζ(x))2 dx.

The application of Lemma 2, i.e.

sup
∆>0

1
∆

∫ L

0

(ζ∆ − ζ)2 dx . τ−1

∫ L

0

|ζ| dx,

yields

∫ R

r

1
∆

∫ L

0

(ζ(x + ∆) − ζ(x))2 dx 1
∆

d∆ . (ln R
r
) τ−1

∫ L

0

|ζ| dx. (2.32)

We now turn to the large scale part in (2.31). Just using the triangle inequality in
form of ∫ L

0

(ζ(x + ∆) − ζ(x))2 dx ≤ 4

∫ L

0

ζ2 dx

we obtain
∫ ∞

R

1
∆

∫ L

0

(ζ(x + ∆) − ζ(x))2 dx 1
∆

d∆ . R−1

∫ L

0

ζ2 dx. (2.33)

Finally, we consider the small scale part in (2.31). We have by Jensen’s inequality

∫ L

0

(ζ(x + ∆) − ζ(x))2 dx =

∫ L

0

(∫ x+∆

x

∂xζ(x′) dx′
)2

dx

≤
∫ L

0

∆

∫ x+∆

x

(∂xζ(x′))2 dx′ dx

= ∆2

∫ L

0

(∂xζ)2 dx.

Hence we obtain
∫ r

0

1
∆

∫ L

0

(ζ(x + ∆) − ζ(x))2 dx 1
∆

d∆ ≤ r

∫ L

0

(∂xζ)2 dx. (2.34)
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Collecting (2.32), (2.33) and (2.34) we obtain from (2.30) and (2.31)

∫ L

0

∣∣|∂x|1/2ζ
∣∣2 dx . r 1

2

∫ L

0

(∂xζ)2 dx + (ln R
r
) τ−1

∫ L

0

|ζ| dx + R−1 1
2

∫ L

0

ζ2 dx,

which entails

〈
∣∣|∂x|1/2ζ

∣∣2〉 . r 1
2
〈(∂xζ)2〉 + (ln R

r
) τ−1 〈|ζ|〉 + R−1 1

2
〈ζ2〉.

Proof of Lemma 2. We shall actually prove that for any L-periodic function ζ(x)
with

τ∂ζ(x) ≤ 1 for all x,

we have
∫ L

0

|ζ(x + ∆) − ζ(x)|2 dx . ∆ τ−1

∫ L

0

|ζ(x)| dx for all ∆ > 0. (2.35)

The statement of Lemma 2 follows by the application of (2.35) to ζ(x) = ζ̃(−x, t).

Because of the rescaling

x = ∆ x̂, L = ∆ L̂, ζ = ∆ τ−1 ζ̂ ,

it is enough to show (2.35) for ∆ = 1 and τ−1 = 1, that is under the assumption

∂ζ(x) ≤ 1 for all x. (2.36)

We split (2.35) into a statement for positive and for negative increments:

∫ L

0

(ζ(x + 1) − ζ(x))2
+ dx ≤ 2

∫ L

0

|ζ(x)| dx, (2.37)

∫ L

0

(ζ(x + 1) − ζ(x))2
− dx ≤ 4

∫ L

0

|ζ(x)| dx. (2.38)

The statement (2.37) is easy. Indeed, because of (2.36), we have the pointwise bound
ζ(x + 1) − ζ(x) ≤ 1, so that we obtain for the integrand

(ζ(x + 1) − ζ(x))2
+ ≤ (ζ(x + 1) − ζ(x))+ ≤ |ζ(x + 1)| + |ζ(x)|.

This implies (2.37) after integration.

We now turn to (2.38). Because of L-periodicity we have

∫ L

0

|ζ(x)|(1 − ∂ζ(x)) dx =

∫ L

0

|ζ(x)| − ∂( 1
2
signζ|ζ|2)(x) dx =

∫ L

0

|ζ(x)| dx.

Hence inequality (2.38) will follow by integration from

(ζ(x + 1) − ζ(x))2
− ≤ 4

∫ x+1

x

|ζ(x′)|(1 − ∂ζ(x′)) dx′,
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which by translation invariance can be reduced to

(ζ(1) − ζ(0))2
− ≤ 4

∫ 1

0

|ζ(x)|(1 − ∂ζ(x)) dx. (2.39)

Since by (2.36) the r.h.s. is positive, it is enough to consider the case ζ(1) ≤ ζ(0).
Now (2.39) follows from

(ζ(1) − ζ(0))2
− ≤ −4

∫ 1

0

|ζ(x)|∂ζ(x) dx (2.40)

= −4

∫ 1

0

1
2
∂(signζ |ζ|2)(x) dx (2.41)

= 2 signζ(0) ζ(0)2 − 2 signζ(1) ζ(1)2.

In fact, to prove that (2.40) holds, we distinguish three cases:

Case 0 ≤ ζ(1) ≤ ζ(0): In this case

(ζ(1) − ζ(0))2
− = (ζ(0) − ζ(1))2

= (ζ(0) − ζ(1)) (ζ(0) − ζ(1))︸ ︷︷ ︸
≤ζ(0)+ζ(1)

≤ ζ(0)2 − ζ(1)2

= signζ(0) ζ(0)2 − signζ(1) ζ(1)2.

Case ζ(1) ≤ 0 ≤ ζ(0): In this case

(ζ(1) − ζ(0))2
− = (ζ(0) − ζ(1))2

= ζ(0)2 + ζ(1)2 − 2 ζ(0) ζ(1)

≤ 2 (ζ(0)2 + ζ(1)2)

= 2 (signζ(0) ζ(0)2 − signζ(1) ζ(1)2).

Case ζ(1) ≤ ζ(0) ≤ 0: In this case

(ζ(1) − ζ(0))2
− = (ζ(0) − ζ(1))2

= (ζ(0) − ζ(1)) (ζ(0) − ζ(1))︸ ︷︷ ︸
≤−(ζ(0)+ζ(1))

≤ −(ζ(0)2 − ζ(1)2)

= signζ(0) ζ(0)2 − signζ(1) ζ(1)2.

Before we start with the other proofs, let us note that D = D± is locally Lipschitz
continuous in (t, τ). Indeed, by the triangle inequality we easily obtain for t1, t0 and
for τ1 ≥ τ0:

D1/2(t1, τ) −D1/2(t0, τ) ≤ 〈|u(t1, ·) − u(t0, ·)|2〉1/2,

D1/2(t, τ1) −D1/2(t, τ0) ≤ (1 − τ0

τ1

)〈|u(t, ·)|2〉1/2.
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Clearly, D is monotonically increasing in τ . Indeed, let τ2 > τ1 > 0, and ζ be smooth
and L-periodic with ± τ2 ∂xζ ≤ 1, then also ± τ1 ∂xζ ≤ 1 and hence

D±(u, τ1) = inf { 〈(ζ − u)2〉 | ζ smooth and L-periodic, τ1∂xζ ≥ ±1 }
≤ inf { 〈(ζ − u)2〉 | ζ smooth and L-periodic, τ2∂xζ ≥ ±1 }
= D±(u, τ2). (2.42)

Proof of Lemma 3. Let ζ0 be admissible in the definition of D−(0, τ), i.e.

τ∂xζ0 ≥ −1. (2.43)

For λ > 0 define ζ as the solution to the initial value problem

∂tζ − ∂x(
1
2
ζ2) + λ∂A(τ + t) ζ = 1

2
(∂xζ + (τ + t)−1) (u − ζ)

ζ(·, 0) = ζ0. (2.44)

Here, the functional A is defined by

A(τ, ζ) = 1
2
〈 r(∂xζ)2 + η + 1

η
(ln2 R

r
) τ−2 ζ2 + R−1 ζ2〉 (2.45)

for η > 0, 0 < r ≤ R, and τ > 0, and the operator ∂A is (up to the factor L−1)
the functional derivative of (2.45) and thus given by

∂A(τ) ζ = −r ∂2
xζ + 1

η
(ln2 R

r
) τ−2 ζ + R−1 ζ. (2.46)

As we shall see, the reason for this choice of A is that

min
η

A(τ, ζ) = 1
2
r 〈 (∂xζ)2〉 + (ln R

r
) τ−1 〈ζ2〉1/2 + 1

2
R−1 〈ζ2〉

appears on the r.h.s. of the estimate of Lemma 1.

Because u is smooth and r > 0, a unique smooth solution to (2.44) always exists. Note
that the solution ζ depends, next to the initial data and u, also on the parameters λ,
η, τ , r, and R.

Step 1. Maximum principle. Here we argue that for ζ defined by (2.44) we have

(τ + t)∂xζ(·, t) ≥ −1 for t ≥ 0. (2.47)

To show (2.47) let us introduce

%(x, t) := ∂xζ + (τ + t)−1. (2.48)

We shall argue that (2.44) can be rewritten as an advection-diffusion equation in
terms of the “density” %:

∂t%−∂x(
1
2
% (u+ζ))+(τ+t)−1 %+λ ∂A(τ+t) % = λ 1

η
(ln2 R

r
) (τ+t)−3+λR−1 (τ+t)−1.

(2.49)
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For a solution to (2.49) with non-negative initial data, non-negativity is preserved
since the r.h.s. is positive. Due to (2.43) and (2.48) this is a reformulation of (2.47).

To see that (2.49) holds, we first rewrite the r.h.s. of (2.44):

∂tζ − ∂x(
1
2
ζ2) + λ∂A(τ + t) ζ = 1

2
(∂xζ + (τ + t)−1) (u − ζ)

(2.48)
= 1

2
% (u + ζ) − (∂xζ + (t + τ)−1)ζ

= 1
2
% (u + ζ) − ∂x(

1
2
ζ2) − (τ + t)−1ζ.

Therefore we obtain

∂tζ + λ∂A(τ + t) ζ = 1
2
% (u + ζ) − (τ + t)−1ζ.

Differentiating this equation w.r.t. x yields by linearity of ∂A

∂t∂xζ + λ∂A(τ + t) ∂xζ = ∂x(
1
2
%(u + ζ)) − (τ + t)−1 ∂xζ.

Hence, by definition (2.48) and linearity of ∂A we obtain

∂t% + (τ + t)−2 + λ∂A(τ + t) % − λ∂A(τ + t) (τ + t)−1

= ∂x(
1
2
% (u + ζ)) + (τ + t)−2 − (τ + t)−1 %

and therefore

∂t% − ∂x(
1
2
% (u + ζ)) + (τ + t)−1 % + λ∂A(τ + t) % = λ∂A(τ + t) (τ + t)−1.

Appealing to the definition (2.46) of ∂A this yields (2.49).

Step 2. L2-Contraction. In this step we show that there exists a constant C > 0 s.t.

∂t(
1
2
〈(u− ζ)2〉 − 1

2
〈u2〉) + (τ + t)−1 1

2
〈(u− ζ)2〉 ≤ λA(τ + t, u) + C

4λ
〈
∣∣|∂x|−1/2σ

∣∣2〉.
(2.50)

We first rewrite equation (2.44) as

−∂tζ + 1
2
(τ + t)−1 (u − ζ) + u ∂xζ − 1

2
(∂xζ) (u − ζ) = λ∂A(τ + t) ζ

and combine it with ∂tu − u ∂xu = σ which gives

∂t(u− ζ) + 1
2
(τ + t)−1 (u− ζ)− u ∂x(u− ζ)− 1

2
(∂xζ) (u− ζ) = σ + λ∂A(τ + t) ζ.

We multiply this equation by u − ζ and apply Leibniz’ rule to obtain

∂t
1
2
(u − ζ)2 + 1

2
(τ + t)−1(u − ζ)2 − u1

2
∂x(u − ζ)2 − (∂xζ)1

2
(u − ζ)2

= σ(u − ζ) + λ(∂A(τ + t) ζ) (u − ζ).

Taking averages w.r.t. x and integration by parts yields

1
2
∂t〈(u − ζ)2〉 + 1

2
(τ + t)−1〈(u − ζ)2〉 + 〈(∂xu − ∂xζ)1

2
(u − ζ)2〉

= 〈σ(u − ζ)〉 + 〈λ(∂A(τ + t) ζ) (u − ζ)〉. (2.51)
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On the other hand, multiplying ∂tu− u ∂xu = σ with u and taking averages w.r.t. x
we have

∂t
1
2
〈u2〉 = 〈σ u〉. (2.52)

Because of 〈(∂xu − ∂xζ)1
2
(u − ζ)2〉 = 0, the combination of (2.51) and (2.52) yields

1
2
∂t〈(u − ζ)2〉 − 1

2
∂t〈u2〉 + (τ + t)−1 1

2
〈(u − ζ)2〉

= 〈λ(∂A(τ + t) ζ) (u − ζ)〉 − 〈σ ζ〉,
Cauchy-Schwarz

≤ 〈λ(∂A(τ + t) ζ) (u − ζ)〉 + 〈
∣∣|∂x|−1/2σ

∣∣2〉1/2〈(|∂x|1/2ζ)2〉1/2

convexity of A, Young’s inequality

≤ λA(τ + t, u) − λA(τ + t, ζ) + C
4λ
〈
∣∣|∂x|−1/2σ

∣∣2〉 + λ
C
〈(|∂x|1/2ζ)2〉,

(2.53)

where we choose C > 0 to be the constant in the estimate of Lemma 1. Since ζ(·, t) ful-
fills the assumptions of Lemma 1 according to Step 1, more precisely
(τ + t) ∂xζ(x, t) ≥ −1 for t ≥ 1, we have by Young’s inequality (w.r.t. η)

〈(|∂x|1/2ζ)2〉1/2 ≤ C A(τ + t, ζ).

Hence (2.53) turns into

1
2
∂t〈(u − ζ)2〉 − 1

2
∂t〈u2〉 + (τ + t)−1 1

2
〈(u − ζ)2〉≤λA(τ + t, u) + C

4λ
〈
∣∣|∂x|−1/2σ

∣∣2〉.
(2.54)

Step 3. The integration of (2.54) in t gives

1
2
〈(u(·, t) − ζ(·, t))2〉 − 1

2
〈u2(·, t)〉 +

∫ t

0

(τ + t′)−1 1
2
〈(u(·, t′) − ζ(·, t′))2〉 dt′

≤ 1
2
〈(u(·, 0)−ζ(·, 0))2〉−1

2
〈u2(·, 0)〉+

∫ t

0

λA(τ+t′, u(·, t′)) + C
4λ
〈
∣∣|∂x|−1/2σ(·, t′)

∣∣2〉 dt′.

According to Step 1, ζ(x, t′) is admissible in the definition of D−(t′, τ + t′), so that
we obtain

1
2
D−(t, τ + t) − 1

2
〈u2(·, t)〉 +

∫ t

0

(τ + t′)−1 1
2
D−(t′, τ + t′) dt′

≤ 1
2
〈(u(·, 0)− ζ0)

2〉 − 1
2
〈u2(·, 0)〉+

∫ t

0

λA(τ + t′, u(·, t′)) + C
4λ
〈
∣∣∂x|−1/2σ(·, t′)

∣∣2〉 dt′.

Finally, since ζ0 was an arbitrary admissible function in D−(0, τ), this turns into

1
2
(D−(t, τ + t) − 〈u2(·, t)〉) + 1

2

∫ t

0

(τ + t′)−1D−(t′, τ + t′) dt′

≤ 1
2
(D−(0, τ) − 〈u2(·, 0)〉) +

∫ t

0

λA(τ + t′, u(·, t′)) + C
4λ
〈
∣∣|∂x|−1/2σ(·, t′)

∣∣2〉 dt′

(2.55)
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for all t ≥ 0 and τ > 0. Since D− is locally Lipschitz continuous in both variables
and by translation invariance in t, (2.55) entails a differential version:

∂t
1
2
(D−(t, τ)−〈u2〉)+∂τ

1
2
D−(t, τ)+ τ−1 1

2
D−(t, τ) ≤ λA(τ, u) + C

4λ
〈
∣∣|∂x|−1/2σ

∣∣2〉.
(2.56)

Indeed, a Lipschitz function is classically differentiable almost everywhere and its
classical derivative agrees with its weak derivative.

Step 4. Optimization.

The l.h.s. of (2.56) does not depend on λ > 0 and holds for all t ≥ 0 and τ > 0.
Therefore, we can now optimize on the r.h.s. of (2.56) in λ to derive:

∂t
1
2
(D−(t, τ) − 〈u2〉) + ∂τ

1
2
D−(t, τ) + τ−1 1

2
D−(t, τ) . A(τ, u)1/2 〈

∣∣|∂x|−1/2σ
∣∣2〉1/2.

(2.57)

Since (2.57) holds true for all η > 0 and 0 < r ≤ R, we optimize at fixed ε = r
R

≤ 1
in η and R:

min
η,R

A(τ, u) = min
η,R

1
2
〈 r(∂xu)2 + η + 1

η
(ln2 R

r
) τ−2 u2 + R−1 u2〉

∼ min
R

R ε〈(∂xu)2〉 + (ln 1
ε
) τ−1〈u2〉1/2 + R−1 〈u2〉

∼ ε1/2 〈(∂xu)2〉1/2 〈u2〉1/2 + (ln 1
ε
) τ−1〈u2〉1/2.

Proof of Corollary 1. In the following proof, we repeatedly use that due to
(1.5)

〈u(t = 0)2 〉 = 〈u(t = 1)2 〉 = 0, and thus

D−(u(t = 0), τ) = D−(u(t = 1), τ) = 0 for all τ > 0. (2.58)

Step 1. We drop the positive terms τ−1D− and ∂τD−, cf. (2.42), on the l.h.s. of
(2.24) and integrate backwards in t and get due to (2.58)

〈u2(·, t)〉 − D−(t, τ)

.

∫ 1

t

〈
∣∣|∂x|−1/2σ

∣∣2〉1/2 ( ε1/2 〈(∂xu)2〉1/2 〈u2〉1/2 + (ln 1
ε
) τ−1〈u2〉1/2 )1/2 dt′

≤
∫ 1

0

〈
∣∣|∂x|−1/2σ

∣∣2〉1/2 ( ε1/2 〈(∂xu)2〉1/2 〈u2〉1/2 + (ln 1
ε
) τ−1〈u2〉1/2 )1/2 dt′.

Applying Jensen’s and Cauchy-Schwarz’ inequality in t gives

〈u2(·, t)〉 − D−(t, τ)

. 〈〈
∣∣|∂x|−1/2σ

∣∣2〉〉1/2 ( ε1/2 〈〈(∂xu)2〉〉1/2 〈〈u2〉〉1/2 + (ln 1
ε
) τ−1〈〈u2〉〉1/2 )1/2. (2.59)
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Averaging (2.59) w.r.t. t yields

〈〈u2〉〉 . 〈D−〉(τ)+〈〈
∣∣|∂x|−1/2σ

∣∣2〉〉1/2( ε1/2 〈〈(∂xu)2〉〉1/2 〈〈u2〉〉1/2+(ln 1
ε
) τ−1〈〈u2〉〉1/2 )1/2.

(2.60)

Step 2. Consider again (2.24). We drop the positive term ∂τD−, cf. (2.42). We then
average over t ∈ [0, 1]. Because of (2.58), the ∂t

1
2
(D− − 〈u2〉)-term vanishes. Using

Cauchy-Schwarz’ and Jensen’s inequality as above we obtain

τ−1〈D−〉(τ) . 〈〈
∣∣|∂x|−1/2σ

∣∣2〉〉1/2 ( ε1/2 〈〈(∂xu)2〉〉1/2〈〈u2〉〉1/2 + (ln 1
ε
) τ−1〈〈u2〉〉1/2 )1/2.

(2.61)

Combining inequalities (2.60) and (2.61) gives in our short hand notation, cf. (2.28),

U . (1 + τ) Σ1/2 (ε1/2DU1/2U1/2 + (ln 1
ε
)τ−1 U1/2)1/2.

Choosing τ ∼ 1 yields

U . Σ1/2 (ε1/2DU1/2U1/2 + (ln 1
ε
) U 1/2)1/2

. Σ1/2 (εDU)1/4U1/4 + ((ln 1
ε
)Σ)1/2 U1/4,

and by Young’s inequality we absorb U into the l.h.s. to obtain (2.25):

U . Σ2/3 (εDU)1/3 + ((ln 1
ε
)Σ)2/3.

Proof of Corollary 2. We start from (2.61) in the proof of Corollary 1, i.e.

τ−1〈D−〉(τ) . 〈〈
∣∣|∂x|−1/2σ

∣∣2〉〉1/2 ( ε1/2 〈〈(∂xu)2〉〉1/2 〈〈u2〉〉1/2+(ln 1
ε
) τ−1〈〈u2〉〉1/2 )1/2,

which in our short hand notation turns into

τ−1〈D−〉(τ) . Σ1/2 ( τ−1(ln 1
ε
)U 1/2 + (εDU)1/2 U1/2 )1/2

. τ−1/2((ln 1
ε
) Σ)1/2 U1/4 + τ 1/8Σ1/2(εDU)1/4 (τ−1/2U)1/4

Young

. τ−1/2((ln 1
ε
) Σ)1/2U1/4 + τ 1/6Σ2/3(εDU)1/3 + τ−1/2U

(2.25)

. τ−1/2((ln 1
ε
) Σ)1/2

(
Σ2/3 (εDU)1/3 + ((ln 1

ε
)Σ)2/3

)1/4

+ τ 1/6Σ2/3(εDU)1/3 + τ−1/2
(
Σ2/3 (εDU)1/3 + ((ln 1

ε
)Σ)2/3

)

. τ−3/8((ln 1
ε
) Σ)1/2

(
τ−1/2Σ2/3 (εDU)1/3

)1/4

+ τ 1/6Σ2/3(εDU)1/3 + τ−1/2
(
Σ2/3 (εDU)1/3 + ((ln 1

ε
)Σ)2/3

)

Young

. τ−1/2((ln 1
ε
)Σ)2/3 + (τ 1/6 + τ−1/2)Σ2/3(εDU)1/3.
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Therefore we deduce for τ ≤ 1

τ−1〈D−〉(τ) . τ−1/2
(
((ln 1

ε
)Σ)2/3 + Σ2/3(εDU)1/3

)
. (2.62)

On the other hand, for τ ≥ 1 we have

〈D−(τ)〉
ζ=0

≤ U

. τ 1/2U

(2.25)

. τ 1/2
(
((ln 1

ε
)Σ)2/3 + Σ2/3(εDU)1/3

)
(2.63)

Collecting estimates (2.62) and (2.63), we now obtain

sup
τ>0

τ−1/2〈D−〉(τ) . ((ln 1
ε
)Σ)2/3 + Σ2/3(εDU)1/3. (2.64)

For D+ note that the change of variables t̂ = 1− t, û = −u leaves the r.h.s. of (2.64)
invariant whereas the l.h.s. turns into

D−(û(·, t̂ ), τ) = D−(−u(·, 1 − t ), τ) = D+(u(·, 1 − t ), τ),

which gives
〈D−(û, τ)〉 = 〈D+(u, τ)〉.

Therefore we obtain (2.26) in our short hand notation, i.e.

sup
τ>0

τ−1/2〈D+〉(τ) + sup
τ>0

τ−1/2〈D−〉(τ) . ((ln 1
ε
)Σ)2/3 + Σ2/3(εDU)1/3.

Proof of Lemma 4. The main ingredient is the following estimate of the modulus
of continuity in the weak L5/2-norm

sup
∆>0

∆−1/2 sup
M>0

M5/2〈〈I(|u∆ − u| > M)〉〉 . sup
τ>0

τ−1/2〈D+〉 + sup
τ>0

τ−1/2〈D−〉, (2.65)

where I denotes the indicator function. To see that (2.65) holds, fix ∆, M > 0 and
let ζ+(x, t) and ζ−(x, t) be L-periodic in x with ±τ∂xζ

± ≤ 1 for some τ > ∆
M

given.
Then we have

|{|u∆ − u| > M}| = |{u∆ − u > M}| + |{u∆ − u < −M}|
≤ |{(u − ζ+)∆ − (u − ζ+) > (M − ∆

τ
)}|

+ |{(u − ζ−)∆ − (u − ζ−) < −(M − ∆
τ
)}|

≤ (M − ∆
τ
)−2
(∫ L

0

((u − ζ+)∆ − (u − ζ+))2 dx

+

∫ L

0

((u − ζ−)∆ − (u − ζ−))2 dx
)

≤ 4 (M − ∆
τ
)−2
(∫ L

0

(u − ζ+)2 dx +

∫ L

0

(u − ζ−)2 dx
)
.
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Since ζ± was arbitrary in the definition of D±(τ), we obtain

〈I(|u∆ − u| > M)〉 ≤ 4 (M − ∆
τ
)−2(D+(τ) + D−(τ)).

Therefore we have

〈I(|u∆ − u| > M)〉 ≤ τ 1/2 4 (M − ∆
τ
)−2 (sup

τ̃>0
τ̃−1/2D+(τ̃) + sup

τ̃>0
τ̃−1/2D−(τ̃)).

Now optimizing in τ > ∆
M

gives

〈I(|u∆ − u| > M)〉 . ( ∆
M

)1/2M−2 (sup
τ̃>0

D+(τ̃) + sup
τ̃>0

D−(τ̃)),

which entails (2.65).

Plugging in Corollary 2 we obtain from (2.65) for all ∆ > 0

∆−1/2 sup
M>0

M5/2〈〈I(|u∆ − u| > M)〉〉 . ((ln 1
ε
)Σ)2/3 + Σ2/3(εDU)1/3. (2.66)

We can now interpolate the strong estimate on the modulus of continuity that we
obtain from Corollary 1, i.e.

〈〈|u∆ − u|2〉〉 . 〈〈u2〉〉
(2.25)

. ((ln 1
ε
)Σ)2/3 + Σ2/3(εDU)1/3,

and the weak estimate (2.66). By Marcinkiewicz interpolation, cf. [BL76, Section
5.3], we obtain for 0 ≤ β < 1

〈〈|u∆ − u|2+
1
2

β〉〉 . 〈〈|u∆ − u|2〉〉1−β (sup
M>0

M5/2〈〈I (|u∆ − u| > M)〉〉)β

. ∆
β

2

(
((ln 1

ε
)Σ)2/3 + Σ2/3(εDU)1/3

)
.

With the identification p = 2 + β
2

we obtain (2.27), i.e.

sup
∆>0

∆−(p−2)〈〈|u∆ − u|p〉〉 . ((ln 1
ε
)Σ)2/3 + Σ2/3(εDU)1/3

for p ∈ [2, 5
2
), in our short hand notation.

Proof of Lemma 5. Let C > 0 be a generic constant. Due to Remark 3, Corollary
1, which was established for smooth u, extends to our finite-energy u:

U . ((ln 1
ε
)Σ)2/3 (1 + (ln 1

ε
)−2/3 (εDU)1/3)

ε�1

. ((ln 1
ε
)Σ)2/3 (1 + (εDU)1/3). (2.67)

Hence we obtain by Young’s inequality

L−1E(u) = εDU + (ln 1
ε
)Σ − U

ε�1

≥ εDU + (ln 1
ε
)Σ − C ((ln 1

ε
)Σ)2/3 (1 + (εDU)1/3)

Young

& εDU + (ln 1
ε
)Σ − C,

33



where C is the constant in estimate (2.67). This entails

εDU + (ln 1
ε
)Σ

ε�1

.

{
1 for L−1E(u) ≤ 1,

L−1E(u) for L−1E(u) ≥ 1.

Therefore we obtain if we once again apply Young’s inequality to (2.67):

U
ε�1

. ((ln 1
ε
)Σ)2/3 (1 + (εDU)1/3)

ε�1

.

{
1 for L−1E(u) ≤ 1,

L−1E(u) for L−1E(u) ≥ 1.

Proof of Proposition 2. Due to Lemma 5, we have that for any u with L−1E(u) ≤
0

εDU, (ln 1
ε
)Σ, U . 1.

In particular

L−1E(u) ≥ −U & −1.

Proof of Theorem 3. Let 0 < ε � 1 and L ≥ 1.

ad a) The upper bound on the minimal energy is the statement of Proposition 1, the
lower bound is the statement of Proposition 2.

ad b) The upper bound

L−1

∫ L

0

∫ 1

0

u2 dt dx . 1

was treated in Proposition 2. The lower bound

L−1

∫ L

0

∫ 1

0

u2 dt dx & 1

follows directly from the assumption L−1E(u) ∼ −1.

ad c1) Note that by Jensen’s inequality

w−2(p−2)/p L−1

∫ L

0

∫ 1

0

(u(x + w, t) − u(x, t))2 dt dx

.

(
w−(p−2) L−1

∫ L

0

∫ 1

0

(u(x + w, t) − u(x, t))p dt dx

)2/p

(2.68)

for p ∈ [2,∞). Due to Lemma 5 we have for any u with L−1E(u) ∼ −1, that
εDU, (ln 1

ε
)Σ, U . 1 (uniformly in ε). Hence the r.h.s. in (2.68) is bounded for
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p ∈ [2, 5
2
) (uniformly in ε) due to Lemma 4, which due to Remark 3 extends to our

finite-energy u. Therefore with the identification α = 2(p − 2)/p we have

L−1

∫ L

0

∫ 1

0

(u(x + w, t) − u(x, t))2 dt dx . wα

for α ∈ [0, 2
5
).

ad c2) We split the proof into an estimate for w ≤ 1 and an estimate for w ≥ 1.
For w ≤ 1 we have by Jensen’s inequality

L−1

∫ L

0

∫ L

0

|uw| dt dx ≤
(

L−1

∫ L

0

∫ L

0

u2 dt dx

)1/2

≤ w−1/2

(
L−1

∫ L

0

∫ L

0

u2 dt dx

)1/2

.

Due to Lemma 5, for u with L−1E(u) ∼ −1 the energy contributions are separately
bounded. Hence we obtain

L−1

∫ L

0

|uw| dx ≤ w−1/2.

We now turn to the case w ≥ 1. By linearity we have that

∂tuw − (∂x(
1
2
u2))w = σw.

Therefore by the triangle inequality we have

L−1

∫ L

0

|∂tuw| dx . L−1

∫ L

0

|(∂x(
1
2
u2))w| dx + L−1

∫ L

0

|σw| dx. (2.69)

We now appeal to the estimates

L−1

∫ L

0

|(∂x(
1
2
u2))w| dx . w−1L−1

∫ L

0

u2 dx (2.70)

and

L−1

∫ L

0

|σw| dx . w−1/2

(
L−1

∫ L

0

∣∣|∂x|−1/2σ
∣∣2 dx

)1/2

. (2.71)

We first turn to (2.70). By definition (1.12),

∫ L

0

|(∂xu
2)w| dx =

∫ L

0

∣∣∣w−1

∫ w
2

−w
2

∂xu
2(x + x′) dx′

∣∣∣ dx

= w−1

∫ L

0

|u2(x + w
2
) − u2(x − w

2
)| dx

≤ w−1

∫ L

0

u2 dx.
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We now turn to (2.71), which is a standard convolution estimate. We start with
Jensen’s inequality in the form of

L−1

∫ L

0

|σw| dx ≤
(

L−1

∫ L

0

|σw|2 dx

)1/2

. (2.72)

By definition (1.12),

σw(x, t) =

∫

R

ηw(y) σ(x − y, t) dy,

where ηw(x) := w−1η( x
w
) and η(x) := I([− 1

2
, 1

2
])(x). We appeal to the Fourier

series F(σ)(ξ) = 1√
L

∫ L

0
σ(x) e−i xξ dx, ξ ∈ 2πL−1

Z, of σ and to the Fourier transform

F(ηw)(ξ) =
∫

R
ηw(x) e−i xξ dx, ξ ∈ R, of ηw:

∫ L

0

|σw|2 dx =
∑

ξ∈2πL−1Z

|F(σw)|2(ξ) dx

=
∑

ξ∈2πL−1Z

1√
L

∫ L

0

∫

R

ηw(x − y)σ(y) dy e−i xξ dx (2.73)

=
∑

ξ∈2πL−1Z

|F(ηw)(ξ)|2|F(σ)(ξ)|2

=
∑

ξ∈2πL−1Z

|F(η)(w ξ)|2|F(σ)(ξ)|2. (2.74)

We explicitly calculate the Fourier transform of η:

F(η)(ξ) =

∫

R

η(x) e−i x ξ dx =

∫ 1

2

− 1

2

e−i x ξ dx = 2 sin( ξ
2
).

Hence we have

|F(η)(ξ)| .
1

1 + |ξ| .
1

|ξ|1/2
.

Thus (2.74) turns into

∫ L

0

|σw|2 dx .
1

w

∑

ξ∈2πL−1Z

1

|ξ| |F(σ)(ξ)|2 =
1

w

∫ L

0

∣∣|∂x|−1/2σ
∣∣2 dx.

Now (2.71) follows from the last estimate together with (2.72).

In order to control the r.h.s. of (2.69), we collect estimates (2.70) and (2.71) and
use again that for u with L−1E(u) ∼ −1 the energy contributions are separately
bounded by Lemma 5 to obtain

L−1

∫ L

0

|∂tuw| dx . w−1 + w−1/2
w≥1

. w−1/2. (2.75)
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Hence we have for w ≥ 1

L−1

∫ 1

0

∫ L

0

|uw(x, t)| dx dt
u(·,0)=0

= L−1

∫ 1

0

∫ L

0

|
∫ t

0

∂tuw(x, t′) dt′| dx dt

≤ L−1

∫ 1

0

∫ L

0

∫ 1

0

|∂tuw(x, t′)| dt′ dx dt

= L−1

∫ 1

0

∫ L

0

|∂tuw| dx dt

(2.75)

. w−1/2. (2.76)

2.3 Compactness

Proposition 3. Let L ∼ 1 be fixed and {uε}ε↓0 be a sequence such that L−1Eε(u
ε) ∼

−1. Then {uε}ε↓0 is compact in L2((0, L) × (0, 1)).

Proof of Proposition 3. The proof is a classical compensated compactness ar-
gument, in the sense that the strong equi-continuity properties in x compensate the
weak equi-continuity in t. To start, let us first list some direct consequences of the
results in the previous section.

Let {uε}ε↓0 be a sequence such that

L−1Eε(u
ε) ∼ −1. (2.77)

We have due to Lemma 5 that the sequence {uε}ε↓0 is bounded in L2((0, L)× (0, 1)).
Therefore, after extracting a subsequence we may assume that there exists u0 ∈
L2((0, L) × (0, 1)) such that :

uε ε↓0−−⇀ u0 weakly in L2. (2.78)

Hence our goal is to show that this weak convergence is in fact a strong convergence.

Let F denote the Fourier series w.r.t. x and the Fourier transform w.r.t. t. More pre-
cisely, for any L-periodic g(x, t) we define F(g)(ξ, θ) := 1√

L

∫ L

0

∫
R

g(x, t) e−itθe−ixξ dt dx,

where ξ ∈ 2 π
L

Z and θ ∈ R denote the dual variables to x and t, respectively. Since uε

is L-periodic in x with L ∼ 1 and supported in t ∈ [0, 1] we automatically have

|F((uε)2)(ξ, θ)| .

∫ 1

0

∫ L

0

(uε)2 dx dt . 1. (2.79)

By (2.78), we have

F(uε)
ε↓0−−→ F(u0) pointwise.

Therefore, we have for all R > 0
∫

BR(0)

|F(uε) −F(u0)|2 dξ dθ
ε↓0−−→ 0, (2.80)
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where BR(0) = {(ξ, θ) ∈ 2 π
L

Z × R | |θ| < R and |ξ| < R} and
∫
· dξ dθ denotes the

integration w.r.t. ξ and the discrete summation w.r.t. θ. Hence for strong convergence
in L2, it is enough to show that there is no concentration in the high frequencies, i.e.

∫

( 2 π
L

Z×R)−BR(0)

|F(uε)|2 dξ dθ
R↑∞−−−→ 0 (2.81)

uniformly in ε.

Before embarking on (2.81), we note that

∫ 1

0

∫ L

0

||∂x|s uε|2 dx dt . 1 (2.82)

uniformly in ε. Indeed, since L ∼ 1 we have by Theorem 3 c1) that

∆−α

∫ 1

0

∫ L

0

|(uε)∆ − uε|2 dx dt . 1

for α ∈ [0, 2
5
) uniformly in ε. Therefore for 0 < r < 1

∫ 1

0

∫ 1

0

1

∆2/5+r

∫ L

0

|(uε)∆ − uε|2 dx d∆ dt . 1

uniformly in ε, as well as for 1 < r < ∞
∫ 1

0

∫ ∞

1

1

∆r

∫ L

0

|(uε)∆ − uε|2 dx d∆ dt . 1

uniformly in ε. This entails

∫ 1

0

∫ ∞

0

∆−2s

∫ L

0

|(uε)∆ − uε|2 dx
1

∆
d∆ dt . 1

for s ∈ (0, 1
5
) uniformly in ε. We once again refer to the characterization of fractional

Sobolev spaces in [LM68, p.59] to deduce (2.82).

We now turn to the proof of (2.81). We will use the identity σε = −∂x(
1
2
(uε)2)+ ∂tu

ε

to provide for control of oscillations in t via its Fourier transformed version, namely

−i θF(uε) = F(σε) − 1
2
i ξF((uε)2). (2.83)

Moreover, we have by assumption due to Lemma 5 that

∫ 1

0

∫ L

0

∣∣|∂x|−1/2σε
∣∣2 dx dt

ε↓0−−→ 0. (2.84)

Therefore we have for M2 � M1 � 1
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∫

{|ξ|>M1}∪{|θ|>M2}
|F(uε)|2 dξ dθ

≤
∫

{|ξ|>M1}
|F(uε)|2 dξ dθ +

∫

{|ξ|≤M1}∩{|θ|>M2}
|F(uε)|2 dξ dθ

(2.83)

.

∫

{|ξ|>M1}
|F(uε)|2 dξ dθ

+

∫

{|ξ|≤M1}∩{|θ|>M2}

|F(σε)|2
|θ|2 dξ dθ +

∫

{|ξ|≤M1}∩{|θ|>M2}

1

|θ|2 |ξ|
2|F((uε)2)|2 dξ dθ

≤ 1

M2s
1

∫

{|ξ|>M1}
|ξ|2s|F(uε)|2 dξ dθ dξ dθ +

M1

M2
2

∫

{|ξ|≤M1}∩{|θ|>M2}

|F(σε)|2
|ξ| dξ dθ

+

∫

{|ξ|≤M1}∩{|θ|>M2}

1

|θ|2 |ξ|
2 dξ dθ (sup |F((uε)2)|)2

(2.82),(2.84),(2.79)

.
1

M2s
1

+
M1

M2
2

+
M3

1

M2

.

With the choice M1 = M1/4, M2 = M , this implies
∫

{|ξ|>M1}∪{|θ|>M2}
|F(uε)|2 .

1

M s/2
+

M1/4

M2
+

M3/4

M

M↑∞−−−→ 0

uniformly in ε, which yields (2.81).

Proof of Theorem 4. We give a proof by contradiction. Let 0 < ε � 1 and
L ∼ 1. Assume there exists u with L−1E(u) ∼ −1 such that for any u∗ with

−∂x
1
2
(u∗)2 + ∂tu

∗ = 0

distributionally

L−1

∫ L

0

∫ 1

0

(u − u∗)2 dt dx & 1. (2.85)

Hence, there exist sequences {Lε}ε↓0, {uε}ε↓0 with Lε bounded and L−1
ε E(uε) ∼ −1

such that uε is not close to a weak solution to Burgers’ equation. Rescaling according
to x = Lε

L
x̂ and u = Lε

L
û, we may w.l.o.g. assume that Lε = L. On the other

hand, by Proposition 3, {uε}ε↓0 is compact in L2 and we claim that after extracting
a subsequence, {uε}ε↓0 converges in L2 to a weak solution of Burgers’ equation which
is in contradiction to the assumption. Indeed, if we denote the L2-limit of {uε}ε↓0 by
u0 then {(uε)2}ε↓0 converges to (u0)2 in L1. Therefore, like in (2.84) we have

∫ 1

0

∫ L

0

∣∣|∂x|−1/2σε
∣∣2 dx dt

ε↓0−−→ 0,

and we obtain as desired

−∂x
1
2
(u0)2 + ∂tu

0 = lim
ε↓0

(
−∂x

1
2
(uε)2 + ∂tu

ε
)

= lim
ε↓0

σε = 0 distributionally.
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A Numerical computation of the period of global

minimizers

We want to determine the period of global minimizers of E0 depending on the external
field hext. Obviously, if we minimize the energy w.r.t. the magnetization m2, the
period L of the (computational) domain has to be an integer multiple of the period
of the global minimizer. We are interested in periods L being so large that they do
not affect the period of the global minimizer. Therefore we focus on an appropriate
discretization of the following minimization problem: For given external field hext,
minimize

E0(m2)

L
among all L-periodic m2 for 0 < L < +∞. (A.1)

This in turn is equivalent to the minimization of

Ê(m̂2, L) :=
E0(m̂2(

·
L
, ·))

L
among all 1-periodic m̂2(x1, x2), 0 < L < ∞. (A.2)

We discretize (A.2) with the help of the finite difference discretization Eh
0 (mh) of

E0(m2), which was introduced in [Ste06] and also presented in [CÁOS07]. Here,
m̂h = (m̂j,k) 0≤j≤N1−1, 0≤k≤N2−1 ∈ R

N1×N2 , which is N1-periodic w.r.t. j, is the discrete
approximation to m̂2 on an equidistant grid on (0, 1) × (0, 1).

On the discrete level, the minimization of (A.2) therefore amounts to a minimization
of

Êh(m̂h, L) :=
Eh

0 (m̂h)

L
among all N1-periodic m̂h ∈ R

N1×N2 , 0 < L < ∞. (A.3)

Although Êh in (A.3) is an explicit function of m̂h and L in contrast to the energy
per length (A.1), we do not simultaneously minimize in both m̂h and L. Within our
present implementation, we first have to compute an approximation to the branch of
minimizers (m̂h

Li
, Li)i=0,...,Nmax

defined via

m̂h
L := arg min{Êh(m̂h, L) | m̂h ∈ R

N1×N2 N1-periodic }. (A.4)

Then in a second step we obtain (after a one-dimensional interpolation)

L∗ := arg min e(L) := arg min Êh(m̂h
L, L), where m̂h

L is given by (A.4),

by a one-dimensional minimization. In fact, a straightforward calculus argument
shows, that generically the two-step minimization is equivalent to the simultaneous
minimization.
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Figure 7: Tangent predictor-corrector continuation method

Computation of the branch For the computation of the approximation to the
branch of solutions (m̂h

L, L)L in (A.4) for given hext, we apply a tangent predictor-
corrector path-following method. In order to apply this iterative method we need
a good starting point (m̂h

0 , L0), i.e. a stationary point which indeed belongs to the
minimal branch (A.4). Close to the critical field, we suggest to choose L0 = w∗ and
m̂h

0(hext) from the w∗-periodic bifurcation branch. This is motivated by the following
fact which was described in Section 1.2: The bifurcation at the critical field hcrit is
just slightly subcritical, i.e. the critical field hcrit is just slightly smaller than the
field at the turning point after which the branch becomes stable under w∗-periodic
perturbations. Hence it is reasonable to suppose that for given hext close to the critical
field hcrit the corresponding point on the branch after the turning point is in fact the
global minimizer among all w∗-periodic m2.

Tangent path-following algorithm. Classical iterative path-following takes into ac-
count the special role of the parameter L in the computation of the branch. Within
the tangent continuation method the special role of the parameter L is dropped,
cf. [Geo01]. The branch of solutions to the under-determined nonlinear system of
equations

0 = F (v) := ∇m2
Êh(m̂h, L), (A.5)

where F : R
N1×N2 × (0,∞) → R

N1×N2 and v := (m̂h, L).

is computed in the following way:

1. Initialization. Assume we have v0 = (m̂h
L0

, L0) with F (v0) = 0. Approximate
the tangent of the solution branch in v = v0 by t0 = (0,±1) (increasing or
decreasing L).

2. Iteration. For n = 0, 1, 2 . . . , Nmax we iterate the following two steps, cf.
Figure 7:

a) Compute the predictor pn+1 = vn + ∆s tn, for some ∆s > 0.

b) Compute vn+1 as a solution to the augmented equation
(

F (vn+1)
(vn+1 − pn+1) · tn

)
= 0. (A.6)

Compute the next tangent tn+1 = (vn+1 − vn)/|(vn+1 − vn)|.
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Newton method for the augmented equation. In order to solve (A.6), we apply
an inexact Newton method, i.e. the Newton directions are computed iteratively. This
algorithm is well suited for our problem. In fact, the Jacobian of F has a block
structure with a symmetric block of codimension 1, which consists of the Hessian of
Êh w.r.t. m̂h. Therefore by a block gauss elimination, the computation of the Newton
direction can be reduced to two applications of the conjugated gradient method to the
Hessian. The contributions to the Hessian which come from the local energy terms,
i.e. exchange and Zeeman, are sparse. However, the non-locality in the magnetostatic
energy causes the Hessian of the discrete energy Êh to be dense. Nevertheless, by
the application of Fast Fourier Transform the matrix-vector multiplication, which is
the essential and costly element in the conjugated gradient method, can be computed
efficiently in Fourier space where the nonlocal operator becomes diagonal.

B Domain theory

Consider the total domain theoretic energy per unit length in x1 given by

Edomain(m0
2, w) =

1

w

(
2
(
1 − w

m0

2

)
e(m0

2) + 4
w

m0
2

e
(

m0

2

2

)
− hext(m

0
2)

2
(
w − w2

m0

2

))
.

For hext � 1

a) the minimal energy per length in x1-direction scales as −h3
ext ln2 hext,

b) the optimal inclination of the magnetization scales as m0
2 ∼ hext ln hext, and

c) the optimal period scales as w ∼ hext ln hext.

This can easily be seen by the change of variables

w = hext(ln hext) ŵ, and thus L = hext(ln hext) L̂,

m0
2 = hext(ln hext) m̂0

2,

E = h3
ext(ln

2 hext) Ê, and thus e = h4
ext(ln

3 hext) ê.

(B.1)

Indeed, for m̂0
2, w ∼ 1 and hext � 1, we have that ln w(m0

2)
2 ≈ 3 ln hext so that by

(1.10)
1

ŵ
ê(m̂0

2) ≈
1

ŵ

π

24
(m̂0

2)
4,

and

Êdomain(m̂0
2, ŵ) = 2

(
1 − bw

bm0

2

) 1

ŵ
ê(m̂0

2) + 4
ŵ

m̂0
2

1

ŵ
ê
(

bm0

2

2

)
− (m̂0

2)
2(1 − bw

bm0

2

).

Hence in the regime hext � 1, this change of variables leads to the parameter-free
variational problem

Êdomain(m̂0
2, ŵ) ≈ π

24

(
2

( bm0

2
)4

bw
− 7

4
(m̂0

2)
3
)
−
(
(m̂0

2)
2 − ŵ m̂0

2

)
.
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Due to the constraint ŵ ≤ m̂0
2, we have

Êdomain(m̂0
2, ŵ) '

π

24

1

4
(m̂0

2)
3 − (m̂0

2)
2 + ŵ2, (B.2)

so that
lim inf

|( bm0

2
, bw)|→∞

= +∞.

On the other hand, Êdomain assumes negative values for 0 < ŵ � m̂0
2 . 1. Therefore

we have min Êdomain ∼ −1. Finally we note that from (B.2) we have

lim inf
bm0

2
→0

Êdomain(m̂0
2, ŵ) ≥ 0 uniformly in ŵ2,

and from

Êdomain(m̂0
2, ŵ) '

π

24

1

4

(m̂0
2)

4

ŵ
− (m̂0

2)
2

we gather
lim inf

bw→0
Êdomain(m̂0

2, ŵ) ≥ 0 for fixed (m̂0
2)

4 > 0.

Therefore, min Êdomain is assumed for m̂0
2 ∼ 1 and ŵ ∼ 1.
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