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Regularity results for three dimensional isotropic and
kinematic hardening including boundary

differentiability

Jens Frehse Dominique Löbach

Abstract

For flat Dirichlet boundary we prove that the first normal derivatives of the stresses
and internal parameters are in L∞(0, T ; L1+δ) and in L∞(0, T ; H

1
2
−δ) up to the

boundary.
This regards solutions of elastic-plastic flow problems with isotropic or kinematic
hardening with von Mises yield function.
We show that the elastic strain tensor ε(u) of three dimensional plasticity with
isotropic hardening is contained in the space L∞(0, T ; L6

loc) and in L∞(0, T ; L4−δ) up
to the flat Dirichlet boundary. We obtain related results concerning traces of ε(u).
In the case of kinematic hardening we present a simple proof of the L∞(0, T ; H1

loc)
inclusion of the elastic strain tensor.
Keywords: plasticity with hardening, boundary differentiability, regularity of solu-
tions
MSC(2000): 74C05, 35B65, 35K85

1 Introduction

We consider problems of plasticity with isotropic and kinematic hardening.
Let Ω ⊂ Rn be an open connected, bounded subset with Lipschitz boundary ∂Ω. We
further assume that ∂Ω = ΓD∪̇ΓN , where ΓD has positive (n − 1)-dimensional Hausdorff
measure.

For a vector valued differentiable function u : Rn → Rn we define a second order ten-
sor field ε(u) by

ε(u) =
1

2
(∇u +∇uᵀ) .

This tensor field is called the (linearized) strain tensor of the displacement field u .

In the small strain theory of linear elasticity for every deformation (given by the dis-
placement field u) we have a stress field σ. Here σ is a symmetric second order tensor field,
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thus σ : Ω → Rn×n
sym .

The strain field ε(u) and the stress field σ are linked by a linear relation

Aσ = ε(u) , u
∣∣
ΓD

= 0 .

A ∈ L∞(Ω, Rn×n×n×n) is a symmetric, uniform elliptic fourth order tensor field, i.e., there
exists α > 0 such that for all τ ∈ Rn×n

Aτ : τ ≥ α|τ |2 (1.1)

holds.
For a given applied body force density f : Ω → Rn and exterior surface force g : ΓN → Rn,
there holds the balance of forces in Ω

− div σ = f in Ω

σ · ~n = g on ΓN .
(1.2)

For the plasticity model we introduce a hardening parameter ξ : Ω → Rm, and the yield
function F(σ, ξ) : Rn×n

sym × Rm → R .
The yield function F models the hardening behaviour of the material and is assumed to
be continuous and convex.

In this paper we will consider the von Mises yield criterion only, the method of proof,
however is much more general.
For M ∈ Rn×n we denote by MD := M − 1

n
tr(M)Id the deviator of M .

Let κ > 0, we define

F(σ, ξ) = |σD| − (κ + ξ) isotropic hardening (ξ ∈ R) (1.3a)

F(σ, ξ) = |σD − ξD| − κ kinematic hardening (ξ ∈ Rn×n
sym ) . (1.3b)

We assume for the applied forces

f, ḟ ∈ L∞(0, T ; Ln(Ω, Rn)) (1.4a)

p, ṗ ∈ L∞(0, T ; L∞(∂Ω, Rn)) . (1.4b)

We define the set

M :=
{
(σ, ξ) ∈ L2(0, T ; L2(Ω, Rn×n

sym × Rm))|F(σ, ξ) ≤ 0 a.e. in Ω× Rm × [0, T ]
}

.

In the following let m = 1 in the case of isotropic and m = n× n in the case of kinematic
hardening.
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We suppose the usual safe load condition (cf. Johnson [Joh78]). There exists an element

(σ0, ξ0) ∈ W 1,∞
(
0, T ; L∞(Ω, Rn×n

sym )× L∞(Ω, Rm)
)

such that

F (σ0, ξ0) ≤ −δ0 < 0

− div σ0 = f in Ω× [0, T ]

σ0 · ~n = p on ΓN × [0, T ]

(σ0, ξ0)(0) = 0 in Ω× {t = 0}

 (1.5)

We abbreviate v = ∂
∂t

u(x, t) . We define the basic problem of plasticity with hardening as:

Definition 1.1 (basic Problem) Find σ ∈ L2(0, T ; L2(Ω, Rn×n
sym )), ξ ∈ L2(0, T ; L2(Ω, Rm))

such that σ̇, ξ̇ ∈ L2(0, T ; L2(Ω, Rn×n
sym )), L2(0, T ; L2(Ω, Rm)) exists and , v ∈ L2(0, T ; H1

ΓD
(Ω, Rn))

such that for all (τ, η) ∈M a.e. in [0, T ]:∫
Ω

(
Aσ̇ − ε(v)

)
:
(
τ − σ

)
dx +

∫
Ω

ξ̇ · (η − ξ) dx ≥ 0 (1.6)

〈σ,∇w〉 = 〈f, w〉+

∫
ΓN

pw dΓds ∀w ∈ H1
ΓD

(Ω, Rn) a.e. with respect to t

(σ, ξ)(0) = 0 in Ω× {t = 0}
F(σ, ξ) ≤ 0 a.e. in Ω× [0, T ]

(1.7)

Under mild regularity assumptions it can be shown, that the basic problem (1.6) &(1.7) is
equivalent to the pointwise a.e. equations

ε(u̇) = Aσ̇ + λ̇
σD

|σD|
0 = ξ̇ − λ̇

(1.8)

in isotropic hardening and

ε(u̇) = Aσ̇ + λ̇
σD − ξD

|σD − ξD|

0 = ξ̇ − λ̇
σD − ξD

|σD − ξD|

(1.9)

in kinematic hardening.

Remark: We have chosen the initial condition in (1.7) for simplicity, although the more
realistic (σ, ξ)(0) = (σ0, ξ0) ∈M is obviously covered by our methods.

With the approximation of the basic problem in section 2, it is simple to show (see [FL08]),
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that the basic problem 1.1 satisfies the associated flow rule of plasticity with hardening

Π̇ = λ̇
∂

∂σ
F(σ, ξ) (1.10a)

ξ̇ = −λ̇
∂

∂ξ
F(σ, ξ), (1.10b)

where Π̇ denotes the plastic strain and λ̇ is an non negative multiplier.
For the rest of this paper we will assume the elastic compliance tensor A to be sufficiently
smooth (for simplicity constant).
The existence of solutions of (1.6) &(1.7) and the fact that the displacement velocity v lies
in L2(0, T ; H1

ΓD
(Ω, Rn)) was first shown by Johnson [Joh78], see also Löbach [Löb08].

In the case, that A is sufficiently smooth and some stricter assumptions1 on the body-
and surface forces (1.4), we have σ, ξ ∈ L2(H1

loc) .[Ser94],[Löb08].
Futhermore, Seregin proved in the case (1.3b), that the strains ε(u) (not ε(u̇) !) are con-
tained in the space L∞(H1

loc) . From this and Sobolev imbedding one obtains for n = 3
that the displacement u is Hölder continuous with exponent 1

2
in spatial direction, and in

addition, since ε(u̇) ∈ L2, u is locally Hölder continuous in time with Hölder exponent 1
2
.

All this concerns Seregin’s result in the case of kinematic hardening.

Recently, the authors obtained in [FL08] the Hölder continuity up to the boundary in the
case of isotropic and kinematic hardening with another method, however only in two space
dimensions.
It seems that the analogue of Seregins result i.e. ε(u) ∈ L∞(H1

loc) is not yet known in the
case of isotropic hardening. We are not able to fill this gap, but at least in section 3 we
achieve ε(u) ∈ L∞(L6

loc) for n = 3 in the case of isotropic hardening and related results in
sections 12 & 14.

Differentiability of the stresses and hardening parameters (full derivatives) up to the boundary
is not yet known. The first result seems to be the present paper: in section 5-7 we prove
that Dnσ ∈ L1+δ for the normal derivatives of the stresses and hardening parameter in a
portion of the boundary, where ∂Ω coincides with the hyperplane {x ∈ Rn |xn = 0}. In
fact we have a slightly better result then Dnσ ∈ L1+δ, since there hold additional Morrey
estimates cf. theorem 6.1 for the details.
Our proof of L1+δ-regularity of the stresses contains additional regularity information. In
section 5 we prove

ess sup
t∈[0,T ]

∫
Ω

|Dnσ|2xn dx ≤ K . (1.11)

1The proof of Seregin [Ser94] needs less regularity for the body- and surface forces than Löbach [Löb08].
In Seregin’s case we further need f ∈ C([0, T ]; H1

loc(Ω, Rn)) in the case isotropic hardening. In Löbach’s
case we need Df,4f ∈ L∞(0, T ; Ln(Ω, Rn)) for kinematic- and isotropic hardening.
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This can be refined with a new plate filling technique which yields an additional Mor-
reyspace refinement of (1.11), see section 7 for the details. This allows us to conclude
L∞(H1+δ,1) rather than L∞(H1−δ,1) estimates.
In section 9 we present an alternative proof of the result of Knees, which works also for
the case of isotropic hardening and even for Neumann boundary conditions (the latter is
not elaborated).
Concerning fractional differentiability of the stresses the first result at the boundary
in the kinematic case is due to Alber and Nesenenko [AN08]. These authors show for

kinematic hardening that σ, ξ ∈ H
1
3
−δ. Furthermore D. Knees proved in [Kne08] H

1
2
−δ in

a flat situation for kinematic hardening.
We prove σ, ξ ∈ N 1

2
,2 near the flat Dirichlet boundary, by the imbedding theorem for

Nikol’skii spaces we obtain σ, ξ ∈ H
1
2
−δ. The tangential derivatives of σ, ξ have more reg-

ularity and are in L∞(L2).
In the kinematic case the regularity results on the stresses imply Dτε(u) ∈ L∞(L2) for the

tangential derivatives and ε(u) ∈ L∞(H
1
2
−δ) for the normal derivatives. In [AN08] Alber

& Nesenenko first proved u ∈ H
4
3
−δ in the kinematic case near the boundary.

Regarding the isotropic case, in section 10 we obtain ∇u ∈ L∞(L4−δ) near the boundary
which implies Hölder continuity of the displacements u with exponent α ≤ 1

4
in space

direction and Hölder exponent β < 1
3

in time direction.

2 Approximation

We will approximate the problem (1.6) by a sequence of penalized problems.
We define a viscoplastic type potential Gµ as follows,

Gµ(σ, ξ) =
1

2µ

(
F(σ, ξ)

)2
+

where (a)+ =

{
a if a ≥ 0

0 else
.

In the case of isotropic and kinematic hardening with von Mises yield criterion we have

G′
µ(σ, ξ) := ∇(σ,ξ)Gµ(σ, ξ) ∈ L2 × L2 .

If we set Σ = (σ, ξ) and Π = (πs, πξ), we can derive the flow rule for the penalized problem
of plasticity with hardening:

π̇σ = λ̇
∂

∂σ
F(σ, ξ)

π̇ξ = λ̇
∂

∂ξ
F(σ, ξ),
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where λ̇ ≥ 0 is a multiplier with

λ̇ = 0 if F(σ, ξ) < 0 .

Due to the differentiability and convexity of G′
µ(σ, ξ), it’s derivative G′

µ(σ, ξ) is a monotone
operator. The monotonicity of G′

µ(σ, ξ) yields a generalized principle of maximum plastic
dissipation

Π̇ : (Ξ− Σ) ≤ 0 ∀Ξ = (τ, η) : F(Ξ) ≤ 0 .

The penalized problem reads:

Definition 2.1 Find
(
(σµ, ξ), vµ

)
∈ H1(0, T ; L2(Ω, Rn×n

sym ×Rm))×L2(0, T ; H1
ΓD

(Ω, Rn)) such
that for a.e. t ∈ [0, T ](

ε(vµ)
0

)
=

(
Aσ̇µ

ξ̇µ

)
+

(
G′

µ(σµ, ξ)1

G′
µ(σµ, ξ)2

)
(2.1)

with the balance of forces

〈σµ,∇w〉 = 〈f, w〉+

∫
ΓN

gw dΓds ∀w ∈ H1
ΓD

(Ω, Rn) a.e. with respect to t

(σµ, ξµ)(0) = 0 in Ω× {t = 0} .

(2.2)

We have the estimates independent of µ

‖σµ‖L∞(L2), ‖ξµ‖L∞(L2) ≤ C (2.3a)

‖σ̇µ‖L∞(L2), ‖ξ̇µ‖L∞(L2) ≤ C (2.3b)

‖ε(u̇µ)‖L∞(L2) ≤ C (2.3c)

‖∇σµ‖L∞(L2), ‖∇ξµ‖L∞(L2) ≤ CΩ0 , ∀Ω0 ⊂⊂ Ω . (2.3d)

For (2.3d) additional regularity for σµ

∣∣
t=0

and ξµ

∣∣
t=0

is required:

∇σµ(0) ∈ L2(L2
loc)

∇ξµ(0) ∈ L2(L2
loc) ,

(2.4)

and

Df,4f ∈ L∞(0, T ; Ln(Ω, Rn)) .

These estimates yield the convergence to
(
(σ, ξ), v

)
solution of (1.6), as the penalty pa-

rameter µ tends to zero. For the details see Löbach [Löb08]. In [FL08] the convergence
of λµ (for example λµ =

(
|σD| − (κ + ξ)

)
+

in the case of isotropic hardening) to a plastic

multiplier λ (cf. equation (1.10)) was shown.
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For vµ = u̇µ, we have due to imbedding theorems and Korn’s inequality in L2, in the case
of n = 3 dimensions

‖vµ‖L∞(L6) ≤ C (2.5)

provided the domain Ω has Lipschitz boundary (otherwise (2.5) holds only in the interior
of Ω ).

From now on, for the sake of clarity we omit the subscript µ for the penalty parameter.

3 Higher integrability of the strain in isotropic hard-

ening

In the case of isotropic hardening with von Mises yield criterion the penalized equation
(2.1) reads:

ε(v) = Aσ̇ +
1

µ

(
|σD| − (κ + ξ)

)
+

σD

|σD|
(3.1a)

0 = ξ̇ − 1

µ

(
|σD| − (κ + ξ)

)
+

. (3.1b)

Theorem 3.1 Let n = 3, and f, ḟ ∈ L∞(L∞), Df,4f ∈ L∞(L3) and assume the safe
load condition (1.5) holds true, then for every subset Ω0 ⊂⊂ Ω

ess sup
t∈[0,T ]

∫
Ω0

|ε(u)|6 dx ≤ KΩ0 (3.2)

uniformly as µ → 0 .

proof The use the fact, that the assumptions imply L∞(H1
loc)-regularity for σ . Let χL :=

χL(t, ·) be the characteristic function of the set where |ε(u)(t)| ≤ L . We integrate the
penalty approximation (3.1a) with respect to t and multiply the integrated equation by
τχLε(u)|ε(u)|4 evaluated at t. The integrated equation (3.1b) is multiplied by τχL|ε(u)|5 ,
where τ is a localization function.
This yields∫

Ω

χL|ε(u)(t)|6τ 2 dx ≤
∫

Ω

χL(t)|ε(u)(0)| · |ε(u)(t)|5τ 2 dx +

∫
Ω

|Aσ

∣∣∣∣s=t

s=0

τ 2χL(t)|ε(u)(t)|5 dx

+

∫
Ω

1

µ

(∫ t

0

(
|σD| − (κ + ξ)

)
+

σD

|σD|
ds

)
τ 2χLε(u)(t)|ε(u)(t)|4 dx

(3.3)

and∫
Ω

ξ
∣∣s=t

s=0
τ 2χL(t)|ε(u)(t)|5 dx =

1

µ

∫
Ω

(∫ t

0

(
|σD| − (κ + ξ)

)
+

ds

)
χL(t)|ε(u)(t)|5 dx . (3.4)
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We subtract (3.4) from (3.3) and use the fact that

1

µ

∫
Ω

(∫ t

0

(
|σD| − (κ + ξ)

)
+

σD

|σD|
ds

)
τ 2χLε(u)(t)|ε(u)(u)|4 dx

≤ 1

µ

∫
Ω

(∫ t

0

(
|σD| − (κ + ξ)

)
+

ds

)
τ 2χL

3∑
i,k=1

|εik(u)(t)||ε(u)(u)|4 dx

≤ 1

µ

∫
Ω

(∫ t

0

(
|σD| − (κ + ξ)

)
+

ds

)
τ 2χL|ε(u)(t)|5 dx . (3.5)

Hence the right hand side of (3.4) dominates the last term and we conclude∫
Ω

χL(t)|ε(u)(t)|6 dx ≤
∫

Ω

χL(t) (|ε(u)(0)|+ |Aσ(0)|+ |ξ(0)|) |ε(u)(t)|5τ 2 dx

+

∫
Ω

χL(t)
(
|Aσ(t)|+ |ξ(t)|

)
|ε(u)(t)|5τ 2 dx .

(3.6)

Since σ, ξ ∈ H1
loc, uniformly as µ → 0 we may estimate the right hand side by

K

(∫
Ω

χL(t)τ 2|ε(u)(t)|6 dx

)5/6

.

By passing to the limit L →∞, the theorem is proved. ¤

Remark : With a similar argument, in the case n ≥ 4 one obtains ε(u) ∈ L∞(0, T ; L
2n

n−2

loc )
and for n = 2 ε(u) ∈ L∞(0, T ; Lq

loc) for all q < ∞ .

4 Interior Hölder continuity of the displacements in

isotropic hardening

From theorem 3.1 and Sobolev’s imbedding theorem we conclude the Hölder continuity of
the displacements u in spatial direction in three space dimensions with exponent 1

2
. By

simple estimates, the Hölder continuity can be extended to the time direction.

Theorem 4.1 Under the conditions of theorem 3.1 the displacements u in problem (1.1)
are Hölder continuous on [0, T ]× Ω0 with exponent 1

2
for all Ω0 ⊂⊂ Ω .

proof In view of the above remark it suffices to prove the Hölder Continuity in time
direction. For the Hölder continuity in time direction we have to estimate the quantity∣∣u(t1, x0)− u(t2, x0)

∣∣ ≤ ∣∣u(t1, x0)− uR,x0(t1)
∣∣+ ∣∣u(t2, x0)− uR,x0(t2)

∣∣
+

∣∣∣∣−−−∫
BR(x0)

[
u(t2, x)− u(t1, x)

]
dx

∣∣∣∣
= A0 + B0 + C0

(4.1)
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where uR,x0(ti) is the meanvalue of u(ti, x) extended over BR(x0) .
Since u is locally Hölder continuous in x-direction with exponent 1

2
, we have

|A0|+ |B0| ≤ KR
1
2 , R ≤ R0, (4.2)

a.e. with respect to t1, t2 . The term C0 is estimated using the time derivative of u:

C0 =

∣∣∣∣∣∣−−−
∫

BR(x0)

t2∫
t1

u̇ dt dx

∣∣∣∣∣∣ ≤
t2∫

t1

(
−−−
∫

BR(x0)

|u̇|6 dx

) 1
6

|BR(x0)|
5
6 dt

≤ K|t2 − t1|R−3
(
R3
) 5

6 = K|t1 − t2|R− 1
2

(4.3)

We have used the inclusion ∇u̇ ∈ L∞(L2) and Sobolev imbedding theorem to conclude
u̇ ∈ L∞(L6). From equations (4.1)-(4.3) we obtain∣∣u(t1, x0)− u(t2, x0)

∣∣ ≤ KR
1
2 |t1 − t2|R− 1

2 + KR
1
2 .

The optimal choice of R is R = |t1 − t2| . This yields∣∣u(t1, x0)− u(t2, x0)
∣∣ ≤ K|t1 − t2|

1
2 , |t1 − t2| ≤ R2

0 .

This proves the theorem. ¤

5 Differentiability at the boundary. First results

For simplicity we discuss the differentiability of the stress σ and hardening parameter ξ in
a neighborhood of a boundary point x0, where ∂Ω is flat, i.e. ∃R > 0 such that

∂Ω ∩BR(x0) =
{
x ∈ Rn|xn = 0

}
∩BR(x0) (5.1a)

ΩR := Ω ∩BR(x0) =
{
x ∈ Rn|xn ≥ 0

}
∩BR(x0) (5.1b)

In this section, for the sake of mathematical insight, we consider the case of n space di-
mensions.
In the case of zero boundary conditions for u, the existence of tangential derivatives
Dτσ, Dτξ ∈ L∞(L2(ΩR)) is proven analogously to the interior differentiability [Ser94].
One applies a difference quotient operator Dh

τ to the penalized equation (2.1)&(2.2),
Dh

τ g(x) = 1
h

(
g(x + h~eτ ) − g(x)

)
where ~eτ is a unit vector in tangential direction, and

one uses ζ2(Dh
τ σ,Dh

τ ξ) as a test function, with supp ζ ⊂ BR(x0), ζ ≡ 1 on Br(x0), r < R .
We may assume that ζ(x1, . . . , xn) is constant for 0 ≤ xn ≤ δ0, x1 . . . , xn−1 fixed, say
ζ(x1, . . . , xn) = ζ0(x1, . . . , xn−1)ζ1(xn) . Then, after integration (also with respect to t),
the right hand side of (2.1)&(2.2) gives , a nice definite term which, at the end, gives a
uniform bound for Dh

τ σ in L∞(L2(ΩR)) as h → 0, µ → 0.
The left hand side is treated in the usual way:

L0 :=

∫ T

0

∫
ζ2Dh

τ∇u̇ : Dh
τ σ dx dt = −

∫ T

0

∫ [
ζ2Dh

τ u̇Dh
τ f −Dh

τ u̇ : ∇ζ2Dh
τ σ
]

dx dt
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There are no boundary terms since Dh
τ u̇ = 0 at ∂Ω∩BR. From [Löb08] we know, that ∇u̇ is

uniformly bounded in L∞(L2). (One has to adapt Johnson’s proof [Joh78] who uses another
penalization to the setting considered here.) Hence Dh

τ∇u̇ is uniformly bounded. This
argumend also works for Neumann boundary conditions with zero surface force (σ ·~n = 0).
Thus we obtain

Theorem 5.1 Let u, σ be a solution of (2.1)&(2.2). Assume the geometric situation (5.1)
and let the hypotheses of theorem 3.1 be satisfied. Then the tangential derivatives Dτσ exist
and are, for r < R uniformly bounded in L∞(L2(Br(x0) ∩ Ω)), as the penalty parameter µ
tends to 0.

We consider this a corollary to [Ser94].
The first results concerning fractional differentiability of the stresses in normal direction
were presented by Alber & Nesenenko [AN08] and Knees [Kne08] for the case of kinematic
hardening.
We present a completely different approach fo obtaining some information about the normal
derivatives of the stresses.

Theorem 5.2 Under the assumptions of theorem 5.1 the stress σ and the hardening pa-
rameter ξ of the isotropic or kinematic hardening problem satisfies

ess sup
t∈[0,T ]

∫
ΩR

|Dnσ|2xn dx ≤ Kr (5.2a)

ess sup
t∈[0,T ]

∫
ΩR

|Dnξ|2xn dx ≤ Kr (5.2b)

uniformly as µ → 0.

proof We apply the difference operator Dh
n in normal direction to equation (2.1) & (2.2)

and use the function xnζ
2(x′)

(
Dh

nσ, Dh
nξ
)
(x) as a test function. x′ = (x1, . . . , xn−1), ζ is a

localization function such that supp ζ ⊂ BR(x0), ζ ≡ 1 on Br(x0) and ζ(x′, xn) = const in
the interval (0 ≤ xn ≤ δ0), for fixed x′ = (x1, . . . , xn−1) with some δ0 > 0 .
recall: x0n = 0.
On the right hand side the penalty term can be dropped due to convexity, further we obtain
nice non negative definite terms such as

1

2

∫
Ω

xnζ
2Dh

nσADh
nσ dx

∣∣∣T
0

(5.3a)

1

2

∫
Ω

xn|ζDh
nξ|2 dx

∣∣∣T
0

(5.3b)

10



On account of the equation, they are estimated by

n∑
i,k=1

T∫
0

∫
Ω

xnD
h
nDiu̇kD

h
nσikζ

2 dx dt = −
n∑

i,k=1

T∫
0

∫
Ω

xnD
h
nu̇kD

h
nfkζ

2xn dx dt

−
n∑

k=1
i 6=n

T∫
0

∫
Ω

xnD
h
nu̇kD

h
nσikDiζ

2 dx dt

−
n∑

k=1

T∫
0

∫
Ω∩BR

Dh
nu̇kD

h
nσnkζ

2 dx dt

= A + B + C .

(5.4)

For the penalty approximations, i.e. µ > 0, the boundary term C is defined.
The term A is uniformly bounded since we have a L∞(L2) bound for∇u̇ and f is sufficiently
smooth.
The integrands of B are estimated by

Kδ|Dh
nu̇k|2|∇ζ|2xn + δ|Dh

nσik|2ζ2xn (5.5)

and the first term (with factor Kδ) is uniformly bounded, and the second is absorbed for
small δ.
Finally, the integrand of C contains the factor

Dh
nσnk =

1

h

∫ h

0

Dnσnk(x + sn) ds .

We have Dnσnk = fk −
∑n−1

i=1 Diσik and for this term we have an L2 bound up to the
boundary Br ∩ ∂Ω since it contains only tangential derivatives of σik Hence the term C is
bounded uniformly, too.

Thus we may pass to the limit h → 0 and obtain the theorem. ¤

Corallary 5.3 In the kinematic case (1.3b) we have

ess sup
t∈[0,T ]

∫
Ωr

|Dn∇u|2xn dx +

∫
Ωr

|Dτ∇u|2 dx ≤ K, τ = 1, . . . , n− 1 (5.6)

uniformly as µ → 0.

This is derived from theorem 5.2 with the methods of [Joh78, Ser94, FL08] ,cf. also section
11 at the end of this paper, i.e. integrating equation (2.1) with respect to t and eliminating

11



the penalty term using ξ.

In the case of isotropic hardening, (5.6) is not yet known, we work with a substitute.

Corallary 5.4

ess sup
t∈[0,T ]

{∫
Ωr

|σ|2xδ−1
n dx +

∫
Ωr

|ξ|2xδ−1
n dx +

∫
Ωr

|ε(u)|2xδ−1
n dx

}
≤ Kδ (5.7)

for any δ > 0, uniformly as µ → 0.

proof Let ϕ ∈ C∞
0 (Br′(x0)), ϕ = 1 on Ωr, r < r′ < R. ϕ(x1, . . . , xn−1, γ) = Const for 0 ≤

γ ≤ δr, x1, . . . , xn−1 fixed. We have

δ

∫
Ωr′

|σ|2xδ−1
n ϕ dx =

∫
Ωr′

|σ|2Dnx
δ
nϕ dx

= −2

∫
Ωr′

Dnσ : σxδ
nϕ dx−

∫
Ωr′

|σ|2xδ
nDnϕ dx

≤ δ

2

∫
Ωr′

|σ|2xδ−1
n ϕ dx + Kδ

∫
Ωr′

|Dnσ|2xδ+1
n ϕ dx + K

(5.8)

and the corollary is proved as far as it concerns σ. The estimate for ξ is done analogously.
The estimate for ε(u) follows via a generalized argument with weight xδ−1

n similarly to the
proofs in section 3. Equation (2.1) is integrated with respect to t and the resulting first
equation is multiplied by ε(u)xδ−1

n . This implies∫
Ωr′

|ε(u)|2xδ−1
n dx ≤

∫
Ωr′

ε(u) : Aσxδ−1
n dx + Penalty term

The second equation of (2.1) is multiplied with ε(u)xδ−1
n (kinematic case) or |ε(u)|xδ−1

n

(isotropic case) and we use it to dominate or eliminate the penalty term. ¤

6 L1-estimates of the normal derivatives of the stresses

at the boundary and refinements

From theorem 5.2 we conclude by Hölders inequality for θ ∈ (0, 1) arbitrarily near to 0,∫
Ωr

|Dnσ|θ dx =

∫
Ωr

|Dnσ|θxθ/2
n x−θ/2

n dx

≤
∫

Ωr

|Dnσ|2xn +

∫
Ωr

x−θ/(2−θ)
n dx

≤ Kθ .

(6.1)
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This follows since the negative exponent of xn satiesfies θ
2−θ

< θ < 1 . Thus

ess sup
t∈[0,T ]

∫
Ωr

|Dnσ|θ dx ≤ Kθ . (6.2)

However, one can do better. In section 7 we will prove the stronger estimate

ess sup
t∈[0,T ]

∫
Ωr

|Dnσ|2x1−δ
n dx ≤ K . (6.3)

In the above geometrical setting the constant δ depends on the quotient of the largest and
lowest eigenvalue of the quadratic form associated to the tensor A. It is useful to keep an
additional Morrey condition in (6.3) .

Theorem 6.1 Let δ ∈ (0, 1) be the number in (6.2). Under the assumptions of theorem
5.2 we have the estimate

ess sup
t∈[0,T ]

∫
[0,r]

(
ess sup
y′∈B2r

∫
B2r

|Dnσ|q|x′ − y′|−p dx1 . . . dxn−1

)
dxn ≤ K

ess sup
t∈[0,T ]

∫
[0,r]

(
ess sup
y′∈B2r

∫
B2r

|Dnξ|q|x′ − y′|−p dx1 . . . dxn−1

)
dxn ≤ K

(6.4)

uniformly as µ → 0, provided that

q < 1 +
δ

2− δ
, p < 1− δ

2− δ
.

Here y′ = (y1, . . . , yn−1) ∈ Rn−1, B2r = B2r(x
′
0) ⊃ Rn−1, x′0 = (x01, . . . , x0n−1).

This means that (6.2) is refined to the case θ > 1, with an additional weight. Since there is
the variable singularity y′, theorem 6.1 is more than the statement Dnσ ∈ L∞(L1+δ0,3−p).
Remark The vectors y′ in (6.4) depend on t and xn. A priori it is not clear whether
y′(t, xn) is a measurable function with respect ot (t, xn). However with the usual Filippov-
type argument from optimal control it is possible to find a selection and that the supprema
are obtained a.e. and |x′ − y′| is measurable.
proof Let B′

r := {x′ = (x1, . . . , xn−1) ∈ Rn−1
∣∣ |x′ − x′0| < r}

Ir := (0 ≤ xn ≤ r)
Let 1 ≤ q < 2, by Hölders inequality∫

Ir×B′
r

|Dnσ|q|x′ − y′|−p dx =

∫
Ir×B′

r

|Dnσ|qxq(1−δ)/2
n x−q(1−δ)/2

n |x′ − y′|−p dx

≤
∫

Ir×B′
r

|Dnσ|2x1−δ
n +

∫
Ir×B′

r

x−q(1−δ)/(2−q)
n |x′ − y′|−2p/(2−q) dx .

(6.5)
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For the last integral we apply Fubini’s theorem and we have a bound, if

q(1− δ)

2− q
< 1 and

2p

2− q
< 2 .

This is the case if

q <
2

2− δ
= 1 +

δ

2− δ
and p < 2− q = 1− δ

2− δ
.

Interchanging σ by ξ we achieve the same result for the hardening parameter. ¤

7 An anisotropic Morrey estimate for the normal deriva-

tive of the stresses near the boundary

We still have to prove inequality (6.3). For doing this we establish an anisotropic Morrey
estimate for σ̇, ξ̇ and ∇u̇. We asssume the geometric situation exposed in section 5. Let
dx′ := dx1 . . . dxn−1, Ω′

ρ := {x′ ∈ Rn−1 | (x′, 0) ∈ ∂Ω ∩Bρ}.

Theorem 7.1 Let
(
(σ, ξ), u

)
be a solution of (2.1) in BR ∩ Ω with u

∣∣
∂Ω∩BR

≡ 0 and

assume that the data satisfies the smoothness assumptions (1.4) & (1.5) . Then there exist
constants δ > 0 and C > 0 such that∫ T

0

∫ r

0

∫
Ω′R1

(|σ̇|2 + |ξ̇|2 + |∇u̇|2)dx′ dxn dt ≤ Crδ (7.1)

uniformly as the penalty parameter µ → 0, for all r such that

[0, r]× Ω′
R1
⊂ BR

2
(x0) ∩ Ω, 0 < r ≤ r0 .

Theorem 7.1 tells us, that the integrals of |σ̇|2 + |ξ̇|2 + |∇u̇|2 over the strip [0, r] × Ω′
R1

where R1 is fixed and r → 0 variable, tends to zero in a controlled way.
A very related statement can be found in [FL08].
proof (i): Let ζ0 = ζ0(x1, . . . , xn−1) a Lipschitz continuous localization function such that
ζ0 ≡ 1 on BR1(x

′
0) and supp ζ0 ∈ BR∩{x ∈ Rn |xn = 0}, and let ζr = ζr(xn) be a Lipschitz

continuous function such that ζr ≡ 1 on [0, r], |∇ζr| ≤ 1
r

and ζr = 0 on (2r,∞).

We use the function ζ2
0ζ

2
r (σ̇, ξ̇) as test function in (2.1) and obtain

1

2

∫ [
Aσ̇ : σ̇ + |ξ̇|2

]
ζ2
0ζ

2
r dx

∣∣∣T
0
≤ T (7.2)

where

T =

∫ T

0

∫
∇u̇ : σ̇ζ2

0ζ
2
r dx dt .
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The integration
∫

is done over supp(ζ0, ζr) . We rewrite T using u̇
∣∣
∂Ω

= 0, − div σ = f and
partial integration:

T = T1 + T2 + T3 (7.3a)

T1 = −
∫ T

0

∫
u̇ · ḟ ζ2

0ζ
2
r dx dt (7.3b)

T2 = −2

∫ T

0

∫
u̇ · σ̇∇ζ0ζ0ζ

2
r dx dt (7.3c)

T3 = −2

∫ T

0

∫
u̇ · σ̇∇ζrζrζ

2
0 dx dt . (7.3d)

We estimate

|T1|+ |T2| ≤ K

(∫ T

0

∫ 2r

0

∫
Ω′R

|u̇|2 dx′ dxn dt

) 1
2

K

(∫ T

0

∫ 2r

0

∫
Ω′R

(
|σ̇|2 + |f |2

)
dx dt

) 1
2

(7.4)

and use Poincarés inequality to estimate∫ r

0

|u̇|2 dxn ≤ Kr2

∫ r

0

|Dnu̇|2 dxn .

This yields

|T1|+ |T2| ≤ Kr
1
2 (7.5)

since ∇u̇, σ, f are bounded in L2. The term T3 is estimated similarly, however we take into
account, that ∇ζr = 0 on [0, r]. We obtain

T3 ≤
K

ε0

∫ T

0

∫ 2r

r

∫
Ω′R

|σ̇|2ζ2
0 dxn dx′ dt + ε0

1

r2

∫ T

0

∫ 2r

r

∫
Ω′R

|u̇|2ζ2
0 dxn dx′ dt

≤ K

ε0

∫ T

0

∫ 2r

r

∫
Ω′R

|σ̇|2ζ2
0 dxn dx′ dt + ε0

∫ T

0

∫ 2r

r

∫
Ω′R

|∇u̇|2ζ2
0 dxn dx′ dt︸ ︷︷ ︸

=:T0

.
(7.6)

Thus we arrive at the inequality∫ T

0

∫ 2r

0

∫
Ω′R

(
|σ̇|2+|ξ̇|2

)
ζ2
r ζ

2
0 dx′ dxn dt ≤ K

ε0

∫ T

0

∫ 2r

r

∫
Ω′R

(
|σ̇|2+|ξ̇|2

)
ζ2
0 dx′ dxn dt+Kr

1
2 +T0 .

(7.7)

Here we have used the ellipticity condition for the elastic compliance tensor A and we have
absorbed the integral with factor ε0 in front.
(ii): We start to estimate the term T0. In the kinematic case, we use the pair(

ε(u̇), ε(u̇)
)
ζ2
0χ[r,2r]
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as test function with χ[r,2r] = χ[r,2r](xn) the characteristic function of the interval [r, 2r].
We also use this test function without χ[0, 2r].
In the isotropic case we choose(

ε(u̇), |ε(u̇)|
)
ζ2
0χ[r,2r]

as test function, respectively with χ[0,2r].
In the kinematic case, the components coming from the penalty term cancel out, in the
isotropic case the sum of the components coming from the penalty term is less equal than
zero. Thus we obtain using Hölder’s inequality∫ T

0

∫ 2r

r

∫
Ω′R

|ε(u̇)|2ζ2
0 dx dt ≤ K

∫ T

0

∫ 2r

r

∫
Ω′R

(
|σ̇|2 + |ξ̇|2

)
ζ2
0 dx dt (7.8a)∫ T

0

∫ 2r

0

∫
Ω′R

|ε(u̇)|2ζ2
0 dx dt ≤ K

∫ T

0

∫ 2r

0

∫
Ω′R

(
|σ̇|2 + |ξ̇|2

)
ζ2
0 dx dt (7.8b)

(iii) We need some type of Korn’s inequality for ε(u̇) on the domain [0, 2r] × Ω′
R. The

difficulty is, that the constants have to be uniform as r → 0. To see what we can expect
we rewrite∫ T

0

∫ 2r

0

∫
Ω′R

|ε(u̇)|2ζ2
0ζ

2
r dx dt =

∫ T

0

∫ 2r

0

∫
Ω′R

{1

2

n∑
i,k=1

|Diu̇k|2 +
1

2

n−1∑
i,k=1

Diu̇kDku̇i

+
1

2

n−1∑
k=1

Dnu̇kDku̇n +
1

2
|Dnu̇n|2

}
ζ2
0ζ

2
r dx dt

=: U1 + U2 + U3 + U4

(7.9)

For the term U2 we use tangential partial integration.(To justify this operation one can
apply tangential mollification operations to Diu̇k) This yields

U2 =

∫ T

0

∫ 2r

0

∫
Ω′r

(
n−1∑
i=1

Diu̇i

)2

ζ2
0ζ

2
r dx dt− pollution terms, (7.10)

where the pollution terms can be estimated by∫ T

0

∫ 2r

0

∫
Ω′r

(
|u̇|2|∇ζ0|2 + |u̇||∇u̇||∇ζ0|2

)
dx dt ≤ Kr . (7.11)

The last inequality follows from Poincarés inequality applied to u̇ as in the begining of the
proof.
The difficulty is the term U3. By partial integration

U3 = −2
n−1∑
k=1

∫ T

0

∫ 2r

0

∫
Ω′R

(
DnDku̇iu̇nζ

2
0 + 2Dnu̇ku̇nζ0Dkζ0

)
ζ2
r dx dt

= −
n−1∑
k=1

∫ T

0

∫ 2r

0

∫
Ω′R

{
Dnu̇nDku̇kζ

2
r + 2Dku̇ku̇nDnζrζr

}
ζ2
0 dx dt− pollution terms.
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(7.12)

(For justification, here it also suffices to use tangential mollification of Diu̇k, Dnui.) The
pollution terms can be estimated as in (7.11). From (7.9) and the representation of u̇i and
from (7.10) we obtain

∫ T

0

∫ 2r

0

∫
Ω′R

|ε(u̇)|2ζ2
r ζ

2
0 dx dt ≥

∫ T

0

∫ 2r

0

∫
Ω′R

1

2
|∇u̇|2+1

2

(
n−1∑
k=1

Dku̇k

)2

+
1

2
|Dnu̇n|2−Dnu̇n

n−1∑
k=1

Dku̇k

ζ2
0ζ

2
rdxdt

− 2

∫ T

0

∫ 2r

0

∫
Ω′R

n−1∑
k=1

Dku̇ku̇nDnζrζrζ
2
0 dx dt−Kr

≥
∫ T

0

∫ 2r

0

∫
Ω′R

{
1

2
|∇u̇|2ζ2

r − 2
n−1∑
k=1

Dku̇ku̇nDnζrζr

}
ζ2
0 dx dt−Kr

=: W1 + W2 −Kr .

(7.13)

We estimate the second integral from below using Poincarés and Youngs inequality. We
take into account that supp Dnζr = [r, 2r] and |Dnζr| ≤ 1

r
.

W2 ≥ − 1

ε0

∫ T

0

∫ 2r

r

∫
Ω′R

|∇u̇|2ζ2
0 dx dt−Kε0

∫ T

0

∫ 2r

0

∫
Ω′R

|∇u̇|2ζ2
0 . (7.14)

Using (7.13), (7.14) we have(
1

2
−Kε0

)∫ T

0

∫ 2r

0

∫
Ω′R

|∇u̇|2ζ2
0ζ

2
r dxdt ≤

∫ T

0

∫ 2r

0

∫
Ω′R

|ε(u̇)|2ζ2
0 dxdt+

(
Kε0 +

1

ε0

)∫ T

0

∫ 2r

r

∫
Ω′R

|∇u̇|2ζ2
0 dxdt+Kr .

(7.15)

This means that
∫ T

0

∫ 2r

0

∫
Ω′R
|∇u̇|2 is dominated by K

∫ T

0

∫ 2r

0

∫
Ω′R
|ε(u̇)|2+ a pollution term Kr

+ a hole filling term containing
∫ 2r

r
.

(iv) We use (7.15) to estimate the term T0 in (7.6). This yields

T0 ≤ Kε0

∫ T

0

∫ 2r

0

∫
Ω′R

|ε(u̇)|2ζ2
0 dx dt + K

∫ T

0

∫ 2r

r

∫
Ω′R

|∇u̇|2ζ2
0 dx dt + Kr . (7.16)

From (7.7),(7.16) and (7.8) we obtain∫ T

0

∫ r

0

∫
Ω′R

(
|σ̇|2 + |ξ̇|2

)
ζ2
0ζ

2
r dx′ dxn dt ≤ Kr1/2 + K

∫ T

0

∫ 2r

r

∫
Ω′R

|∇u̇|2ζ2
0 dx dt

+ Kε0

∫ T

0

∫ 2r

0

∫
Ω′R

(
|σ̇|2 + |ξ̇|2

)
ζ2
0 dx dt .

(7.17)
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which implies, for small ε0∫ T

0

∫ 2r

0

∫
Ω′R

(
|σ̇|2 + |ξ̇|2

)
ζ2
0 dx′ dxn dt ≤ Kr1/2 +K

∫ T

0

∫ 2r

r

∫
Ω′R

(
|σ̇|2 + |ξ̇|2 + |∇u̇|2

)
ζ2
0 dx dt .

(7.18)

We add the 1
2K

-fold of (7.8) to (7.18) and obtain∫ T

0

∫ 2r

0

∫
Ω′R

(1
2
|σ̇|2+1

2
|ξ̇|2+ 1

2K
|ε(u̇)|2

)
ζ2
0ζ

2
r dx dt ≤ K

∫ T

0

∫ 2r

r

∫
Ω′R

(
|σ̇|2+|ξ̇|2+|∇u̇|2

)
ζ2
0 dx dt .

(7.19)

In (7.19), we replace the term with |ε(u̇)|2 using (7.15) and obtain finally the plate filling
inequality∫ T

0

∫ r

0

∫
Ω′R

(
|σ̇|2 + |ξ̇|2 + |∇u̇|2

)
ζ2
0 dx dt ≤

∫ T

0

∫ 2r

r

∫
Ω′R

(
|σ̇|2 + |ξ̇|2 + |∇u̇|2

)
ζ2
0 dx dt+Kr1/2 .

(7.20)

Now we are able to prove theorem 7.1.
(v) We apply a plate filling step: From∫ T

0

∫ 2r

0

∫
Ω′R

W dx dt ≤
∫ T

0

∫ 2r

r

∫
Ω′R

W dx dt + Kr1/2

we conclude∫ T

0

∫ r

0

∫
Ω′R

W dx dt ≤ K

1 + K

∫ T

0

∫ 2r

0

∫
Ω′R

W dx dt + Kr1/2

and the statement of theorem 7.1 is derived via an iteration argument. Compare the proof
in [FL08] for a recent paper on this subject. ¤

Corallary 7.2∫ T

0

∫ r

0

∫
Ω′R

∣∣∣|σ̇|2 + |ξ̇|2 + |∇u̇|2
∣∣∣x−δ1

n dx′ dxn dt ≤ K (7.21)

for some δ1 < δ .

proof We estimate the integral in (7.21) by

2
∞∑

j=N

(2j)

∫ T

0

∫ 2−j

0

∫
Ω′r

(
|σ̇|2 + |ξ̇|2 + |∇u̇|2

)
dx′dxn ≤ 2

∞∑
j=N

(2j)δ1−δ ≤ K .

¤
Now, we are able to prove the basic estimate
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Theorem 7.3 Under the assumptions of theorem 7.1, we have for δ̄ < δ
2

ess sup
t∈[0,T ]

∫ r

0

∫
Ω′R1

(
|Dnσ|2 + |Dnξ|2

)
x1−δ̄

n dx′dxn ≤ K 0 ≤ r ≤ r0 (7.22)

uniformly as µ → 0.

proof We follow the proof of theorem 5.1, but replace the weight xn by

x̃nδ̄ =
xn

δ1 + xδ̄
n

,

where δ1 > 0 is an additional parameter which tends to 0. This is necessary at the beginning
of the proof in order to ensure that the integrals are defined.
We arrive at the analougue of inequality (5.4)

1

2

∫ T

0

∫
Ω

x̃nδ̄ζ
2
[
ADh

nσ : Dh
nσ + |Dh

nξ|2
]2

dx dt ≤ Ã + B̃ + C̃ (7.23)

where Ã, B̃, C̃ are defined as A, B, C in (5.4) with xn replaced by x̃nδ̄. In particular, this
means that the factor 1 = Dnxn in the integral C is replaced by

Dn
xn

δ1 + xδ̄
n

= (1− δ̄)
xδ̄

n

(δ1 + xδ̄
n)2

+
δ1

(δ1 + xδ̄
n)2

≥ 0 .

The terms Ã and B̃ with the new weight x̃nδ̄ are treated as in theorem 5.1. The integrands
are estimated by Youngs’s inequality and the term ε0|Dh

nσ|2ζ2x̃nδ̄ which is absorbed by the
righthand side of (7.23). The remaining parts of Ã, B̃ are bounded as h → 0, δ1 → 0, µ → 0
since ∇u̇ ∈ L2. The term C̃ is rewritten using − div σ = f as in the proof of theorem 5.1:
Thus we obtain

|C̃| ≤
n∑

k=1

n−1∑
i=1

∫ T

0

∫
ΩR

|Dh
nu̇k||Dh

i σik|Dnx̃nδ̄ζ
2 dx dt + K . (7.24)

We now pass to the limit h → 0 which is admissible since u̇ ∈ L∞(H1), Diσ ∈ L∞(L2) for
i = 1, . . . , n− 1 . Thereafter, we estimate

lim
h→0

|C̃| ≤ K

∫ T

0

∫
ΩR

|∇u̇|2|Dnx̃nδ̄|2ζ2 dx dt + K . (7.25)

Recall that the tangential estimates of Dτσ are in L2. Now, we use that

|Dnx̃nδ̄| ≤ x−δ̄
n

uniformly as δ1 → 0. Hence the righthand side of (7.4) remains bounded due to corollary
7.2. Thus the statement follows from (7.23) and Fatous Lemma. ¤
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8 L∞(L4−δ)-estimates for the stresses at the Dirichlet

boundary

Again, we consider the geometric situation described in section 5 with a flat portion of the
boundary ∂Ω. While the property of Dnσ holds in any dimension, we restrict now to the
case of three space dimensions.

Theorem 8.1 Let n = 3. Under the conditions of 6.1 and the geometric setting (5.1), we
have for all δ1 > 0 near to 0

ess sup
t∈[0,T ]

∫
Ωr

|σ|4−δ1 dx ≤ Kδ1 (8.1)

uniformly as µ → 0 for isotropic and kinematic hardening.

Remark Theorem 8.1 also follows via the estimate of the fractional derivatives of order 1
2

of σ and ξ , see section 9. We found it useful to present an alternative method of proof.

proof From theorem 7.3 and corollary 5.4 we obtain by Hölders inequality

ess sup
t∈[0,T ]

∫
[0,r]

∫
B′

r

|Dnσ||σ| dx1 dx2dx3

≤ ess sup
t∈[0,T ]

∫
[0,r]

∫
B′

r

|Dnσ|2x1−δ0
n dx1 dx2 dx3 +

∫
[0,r]

∫
B′

r

|σ|2xδ0−1
n dx1 dx2 dx3

 ≤ Kδ0

(8.2)

for all δ0 > 0 and B′
r as in the proof of theorem 6.1. From Gagliardo’s lemma we conclude

ess sup
t,xn

∫
B′

r

|σ|2 dx1 dx2 ≤ K +

∫
[0,r]

∫
B′

r

Dn|σ|2dx1dx2dx3 ≤ K + Kδ0 . (8.3)

On the other hand, since the tangential derivatives are uniformly bounded in L2 near the
boundary we have in view of Sobolev’s inequality∫

[0,r]

(∫
B′

r

|σ|2p dx1 dx2

) 1
p

dx3 ≤ K

∫
[0,r]×B′

r

(
|Dτσ|2 + |σ|2

)
dx (8.4)

for all 1 ≤ p < ∞. We now use an argument which is frequently used in fluid-dynamics:∫
[0,r]×B′

r

|σ|2|σ|2
(
1− 1

p

)
dx ≤

∫
[0,r]

(∫
B′

r

|σ|2p dx1 dx2

) 1
p
(∫

B′
r

|σ|2 dx1 dx2

)1− 1
p

dx3

≤ ess sup
x3

(∫
B′

r

|σ|2 dx1 dx2

)1− 1
p
∫

[0,r]

(∫
B′

r

|σ|2p dx1 dx2

) 1
p

.
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(8.5)

The latter quantity is bounded due to (8.2) & (8.4). ¤

9 N 1
2 ,2-fractional differentiability of the stresses and

hardening parameters in normal direction up to the

boundary

Again, for the sake of mathematical insight we consider the case of n space dimensions
and the geometric situation described in section 5, i.e. the boundary ∂Ω coincides with
the hyperplane {x ∈ Rn

∣∣xn = 0} in a neighbourhood BR(x0) of a boundary point x0, and
BR(x0) ∩ {x ∈ Rn

∣∣xn ≥ 0}. Ωr := Br(x0) ∩ Ω, r ≤ R.
We treat both kinematic and isotropic hardening.
Remember, that u̇ = 0 on BR ∩ ∂Ω.

Theorem 9.1 Let σ, ξ be the solution of (2.1) resp. (1.6). Under the regularity assump-
tions (1.4)&(1.5) and the geometric setting above there holds the estimate

ess sup
t∈[0,T ]

sup
0<h<r0

1

h

∫
Ωr

|σ(x + h~en)− σ(x)|2 dx ≤ Kr0,r (9.1a)

ess sup
t∈[0,T ]

sup
0<h<r0

1

h

∫
Ωr

|ξ(x + h~en)− ξ(x)|2 dx ≤ Kr0,r (9.1b)

uniformly as µ → 0, in the isotropic and kinematic case.

Remark Theorem 9.1 states that σ, ξ ∈ L∞(N 1
2
,2(Ωr)) up to the boundary, where N 1

2
,2

denotes the Nikol’skii space for p = 2, s = 1
2
. By the imbedding theorems (see for example

[KJF77, Ada75]) we have σ ∈ L∞(H
1
2
−δ(Ωr)).

In the kinematic case it has been known already that σ, ξ ∈ L∞(H
1
2
−δ). This was proved

by Alber & Nesenenko [AN08] and Knees [Kne08] in the kinematic case. Their proof is
different, another formulation of the problem is used. Let us note that, Knees works with
a reflection argument.
proof of theorem 9.1 We apply the difference operators Dh

n to equation (2.1) & (2.2) and
use the function hζ2

(
Dh

nσ,Dh
nξ
)

as test function, where ζ is defined in section 5. As usual,
on the right hand side of equation there arises the part coming from the penalty term
which is dropped due to monotonicity and there remain the terms

h

2

∫
ΩR

ζ2ADh
nσ : Dh

nσ dx
∣∣∣T
0

+
h

2

∫
ΩR

|ζDh
nξ|2 dx

∣∣∣T
0

(9.2)

21



which will give the estimate for (9.1).
On the left hand side we obtain by the divergence theorem and (1.2)

h

∫ T

0

∫
ΩR

Dh
nε(u̇) : Dh

nσζ2 dx dt = h

∫ T

0

∫
ΩR

[
Dh

nu̇Dh
nfζ2 − 2

n∑
i,k=1

Dh
nu̇kD

h
nσikζDiζ

]
dx dt

− h

n∑
k=1

∫ T

0

∫
ΩR∩{xn=0}

Dh
nu̇kD

h
nσknζ

2 dx1 . . . dxn−1 dt

= B1 + B2 + B3 .

(9.3)

The term B1 is obviously bounded since f is smooth and ∇u̇ ∈ L∞(L2) with uniform
bound. The term B2 is estimated by Hölder’s inequality

|B2| ≤ δ1h

∫ T

0

∫
ΩR

|Dh
nσ|2ζ2 dx dt + Kδ1h

∫ T

0

∫
ΩR

|Dh
nu̇|2 dx dt (9.4)

and the first term estimating |B2| is absorbed by the terms in (9.2), using Gronwalls
inequality, the second is bounded since ∇u̇ ∈ L∞(L2) uniformly as µ → 0 .
The difficulty is the term B3 which we treat in the following way:
We may write

hDh
nu̇k(x) =

∫ h

0

Dnu̇k(x + s~en) ds

Dh
nσnk(x) =

1

h

∫ h

0

Dnσnk(x + s~en) ds

= −1

h

∫ h

0

fk ds− 1

h

∫ h

0

n−1∑
i=1

Diσik(x + s~en) ds .

(9.5)

Define B′
r := Br(x0)∩∂Ω. Since the tangential derivatives of σ are in L∞(L2) (cf. theorem

5.1), we conclude from (9.5)

ess sup
t∈[0,T ]

∫
B′

r

|Dh
nσnk|2 dx1 . . . dxn−1 ≤

1

h
K+ess sup

t∈[0,T ]

n−1∑
i=1

1

h

∫ h

0

∫
B′

r

|Diσ|2 dx1 . . . dxn−1 ds ≤ 1

h
K .

(9.6)

Furthermore

ess sup
t∈[0,T ]

∫
B′

r

|hDh
nu̇k|2 dx1 . . . dxn−1 ≤ ess sup

t∈[0,T ]

∫
B′

r

∣∣∣∣∫ h

0

Dnu̇k(x + s~en) ds

∣∣∣∣2 dx1 . . . dxn−1

≤ ess sup
t∈[0,T ]

∫
B′

r

h

∫ h

0

|Dnu̇k|2 ds dx1 . . . dxn−1

≤ h ess sup
t∈[0,T ]

∫
B′

r

|Dnu̇k|2 dx .

22



(9.7)

This implies

|B3| ≤
n∑

k=1

(∫ T

0

∫
B′

r

(
hDh

nu̇k

)2
dx1 . . . dxn−1

) 1
2
(∫ T

0

∫
B′

r

|Dh
nσnh|2 dx1 . . . dxn−1

) 1
2

≤ (hK)
1
2 ·( 1

h
K)

1
2 .

This proves the theorem. ¤
From the imbedding theorems for anisotropic Nikol’skii spaces [KJF77] we obtain

Corallary 9.2 Under the assumptions of theorem 9.1 we have for 3 space dimensions

σ, ξ ∈ L∞(L4−δ(Ωr))

and in 2 space dimensions

σ, ξ ∈ L∞(L6−δ(Ωr))

with uniform bounds as µ → 0.

proof
n = 3: We use the fact that the full first tangential derivatives are in L2. We have to
calculate the harmonic mean of the numbers 1, 1, 1

2
which is[

1

3

(
1 + 1 +

2

1

)]−1

=
3

4
.

By the Sobolev-Nikol’skii imbedding theorem we conclude σ, ξ ∈ L∞(Lq) with

q =
3 · 2

3− 2 · (3/4)
− δ = 4− δ .

n = 2: Similarly [1
2
(1 + 2)]−1 = 2

3

q =
2 · 2

2− 2 · (2/3)
− δ = 6− δ .

¤

10 Regularity properties of the displacements near

the boundary

In this section, we confine ourselves to the case of 3 space dimensions. Both kinematic and
isotropic hardening are treated. We consider a neighbourhood of the dirichlet boundary in
a flat part.
With a similar method as in the proof of theorem 3.1 we conclude from theorem 8.1
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Theorem 10.1 Under the assumption of theorem 5.2 we have for the strains for all δ1 > 0
near zero

ess sup
t∈[0,T ]

∫
Ωr

|∇u|4−δ1 dx ≤ Kδ1 (10.1)

uniformly as µ → 0.

We do not present the proof which is very similar to the one of theorem 3.1 .
Recall, that we treat both, the isotropic and kinematic case.

Theorem 10.2 Under the assumptions of theorem 5.2 we have for the strains in the kine-
matic case

ess sup
t∈[0,T ]

∫
Ωr

|Dτu|2 dx ≤ K (10.2)

and

ess sup
t∈[0,T ]

sup
0<h<h0

h

∫
|∇Dh

nu|2 dx ≤ K , (10.3)

where Dτ denote the tangential derivatives and Dh
n the difference quotient in normal direc-

tion.

proof We integrate (2.1) with respect to t, eliminate the penalty term, apply the operation
Dτ or Dh

n to each equation and use Dτu or
√

hDh
nu as a testfunction. Then we obtain the

statement of the theorem. ¤

From theorem 10.1 we can derive the Hölder continuity of the displacements u at the
boundary.

Theorem 10.3 Let n = 3, under the assumptions of theorem 6.1 the displacements u in
isotropic and kinematic hardening are uniformly Hölder continuous in Ωr. The Hölder
exponent α in space direction is any number α < 1

4
, the Hölder exponent in time direction

any number β < 1
3
.

proof We use the fact, that

∇u̇ ∈ L∞(L2) (10.4)

and theorem 10.1. From (10.4) we conclude by Sobolev imbedding

u̇ ∈ L∞(L6) . (10.5)
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From theorem 10.1 we conclude by Sobolev’s theorem that u is Hölder continuous in space
direction with exponent

α < 1− 3

4δ
=

1

4
− δ′ .

This is the first statement of the theorem. For the Hölder continuity in time direction let
Qs(y0) be a cube in {x ∈ R3|x3 ≥ 0} with sidelength s and center y0. We have∣∣u(y0, t1)− u(y0, t2)

∣∣ ≤ ∑
i=1,2

∣∣u(y0, ti)−
1

s3

∫
Qs(y0)

u(ti, y)dy
∣∣

+
1

s3

∣∣∣∣∫
Qs(y0)

(
u(y, t1)− u(y, t2)

)
dy

∣∣∣∣
=: A1 + A2 + A3

(10.6)

Due to Hölder continuity in spatial direction we have

Ai ≤ Ks1/4−δ1 , i = 1, 2 .

For A3 we have

A3 =
1

s3

∣∣∣∣∫ t2

t1

∫
Qs(y0)

u̇(y, t)dydt

∣∣∣∣
≤ 1

s3

∣∣∣∣∣
∫ t2

t1

(∫
Qs(y0)

u̇6dy

)1/6

s3−5/6dt

∣∣∣∣∣
≤ 1√

s
K|t2 − t1|

(10.7)

where we have used (10.5). The optimal choice for s is if

s1/4−δ1 =
1√
s
|t2 − t1| i.e. |t2 − t1| = s

3
4
−δ1

which implies

Ai ≤ |t2 − t1|
1
3
−δ′ .

This proves the theorem. ¤

11 Differentiability of the strain tensor ε(u) in kine-

matic hardening

In this section, we present a short proof of the L∞(H1
loc) property of the strain tensor ε(u)

in the case of kinematic hardening. The the same techniques as in section 9 can be used
to show H

1
2
−δ-boundary differentiability.
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We have the almost everywhere equation for the penalized problem.

ε(u̇) = Aσ̇ +
1

µ

(
|σµD − ξµD| − κ

)
+

σD − ξD

|σD − ξD|
(11.1a)

0 = ξ̇ − 1

µ

(
|σµD − ξµD| − κ

)
+

ξD − σD

|σD − ξD|
(11.1b)

Let ε(u) be the strain tensor of the penalized problem (11.1) with kinematic hardening.

Theorem 11.1 Under the regularity assumptions (1.4a),(1.4b) and the safe load condition
(1.5), for every subset Ω0 ⊂⊂ Ω we have the uniform estimate

ess sup
t∈[0,T ]

∫
Ω0

|∇ε(u)|2 dx ≤ KΩ0,T (11.2)

as the viscosity coefficient µ tends to zero.

Remark: We emphasize that we do not state the differentiability for the displacement
velocity u̇ !

Corallary 11.2 Inequality (11.2) also holds for the limiting case µ = 0 .

proof We integrate the sum of the equations (11.1a),(11.1b) with respect to t from 0 to
s and thereafter use the function D−h(ζ2D+hε(u)) as a testfunction. Here ζ is a smooth
localization function. Because of the sign-situation in (11.1a),(11.1b) the penalty term
cancels and we obtain∫

Ω

(
ε(u)

∣∣
t=s

− ε(u)
∣∣
t=0

)
D−h(ζ2D+h(ε(u))) dx

=

∫
Ω

[(
Aσ
∣∣
t=s

− Aσ
∣∣
t=0

)
+
(
ξ
∣∣
t=s

− ξ
∣∣
t=0

)]
D−h(ζ2D+hε(u)) dx . (11.3)

By partial summation and rearranging we achieve∫
Ω

|ζD+hε(u)
∣∣
t=s
|2 dx =

∫
Ω

ζ2D+hε(u)
[
D+h(Aσ)

∣∣
t=s
−D+h(Aσ)

∣∣
t=0

+D+hξ
∣∣
t=s
−D+hξ

∣∣
t=0

]
dx .

(11.4)

(We drop ε(u)(0) for simplicity.)
Passing to the limit h → 0, we may replace the difference quotient by partial derivatives.
By assumption the initial data σ

∣∣
t=0

, ξ
∣∣
t=0

is in H1
loc, we obtain for almost all t∫

Ω

ζ2|∇ε(u)|2 dx ≤
∫

Ω

ζ2|∇Aσ|2 dx +

∫
Ω

ζ2|∇ξ|2 dx

+

∫
Ω

ζ2|∇Aσ
∣∣
t=0
|2 dx +

∫
Ω

ζ2|∇ξ
∣∣
t=0
|2 dx .

(11.5)

This proofs the theorem. ¤
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Theorem 11.3 Assume the geometric setting of section 5, then the strain tensor satisfies

ε(u) ∈ L∞(H
1
2
−δ) .

proof With the results and the techniques of section 9 the proof follows easily.

12 Trace properties of the strain tensor

In the case of kinematic hardening, Seregin [Ser94] obtained ε(u) ∈ L∞
(
0, T ; H1

loc(Ω)
)

which implies, due to imbedding theorems, for dimensions n = 3

ess sup
t,α,j

∫
Hj

α∩Ω0

|ε(u)|4 dx′ ≤ KΩ0,T t ∈ [0, T ], α ∈ R, j = 1, . . . , 3 Ω0 ⊂⊂ Ω (12.1)

for the solution of (1.6). Here Hj
α is the hyperplane

Hj
α :=

{
x = (x1, x2, x3) ∈ R3

∣∣xj = α
}

(12.2)

and

dx′ =
3∏

i=1
i 6=j

dxi .

One should fill the gap of regularity between the case of isotropic and kinematic hardening
as much as possible, so from this point of view it is interesting that (12.1) holds also in
the case of isotropic hardening.

Theorem 12.1 Under the assumptions of theorem 3.1 the strain tensor ε(u) of the isotropic
hardening problem (3.1) satisfies the trace property (12.1) .

We emphasize that the elasticity tensor A is independent of t.
proof We integrate equation (3.1a) and (3.1b) from 0 to t and test the resulting first equa-
tion with ε(u)|ε(u)|2(1 + δ|ε(u)|4)−1 and the second with |ε(u)|3(1 + δ|ε(u)|4)−1 , evaluated
at t . This yields (with ε(u(t)) = ε(t), ε(0) = 0 for simplicity)

|ε(t)|4

1 + δ|ε(t)|4
= Aσ

∣∣t
0
ε(t)|ε(t)|2 1

1 + δ|ε(t)|4
+ ξ
∣∣t
0
|ε(t)|3 1

1 + δ|ε(t)|4
+ E0 (12.3)

with

E0 =
1

µ

∫ t

0

(
|σD(s)| − (ξ(s) + κ)

)
+

(
σD(s)

|σD(s)|
ε(t)− |ε(t)|

)
ds|ε(t)|2 1

1 + δ|ε(t)|4
. (12.4)

Obviously E0 ≤ 0 . Thus (remember (σ, ξ)(0) = 0)

|ε(t)|4

1 + δ|ε(t)|4
≤
(
Kσ(t)− ξ(t)

) |ε(t)|3

1 + δ|ε(t)|4
. (12.5)
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We integrate over the set Hj
α ∩ Ω0 and use the fact, that

ess sup
t,α,j

∫
Hj

α∩Ω0

(
|σ|4 + |ξ|4

)
dx′ ≤ KΩ0 (µ → 0)

also in the isotropic case. Together with Hölder’s inequality we obtain from (12.5)

ess sup
t,α,j

∫
Hj

α∩Ω0

|ε(t)|4

1 + δ|ε(t)|4
dx′ ≤ Kess sup

t,α,j

1+

∫
Hj

α∩Ω0

(
|σ|4+|ξ|4

)
dx′


1
4
 ∫

Hj
α∩Ω0

|ε(t)|4
(
1+δ|ε(t)|4

)− 4
3 dx′


3
4

(12.6)

and

ess sup
t,α,j

∫
Hj

α∩Ω0

|ε(t)|4

1 + δ|ε(t)|4
dx′ ≤ KΩ0 (12.7)

uniformly for t ∈ [0, T ], α ∈ R, j = 1, . . . , n, µ → 0, δ → 0 . The theorem is proved. ¤

13 Plastic strain in isotropic hardening

We continue to give some contributions concerning regularity properties of the unknown
variables σ, ξ, ε(u̇), ε(u) which are related to the L∞(H1

loc)-inclusions of σ and ξ . We obtain
some reasonable additional information about ξ, ξ̇ and the plastic strain Aσ̇ − ε(u̇) .

Theorem 13.1 Under the hypothesis of theorem 3.1, for all Ω0 ⊂⊂ Ω, we have the esti-
mates ∫ T

0

∫
Ω0

|ξ̇| · |ξ|5 dx dt ≤ K(T, Ω0) (13.1a)∫ T

0

∫
Ω0

|ε(u̇)ik − (Aσ̇)ik − γξ̇| · |ε(u)ik − (Aσ)ik − γξ|5 dx dt ≤ K(T, Ω0, Λ0) (13.1b)

where 1 ≤ γ ≤ Λ0 or − Λ0 ≤ γ ≤ −1, uniformly for µ → 0 .

Remark

1. In the case of dimensions n ≥ 4, the exponent 5 has to be replaced by 2n
n−2

− 1 and
for n = 2 any exponent ≥ 1 may replace 5.

2. Inequality (13.1a) is a refinement of the fact, that ξ ∈ L∞(L6
loc) which follows, in

turn, from ξ ∈ L∞(H1
loc) .
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3. The quantity ε(u̇)− Aσ̇ is the plastic strain.

proof
(i) We multiply equations (3.1) with

ϕ =

(
ξ̇

1 + |ξ̇|
− 1

)
|ξL|5τ 2

where ξL = min{|ξ|, L} sign ξ and τ = τ(x) is a localization function in W 1,∞. We observe
that ϕ ≤ 0 and obtain∫ T

0

∫
Ω0

(
1 + |ξ̇|

)−1|ξ̇|2|ξL|5τ 2 dx dt ≤
∫ T

0

∫
Ω0

ξ̇|ξL|5τ 2 dx dt

=

∫
Ω0

FL(ξ)τ 2 dx

∣∣∣∣T
0

(13.2)

where FL is the primitive of |ξL|5. There holds |FL(ξ)| ≤ |ξ|6, hence the right hand side
of (13.2) is bounded due to the fact that ξ ∈ L∞(0, T ; H1

loc(Ω)) and due to the initial

condition ξ
∣∣∣
t=0

, uniformly as µ → 0, L →∞ . We have

|ξ̇|2
(
1 + |ξ̇|

)−1
= |ξ̇| − 1 +

(
1 + |ξ̇|

)−1
(13.3)

and since the integrals∣∣∣∣∫ T

0

∫
Ω0

{(
1 + |ξ̇|

)−1 − 1
}
|ξL|5τ 2 dx dt

∣∣∣∣
are uniformly bounded for L →∞, µ → 0 , we remain with an estimate for∫ T

0

∫
Ω0

|ξ̇||ξL|5τ 2 dx dt

which proves (13.1a) .

(ii) For proving (13.1b) we multiply equation (3.1b) by γ and add the resulting equa-
tion to (3.1a) with index (i, k) .
We obtain

ẇ := ε(u̇)ik − (Aσ̇)ik − γξ̇ ≥ 0 if γ ≥ 1

or ≤ 0 if γ ≤ −1 .
(13.4)

Thereafter, we multiply (13.4) by

(ẇ ± 1)(1 + |ẇ|)−1|wL|5τ 2
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with + or − according to the sign in (13.4). The rest of the proof is analogously to the
first part concerning ξ̇. ¤

One would like to get rid of of the term γξ in theorem 13.1 . This is possible if we confine
ourselves to Morrey space estimates:

Theorem 13.2 Under the assumptions of theorem 13.1 we have the estimates∫ T

0

∫
BR

|ξ̇| dx dt ≤ KR
5
2 BR ⊂ Ω0 ⊂⊂ Ω (13.5a)∫ T

0

∫
BR

|ε(u̇)ik − (Aσ̇)ik| dx dt ≤ KR
5
2 (13.5b)∫ T

0

∫
BR

|λ̇| dx dt ≤ KR
5
2 . (13.5c)

Remark: Note that (13.5a)&(13.5b) do not follow from the inclusion ε(u̇), σ̇, ξ̇ ∈ L∞(L2).

proof (i) We test the equation (3.1b) with

ϕ =

(
ξ̇

|ξ̇|+ 1
− 1

)
τ 2 ≤ 0, supp τ ⊂ B2R, τ = 1 on BR

and obtain similar as in the proof of theorem 13.1 that∫ T

0

∫
B2R

|ξ̇|2

|ξ̇|+ 1
τ 2 dx dt =

∫ T

0

∫
B2R

ξ̇τ 2 dx dt

=

∫
B2R

ξ(T )τ 2 dx

≤
(∫

B2R

ξ6(T ) dx

) 1
6 (

KR3
) 5

6

≤ KR5/2

(13.6)

and using (13.3)∫ T

0

∫
Br

|ξ̇|τ 2 dx dt ≤ KR
5
2 + KR3 (13.7)

statement (13.5b) follows.

(ii) Combining the part (ii) of the proof of theorem 13.1 and part (i) here, we obtain∫ T

0

∫
|ε(u̇)ik − (Aσ̇)ik − γξ̇| dx dt ≤ KR5/2 . (13.8)

From (13.5a) and (13.8) we obtain (13.5b) . ¤
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14 Further properties of the displacement velocity in

isotropic hardening

In the case of isotropic hardening yet we are not able to prove that ε(u) ∈ L∞(H1
loc), in

other words that∫ t

0

ε(u̇) ds ∈ L∞(H1
loc) ? (14.1)

From this point of view, it is of interest, that at least∫ t

0

ε(u̇)
σD

|σD|
ds ∈ L∞(H1

loc) .

We consider again the penalized equation for isotropic hardening

ε(v) = Aσ̇ +
1

µ

(
|σD| − (κ + ξ)

)
+

σD

|σD|
(14.2a)

0 = ξ̇ − 1

µ

(
|σD| − (κ + ξ)

)
+

. (14.2b)

But now we take for the elastic compliance tensor A the inverse Lamé-Navier Operator,
defined by

AB = µ0 tr(B)Id + λ0BD , µ0, λ0 > 0 . (14.3)

Theorem 14.1 Let ε(u), σ, ξ be a solution of (14.2), assume the safe load condition (1.5),
regularity on the data and (14.3).
Then, for every Ω0 ⊂⊂ Ω,

ess sup
t∈[0,T ]

∫
Ω0

∣∣∣∣∇ ∫ t

0

ε(u̇)
σD

|σD|
ds

∣∣∣∣2 dx ≤ KT,Ω0 (14.4)

uniformly as µ → 0 .

proof We multiply the equation (14.2a) with ζ2 σD

|σD|
and add the resulting equation to

equation (14.2b) multiplied with ζ2. This yields

ζ2(ε(u̇)
σD

|σD|
) = ζ2

(
Aσ̇ :

σD

|σD|

)
+ ζ2ξ̇

= ζ2λ0
1

2

∂

∂t
|σD|+ ζ2ξ̇

(14.5)

The penalty term cancels out. Here ζ = ζ(x) is a localization function.
We have used that A is of the form (3.2), so

Aσ̇ :
σD

|σD|
= λ0σ̇D

σD

|σD|
= λ0

1

2

∂

∂t
|σD| . (14.6)
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We integrate equation (14.5) from 0 to t and obtain

ζ2

∫ t

0

ε(u̇)
σD

|σD|
ds = ζ2

(
λ0

1

2
|σD|

∣∣∣t
0
+ ξ
∣∣∣t
0

)
Since the right hand side is uniformly bounded in L∞(H1

loc), we obtain the theorem. ¤
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