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Regularity results for three dimensional isotropic and
kinematic hardening including boundary
differentiability

Jens Frehse Dominique Lobach

Abstract

For flat Dirichlet boundary we prove that the first normal derivatives of the stresses
and internal parameters are in L*(0,T; L'*%) and in L"O(O,T;H%_‘S) up to the
boundary.

This regards solutions of elastic-plastic flow problems with isotropic or kinematic
hardening with von Mises yield function.

We show that the elastic strain tensor £(u) of three dimensional plasticity with
isotropic hardening is contained in the space L>(0,T’; LY .) and in L>°(0, T} LA=%) up
to the flat Dirichlet boundary. We obtain related results concerning traces of (u).
In the case of kinematic hardening we present a simple proof of the L>(0,T; H lloc)
inclusion of the elastic strain tensor.

Keywords: plasticity with hardening, boundary differentiability, regularity of solu-
tions

MSC(2000): 74C05, 35B65, 35K85

1 Introduction
We consider problems of plasticity with isotropic and kinematic hardening.
Let 2 C R™ be an open connected, bounded subset with Lipschitz boundary 02. We

further assume that 9Q = ITpUTy, where Ip has positive (n — 1)-dimensional Hausdorff
measure.

For a vector valued differentiable function v : R — R™ we define a second order ten-
sor field e(u) by

1
e(u) = Q(Vu + VuT).
This tensor field is called the (linearized) strain tensor of the displacement field w .

In the small strain theory of linear elasticity for every deformation (given by the dis-
placement field u) we have a stress field 0. Here o is a symmetric second order tensor field,
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thus o : 2 — R»xn

Sym
The strain field e(u) and the stress field ¢ are linked by a linear relation

Ao =¢e(u), =0.

ulg,
A € L>(Q, R mxnxn) ig a symmetric, uniform elliptic fourth order tensor field, i.e., there
exists a > 0 such that for all 7 € R™*"

At 7 > alr]? (1.1)

holds.
For a given applied body force density f : {2 — R™ and exterior surface force g : Iy — R",
there holds the balance of forces in €2

dlvi = fin Q (12)
oc-n=gonly.
For the plasticity model we introduce a hardening parameter £ : 2 — R™, and the yield
function F(o,§) : R x R™ — R
The yield function F models the hardening behaviour of the material and is assumed to
be continuous and convex.

In this paper we will consider the von Mises yield criterion only, the method of proof,
however is much more general.
For M € R™™ we denote by Mp := M — L tr(M)Id the deviator of M.

Let k > 0, we define

F(o,&) =|op| — (k+&) isotropic hardening (£ € R) (1.3a)
F(o,&) =|op —&épl — Kk kinematic hardening (§ € RZY) . (1.3b)

We assume for the applied forces

f,f € L®(0,T; L"(Q, RY)) (1.4a)
p.p € L®(0,T; L0, R™)). (1.4Db)
We define the set

M= {(0,8) € (0, T; (Q, R x R™))[F(0,€) <0 ae. in QxR™x[0,T]}.

sym

In the following let m = 1 in the case of isotropic and m = n x n in the case of kinematic
hardening.



We suppose the usual safe load condition (cf. Johnson [Joh78]). There exists an element
(&L@)eIVLw<Q73LwaLRg$)x[ﬁxQJWﬂ)smmmhm
F(0°,£%) < =6, <0
—dive® = fin Q x [0,7]
o” - =pon Ly x [0,T]
(02,€9)(0) =0 in Q x {t =0}

(1.5)

We abbreviate v = 24

s;u(w,t). We define the basic problem of plasticity with hardening as:

Definition 1.1 (basic Problem) Findo € [*(0,T; L*(Q2,R%™)), £ € [2(0,T; [*(2,R™))

sym

such that &, & € I2(0,T; L2(Q, R™")), I2(0, T; I*(Q, R™)) eists and , v € I*(0, T Hy, (Q,R"))

sym

such that for all (1,n) € M a.e. in [0,T:
/(Ac‘f—s(v)):(T—J)dx—f-/f-(n—f)dxzo (1.6)
Q Q

(o, Vw) = (f,w) +/ pwdlds Yw € Hp (Q,R") a.e. with respect to t

(0,6)(0) =0 in Q x {t =0}
F(0,) <0 ae. inQxI[0,T]

(1.7)

Under mild regularity assumptions it can be shown, that the basic problem (1.6) &(1.7) is
equivalent to the pointwise a.e. equations

e(u) = Ad + pRLE
o ool (1.8)
0=¢—A

in isotropic hardening and

(i) = A + A T80
|0-D_£D’ (19)
—£_ ) op —&p
0=¢ lop — &b

in kinematic hardening.

Remark: We have chosen the initial condition in (1.7) for simplicity, although the more
realistic (0,£)(0) = (00,&) € M is obviously covered by our methods.

With the approximation of the basic problem in section 2, it is simple to show (see [FLO0S]),
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that the basic problem 1.1 satisfies the associated flow rule of plasticity with hardening

1= 5\83.7:(0, £) (1.10a)
L 0

where II denotes the plastic strain and ) is an non negative multiplier.

For the rest of this paper we will assume the elastic compliance tensor A to be sufficiently
smooth (for simplicity constant).

The existence of solutions of (1.6) &(1.7) and the fact that the displacement velocity v lies
in I?(0,T; HE, (Q,R")) was first shown by Johnson [Joh78], see also Lébach [L&b08].

In the case, that A is sufficiently smooth and some stricter assumptions' on the body-
and surface forces (1.4), we have o,& € I*(H},.) .[Ser94],[Lob08].

Futhermore, Seregin proved in the case (1.3b), that the strains e(u) (not e(i)!) are con-
tained in the space L>*(H},). From this and Sobolev imbedding one obtains for n = 3
that the displacement u is Hoélder continuous with exponent % in spatial direction, and in
addition, since e(u) € I?, u is locally Holder continuous in time with Holder exponent 1.
All this concerns Seregin’s result in the case of kinematic hardening.

Recently, the authors obtained in [FLO8| the Holder continuity up to the boundary in the
case of isotropic and kinematic hardening with another method, however only in two space
dimensions.

It seems that the analogue of Seregins result i.e. e(u) € L®(H}

o) 1s not yet known in the
case of isotropic hardening. We are not able to fill this gap, but at least in section 3 we
achieve e(u) € L>®(LY ) for n = 3 in the case of isotropic hardening and related results in
sections 12 & 14.

Differentiability of the stresses and hardening parameters (full derivatives) up to the boundary
is not yet known. The first result seems to be the present paper: in section 5-7 we prove
that D,o € L' for the normal derivatives of the stresses and hardening parameter in a
portion of the boundary, where 92 coincides with the hyperplane {z € R"|z, = 0}. In
fact we have a slightly better result then D,o € L'*?, since there hold additional Morrey
estimates cf. theorem 6.1 for the details.

Our proof of L'*%-regularity of the stresses contains additional regularity information. In
section 5 we prove

ess sup/ |D,o*r,dz < K. (1.11)
t€[0,7]

IThe proof of Seregin [Ser94] needs less regularity for the body- and surface forces than Lobach [Lob08].
In Seregin’s case we further need f € C([0,T); H..(2,R™)) in the case isotropic hardening. In Lébach’s
case we need Df, Af € L*>(0,T; L™(2,R™)) for kinematic- and isotropic hardening.
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This can be refined with a new plate filling technique which yields an additional Mor-
reyspace refinement of (1.11), see section 7 for the details. This allows us to conclude
L®(HY51) rather than L>°(H'~%!) estimates.

In section 9 we present an alternative proof of the result of Knees, which works also for
the case of isotropic hardening and even for Neumann boundary conditions (the latter is
not elaborated).

Concerning fractional differentiability of the stresses the first result at the boundary
in the kinematic case is due to Alber and Nesenenko [ANO08]. These authors show for
kinematic hardening that o, € H3~°. Furthermore D. Knees proved in [Kne08] Hz% in
a flat situation for kinematic hardening.

We prove 0,§ € N 22 pear the flat Dirichlet boundary, by the imbedding theorem for
Nikol’skii spaces we obtain ¢, € H 379, The tangential derivatives of o, have more reg-
ularity and are in L>°(I?).

In the kinematic case the regularity results on the stresses imply D,e(u) € L>(I?) for the
tangential derivatives and e(u) € L*®(H2~°) for the normal derivatives. In [AN08] Alber
& Nesenenko first proved u € H 579 in the kinematic case near the boundary.

Regarding the isotropic case, in section 10 we obtain Vu € L>®(L*~%) near the boundary
which implies Holder continuity of the displacements u with exponent a < % in space
direction and Holder exponent 5 < % in time direction.

2 Approximation

We will approximate the problem (1.6) by a sequence of penalized problems.
We define a viscoplastic type potential G,, as follows,

1 2
Gu(a, §) = ﬂ(}—(@ €))Jr
a ifa>0
0 else
In the case of isotropic and kinematic hardening with von Mises yield criterion we have

where (a), =

Gi(0,8) == Vieg)Gu(0,§) € P x I7.

If we set ¥ = (0,€) and II = (7, m¢), we can derive the flow rule for the penalized problem
of plasticity with hardening:

: . 0
Ty = )\8—0.7:(0, €)

)
Te = )‘a_ff(o-v 5)7



where \ > 0 is a multiplier with

A=0if F(o,8) <0.

Due to the differentiability and convexity of G (e, ), it’s derivative G (o, &) is a monotone
operator. The monotonicity of G},(c,§) yields a generalized principle of mazimum plastic
dissipation

II:(2-%)<0 == (r,n) : F(E) <O0.
The penalized problem reads:

Definition 2.1 Find ((0,,€),v,) € H'(0, T; 2(Q,RExR™)) x L2(0, T HE, (2, R™)) such
that for a.e. t € [0,T]

e(v,) _ A@) (G’ (ou,g)l)
( ou) (gﬂ (. 6), (2.1)
with the balance of forces

(ou, Vw) = (f, w) +/F gwdl'ds Vw e HL (0, R") a.e. with respect to t 22)
N .

(0,,6,)(0) =0 in Q x {t =0}.

We have the estimates independent of

0l oo 2y, 1€ull oo () < C (2.3a)
NGl oo z2)s 1€pllpoe 2y < C (2.3b)
le(w)l|oerzy < C (2.3¢)
196l ez2): IVEull iy < Cope ¥ CC Q. (2.34)
For (2.3d) additional regularity for O'N| o and §u| .o 1s required:
Vo,(0) € I*(L;
UM( ) ( loc) (24)

VEL(0) € I (I7,,)
and
Df,Af e L>*0,T; L"(2,R")) .

These estimates yield the convergence to ((U, 5),1}) solution of (1.6), as the penalty pa-
rameter 4 tends to zero. For the details see Lobach [Lob08]. In [FLO8] the convergence
of A, (for example \, = (Jop| — (k + f))+ in the case of isotropic hardening) to a plastic
multiplier A (cf. equation (1.10)) was shown.
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For v, = 4, we have due to imbedding theorems and Korn’s inequality in I?, in the case
of n = 3 dimensions

vl Lo ey < C (2.5)
provided the domain €2 has Lipschitz boundary (otherwise (2.5) holds only in the interior
of Q).

From now on, for the sake of clarity we omit the subscript u for the penalty parameter.

3 Higher integrability of the strain in isotropic hard-
ening

In the case of isotropic hardening with von Mises yield criterion the penalized equation
(2.1) reads:

) 1 Op
e(v) :Aa+;(|ap| — (/i—l—f))er (3.1a)

Ozf—%(\ap|—(m+£))+. (3.1b)

Theorem 3.1 Let n = 3, and f, f € Lo(L>), Df,Af € L>=(L?) and assume the safe
load condition (1.5) holds true, then for every subset 1y CC €2

esssup [ |e(u)|®dz < Kaq, (3.2)
t€[0,T]

uniformly as p — 0.

e )-regularity for o. Let x, =
Xr(t,-) be the characteristic function of the set where |e(u)(t)] < L. We integrate the
penalty approximation (3.1a) with respect to ¢ and multiply the integrated equation by
7xre(u)|e(u)|* evaluated at ¢. The integrated equation (3.1b) is multiplied by 7xz|e(u)|®,
where 7 is a localization function.

This yields

proof The use the fact, that the assumptions imply L>(H}

s=t

/XLIe(U)(t)I672dfv§/XL(t)Ie(U)(O)I-IS(U)(t)IE’TdeJr/IAU T xc(t)le(w) (1) dz
Q Q Q s=0

+[3(] onl = (x+ ), 22 ds) Prs Ol (o] do
(3.3)

and
[emmamk@ore - [ ( /Ot(|aD|—<K+s>)+ds) xe (Dl (®)f de . (3.4)
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We subtract (3.4) from (3.3) and use the fact that

([ 0l = s+, 22 a5 ) st oo

[ lop|
<2 [([ ool = s +6)),5) e Z ) ()] dz
< %/ﬂ (/Ot (lopl = (v +€)), ds) xrle(w) ()P dz. (3.5)

Hence the right hand side of (3.4) dominates the last term and we conclude

/XL(t)|€(U)<t)I6d$S/XL(t)(Is(U)(O)I+|A0(0)I+|§(0)|) [e(u)(t)"r* dz
Q Q

(3.6)
+ [a®(140)] + 0] e O P do.
Q
Since 0,¢& € H , uniformly as g — 0 we may estimate the right hand side by
5/6
K ( / ()72 (w)(0)° dx> .
Q
By passing to the limit L — oo, the theorem is proved. [l
2n_
n—2

Remark : With a similar argument, in the case n > 4 one obtains e(u) € L>(0,T; L;>?)
and forn =2 ¢(u) € L>(0,T; L} ) for all ¢ < o0.

loc

4 Interior Holder continuity of the displacements in
isotropic hardening

From theorem 3.1 and Sobolev’s imbedding theorem we conclude the Holder continuity of
the displacements u in spatial direction in three space dimensions with exponent % By
simple estimates, the Holder continuity can be extended to the time direction.

Theorem 4.1 Under the conditions of theorem 3.1 the displacements u in problem (1.1)
are Hélder continuous on [0,T] x Qo with exponent % for all Qg CC Q).

proof In view of the above remark it suffices to prove the Holder Continuity in time
direction. For the Holder continuity in time direction we have to estimate the quantity

|U(t1, CC()) — U(tg, 33'0)| S |U(t1, .To) — HR,JL“O (tl)} + ‘U(tg, Io) — ER,x(] (t2)|

]{B ( [u(tz, z) — u(ty, z)] da (4.1)

z0)

= Ay + By + Co

+
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where g 4, (t;) is the meanvalue of u(t;, z) extended over Br(zo) .
Since u is locally Holder continuous in z-direction with exponent %, we have

[Ao| + |Bo| < KR, R < Ry, (4.2)
a.e. with respect to ti,t5. The term Cj is estimated using the time derivative of w:
to to 1
6
Cy = ][ /udt dz| < / (][ |uy6dx) |Br(zo)|® dt
Br(zo) Br(zo) (4.3)
t1 t1
5
< Klty —|R™ (R®)® = K|t, — t5|R™2

We have used the inclusion Vi € L*(I?) and Sobolev imbedding theorem to conclude
@ € L°°(L®). From equations (4.1)-(4.3) we obtain

|u(ty, 20) — ults, x0)| < KR2[t, — to| R7% + KR3 .
The optimal choice of R is R = [t; — t5]. This yields
‘u@l,x(])—U(tQ,.%o)} SK‘tl_t2|%, ‘tl—t2| SRS

This proves the theorem. O

5 Differentiability at the boundary. First results

For simplicity we discuss the differentiability of the stress o and hardening parameter £ in
a neighborhood of a boundary point xy, where 02 is flat, i.e. 3R > 0 such that

QN Bp(zo) = {z € R"|z,, = 0} N Bg(zo) (5.1a)
Qg := QN Br(z) = {z € R"|z,, > 0} N Br(zo) (5.1b)

In this section, for the sake of mathematical insight, we consider the case of n space di-
mensions.

In the case of zero boundary conditions for u, the existence of tangential derivatives
D,o,D.¢ € L®(L*(Qg)) is proven analogously to the interior differentiability [Ser94].
One applies a difference quotient operator D" to the penalized equation (2.1)&(2.2),
Dlg(z) = +(g(z + hé;) — g(z)) where & is a unit vector in tangential direction, and
one uses (3(Dha, D'¢) as a test function, with supp ¢ C Bgr(7¢),{ = 1 on B,(x¢),r < R.
We may assume that ((zy,...,2,) is constant for 0 < z, < dp,21...,2,_1 fixed, say
C(x1, ... xn) = (o1, Tp_1)C (7). Then, after integration (also with respect to t),
the right hand side of (2.1)&(2.2) gives , a nice definite term which, at the end, gives a
uniform bound for Do in L>(I?(QR)) as h — 0, — 0.

The left hand side is treated in the usual way:

T T
Loy = / / ¢2D'Vi : Do drdt = — / / [(*DraD!f — Dti: V(*Dlo| dzdt
0 0
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There are no boundary terms since D = 0 at 90N Bg. From [Lob08] we know, that Vi is
uniformly bounded in L>(I?). (One has to adapt Johnson’s proof [Joh78] who uses another
penalization to the setting considered here.) Hence DV is uniformly bounded. This
argumend also works for Neumann boundary conditions with zero surface force (o -7 = 0).
Thus we obtain

Theorem 5.1 Let u, o be a solution of (2.1)€9(2.2). Assume the geometric situation (5.1)
and let the hypotheses of theorem 3.1 be satisfied. Then the tangential derivatives D, o exist
and are, for r < R uniformly bounded in L>(I*(B,(xo) NY)), as the penalty parameter p
tends to 0.

We consider this a corollary to [Ser94].

The first results concerning fractional differentiability of the stresses in normal direction
were presented by Alber & Nesenenko [AN08] and Knees [Kne08] for the case of kinematic
hardening.

We present a completely different approach fo obtaining some information about the normal
derivatives of the stresses.

Theorem 5.2 Under the assumptions of theorem 5.1 the stress o and the hardening pa-
rameter £ of the isotropic or kinematic hardening problem satisfies

ess sup/ |Dna|2xn dr < K, (5.2a)
te[0,T] JQg

ess sup/ |D,¢|?x, dz < K, (5.2b)
tE[O,T] Qr

uniformly as p — 0.

proof We apply the difference operator D in normal direction to equation (2.1) & (2.2)

and use the function z,,(*(z') (Dlo, D¢)(z) as a test function. 2/ = (21,...,2,-1), (is a
localization function such that supp ¢ C Br(xg), ¢ =1 on B,(zo) and {(z/,x,) = const in
the interval (0 < z,, < dy), for fixed =’ = (x1,...,2,_1) with some §p > 0.

recall: z, = 0.
On the right hand side the penalty term can be dropped due to convexity, further we obtain
nice non negative definite terms such as

1 T
—/ r,(2D'o AD" o d:v’ (5.3a)
2 Jq 0

(5.3b)

T
0

3 [ mnleDleaal
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On account of the equation, they are estimated by

T T
> / / 2, D} Diin Dyoip( dwdt = — Y / / 2 DIy DI Py, A dt

ik=17 ¢ ik=17 ¢

T
- / / 2 DMy Doy D% dae dt

k=1
Tin 00

T
= / / D'y, Do, ¢? da dt
k=170 0nBg

=A+B+C.

(5.4)

For the penalty approximations, i.e. p > 0, the boundary term C'is defined.

The term A is uniformly bounded since we have a L>°(I*) bound for Vi and f is sufficiently
smooth.

The integrands of B are estimated by

Ks| Dl |*|V ¢ P + 6| Do (5.5)

and the first term (with factor Kj) is uniformly bounded, and the second is absorbed for
small 6.
Finally, the integrand of C' contains the factor

1 h
Doy = E/ Dyopi(z + sn)ds.
0

We have Do, = fi — Z;:ll D,o;, and for this term we have an I? bound up to the
boundary B, N 0} since it contains only tangential derivatives of o;; Hence the term C' is
bounded uniformly, too.

Thus we may pass to the limit h — 0 and obtain the theorem. Il

Corallary 5.3 In the kinematic case (1.3b) we have

esssup [ |D,Vul*z,ds +/ |ID,Vul*dz <K, 7=1,...,n—1 (5.6)
Qr

tel0,7] JQ.
uniformly as p — 0.

This is derived from theorem 5.2 with the methods of [Joh78, Ser94, FLO8| ,cf. also section
11 at the end of this paper, i.e. integrating equation (2.1) with respect to ¢ and eliminating
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the penalty term using &.

In the case of isotropic hardening, (5.6) is not yet known, we work with a substitute.

Corallary 5.4

ess sup{/ o220t dx—f—/ |§|2xi_1dx+/ |6(u)|2xi_1dx} < Kj (5.7)
QT Q'r Qr

te[0,T
for any 6 > 0, uniformly as p — 0.

proof Let ¢ € G5°(B,/(29)),p =1on Q,r <1’ < R. p(z1,...,T5-1,7) = Const for 0 <

v < 0p,x1,...,%, 1 fixed. We have

5/ o220 pda :/ |o|? Dy’ o d
Q Q

7,./ 7./

= -2 Do : ox’pdr — / |o|22° Do da (5.8)
Q. Q

4]
<5 / o220 o da + Kg/ |D,ol?e o de + K

Q. Q.
and the corollary is proved as far as it concerns o. The estimate for £ is done analogously.
The estimate for £(u) follows via a generalized argument with weight 221 similarly to the
proofs in section 3. Equation (2.1) is integrated with respect to ¢ and the resulting first
equation is multiplied by e(u)xS~!. This implies

J

The second equation of (2.1) is multiplied with e(u)x3~! (kinematic case) or |e(u)|z2~1

(isotropic case) and we use it to dominate or eliminate the penalty term. O

le(u)]?2? do < / e(u) : Aoz’ ' dx 4+ Penalty term
Q.

7./

6 Ll-estimates of the normal derivatives of the stresses
at the boundary and refinements

From theorem 5.2 we conclude by Hélders inequality for 6 € (0, 1) arbitrarily near to 0,
/ |D,o|? dz = / |D,o |22 0% da
Q, Q,

</ |Dna\2xn+/ x,0/270) dg (6.1)
-~ Ja, Q,

< Ky.
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This follows since the negative exponent of x,, satiesfies % <6 < 1. Thus

esssup [ |Dpo|’dr < K. (6.2)
te[0,7] JQ.

However, one can do better. In section 7 we will prove the stronger estimate

esssup [ |Dpol*zldr < K. (6.3)
tel0,7] JQ.

In the above geometrical setting the constant ¢ depends on the quotient of the largest and
lowest eigenvalue of the quadratic form associated to the tensor A. It is useful to keep an
additional Morrey condition in (6.3).

Theorem 6.1 Let 6 € (0,1) be the number in (6.2). Under the assumptions of theorem
5.2 we have the estimate

ess sup/ (ess sup/ |D,olz" — | Pday ... dxn_1> dz, < K
[0,r] B,

te[0,T y' €Bar

ess sup/ (ess sup/ |D, &l 2" — /| Pday ... dxn_1> dz, < K
[0,7] Bs,.

t€[0,T7] y'€Bar

uniformly as p — 0, provided that

<1+L <1—L
1 25 P 25

Here y' = (Y1, ..., Yn_1) € R" 1 By, = By, () D R™L, 2 = (201, ..., Ton_1)-

This means that (6.2) is refined to the case # > 1, with an additional weight. Since there is
the variable singularity 3/, theorem 6.1 is more than the statement D,o € L°(L'*%0:37P),
Remark The vectors 3 in (6.4) depend on ¢ and z,. A priori it is not clear whether
y'(t, z,) is a measurable function with respect ot (¢, x,). However with the usual Filippov-
type argument from optimal control it is possible to find a selection and that the supprema
are obtained a.e. and |2’ — y/| is measurable.

proof Let B, := {2/ = (21,...,2,-1) € R" | |2/ — zf| <r}

I, =0<z,<r)

Let 1 < ¢ < 2, by Holders inequality

/ |D,ol?|a’ — | P de = / |Dna\qxfl(lf‘;)mx;q(l*‘s)ﬂ|x' — | P dx
I-xBj. I.x Bl

S/ ’DnU‘Q‘x}L_‘S_{_/ 2 01=0)/2=0) |3 1 =2/(2=0) gy
I-xBj. I,xB!

(6.5)
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For the last integral we apply Fubini’s theorem and we have a bound, if
1 —
¢1-9) _
2—q 2—q
This is the case if

2 1) 1)
2 dp<2—qg=1-_—2".
I<5 5= Ty _samdp<2—4¢ 2_5

Interchanging o by £ we achieve the same result for the hardening parameter. O

7 An anisotropic Morrey estimate for the normal deriva-
tive of the stresses near the boundary

We still have to prove inequality (6.3). For doing this we establish an anisotropic Morrey
estimate for ¢,& and Vu. We asssume the geometric situation exposed in section 5. Let
di' = dxy ... dz,_y, Q= {2 € R"|(2/,0) € 00N B,}.

Theorem 7.1 Let ((0,€),u) be a solution of (2.1) in B N Q with u‘amBR = 0 and

assume that the data satisfies the smoothness assumptions (1.4) € (1.5) . Then there exist
constants 6 > 0 and C' > 0 such that

T pr
/0/0/, (‘(-7’2 + ‘5|2 + |Vll’2)dx/ dz,, dt < Ord -

uniformly as the penalty parameter u — 0, for all r such that

[0,7] x Qf C Bg(mo)ﬂQ, 0<r<myg.

Theorem 7.1 tells us, that the integrals of |¢|2 + |¢> + |Va|? over the strip [0,7] x Qf,
where R; is fixed and » — 0 variable, tends to zero in a controlled way.

A very related statement can be found in [FLOS].

proof (i): Let {y = (o(21,...,2,_1) a Lipschitz continuous localization function such that
(o = 1 on Bg,(z() and supp ¢y € BgN{z € R" |z, = 0}, and let {, = (.(z,,) be a Lipschitz
continuous function such that ¢, =1 on [0,7], [V({,| <1 and ¢, =0 on (2r, 00).

We use the function ¢2¢2(,€) as test function in (2.1) and obtain

%/ (A6 - & + €]7] 22 dx‘j <T (7.2)

where
T
T://vu:dggg,?dxdt.
0
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The integration [ is done over supp((p, (). We rewrite T using oq = 0, —dive = fand
partial integration:

T = T1 + Tz + T3 (73&)
T
T, = — - fC3C dadt (7.3b)
/0// 2
OT
Ts = —2 / / w-6VEGCGC drdt . (7.3d)
0

We estimate
1

T r2r é T p2r 2
T+ < K ( [T defdw) K ( [T e dxdt> (14
0Jo b 0Jo Ja

and use Poincarés inequality to estimate

/ |u|? dz,, < Kﬂ/ |D,ul? dx,, .
0 0

This yields
Ty| + | Ta| < K (7.5)

since V1, 0, f are bounded in I?2. The term T3 is estimated similarly, however we take into
account, that V(. = 0 on [0,7]. We obtain

K T p2r 9 . 1 T p2r 9o .
T < — lo|°¢y do, da’ dt + €9 |0|“¢y da, da’ dt
€0 Jo Jr Jo = Jo Jr Joy
R R
K T p2r T p2r 76
< —// / |67¢3 da,, da’ dt + 60// / Va2 da, da’ dt . (7.6)
€ Jo Jr Jay 0Jr Jay
(0]

-~

Thus we arrive at the inequality

T p2r . K T p2r ] )
/// (’(5|2+|§’2>C3C§dx’dxndt§ —/// (|d|2+|§|2)C§dx’dxndt+Kr§+T0,

0 /0 R € Jo Jr Ve
(7.7)

Here we have used the ellipticity condition for the elastic compliance tensor A and we have
absorbed the integral with factor ¢j in front.
(17): We start to estimate the term Ty. In the kinematic case, we use the pair

(5(u) 5 5(71)) CgX[rzr]

15



as test function with Xp.2,) = X2, (%n) the characteristic function of the interval [r, 2r].
We also use this test function without x[0, 2r].
In the isotropic case we choose

(e(@), le(@)]) o Xpr2r

as test function, respectively with x(o 2.

In the kinematic case, the components coming from the penalty term cancel out, in the
isotropic case the sum of the components coming from the penalty term is less equal than
zero. Thus we obtain using Holder’s inequality

//2/ |godxdt<K//ZV (162 + [£) 2 da (7.8)
//2/ ICdedt<K//2r// (162 + |€2)¢E da (7.8b)

(i41) We need some type of Korn’s inequality for () on the domain [0,2r] x Q%. The
difficulty is, that the constants have to be uniform as » — 0. To see what we can expect
we rewrite

2r 2r n—1
/// W)|2¢3¢ dz dt = /// |Duk|2 Zpiukpkui
7 i,k:l

(7.9)
- ZDnukaun 2D } G2 dr

:2U1+U2+U3+U4

For the term U; we use tangential partial integration.(To justify this operation one can
apply tangential mollification operations to D;ty) This yields

T r2r n—1 2
U, = / / / (Z Dﬂh) (2¢?dx dt — pollution terms, (7.10)
0J0 O\ j—1

where the pollution terms can be estimated by

T p2r
/// ([N Gl + [l V[ VEo?) de dt < K. (7.11)
0oJo Ja

The last inequality follows from Poincarés inequality applied to « as in the begining of the
proof.
The difficulty is the term Us. By partial integration

n— T p2r
Uy = —2 Z / / / (D Dyttitin (G + 2Dyt CoDio) ¢ da dt
R
n 2r
- _ Z / / { Dyt Dy} + 2Dyttyis, Dy, G } (5 dar dt — pollution terms.
Ql

16



(7.12)

(For justification, here it also suffices to use tangential mollification of D;iy, Dyu;.) The
pollution terms can be estimated as in (7.11). From (7.9) and the representation of u,; and
from (7.10) we obtain

2r 2r 2 n—1
/ / le(@)|?¢2¢2 de dt > / / / —|Vuy 4= <Z Dkuk)+—\Dnun\ —Dyityy Dy 3¢ dadt
Q/ / k 1
2r
—2 / / / ZDkukun DGR dadt — K

Rk 1
T r2r n—1
> / / / —|vu|2<3—2zpkukunpngg Cdrdt — Kr
0Jo |2
R k=1
= Wl + WQ — K?‘,

(7.13)

We estimate the second integral from below using Poincarés and Youngs inequality. We
take into account that supp D,,¢, = [r,2r] and |D,¢ | < 1.

Wy > __//QT/I V|22 dxdt—Keo//Qr/l IVa|2¢2. (7.14)

Using (7.13), (7.14) we have

1 T p2r 990 T p2r 9.9 1 T p2r 9o
— — Keg |Va|*¢5¢: daedt < le(@)]*¢5 dedt+ | Keg + — |Va|*¢y dedt+Kr.
2 0Jo J 0 Jo Jaj €o/JoJr S,

(7.15)

This means that fOT |Vu|2 is dominated by Kfo 0 Joy, le(2)|?+ a pollution term Kr

+ a hole filling term contalmng fT
(iv) We use (7.15) to estimate the term T in (7.6). This yields

2r 2r
T0<Keo/// ]Cdedt—l—K/// \Va*¢ dodt + Kr. (7.16)

From (7.7),(7.16) and (7.8) we obtain

T pr T p2r
/// (yd|2+y§|2)gggfdx'dxndtgKr1/2+K/// V| *¢2 dx dt
0 JoJay 0Jr Jag
T p2r .
ok [ [ (of + @P)G
0oJo Jaj

17
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which implies, for small ¢,

T p2r T p2r
// /(wﬁ+m%ﬁ¢wnﬂugKHﬂ+K//i/(mﬂHW+WMWQQMt
0Jo Joy 0Jr Jay,
(7.18)
We add the 5-fold of (7.8) to (7.18) and obtain

e 1 1, 1 T r2r )
(7.19)

In (7.19), we replace the term with |e(4)|* using (7.15) and obtain finally the plate filling
inequality

T pr T p2r
///QW+W+mwﬁmmg///(m%m%wﬁﬁmww@ﬂ
0 JoJQkL 0Jr JOg

(7.20)

Now we are able to prove theorem 7.1.
(v) We apply a plate filling step: From

T r2r T r2r
// W@&g// Wdz dt + Kr'/?
0Jo JO, 0Jr JQ)

we conclude

T prr K T r2r
// Wdxdt < // W dz dt + Kr'/?
0 JoJar, 1+ K JoJo Jay,

and the statement of theorem 7.1 is derived via an iteration argument. Compare the proof
in [FLO8| for a recent paper on this subject. O

Corallary 7.2

I,

for some 6, < 9.

62 + |€)? + |Vaf?| 2% da/ da, dt < K (7.21)

proof We estimate the integral in (7.21) by

[e%e} T p2—J [e%s)
22(2]’)// / (167 +1€7 + [Vaf?) da'dar, <232~ < K.
j=N 0.0 r j=N

J

Now, we are able to prove the basic estimate

18



Theorem 7.3 Under the assumptions of theorem 7.1, we have for § < %

ess sup// (|Dyo|? + |Dnél?) ), Cda'dz, <K 0<r<r (7.22)

te[0,T]
uniformly as p — 0.

proof We follow the proof of theorem 5.1, but replace the weight z,, by

Ln

Tps = ——,
(514—372

where 6; > 0 is an additional parameter which tends to 0. This is necessary at the beginning
of the proof in order to ensure that the integrals are defined.
We arrive at the analougue of inequality (5.4)

e S
5//fn5g2[ADga;Dj;a+|D’,;§|2}2dxdt§A+B+c (7.23)
0JQ

where A, B , C are defined as 4, B, C' in (5.4) with z,, replaced by Z,5. In particular, this

means that the factor 1 = D, x,, in the integral C' is replaced by
z - 8 01
——— = (1-10 o+ — > 0.
(51 + J}g ( ) ((51 + 172)2 (51 + l’g)z -

The terms A and B with the new weight 2,5 are treated as in theorem 5.1. The integrands
are estimated by Youngs’s inequality and the term ey| Do |*¢%%, 5 which is absorbed by the
righthand side of (7.23). The remaining parts of A, B are bounded as h — 0,8; — 0, w—0
since Vi € I2. The term C' is rewritten using — dive = f as in the proof of theorem 5.1:
Thus we obtain

n n—1

O] < ZZ// | Dyg|| DY oig| Dy s¢? dar dt + K . (7.24)

k=1 i=1

We now pass to the limit A — 0 which is admissible since @ € L*(H"'), D;o € L>*(I?) for
1=1,...,n— 1. Thereafter, we estimate

T
lim |C] < K/ |Vi|?| Dp,5|°¢C? dodt + K . (7.25)
Recall that the tangential estimates of D,o are in I?. Now, we use that

|Dna~cn5| < 'IT_LS

uniformly as 6; — 0. Hence the righthand side of (7.4) remains bounded due to corollary
7.2. Thus the statement follows from (7.23) and Fatous Lemma. O
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8 L>*(L*7’)-estimates for the stresses at the Dirichlet
boundary

Again, we consider the geometric situation described in section 5 with a flat portion of the
boundary 0€2. While the property of D,o holds in any dimension, we restrict now to the
case of three space dimensions.

Theorem 8.1 Let n = 3. Under the conditions of 6.1 and the geometric setting (5.1), we
have for all 61 > 0 near to 0

ess sup/ lo|* dw < K, (8.1)
t€[0, 7] JQ,

uniformly as p — 0 for isotropic and kinematic hardening.

Remark Theorem 8.1 also follows via the estimate of the fractional derivatives of order %
of o and £ , see section 9. We found it useful to present an alternative method of proof.

proof From theorem 7.3 and corollary 5.4 we obtain by Holders inequality

ess sup / |Dyo||lo| dey dzadas
t€[0,T] e B!

< ess sup // |D,o|?zl=% day day das + // o227 day doy das | < K,
B, Bl
vl

t€[0,T]
[0, [0,7]
(8.2)
for all 6o > 0 and B! as in the proof of theorem 6.1. From Gagliardo’s lemma we conclude
esssup [ |o|*dzydey < K+ / D,|o|*dx drodrs < K + Ky, . (8.3)
t,Tn B;. B;N
[0,7]

On the other hand, since the tangential derivatives are uniformly bounded in I? near the
boundary we have in view of Sobolev’s inequality

/ ( lo|* dar, dxg) ’ des < K (|Drol” +|o]?) da (8.4)
[0,7] B! [0,r]x B!

for all 1 < p < 0o. We now use an argument which is frequently used in fluid-dynamics:

1 1_1
/ |0|2‘0]2(1—%) do < / < lo|? dary dx2> < lo|* dzy dx2> dws
[O,T]XB; [()77»] Bl B!

1-1 1
2 P 2% P
< ess sup lo|* dzy dae |o|*P dxy dag
a3 B! [0,] \JB.
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The latter quantity is bounded due to (8.2) & (8.4). O

9 NZ2-fractional differentiability of the stresses and
hardening parameters in normal direction up to the
boundary

Again, for the sake of mathematical insight we consider the case of n space dimensions
and the geometric situation described in section 5, i.e. the boundary 02 coincides with
the hyperplane {z € ]R”‘ x, = 0} in a neighbourhood Bg(x) of a boundary point zq, and
Br(zo) N{z € ]R”’ xn, >0} Q= By () NQ, r < R.

We treat both kinematic and isotropic hardening.

Remember, that @ = 0 on B N 0N.

Theorem 9.1 Let 0, be the solution of (2.1) resp. (1.6). Under the regularity assump-
tions (1.4)€4(1.5) and the geometric setting above there holds the estimate

1
ess sup sup — lo(z + hé,) — o(x)]*dz < K, (9.1a)
te[0,T] 0<h<rot Jq,
1
ess sup sup —/ |€(z + hé,) — E(x)]Pdr < Koy (9.1b)
t€(0,T) 0<h<r‘oh Qr

uniformly as p — 0, in the isotropic and kinematic case.

Remark Theorem 9.1 states that o,& € L®(N22(€,)) up to the boundary, where N'z:2
denotes the Nikol’skii space for p = 2,s = % By the imbedding theorems (see for example
[KJF77, Ada75]) we have o € L®(Hz2%(Q,)).
In the kinematic case it has been known already that o,& € L*(H %*5). This was proved
by Alber & Nesenenko [ANOS] and Knees [Kne08| in the kinematic case. Their proof is
different, another formulation of the problem is used. Let us note that, Knees works with
a reflection argument.
proof of theorem 9.1 We apply the difference operators D to equation (2.1) & (2.2) and
use the function h(?(Dlo, DE€) as test function, where ¢ is defined in section 5. As usual,
on the right hand side of equation there arises the part coming from the penalty term
which is dropped due to monotonicity and there remain the terms
h (?AD"s : D'o dx‘T + E/ (D¢ dx‘T (9.2)
2 Ja, o 2Ja, 0

21



which will give the estimate for (9.1).
On the left hand side we obtain by the divergence theorem and (1.2)
DhiDf¢* =2 DhiyDhoy(Di¢ | dadt

T
h/ D'e() : Dro¢? dz dt = //
0JQg Qr ik=1

—h> / / D'y Dloy (2 day ... A,y dt
k=1

gRﬂ{anO}
= DBy + By + Bs.
(9.3)

The term B is obviously bounded since f is smooth and Vu € L°°(I?) with uniform
bound. The term Bs is estimated by Holder’s inequality

T T
|BQ|§51h// |DZU\2C2dxdt+K51h// |Dlaf? da dt (9.4)
0 JQg 0 JQr

and the first term estimating |Bs| is absorbed by the terms in (9.2), using Gronwalls
inequality, the second is bounded since Vi € L*(I?) uniformly as u — 0.

The difficulty is the term B3 which we treat in the following way:

We may write

hD" iy, (2 / D, (z + sé,) ds

Doz / Dyoui(x + se,) ds (9.5)

h n—1

:_—/ fr 3——/ ;Diaik(x+s€n)ds.

Define B! := B,(zo) N 9. Since the tangential derivatives of o are in L>°(I?) (cf. theorem
5.1), we conclude from (9.5)

1 ~—1 [ 1
ess sup/ |D ol ? dey ... da,_y < — K +ess sup 5 — / |Dio|*dxy ... dz,_1ds < —K .
te[0,7) / h tel0,7] T2 By h

(9.6)

Furthermore
2

ess sup |hDZzlk|2 dzy ... dz,—; < ess sup/ dzy ... dz,_;
B/

te[0, 7] JBL. te[0,T

/ Dyt (x + séy,)ds

< ess sup/ / |Dpig|*dsday ... do,_y

tel0,T

< h ess sup | D,yitge|? da .
te[0, 7] J B
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(9.7)

This implies

n T 1 T 1
2 2 1 1 1
|Bg|52(// (hDZuk)del...dxn1> (// |Dganh|2dx1...dxn1> g(hK)a.(EK)a.
k=1 \/O /B, 0 JB,

This proves the theorem. Il
From the imbedding theorems for anisotropic Nikol’skii spaces [KJF77] we obtain

Corallary 9.2 Under the assumptions of theorem 9.1 we have for 3 space dimensions
0,& € L®(L*°(Q,)

and in 2 space dimensions
0,& € L®(L°°(Q,))

with uniform bounds as p — 0.

proof
n = 3: We use the fact that the full first tangential derivatives are in I?. We have to

calculate the harmonic mean of the numbers 1.1, 1 which is

P
1 2.17" 3

11+ =2,

o

By the Sobolev-Nikol’skii imbedding theorem we conclude o,& € L*>°(L7) with

3.2
S AL S e
173 2. (3/4)
n = 2: Similarly [3(142)]7' =2
2.9
- §=6-0.
1T 0 2/3) 0

g

10 Regularity properties of the displacements near
the boundary

In this section, we confine ourselves to the case of 3 space dimensions. Both kinematic and
isotropic hardening are treated. We consider a neighbourhood of the dirichlet boundary in
a flat part.

With a similar method as in the proof of theorem 3.1 we conclude from theorem 8.1
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Theorem 10.1 Under the assumption of theorem 5.2 we have for the strains for all 6, > 0
near zero

esssup [ |Vu|*™dz < Kj, (10.1)
tel0,7] JQ.

uniformly as p — 0.

We do not present the proof which is very similar to the one of theorem 3.1.
Recall, that we treat both, the isotropic and kinematic case.

Theorem 10.2 Under the assumptions of theorem 5.2 we have for the strains in the kine-
matic case

ess sup/ |Dyul*dz < K (10.2)
te[0, 7] JQ.

and
ess sup sup h/ VDM dr < K, (10.3)
tE[O,T] 0<h<hg

where D, denote the tangential derivatives and D! the difference quotient in normal direc-
tion.

proof We integrate (2.1) with respect to ¢, eliminate the penalty term, apply the operation
D, or D" to each equation and use D,yu or vVhD"u as a testfunction. Then we obtain the
statement of the theorem. O

From theorem 10.1 we can derive the Holder continuity of the displacements u at the
boundary.

Theorem 10.3 Let n = 3, under the assumptions of theorem 6.1 the displacements u in
1sotropic and kinematic hardening are uniformly Hoélder continuous in .. The Hélder
exponent a in space direction is any number o < i, the Holder exponent in time direction
any number [ < %

proof We use the fact, that

Vi € L®(I7) (10.4)
and theorem 10.1. From (10.4) we conclude by Sobolev imbedding

w € L=(LY). (10.5)
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From theorem 10.1 we conclude by Sobolev’s theorem that u is Hélder continuous in space
direction with exponent

This is the first statement of the theorem. For the Holder continuity in time direction let
Qs(yo) be a cube in {x € R3|x3 > 0} with sidelength s and center y,. We have

|u(yo, t1) — ulyo, ta)| < Z |u(yo, i) — %/ u(ti, y)dy|

i=1,2 Qs(yo)

1 /Qs(yo) (u(y, t1) — u(y,tz))dy‘

10.6
L1 (10.6)
= Ay + Ay + A

g3

Due to Holder continuity in spatial direction we have

A < KsY* % =192,

to
/ / u(y, t)dydt ‘
t1 s(y0)
t 1/6
/ (/ uﬁdy> $375/64t
t1 Qs(yo)

1
< —=Kl|ty — t4]

T Vs

where we have used (10.5). The optimal choice for s is if

For Az we have

Az =

1
]
1

(10.7)

IN

g3

gl/A=0 _ o1

1 ) 3_
%|t2 — t1’ 1.€e. |t2 — t1| = S4
which implies

A < |ta—ty]377.

This proves the theorem. Il

11 Differentiability of the strain tensor ¢(u) in kine-
matic hardening

e) Droperty of the strain tensor e(u)

in the case of kinematic hardening. The the same techniques as in section 9 can be used
1 . . o7

to show Hz%-boundary differentiability.

In this section, we present a short proof of the L>(H}
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We have the almost everywhere equation for the penalized problem.

UD—fD

€(U) = Ao + %(|O'#D - guD’ - R)+m (111&)
. 1 —
025—;(’UuD—§MD|—“)+‘§Z;_Zz| (11.1b)

Let e(u) be the strain tensor of the penalized problem (11.1) with kinematic hardening.

Theorem 11.1 Under the reqularity assumptions (1.4a),(1.4b) and the safe load condition
(1.5), for every subset Qo CC 2 we have the uniform estimate

esssup [ |Ve(u)|*dr < Ko, r (11.2)
tel0,T] JQo

as the viscosity coefficient p tends to zero.

Remark: We emphasize that we do not state the differentiability for the displacement
velocity !

Corallary 11.2 Inequality (11.2) also holds for the limiting case p = 0.

proof We integrate the sum of the equations (11.1a),(11.1b) with respect to ¢ from 0 to
s and thereafter use the function D™"(¢2D™e(u)) as a testfunction. Here ¢ is a smooth
localization function. Because of the sign-situation in (11.1a),(11.1b) the penalty term
cancels and we obtain

| (el . = <] L) D HEDH ) do
N /Q [(AUL::S - AU‘t:O) + <§|t:s - S|t:0” DM D*e(u)) dz . (11.3)

By partial summation and rearranging we achieve

/ngDJrhE(u)‘t:s|2d$:/Q§2D+h5(u) [D+h<AU)|t:s_D+h(AU)}t=0+D+hf}t=s_D+h§‘t=0} dz.
(11.4)

(We drop &(u)(0) for simplicity.)
Passing to the limit A — 0, we may replace the difference quotient by partial derivatives.

By assumption the initial data a} 0 5! 1—o I8 in H;,,., we obtain for almost all ¢

/C2|Va(u)\2dxg/(QIVAo\Qd:U—i—/CQ\Vf\de
@ @ @ (11.5)
+/Q§2|VAa]t:0|2dx+/Q§2|V§|t:0|2dx.

This proofs the theorem. O
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Theorem 11.3 Assume the geometric setting of section 5, then the strain tensor satisfies
e(u) € L®(H27%).

proof With the results and the techniques of section 9 the proof follows easily.

12 Trace properties of the strain tensor

In the case of kinematic hardening, Seregin [Ser94] obtained e(u) € L>(0,T; H}.(Q))
which implies, due to imbedding theorems, for dimensions n = 3

ess sup / le(u)|*de’ < Kg,r t€[0,T,a€R,j=1,...,3 QCCQ (12.1)
b H3NS0
for the solution of (1.6). Here HY is the hyperplane
H] = {z = (21,22, 73) € R |z; = a} (12.2)

and

3
dz’ = H dz; .
=
One should fill the gap of regularity between the case of isotropic and kinematic hardening

as much as possible, so from this point of view it is interesting that (12.1) holds also in
the case of isotropic hardening.

Theorem 12.1 Under the assumptions of theorem 3.1 the strain tensor e(u) of the isotropic
hardening problem (3.1) satisfies the trace property (12.1).

We emphasize that the elasticity tensor A is independent of ¢.
proof We integrate equation (3.1a) and (3.1b) from 0 to ¢ and test the resulting first equa-
tion with e(u)|e(w)[*(1 + d|e(u)|*) ™! and the second with |e(u)|?(1 + 6|e(u)|?) ™, evaluated
at t. This yields (with e(u(t)) = &(¢), £(0) = 0 for simplicity)

1 1

et g 2 o
TIoR@r = Ao e (t)]e(t)] st elile@)] T T B (12.3)
with
_ l t o — (el o op(s) B ) ) 1
Bo= - [ (o6l — e6) +0), (22 el0) = 0] ) dle(OP g (120
Obviously Ey < 0. Thus (remember (o,£)(0) = 0)
% < (Ko'(t) — {(t))M (12.5)

1+ 6e(t) 14 dle(t)|*
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We integrate over the set HJ N )y and use the fact, that

esssup [ (ot 4 [¢]") e’ < Ko, (= 0)
t,o,j
H(J;,QQQ

also in the isotropic case. Together with Holder’s inequality we obtain from (12.5)

4
ess sup/ x < Kess sup 1—{—/ (|U|4+|f|4>d /|€ 1—|—(5|€ )| ) 3da’
t,a,j 1 + (5’6 t,o,j
H2,NQ0 HNQ 409
(12.6)
and

4
ess sup / de' < Ko (12.7)

o Lot = 7
H&hQO

uniformly for ¢t € [0,T], « € R, j=1,...,n, u — 0, § — 0. The theorem is proved. U

13 Plastic strain in isotropic hardening

We continue to give some contributions concerning regularity properties of the unknown
variables 0, &, e(w), e(u) which are related to the L>(Hj, )-inclusions of o and £. We obtain

loc
some reasonable additional information about &, £ and the plastic strain Ag — (1) .

Theorem 13.1 Under the hypothesis of theorem 3.1, for all Qg CC 2, we have the esti-
mates

T
/ €] - € da dt < K (T, Q) (13.1a)
0 Jag
T
/ g le()ix — (Ad )ik — YE| - le(w)ie — (Ao )ik — ~EP dadt < K(T,Q0,A¢)  (13.1b)
0 0

where 1 <~v < Ay or — Ay <~ < —1, uniformly for p — 0.
Remark

1. In the case of dimensions n > 4, the exponent 5 has to be replaced by % — 1 and
for n = 2 any exponent > 1 may replace 5.

2. Inequality (13.1a) is a refinement of the fact, that & € L(L¢ ) which follows, in
turn, from £ € L>®(H}.).
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3. The quantity () — A¢ is the plastic strain.

proof
(i) We multiply equations (3.1) with

(& 5 2
90_<1+|€'| 1>|§L|T

where &, = min{|¢|, L} sign€ and 7 = 7(z) is a localization function in W', We observe
that ¢ < 0 and obtain

T S T o
// (T+1el) |£|2|£L|5T2dxdt§/ ¢lepPr? da dt
0 JQo 0 JQo

. (13.2)

= /Qo Fr(&)r*dz

0

where Fy is the primitive of |£1|>. There holds |Fp(€)| < €], hence the right hand side
of (13.2) is bounded due to the fact that ¢ € L>(0,7T; H. .(Q)) and due to the initial

loc

condition 5‘ , uniformly as y — 0, L — oo. We have
t=0

EPA+IE) T =€ -1+ (1+1€) (13.3)

and since the integrals

IR

are uniformly bounded for L — oo, u — 0, we remain with an estimate for

T
/ €1l Pr dadt
0 Qo

which proves (13.1a).

(77) For proving (13.1b) we multiply equation (3.1b) by v and add the resulting equa-
tion to (3.1a) with index (7, k).
We obtain

W= ()i — (Ad)ip —¥E >0 if v > 1

. (13.4)
or <0 ify<—1.

Thereafter, we multiply (13.4) by
(t £ 1)(1 + [w]) w7
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with + or — according to the sign in (13.4). The rest of the proof is analogously to the
first part concerning &. O

One would like to get rid of of the term ¢ in theorem 13.1. This is possible if we confine
ourselves to Morrey space estimates:

Theorem 13.2 Under the assumptions of theorem 13.1 we have the estimates

/OT/BR|£'|dxdtSKRg Br CQyCCQ (13.5a)
T . . 5
/0 /BR le(@)i — (Ad) | dodt < KR2 (13.5b)
T
/ / IA|dzdt < KR? . (13.5¢)
0 JBg

Remark: Note that (13.5a)&(13.5b) do not follow from the inclusion £(1), &, & € L>(I?).

proof (i) We test the equation (3.1b) with

o= .5 —1])7*<0, supp7T C Byg, 7=1o0n Bp
&l +1

and obtain similar as in the proof of theorem 13.1 that

T 212 T .
/ / _’f| 2 dedt = / 57'2 dz dt
0 JBagr |§’ +1 0 JBagr

= (T)r*da
Bar (13.6)
é
< ( £5(T) dx) (KR)®
Bar
< KR5/2
and using (13.3)
T
/ €7 dedt < KR? + KR? (13.7)
0JB,

statement (13.5b) follows.

(#7) Combining the part (iz) of the proof of theorem 13.1 and part (i) here, we obtain
/OT/ le(@)ir — (Ad)y — €| dadt < KRY?. (13.8)

From (13.5a) and (13.8) we obtain (13.5b). O
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14 Further properties of the displacement velocity in
isotropic hardening

In the case of isotropic hardening yet we are not able to prove that e(u) € L>®(H}.,), in
other words that

/ts(u) ds € L™(H.) ? (14.1)

From this point of view, it is of interest, that at least

/Ota( 02 ds € (1},

We consider again the penalized equation for isotropic hardening

e(v) = Ao + %(|0D| —(k+9)) (14.2a)

L2}
*lopl
0=~ (lowl = (n+6), (14.20)

But now we take for the elastic compliance tensor A the inverse Lamé-Navier Operator,
defined by

AB = 1o tI‘(B)]d—F)\()BD, ,u(),)\() > 0. (143)

Theorem 14.1 Let e(u), 0, be a solution of (14.2), assume the safe load condition (1.5),
reqularity on the data and (14.3).
Then, for every Qo CC €2,

t
v/ ()22 ds
0

o]

2
dz < Krg, (14.4)

ess sup /
te[0,T] JQo
uniformly as p — 0.

proof We multiply the equation (14.2a) with Cz“;—; and add the resulting equation to
equation (14.2b) multiplied with ¢?. This yields

Cle(i) 22y = (A6 + T2 4 %
o] < |‘7D’> (14.5)

_C)\o |0D|+C£

20t
The penalty term cancels out. Here ( = ((z) is a localization function.
We have used that A is of the form (3.2), so

. Op op 10
Ao — = A =A
o OUD| o] 05 ¢

o 14.6
o 70l (146)
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We integrate equation (14.5) from 0 to ¢ and obtain

¢t [ as = ¢ (glonl]) +¢[ )

Since the right hand side is uniformly bounded in L>°(H}

be), we obtain the theorem. O
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