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LARGE DATA EXISTENCE RESULT FOR UNSTEADY FLOWS

OF INHOMOGENEOUS HEAT-CONDUCTING

INCOMPRESSIBLE FLUIDS

JENS FREHSE, JOSEF MÁLEK, AND MICHAEL RŮŽIČKA

Abstract. We consider unsteady flows of inhomogeneous, incompressible,

shear-thickening and heat conducting fluids where the viscosity depends on
the density, the temperature and the shear rate, and the heat conductivity de-
pends on the temperature and the density. For any values of initial total mass
and initial total energy we establish the long-time existence of weak solution

to flows at an arbitrary bounded domain with Lipschitz boundary.

1. Introduction

We are interested in understanding the mathematical properties of unsteady
flows of incompressible, inhomogeneous, shear thickening, heat-conducting fluids
described in terms of the density ̺, the velocity v = (v1, v2, v3), the pressure p and
the temperature θ through the following set of equations (without any difficulty we
could include given sources of linear momentum and energy into the equations)

̺,t + div(̺v) = 0, div v = 0,

(̺v),t + div(̺v ⊗ v) − divSSS(̺, θ,DDD(v)) = −∇p,

(̺θ),t + div(̺θv) − div q(̺, θ,∇θ) = SSS(̺, θ,DDD(v)) ·DDD(v) .

(1.1)

These equations, and all functions involved in their descriptions as well, are con-
sidered in Q := (0, T ) × Ω, where

Ω ⊂ R3 is an open, connected, bounded set with

Lipschitz boundary ∂Ω, and T ∈ (0,∞) .
(1.2)

For simplicity, we first restrict ourselves to the boundary conditions

v = 0 and q · n = 0 on [0, T ] × ∂Ω . (1.3)

The initial density is supposed to be bounded and the initial total energy is inte-
grable, i.e.,

̺(0, ·) = ̺0 ∈ L∞(Ω) , ̺(|v|2/2 + θ)(0, ·) = ̺0(|v0|2/2 + θ0) ∈ L1(Ω) , (1.4)
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and
0 < ̺∗ ≤ ̺0(x) ≤ ̺∗ < +∞ for almost all (a.a.) x ∈ Ω ,

0 < θ∗ ≤ θ0(x) for a.a. x ∈ Ω ,
(1.5)

where ̺∗, ̺
∗ and θ∗ are constants. We shall write in short Problem (P) to denote

the problem to find ̺, v, p and θ satisfying (1.1)–(1.5).
As follows from (1.1) we assume that the deviatoric (traceless) part SSS of the

Cauchy stress depends on the density, the temperature and the symmetric part
of the velocity gradient DDD(v), and the thermal flux q is a function of the density,
the temperature and its gradient. In order to have a clearer picture about the
admissible structure of these functions we may think that SSS and q behave as (for
̺ > 0, θ > 0, DDD ∈ R3×3 symmetric)

SSS(̺, θ,DDD) = ν(̺, θ, |DDD|2)DDD ∼ µ(̺, θ)
(

ǫ + |DDD|2
)(r−2)/2

DDD , r ∈ (1,∞) ,

q(̺, θ,∇θ) = k(̺, θ)∇θ ∼ κ(̺)θβ∇θ =
κ(̺)

β + 1
∇θβ+1 , β ∈ R ,

(1.6)

where ǫ ∈ [0, 1], and for all ̺ > 0 and θ > 0 it holds

0 < m∗ ≤ µ(̺, θ) ≤ m∗ < +∞ and 0 < κ∗ ≤ κ(̺) ≤ κ∗ < +∞
(m∗, m∗, κ∗, κ∗ are constants) .

(1.7)

Thus, in particular, for all ̺ > 0, θ > 0, and DDD, BBB ∈ R3×3 symmetric

SSS(̺, θ,DDD) ·DDD ≥ m∗

(

ǫ + |DDD|2
)(r−2)/2|DDD|2 ≥ 0 , (m∗ > 0)

|SSS(̺, θ,DDD)| ≤ m∗
(

ǫ + |DDD|2
)(r−2)/2|DDD| ,

(

SSS(̺, θ,DDD) − SSS(̺, θ,BBB)
)

·
(

DDD −BBB) ≥ 0 ,

(1.8)

and for all ̺ > 0, θ > 0, ∇θ ∈ R3

q(̺, θ,∇θ) · ∇θ ≥ κ∗ θβ |∇θ|2 =
4κ∗

(β + 2)2
|∇θ(β+2)/2|2 ≥ 0 , (κ∗ > 0)

|q(̺, θ,∇θ)| ≤ κ∗ θβ |∇θ| .
(1.9)

The aim of this paper is to establish the following result.

Theorem 1.1. Let SSS and q be continuous functions of the form (1.6) satisfying
(1.8) and (1.9) with

r ≥ 11/5 and β > −min{ 2
3 , 3r−5

3(r−1)} . (1.10)

Then, for any set of data Ω, T , ̺0, v0, θ0 satisfying (1.2), (1.4) and (1.5), there is
a weak solution to Problem (P) in the sense of Definition 2.1.

Only for simplicity, we omitted external forces and external sources of energy in
the governing equations (1.1).

There have been many studies concerning the mathematical analysis of time-
dependent flows of inhomogeneous, incompressible fluids with the viscosity depend-
ing on or independent of |DDD(v)|2 and depending on or independent of the density.
We discuss the most important earlier contributions in the next section. The main
novelty of this paper consists in including the changes due to heat conduction into
the model. We are not aware any such study in available sources.

The paper is organized in the following way: In the next section, after we intro-
duce the appropriate function spaces we provide the precise definition of the notion
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of weak solution to Problem (P). We also relate our result to earlier studies dealing
with large-data existence theory for inhomogeneous incompressible fluids. Then in
Section 3, we establish the so-called stability of the considered problem with re-
spect to weakly converging (approximate) solutions. (We formally derive uniform
estimates for sequences ̺n, vn and θn that are assumed to solve apriori a perturbed
problem (Pn). The derived estimates generate subsequences weakly converging to
(̺, θ,v). The goal is to show that the weak limits ̺, v and θ form a solution to
Problem (P).) This is definitely not a complete proof as we do not construct appro-
priate approximations here. Instead of going into the details of their constructions
we prefer to provide references to studies where the approximations to problems
similar to Problem (P) are introduced and their existence is proved. We believe
that the interested reader can modify these procedures with some effort. There
are three important tools used within the proof of weak stability of Problem (P):
(i) Div-Curl Lemma developed by Tartar [21] and extended to time-space setting
by Feireisl (see [10], [11], and also Lemma 2.1 below), (ii) renormalized solution
for transport equations due to Lions and DiPerna (see [9] and [17]), and (iii) the
Integration by parts formula as stated and proved in Section 4 (it has a clear origin
in Frehse and Růžička [13]). The last tool seems to be a new conquest of this study.
The final section includes possible extensions and concluding remarks.

2. Definition of solution and Former studies

We shall use the following notation for relevant Banach spaces of functions de-
fined on Ω ⊂ R3 and on Q = (0, T ) × Ω. For any q ∈ [1,∞], Lq := Lq(Ω) denotes
the Lebesgue spaces with the norm ‖·‖q and W 1,q := W 1,q(Ω) is used to denote the

Sobolev spaces with the norm ‖·‖1,q. We denote by W 1,q
0 := W 1,q

0 (Ω) the closure of
C∞

0 (Ω) functions in the norm of W 1,q. If X is a Banach spaces of scalar functions,
then X3, X4 or X3×3, X4×4 denotes the space of vector- or tensor-valued functions
so that each their component belongs to X. Further, we use the following notation
for the spaces of function with zero divergence and their duals (r′ = r/(r − 1))

W 1,q
0,div := {v ∈ W 1,q

0 (Ω)3; div v = 0} , W−1,q′

= (W 1,q
0 )∗ , W−1,q′

div = (W 1,q
0,div)

∗ .

Also, Lq
div denotes the closure of W 1,q

0,div in Lq(Ω)3. The symbols Lq(0, T ;X)

and C([0, T ];X) denote the standard Bochner spaces. We write (a, b) instead of
∫

Ω
a(x)b(x) dx whenever ab ∈ L1(Ω), and use the brackets 〈a, b〉 to denote the du-

ality pairing for a ∈ X∗ and b ∈ X. We use C([0, T ];Lq
weak) and C([0, T ];Lq

div,weak)

to denote the spaces of functions ρ ∈ L∞(0, T ;Lq), or v ∈ L∞(0, T ;Lq
div), satisfying

(ρ(t), z) ∈ C([0, T ]) for all z ∈ Lq′

, or (v(t),ϕ) ∈ C([0, T ]) for all ϕ ∈ Lq′

div.

Definition 2.1. Let Ω, T , ̺0, v0, θ0 satisfy (1.2), (1.4) and (1.5). Assume that SSS

and q satisfy (1.8) and (1.9) with

r ≥ 11/5 and β > −min
{

2
3 , 3r−5

3(r−1)

}

. (2.1)
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We say that (̺,v, θ) is a weak solution to Problem (P) if

0 < ̺∗ ≤ ̺(t, x) ≤ ̺∗ for a.a. (t, x) ∈ Q , (2.2)

̺ ∈ C([0, T ];Lq) for all q ∈ [1,∞)

̺,t ∈ L5r/3(0, T ; (W 1,5r/(5r−3))∗) ,
(2.3)

v ∈ C([0, T ];L2
div,weak

) ∩ Lr(0, T ;W 1,r
0,div)

(̺v),t ∈ Lr′

(0, T ;W−1,r′

div
) ,

(2.4)

θ ∈ L∞(0, T ;L1(Ω)) and θ(t, x) ≥ θ∗ > 0 for a.a.

θ
β−λ+1

2 ∈ L2(0, T ;W 1,2) for all λ ∈ (0, 1) ,

(̺θ),t ∈ L1(0, T ; (W 1,q)∗) with q sufficiently large

(2.5)

and (̺,v, θ) fulfill the following weak formulations

∫ T

0

〈̺,t, z〉 − (̺v,∇z) dt = 0

for all z ∈ Ls(0, T ;W 1,s) with s = 5r/(5r − 3)

(2.6)

∫ T

0

〈(̺v),t,ϕ〉 − (̺v ⊗ v,∇ϕ) +
(

SSS(̺, θ,DDD(v)),DDD(ϕ)
)

dt = 0

for all ϕ ∈ Lr(0, T ;W 1,r
0,div)

(2.7)

∫ T

0

〈(̺θ),t, h〉−(̺θv,∇h)+(k(̺, θ)∇θ,∇h) dt =

∫ T

0

(

SSS(̺, θ,DDD(v)),DDD(v)h
)

dt

for all h ∈ L∞(0, T ;W 1,q) with q sufficiently large

(2.8)

and the initial conditions are attained in the following sense1

lim
t→0+

‖̺(t) − ̺0‖q + ‖v(t) − v0‖2
2 = 0 for any q ∈ [1,∞)

lim
t→0+

(̺(t), θ(t)) = (̺0, θ0).
(2.9)

Since we consider in (2.7) only divergenceless test functions, the pressure does not
appear in the considered definition of weak solution. One can however identify the
pressure p from (2.7) aposteriori. To this end, we take ϕ of the form ϕ = χ(0,t)ψ in

(2.7), χ(0,t) is the characteristic function of (0, t) and ψ ∈ W 1,r
0,div, and compare the

result with two auxiliary Stokes problems (with homogeneous Dirichlet boundary
conditions and pressures having zero mean values)

divu1 = 0 , −∆u1 + ∇p1 = div(̺v ⊗ v − SSS(̺, θ,DDD(v))) ,

and

divu2 = 0 , −∆u2 + ∇p2 = (̺v)(t) − ̺0v0 ∈ L2(Ω)3 →֒ W−1,2(Ω)3 .

1The properties regarding the attainment of the initial condition for the temperature can be

strengthened. Using the concept of renormalized solution it is possible to show that for example

‖
p

θ(t) −
√

θ0‖2 → 0 as t → 0+. We skip the proof of this statement here, referring to [5] for

details. On the other hand, it follows from (2.9) that limt→0+ ̺(|v|2/2+θ)(t, ·) = ̺0(|v0|2/2+θ0),

see (1.4)2 for a comparison.
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As the result, we obtain the existence of p of the form2

p = p1 + (p2),t where p1 ∈ Lr′

(Q) and p2 ∈ L∞(0, T ;L2) . (2.10)

Thus, due to the presence of the time derivative (p2),t in the above form for p, we
do not know if p is an integrable function on Q.

Long-time and large-data existence theory for inhomogeneous incompressible
fluids were investigated in several contributions. The first group of results concerns
Newtonian fluids (r = 2). The results established by Antontsev and Kazhikov in
the seventies are summarized in the monograph Antontsev et al. [1]. P.-L. Lions in
the first chapter of his book [17] provides a detail exposition that includes several
important extensions. In particular, using the concept of renormalized solution
he establishes new convergence and continuity properties of the density that may
vanish at some parts of Ω investigating herewith the models where the viscosity
depends on the density. The another group of results deals with (isothermal flows
of incompressible inhomogeneous) fluids where the viscosity depends on the shear
rate (r 6= 2). We would like to mention the paper by Fernández-Cara et al. [12]
where the existence of weak solution is proved for r ≥ 12

5 (using the fact that in
such range of r for models where the viscosity is not changing with the density
v,t ∈ L2(Q)). In the spatially periodic setting this result has been improved by
Guillén-González [15] and Retelsdorf [19] using higher differentiability method for
the models that can be viewed as the power-law perturbation of the Newtonian
model with the constant viscosity. Frehse and Růžička [13] treating the problem
with no-slip boundary conditions with a viscosity that depends on both the density
and the shear-rate established the existence result for r > 11/5. Theorem 1.1
slightly improves the result established in [13] in two directions: (i) the limiting case
r = 11/5 is included, and (ii) the relationship between the stress tensor SSS and DDD(v)
does not require the existence of potential to SSS (needed in [13]). Of course, the fact
that we consider the full thermodynamic model for inhomogeneous incompressible
fluids is the essential novelty of Theorem 1.1. For the sake of completeness we
provide also basic references to analogous models for homogeneous power-law type
fluids: regarding the isothermal case a summary of the results prior to 2006 can
be found in [18]. The most recent results are established in [8] (r > 6/5) and
[4] (r > 8/5 including also the dependence of the viscosity on the pressure, and
considering Navier’s slip boundary conditions). The thermal flows of incompressible
homogeneous fluids are analyzed in [3] (r = 2) and [5] (r > 9/5 and the viscosity
depending on the pressure, temperature and the shear-rate).

For the later reference we also state Div-Curl Lemma as formulated and reproved
in [11], see [21] for the original work, and [10] for the available reference. We
formulate the lemma in the form suitable to our framework. For a = (a0, a1, a2, a3)
we set

Divt,x a := (a0),t +

3
∑

i=1

(ai),xi
and Curlt,x a := ∇t,xa− (∇t,xa)T ,

where ∇t,xa := (aT
,t ,a

T
,x1

,aT
,x2

,aT
,x3

) .

2The properties of the pressures p1 and p2 thus follow from W 1,q
0 -solvability of the Stokes

problems. To our knowledge, this holds for domains with Lipschitz boundary at least in the range
r ∈ [11/5, 3) analyzed in detail in this paper, see [2]. In general, C1 or C2 domains should suffice

for such results, see [14], [22] or [8].
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Lemma 2.1. Let Q ⊂ R4 be a bounded set. Let p, q, ℓ, s ∈ (1,∞) be such that
1
p + 1

q = 1
ℓ . Assume that {an} and {bn} satisfy

an ⇀ a weakly in Lp(Q)4 and bn ⇀ b weakly in Lq(Q)4 , (2.11)

and

Divt,x a
n and Curlt,x b

n are precompact

in W−1,s(Q) and W−1,s(Q)4×4 , respectively.
(2.12)

Then

an · bn ⇀ a · b weakly in Lℓ(Q) , (2.13)

where · represents the scalar product in R4.

3. Proof of Theorem 1.1

We restrict ourselves to the essential part of the proof here. For this purpose, we
introduce Problems (Pn) that will differ from the Problem (P) by a perturbation

fn, vanishing in Lr′

(0, T ;W−1,r′

0,div ), added to the balance of linear momentum (1.1)2.

Assuming that a large-data solution to (Pn) exists, we shall formally derive apriori
estimates for (̺n,vn, θn) that will be uniform with respect to n ∈ N. Our goal will
be to show that a weak limit of (̺n,vn, θn) in function spaces relevant to the uniform
estimates solves Problem (P). The missing part of the proof, which is a construction
of an appropriate approximation scheme that would result in a problem similar to
Problem (Pn), is skipped here and we refer the reader to earlier papers for the same
(for example, a combination of the approximation in [13] for the isothermal problem
and the approximation in [4] for the incompressible homogeneous heat-conducting,
shear-rate dependent fluids is a possible choice). For the technical reasons (different
structure of the interpolation and embedding inequalities) we investigate the case
r ∈ [11/5, 3), and leave the modifications needed in the analysis of the case r ≥ 3
to the reader.

3.1. Definition of the Problems (Pn). Let (fn, ̺n
0 ,vn

0 , θn
0 ) be sufficiently regular

functions such that

fn → 0 strongly in Lr′

(0, T ;W−1,r′

) , (3.1)

̺n
0 → ̺0 strongly in L∞ , (3.2)

vn
0 → v0 strongly in L2

div , (3.3)

θn
0 → θ0 strongly in L1 . (3.4)

We define Problem (Pn) analogously to Problem (P) making the following mod-
ifications: we put fn on the right hand side of the equation (1.1)2 and take the
initial values for (̺n,vn, θn) near the initial values for Problem (P). We also as-
sume that sufficiently regular long-time and large-data solution to such a perturbed
problem can be established and our objective is to study the limit n → ∞. Thus,
in particular we assume that (̺n,vn, θn) fulfill

div vn = 0 and

∫ T

0

〈̺n
,t, z〉 − (̺nvn,∇z) dt = 0

for all z ∈ Ls(0, T ;W 1,s) with s = 5r/(5r − 3) ,

(3.5)
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∫ T

0

〈

(̺nvn),t,ϕ
〉

−
(

̺nvn ⊗ vn,∇ϕ
)

+
(

SSS(̺n, θn,DDD(vn)),DDD(ϕ)
)

dt

=

∫ T

0

〈

fn,ϕ
〉

dt for all ϕ ∈ Lr(0, T ;W 1,r
0,div) ,

(3.6)

and
∫ T

0

〈

(̺nθn),t, h
〉

−
(

̺nθnvn,∇h
)

+
(

k(̺n, θn)∇θn,∇h
)

dt

=

∫ T

0

(

SSS(̺n, θn,DDD(vn)),DDD(vn)h
)

dt

for all h ∈ L∞(0, T ;W 1,q) with q sufficiently large ,

(3.7)

and attains the initial conditions ̺n
0 ,vn

0 and θn
0 in an appropriate way. Note that

in our understanding (3.5) is equivalent to
∫ t2

t1

(̺n, z,t) + (̺nvn,∇z) dτ = (̺n, z)(t2) − (̺n, z)(t1)

for all z smooth, and a.a. t1, t2: 0 ≤ t1 ≤ t2 ≤ T .

(3.8)

A similar remark concerns (3.6) and (3.7) as well.

3.2. Uniform estimates. We shall derive estimates for (̺n,vn, θn) that are uni-
form with respect to n ∈ N. Without specifying in detail what are the precise
properties of (̺n,vn, θn) these estimates are not rigorous - they can be however
obtained rigorously for a suitable designed approximation scheme (as would be for
example the scheme obtained by putting together approximations used in [13] and
[4]).

As div vn = 0, (3.5) is a transport equation for ̺n. By the method of character-
istics (cf. [1]), one then concludes, using also (1.5)1, that

0 < ̺∗ ≤ ̺n(t, x) ≤ ̺∗ < +∞ for a.a (t, x) ∈ Q . (3.9)

Next, taking z = |vn|2, t1 = 0 and t2 = t in (3.8) we obtain
∫ t

0

(̺n, |vn|2,t) + (̺nvn,∇|vn|2) dτ = (̺n, |vn|2)(t) − (̺n
0 , |vn

0 |2) . (3.10)

Inserting ϕ = vnχ[0,t] into (3.6) (χ[a,b] stands for the characteristic function of the
interval [a, b]) and using (3.10) we obtain the identity

1
2 (̺n, |vn|2)(t) +

∫ t

0

(

SSS(̺n, θn,DDD(vn)),DDD(vn)
)

dτ =

∫ t

0

〈fn,vn〉 dτ + 1
2 (̺n

0 , |vn
0 |2) .

(3.11)
Using (1.8)1 this leads to

(̺n, |vn|2)(t) +

∫ t

0

(

SSS(̺n, θn,DDD(vn)),DDD(vn)
)

dτ + m∗

2

∫ t

0

‖DDD(vn)‖r
r dτ

≤ (̺n
0 , |vn

0 |2) + C

∫ T

0

‖fn‖r′

−1,r′ dτ ≤ C(̺∗, ‖v0‖2) ≤ M ,

(3.12)

where M denotes a positive constant (depending on the size of data) that maximizes
all the estimates. Using (3.9), it follows from (3.12) that

sup
t∈[0,T ]

‖vn(t)‖2
2 + sup

t∈[0,T ]

‖(̺n|vn|2)(t)‖1 ≤ M . (3.13)
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It also follows from (3.12), using Korn’s inequality and the estimates (1.8)1,2, that

0 ≤
∫ T

0

(

SSS(̺n, θn,DDD(vn)),DDD(vn)
)

dt +

∫ T

0

‖∇vn‖r
r dt ≤ M ,

∫ T

0

‖SSS(̺n, θn,DDD(vn))‖r′

r′ dt ≤ M .

(3.14)

The standard interpolation between L∞(0, T ;L2) and Lr(0, T ;L
3r

3−r ) (for simplicity
we deal in the sequel with the case r < 3 as the case r ≥ 3 can be treated easier
with slightly different inequalities) implies that

∫ T

0

‖vn‖5r/3
5r/3 dt ≤ M and also

∫ T

0

‖̺n vn‖5r/3
5r/3 dt ≤ M . (3.15)

As a consequence of the estimates (3.9), (3.14)1 and (3.15) we observe, by Hölder’s
inequality, that

∫ T

0

∣

∣(̺nvn ⊗ vn,∇vn)
∣

∣

∣
dt ≤ M ⇐⇒ r ≥ 11

5
, (3.16)

which gives the restriction for r in Theorem 1.1. Finally, using these estimates it
follows from (3.5) and (3.6) that
∫ T

0

‖(̺nvn),t‖r′

W−1,r′

div

dt ≤ M and

∫ T

0

‖̺n
,t‖

5r/3

(W 1,5r/(5r−3))∗
dt ≤ M . (3.17)

Regarding the estimates concerning the temperature we first take h = −(θn(t, ·)−
θ∗)

−, where z− denotes the negative part of z (i.e., z− = 0 if z ≥ 0 and z− = −z if
z < 0), as a test function in (3.7). As the right hand side of (3.7) is nonnegative we
then conclude from a minimum principle argument (cf. [16]), using (1.5)2 as well,
that

θn(t, x) ≥ θ∗ for a.a. (t, x) ∈ Q . (3.18)

Taking h = 1 in (3.7), and using (3.14)1 and also (3.9), leads to

sup
t∈[0,T ]

‖(̺nθn)(t)‖1 + sup
t∈[0,T ]

‖θn(t)‖1 ≤ M . (3.19)

Next, taking h = −(θn)−λ with 0 < λ < 1 in (3.7) (note that by (3.18) we know
that ‖(θn)−λ‖∞,Q ≤ M) we conclude that3

∫ T

0

‖(θn)
β−λ−1

2 ∇θn‖2
2 dt ≤ M =⇒

∫ T

0

‖(θn)
β−λ+1

2 ‖2
1,2 dt ≤ M

=⇒
∫ T

0

‖θn‖β−λ+1
3(β−λ+1) dt ≤ M .

(3.20)

The standard interpolation of the last estimate with (3.19)2 (valid for β > − 2
3 ,

which is one of the restriction on β from Theorem 1.1) leads to
∫ T

0

‖θn‖s
s dt ≤ M for all s ∈

[

1, 5
3 + β

)

. (3.21)

3To establish the first implication in (3.20) we use (3.19) and the inequality ‖θ
β−λ+1

2 ‖2 ≤
c

`

‖θ‖
β−λ+1

2
1 +‖∇(θ

β−λ+1
2 )‖2

´

that holds if β−λ+1
2

> 0 (and can be easily proved by a contradic-

tion argument), and the inequality ‖θ
β−λ+1

2 ‖2 ≤ c valid for β−λ+1
2

≤ 0. The second implication

in (3.20) follows from the continuous embedding of W 1,2 into L6.
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Since (1.9)2 holds, we have

|k(̺n, θn)∇θn| ≤ κ∗|θn|β |∇θn| = κ∗(θn)
β−λ−1

2 |∇θn|(θn)
β+λ+1

2 .

As the sequence (θn)
β−λ−1

2 |∇θn| is uniformly bounded, by (3.20)1, in L2(Q), and

(θn)
β+λ+1

2 is bounded, by (3.21), in L
2

β+λ+1 (
5+3β

3 −δ)(Q) (δ > 0 arbitrarily small),
we observe that

∫

Q

|k(̺n, θn)∇θn|m dx dt ≤ M for all m fulfilling 1 ≤ m <
5 + 3β

4 + 3β
. (3.22)

Further, making use of (3.9) and (3.19), we have for γ > 1

∫ T

0

‖̺nvnθn‖γ
γdt ≤ ̺∗

∫ T

0

‖vn‖γ
3r

3−r

‖θn‖γ
3rγ

(3+γ)r−3γ

dt

≤ C

∫ T

0

‖vn‖γ
1,r‖θn‖(1−α)γ

1 ‖θn‖αγ
3(β−λ+1) dt

≤ C

∫ T

0

‖vn‖γ
1,r‖θn‖αγ

3(β−λ+1) dt ,

(3.23)

where α ∈ [0, 1] fulfills

(3 + γ)r − 3γ

3rγ
=

1 − α

1
+

α

3(β − λ + 1)

⇐⇒ α =
(β − λ + 1)

3(β − λ) + 2

2rγ − 3r + 3γ

rγ
.

(3.24)

Applying the Hölder inequality to (3.23) we obtain

∫ T

0

‖̺nvnθn‖γ
γdt (3.25)

≤ C

(

∫ T

0

‖θn‖β−λ+1
3(β−λ+1) dt

)

αγ
β−λ+1

(

∫ T

0

‖vn‖
(β−λ+1)γ

(β−λ+1)−αγ

1,r dt

)

(β−λ+1)−αγ
β−λ+1

≤ M,

where the bound (uniform w.r.t. n) follows from (3.14)1 and (3.20) provided that

(β − λ + 1)γ

(β − λ + 1) − αγ
= r . (3.26)

Using the formula for α given in (3.24), we see that (3.26) holds if γ = r(3β−3λ+5)
3β+2r−3λ+5 ,

and γ > 1 if β > − 3r−5
3(r−1) , which is the other restriction on β from Theorem 1.1.

To summarize, we have observed that

∫ T

0

‖̺nvnθn‖γ
γdt ≤ M with γ =

r(3β − 3λ + 5)

3β + 2r − 3λ + 5
. (3.27)
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Note, that γ > 1 if β > − 3r−5
3(r−1) . Finally, we conclude from (3.7) and the estimates

(3.14), (3.22) and (3.27) that4

‖(̺nθn),t‖L1(0,T ;(W 1,q)∗) ≤ M for q sufficiently large. (3.29)

3.3. Weak convergences. The uniform estimates (3.9), (3.13)–(3.15), (3.17)–
(3.21) and Alaoglu-Bourbaki Theorem imply the existence of subsequences5 selected
from {̺n}, {vn} and {θn} and a triple (̺,v, θ) such that

̺n ⇀ ̺ weakly in Lq(Q) for any q ∈ [1,∞) and *-weakly in L∞(Q) ,

0 < ̺∗ ≤ ̺(t, x) ≤ ̺∗ < ∞ for a.a. (t, x) ∈ Q ,
(3.30)

̺n
,t ⇀ ̺,t weakly in L5r/3(0, T ; (W 1,5r/(5r−3))∗) , (3.31)

vn ⇀ v weakly in Lr(0, T ;W 1,r
0,div) and L5r/3(Q)3

and *-weakly in L∞(0, T ;H) ,
(3.32)

θn ⇀ θ weakly in Lq(Q) for any q ∈ [1, 5+3β
3 ) ,

θ(t, x) ≥ θ∗ > 0 for a.a. (t, x) ∈ Q .
(3.33)

Also, there exists ̺v ∈ L5r/3(Q)3, SSS ∈ Lr′

(Q)3×3 and θα ∈ L2(0, T ;W 1,2) such
that6

̺nvn ⇀ ̺v weakly in L5/3(Q)3 , (3.34)

SSS(̺n, θn,DDD(vn)) ⇀ SSS weakly in Lr′

(Q)3×3 , SSS = SSS
T
,SSS being traceless , (3.35)

(θn)α ⇀ θα weakly in L2(0, T ;W 1,2) for α ∈ (0, (β + 1)/2] ∩ Q . (3.36)

3.4. Strong convergences of {̺n}, {vn} and {θn} and their consequences.

Starting with (3.9), (3.30), (3.31) and Aubin-Lions Lemma (see [20], Corollary 8.4)
one obtains that

̺n → ̺ strongly in C([0, T ];W−1,5r/3) . (3.37)

Next, we show by Div-Curl Lemma 2.1 that

̺nvn
i ⇀ ̺vi weakly in Lq(Q) for all q ∈ [1, 5r/6]

(
(3.34)
=⇒ for all q ∈ [1, 5r/3]) .

(3.38)

We take an = (̺n, ̺nvn
1 , ̺nvn

2 , ̺nvn
3 ) and bn = (vn

i , 0, 0, 0), i ∈ {1, 2, 3} fixed.
Clearly, by (3.30) and (3.34) an converges weakly to the limit (̺, ̺v1, ̺v2, ̺v3) in
Lq(Q)4 for all q ∈ [1, 5r/3], and bn ⇀ (vi, 0, 0, 0) weakly in L5r/3(Q)4. Since

Divt,x a
n = (̺n),t + div(̺nvn) = 0 ,

Curlt,x b
n =

(

0 ∇vn

−(∇vn)T O

)

(O denotes zero 3 × 3 matrix) ,

4More precisely, it follows from the version of (3.7) which holds for almost all τ ∈ (0, T ) and
the estimates (3.14), (3.22) and (3.27) that for sufficiently large q and for almost all τ ∈ (0, T )

‖(̺nθn),t(τ)‖(W1,q)∗ = sup
‖h‖1,q≤1

˛

˛〈(̺nθn),t(τ), h〉
˛

˛ ≤ gn(τ), (3.28)

where ‖gn(τ)‖L1(0,T ) ≤ M < ∞. Thus, integrating (3.28) w.r.t. τ over (0, T ) we obtain (3.29).
5We shall use the standard convention and denote these selected subsequences again through

{̺n}, {vn}, {θn}. This comment concerns later selections as well.
6For α ∈ (0, β/2] ∩ Q we use (3.20) and (3.18) for the last convergence.
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and ∇vn is bounded in Lr(Q)3×3 which is compactly embedded into W−1,r(Q),
Div-Curl Lemma 2.1 implies (3.38). From (3.31) and (3.38) we conclude that ̺ and
v satisfy (2.6). This in turn implies, by using test functions of the form χ(t1,t2)h,

h ∈ W 1,5r/(5r−3) in (2.6), partial integration with respect to time and the density
of W 1,5r/(5r−3) in L1 that ̺ ∈ C([0, T ];L∞

weak), i.e. for all h ∈ L1 and all 0 ≤ t0 ≤ T
we have

lim
t→t0

(̺(t), h) = (̺(t0), h) . (3.39)

Using the concept of renormalized solution to the equation (3.5), it is possible
to strengthen (3.37) and (3.39). Proceeding step by step as in Lions [17] one can
observe that

̺n → ̺ strongly in C([0, T ];Lq) for all q ∈ [1,∞) and a.e. in Q , (3.40)

and also,

lim
t→0+

‖̺(t) − ̺0‖q = 0 for all q ∈ [1,∞) , (3.41)

which is the first part of (2.9)1.
Let us now establish the convergence properties of {vn} and of related quantities.

First, note that using (3.17) and (3.38), we get

(̺nvn),t ⇀ (̺v),t weakly in Lr′

(0, T ;W−1,r′

div ) . (3.42)

Second, from (3.13), (3.32) and (3.40) we deduce that
√

̺nvn ⇀
√

̺v weakly in L2(Q)3 . (3.43)

Next, we notice that Aubin-Lions Lemma (see [20], Corollary 8.4), (3.13)2, (3.9)
and (3.17)1, and also (3.38) imply that

̺nvn → ̺v strongly in C(0, T ;W−1,r′

div ) . (3.44)

From this and (3.32) follows that (as n → ∞)
∫ T

0

(

̺nvn,vn
)

dt =

∫ T

0

〈̺nvn,vn〉
W−1,r′

div ,W 1,r
0,div

dt

→
∫ T

0

〈̺v,v〉
W−1,r′

div ,W 1,r
0,div

dt =

∫ T

0

(̺v,v) dt ,

(3.45)

i.e. the sequence ‖√̺nvn‖2 converges to ‖√̺v‖2. This together with (3.43) implies
√

̺nvn → √
̺v strongly in L2(Q)3 , (3.46)

and
√

̺nvn(t) → √
̺v(t) strongly in L2(Ω)3 for almost all t ∈ [0, T ] . (3.47)

Using (3.15), (3.40) and (3.46), we come to the conclusion that

vn → v strongly in Lq(Q) for all q ∈ [1, 5r/3) and a.e. in Q . (3.48)

Using this and (3.30) we easily check that for r > 6/5

̺nvn ⊗ vn ⇀ ̺v ⊗ v weakly in Lq′

(0, T ;W−1,q′

) for q sufficiently large.

By density arguments we deduce from this, (3.30) and (3.32) that for r ≥ 11/5

̺nvn ⊗ vn ⇀ ̺v ⊗ v weakly in Lr′

(0, T ;W−1,r′

div ) . (3.49)
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Finally, we establish the strong convergence properties of {θn}, again by means
of Div-Curl Lemma 2.1. For this purpose, we take an = (̺nθn, Qn

1 , Qn
2 , Qn

3 ) with
Qn := ̺nθnvn + κ(̺n, θn)∇θn, and bn = ((θn)α, 0, 0, 0) with α ∈ (0, (β + 1)/2)
rather small. By (3.22), (3.27), (3.40) and (3.33) we observe that {an} converges
weakly to a in La(Q), for some a > 1 (near 1), where a1 = ̺θ, and bn ⇀ (θα, 0, 0, 0)
in Lb(Q) for b big enough so that 1/a + 1/b < 1 (which is possible if α is small
enough). Observing that for 1 < s < 4

3

Divt,x a
n = (̺nθn),t + divQn = SSS(̺n, θn,DDD(vn)) ·DDD(vn) ⊂ L1(Q) →֒→֒ W−1,s(Q)

and

Curlt,x b
n =

(

0 ∇(θn)α

−(∇(θn)α)T O

)

⊂ L2(Q)4x4 →֒→֒ W−1,2(Q)4x4 ,

another application of Div-Curl Lemma 2.1 leads to the conclusion that

̺n(θn)α+1 ⇀ ̺θθα weakly in L1+ǫ(Q) for some ǫ > 0 . (3.50)

Due to (3.40) and (3.21), (3.50) leads to

̺(θn)α+1 ⇀ ̺θθα weakly in L1+ǫ̃(Q) for some ǫ̃ > 0 . (3.51)

By a well-known monotone operator argument (Minty’s method)7, we conclude
from (3.51) that

θα = θα a.e. in Q . (3.53)

Thus, it follows from (3.51) that {̺ 1
1+α θn} converges to {̺ 1

1+α θ} weakly in L1+α(Q)

and that ‖̺ 1
1+α θn‖L1+α(Q) converges to ‖̺ 1

1+α θ‖L1+α(Q). Consequently,

̺
1

1+α θn → ̺
1

1+α θ strongly in L1+α(Q) .

This together with (3.21) and (3.33) implies that

θn → θ strongly in Lq(Q) for all q ∈ [1, 5/3 + β) and a.e. in Q . (3.54)

As a consequence of (3.40), (3.54), (3.27) and (3.48) we conclude that

̺nθn → ̺θ strongly in Lq(Q) for all q ∈ [1, 5/3 + β) (3.55)

and (proceeding similarly as between the lines (3.23) and (3.27))

̺nθnvn → ̺θv strongly in L1(Q)3 . (3.56)

It also follows from the established strong convergence of {θn} and from (3.36) that

(θn)α ⇀ θα weakly in L2(0, T ;W 1,2) for all α ∈ (0, (β + 1)/2) . (3.57)

7Since zα is a increasing continuous function for α > 0 (z ∈ R+), it holds for h > 0, h ∈
L1+ǫ(Q) that

0 ≤
Z T

0

“

̺
ˆ

(θn)α − hα
˜

, θn − h
”

dt =

Z

Q

ˆ

̺
`

θn
´α+1 − ̺hαθn − ̺(θn)αh + ̺hα+1

˜

dx dt . (3.52)

Taking limit n → ∞ in (3.52), using (3.51) as well, we obtain easily

0 ≤
Z T

0

“

̺
ˆ

θα − hα
˜

, θ − h
”

dt valid for all h > 0, h ∈ L1+ǫ(Q) .

Minty’s argument then leads to (3.53).
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Next, we notice that

q(̺n, θn,∇θn) = k(̺n, θn)∇θn

=
2

β − λ + 1

[

θn
]

1+λ−β
2 k(̺n, θn)∇

(

θn
)

β−λ+1
2 .

(3.58)

Taking λ > 0 small and q such that

(β + λ + 1)
q

2
=

5

3
+ β − λ , (3.59)

we observe that due to (1.9)2 and (3.21) the following uniform bound holds:
∫ T

0

‖
[

θn
]

1+λ−β
2 k(̺n, θn)‖q

q dt ≤ C

∫ T

0

∫

Ω

(

θn
)(β+λ+1)

q
2 dx dτ ≤ M . (3.60)

Note that q defined in (3.59) fulfills q > 2 for λ > 0 small enough. Vitali’s theorem,
(3.60) and almost everywhere convergences for ̺n and θn established in (3.40) and
(3.54) lead to

[

θn
]

1+λ−β
2 k(̺n, θn) →

[

θ
]

1+λ−β
2 k(̺, θ) strongly in L2(0, T ;L2) . (3.61)

Moreover, (3.57) implies that

∇(θn)
β−λ+1

2 ⇀ ∇θ
β−λ+1

2 weakly in L2(0, T ;L2) , (3.62)

Starting from (3.58), and referring to (3.62), (3.61) and (3.22) we finally come to
the conclusion that

q(̺n, θn,∇θn) ⇀ q(̺, θ,∇θ) weakly in Lm(Q) for all m ∈
(

1, 5+3β
4+3β

)

. (3.63)

3.5. Strong convergence of {DDD(vn)} and Limit n → ∞ in (3.6) and in (3.7).
Since the requirement on our parameter r, namely r ≥ 11/5, puts the Problem (P)
among the subcritical ones (see [18] for details), one expects that the Minty method
or standard monotone operator technique should give the strong convergence of
DDD(vn). We shall show that this is indeed the case relying however on the integration
by parts formula established in Section 4. This formula represents the key tool in
the argument.

Using (3.42), (3.49), (3.35), and (3.1), we can take limit n → ∞ in (3.6) and
obtain

∫ T

0

〈

(̺v),t,ϕ
〉

−
(

̺v ⊗ v,∇ϕ
)

+
(

SSS,DDD(ϕ)
)

dt = 0

for all ϕ ∈ Lr(0, T ;W 1,r
0,div) .

(3.64)

If we take ϕ(s, x) = χ(t0,t1)(s)ψ(x) in (3.64), where χ(t0,t1) denotes the charac-

teristic function of the interval (t0, t1) and ψ ∈ W 1,r
0,div, it is possible to conclude

(see for example [18], Sect. B.3.8 for similar arguments), using also (3.30) and
(3.32), that ̺v ∈ C([0, T ], L2

div,weak). Using in (3.6) test functions ϕ’s of the form

ϕ(s, x) = χ(0,t)(s)ψ(x) and performing partial integration with respect to time in
the first term, we obtain with the help of (3.44), (3.2), (3.3), (3.49), (3.35) and (3.1)

(̺(t)v(t),ψ) − (̺0v0,ψ) =

∫ t

0

(

̺v ⊗ v,∇ψ
)

−
(

SSS,DDD(ψ)
)

dt for all ψ ∈ W 1,r
0,div .

This immediately implies

lim
t→0+

(̺(t)v(t) − ̺0v0,ψ) = 0 for all ψ ∈ L2
div . (3.65)
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Letting n → ∞ in (3.11), neglecting the second nonnegative term and using (3.47),
one easily concludes that

(̺, |v|2)(t) ≤ (̺0, |v0|2) for a.a. t ∈ [0, T ] . (3.66)

Since

‖
√

̺(t)(v(t) − v0)‖2
2 = (̺, |v|2)(t) − 2((̺v)(t),v0) + (̺(t), |v0|2) , (3.67)

we can conclude, using (3.66), (3.41) for the first term and (3.65), (3.39) for the
other terms, that the right hand side of (3.67) tends to zero as t → 0+. Conse-
quently,

lim
t→0+

‖
√

̺(t)(v(t) − v0)‖2
2 = 0 , (3.68)

which implies (together with (3.30)2) the second part of (2.9)1 and (together with
(3.39), (3.41)) the fact that

lim
t→0+

(̺, |v|2)(t) = (̺0, |v0|2) . (3.69)

Note, that the couple (̺,v) satisfies (2.6), which implies that also (4.5) is satisfied.
Using (3.69) and Lemma 4.1 we conclude that there are Tδ ∈ (0, T ] such that

Tδ → T as δ → 0+ , (3.70)
∫ Tδ

0

〈

(̺v),t,v
〉

− (̺v ⊗ v,v) dt =
1

2
(̺, |v|2)(Tδ) −

1

2
(̺0, |v0|2) , (3.71)

and that in addition (3.47) holds for t = Tδ. Next, taking ϕ = vχ(0,Tδ) in (3.64)
we conclude, using (3.71) that

1

2
(̺, |v|2)(Tδ) +

∫ Tδ

0

(SSS,DDD(v)) dt =
1

2
(̺0, |v0|2) . (3.72)

By (1.8)3 we get for all BBB ∈ Lr(Q)3×3 ,BBB = BBBT ,

0 ≤
∫ Tδ

0

(

SSS(̺n, θn,DDD(vn)) − SSS(̺n, θn,BBB),DDD(vn) −BBB
)

dt . (3.73)

Using (3.11) with t = Tδ, we can rewrite (3.73) for all BBB ∈ Lr(Q)3×3 ,BBB = BBBT , as

0 ≤1

2

(

(̺n
0 , |vn

0 |2) − (̺n, |vn|2)(Tδ)
)

+

∫ Tδ

0

〈fn,vn〉 dt

−
∫ Tδ

0

(

SSS(̺n, θn,DDD(vn)),BBB
)

dt −
∫ Tδ

0

(

SSS(̺n, θn,BBB),DDD(vn) −BBB
)

dt

(3.74)

Letting n → ∞ in (3.74) and using (3.1)–(3.3), (3.32), (3.35), (3.40), (3.54), (1.8)2,
the continuity of SSS, Lebesgue Dominated Convergence Theorem and (3.47) we con-
clude that

0 ≤ 1

2

(

(̺0, |v0|2)−(̺, |v|2)(Tδ)
)

−
∫ Tδ

0

(

SSS,BBB
)

dt−
∫ Tδ

0

(

SSS(̺, θ,BBB),DDD(v) −BBB
)

dt

for all BBB ∈ Lr(Q)3×3 , BBB = BBB
T .

(3.75)

This together with (3.72) implies that

0 ≤
∫ Tδ

0

(

SSS − SSS(̺, θ,BBB),DDD(v) −BBB
)

dt for all BBB ∈ Lr(Q)3×3 , BBB = BBB
T . (3.76)
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Letting finally δ → 0+ and using (3.70) we easily obtain from (3.76) that

0 ≤
∫ T

0

(

SSS − SSS(̺, θ,BBB),DDD(v) −BBB
)

dt for all BBB ∈ Lr(Q)3×3 , BBB = BBB
T . (3.77)

Minty’s method using BBB = DDD(v) ± λEEE, where λ > 0 and EEE ∈ Lr(Q)3×3 symmetric
are arbitrary, then leads to the conclusion that

0 =

∫ T

0

(

SSS − SSS(̺, θ,DDD(v)),EEE
)

dt for all EEE ∈ Lr(Q)3×3 , EEE = EEE
T , (3.78)

which implies

SSS(t, x) = SSS(̺, θ,DDD(v))(t, x) for a.a. (t, x) ∈ Q . (3.79)

This and (3.64) shows that (2.7) is satisfied for ̺ and v.
Next we show that also (2.8) is satisfied. Using again (1.8)3 and proceeding as

above, it is simple to verify that

lim
n→∞

∫ T

0

(

SSS(̺n, θn,DDD(vn)) − SSS(̺n, θn,DDD(v)),DDD(vn − v)
)

dt = 0. (3.80)

Setting an(t, x) = an :=
(

SSS(̺n, θn,DDD(vn))−SSS(̺n, θn,DDD(v))
)

·DDD(vn −v) ≥ 0, (3.80)

says that an → 0 strongly in L1(Q). Consequently, for any h ∈ L∞(Q)

0 = lim
n→∞

∫

Q

an h dx dt = lim
n→∞

∫

Q

SSS(̺n, θn,DDD(vn)) ·DDD(vn)h dx dt

+ lim
n→∞

∫

Q

SSS(̺n, θn,DDD(v)) ·DDD(v)h dx dt

− lim
n→∞

∫

Q

SSS(̺n, θn,DDD(v)) ·DDD(vn)h dx dt

− lim
n→∞

∫

Q

SSS(̺n, θn,DDD(vn)) ·DDD(v)h dx dt .

(3.81)

By (3.32), (3.40), (3.54), (3.35) and (3.79), we conclude from (3.81) that (we also
use Lebesgue Dominated Convergence Theorem)

lim
n→∞

∫

Q

SSS(̺n, θn,DDD(vn)) ·DDD(vn)h dx dt =

∫

Q

SSS(̺, θ,DDD(v)) ·DDD(v)h dx dt

for all h ∈ L∞(Q) .

(3.82)

Finally, letting n → ∞ in (3.7), it is an easy matter to conclude, using above
established convergence properties ((3.82), (3.55), (3.56) and (3.63) in particular),
that the triplet ̺, θ and v satisfies (2.8). Note that it follows directly from (3.7)
and (3.28), as a consequence of the convergence results (3.82), (3.56) and (3.63)

that
∫ T

0
〈z, h〉 dt := limn→∞

∫ T

0
〈(̺nθn),t, h〉 dt exists for all h ∈ L∞(0, T ;W 1,q(Ω)).

And also, due to (3.55) we have limn→∞

∫ T

0
〈(̺nθn),t, h〉 dt =

∫ T

0
〈(̺θ),t, h〉 dt for

all h ∈ D(0, T ;W 1,q(Ω)). So, z = (̺θ),t. Finally, we take h = 1χ[0,t] in (2.8) and
observe that limt→0+(̺(t), θ(t)) = (̺0, θ0), which implies (2.9)2.

The proof of Theorem 1.1 is complete.
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4. Integration by parts formula

The aim of this section is to establish an important lemma that extends the
validity of integration by parts formula to integrable functions. Several definitions
precedes its formulation.

For any function z and for h > 0 we set

(ω+
h ∗ z)(t, x) :=

1

h

∫ h

0

z(t + τ, x) dτ and (ω−

h ∗ z)(t, x) :=
1

h

∫ 0

−h

z(t + τ, x) dτ .

Introducing also the notation

Dhz :=
z(t + h, x) − z(t, x)

h
and D−hz :=

z(t, x) − z(t − h, x)

h

we observe that

(ω+
h ∗ z),t = Dh(z) and (ω−

h ∗ z),t = D−h(z) (4.1)

For the later reference we mention a simple relation

−
∫ t1

t0

f(τ)Dhg(τ) dτ =

∫ t1

t0

D−hf(τ)g(τ) dτ +
1

h

∫ t0+h

t0

f(τ − h)g(τ) dτ

− 1

h

∫ t1+h

t1

f(τ − h)g(τ) dτ ,

(4.2)

and for the couple (̺,v) we define for t > 0

K(t) :=
1

2
(̺(t), |v(t)|2) =

1

2

∫

Ω

̺(t, x)|v(t, x)|2 dx .

Lemma 4.1. For r ≥ 11/5 assume that

v ∈ Lr(0, T ;W 1,r
0,div) ∩ L∞(0, T ;L2(Ω)3)

(̺v),t ∈
(

Lr(0, T ;W 1,r
0,div)

)∗
(4.3)

̺ ∈ L∞(Q) ∩ C([0, T ];Lq) for all q ∈ [1,∞) , (4.4)

and the couple (̺,v) is a weak solution to ̺,t + div(̺v) = 0, which means that for
all t0, t1 ∈ [0, T ]
∫ t1

t0

(̺(τ), z,t(τ)) + (̺(τ)v(τ),∇z(τ)) dτ = (̺(t1), z(t1)) − (̺(t0), z(t0))

for all z ∈ Ls(0, T ;W 1,s) with s = 5r/(5r − 3) and z,t ∈ L1+δ(0, T ;L1+δ) .

(4.5)

Then the following formula holds for almost all t0, t1 ∈ [0, T ] (t0 < t1)
8

∫ t1

t0

〈

(̺v),t,v
〉

−
(

̺v ⊗ v,∇v
)

dt = K(t1) − K(t0) . (4.6)

8Note that the statement (4.6) can be also written as
Z t1

t0

˙

(̺v),t + div(̺v ⊗ v), v
¸

dt = K(t1) − K(t0) .
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Proof. Let t0 and t1 fulfill 0 < t0 < t1 < T . Then for h ∈ (0,min{T − t1, t0}) we
set

Lh :=

∫ t1

t0

〈

(̺v),t, ω
+
h ∗ ω−

h ∗ v
〉

dt ,

and we observe that to prove (4.6) is equivalent to show that

lim
h→0+

Lh =

∫ t1

t0

(

̺v,
1

2
∇|v|2

)

dt +
[

K(t1) − K(t0)
]

. (4.7)

Integration by parts together with (4.1) results in

Lh = −
∫ t1

t0

(

̺v,Dh(ω−

h ∗ v)) dt

+
(

(̺v)(t1), (ω
+
h ∗ ω−

h ∗ v)(t1)
)

−
(

(̺v)(t0), (ω
+
h ∗ ω−

h ∗ v)(t0)
)

,

(4.8)

which implies

lim
h→0+

Lh = lim
h→0+

Ah + 2
[

K(t1) − K(t0)
]

, (4.9)

where Ah := −
∫ t1

t0

(

̺v,Dh(ω−

h ∗ v)
)

dt . Using the formula (4.2), we observe that

lim
h→0+

Ah = lim
h→0+

∫ t1

t0

(

D−h(̺v), ω−

h ∗ v
)

dt − 2
[

K(t1) − K(t0)
]

. (4.10)

Then (4.9) and (4.10) lead to

lim
h→0+

Lh = lim
h→0+

Bh (4.11)

where Bh :=
∫ t1

t0

(

D−h(̺v), ω−

h ∗ v
)

dt. Next, notice that

Bh =

∫ t1

t0

(

̺D−hv, ω−

h ∗ v
)

dt +

∫ t1

t0

(

(D−h̺)v(· − h), (ω−

h ∗ v)
)

dt

=

∫ t1

t0

(

̺,
1

2
|ω−

h ∗ v|2,t
)

dt +

∫ t1

t0

(

ω−

h ∗ (̺v),∇(v(· − h) · (ω−

h ∗ v))
)

dt ,

(4.12)

where we used (4.1) and the relation D−h̺ = −div(ω−

h ∗ (̺v)), which follows from
the fact that the couple (̺,v) solves ̺,t + div(̺v) = 0 in a weak sense. Finally,
inserting z = 1

2 |ω
−

h ∗ v|2 into (4.5) we conclude that

Bh =
(

̺(t1),
1

2
|ω−

h ∗ v|2(t1)
)

−
(

̺(t0),
1

2
|ω−

h ∗ v|2(t0)
)

(4.13)

−
∫ t1

t0

(

̺v,
1

2
∇|ω−

h ∗ v|2
)

dt +

∫ t1

t0

(

ω−

h ∗ (̺v),∇(v(· − h) · (ω−

h ∗ v))
)

dt .

Taking limit h → 0 in (4.13), and recalling (4.11) we obtain the assertion (4.7), for
almost all t0 and t1 in (0, T ). This proves (4.6). �

5. Extensions and concluding remarks.

In this paper we established the existence of weak solution to unsteady flows of
incompressible inhomogeneous heat-conducting fluids of a power-law type (some-
times people called these materials with such a polynomial dependence of the shear
stress on the shear rate generalized Newtonian or modified Navier-Stokes fluids)
without requiring any smallness of initial data or without restricting ourselves to
a short-time interval. To our best knowledge, this is the first large data result
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for flows of incompressible fluids that includes both the thermal changes and in-
homogeneity of material. Although the values of the power-law index r taken in
the range r ≥ 11/5 puts Problem (P) into subcritical one, one needs to overcome
certain technical difficulties in the proof. Following [13], we formulate and prove
the integration by parts formula in Section 4 that reveals to be an appropriate tool
to extend the standard monotone operator method to the considered setting. This
allows us to re-prove the results for uniform temperature (isothermal case) under
weaker assumptions on the the stress tensor (on one hand, no need to assume the
existence of potential to the stress tensor, on the other hand, the possibility to in-
clude also the limiting case r = 11/5). Our aside intention was to present the proof
as simple as possible. To reach this aim we apply Div-Curl Lemma for evolutionary
problem as outlined and successfully incorporated in the analysis of compressible
fluid models by Feireisl in [10] or [11], and we also relied on the theory for transport
equation (based on the notion of renormalized solution) as presented by P.-L. Lions
in [17]. We also restrict ourselves to thermally and mechanically isolated body,
and assume that initial density and initial temperature are bounded by a positive
constant from below, etc. The approach presented here might be applicable for
the treatment of the following problems: (i) of the approach presented here seem
to be possible: (i) following [17] one could treat the case ̺∗ = 0 (see (1.5)1), (ii)
following [3] or [4] one could replace the no-slip boundary condition by the Navier’s
one, (iii) following [7] one could also consider non-homogeneous Dirichlet boundary
conditions for the temperature at some part of the boundary, and (iv) inspired by
[6] one could also admit a suitable dependence of the heat conductivity coefficient
on the shear rate.

6. Acknowledgement
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