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Boundary differentiability for the solution to Hencky’s

law of elastic plastic plane stress

H. Blum1 J. Frehse2

Summary

We analyze a plane stress model of Hencky type concerning regularity properties
of the stresses up to the Dirichlet boundary. For curved boundary, we obtain that
the first order tangential derivatives and certain normal derivatives of the stresses are
in L2. For straight boundary we have square integrable fractional derivatives of the
stresses of order 1

2 in normal direction.
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1. Introduction

An important open problem in the basic theory of elasto-plasticity is the question of bound-
ary differentiability of the stresses for problems governed by Hencky’s law. Let Ω ⊂ R3 be
a bounded Lipschitz domain and Γ ⊂ ∂Ω. The dual variational principle for this problem
reads as follows; Find σ ∈ (L2(Ω; R3 ×R3) such that

J(σ) :=
1

2

∫
Ω
σAσ dx = min , (1)

where the compliance tensor A satisfies the ellipticity condition

τ :Aτ ≥ λ0|τ |2 , (2)

for symmetric 3× 3-matrices τ , and σ satisfies the side conditions

(i) σ = σT , and

(ii) divσ = −f , on Ω ,

(iii) σ · ν = q on ΓN = ∂Ω \ Γ ,

(iv) |σD| ≤ µ .

1Fakultät für Mathematik, Technische Universität Dortmund, Vogelpothsweg 87, D-44221 Dortmund,
Germany
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((2) can be replaced by an integral version.) Equations (ii) and (iii) are understood in the
weak sense, i.e.

(σ,∇φ) = (f, φ) +
∫

ΓN

qφ do , φ ∈ H1
Γ ,

where H1
Γ consists of all functions in H1(Ω,R3) such that the trace vanishes on Γ.

Here, f ∈ L2(Ω; R3) is the volume force, q ∈ L∞(ΓN ; R3) is the boundary traction, and
µ > 0 is the bound for the deviatoric part

σD = σ − 1

3
tr(σ)I

of the stress tensor.
It is known (see [15], [3]) that the stresses are locally in H1 while the strains (c.f. (6)

in the limit case p → ∞) are only measures ([18]). In the general n-dimensional case, the
displacements are in L

n
n−1 ([18]), even in L

n
n−1

+δ ([9]). A remarkable discovery concerning
boundary differentiability has been done by Seregin [16]. He showed that the approximations
which he used for proving H1

loc-regularity of σ cannot be estimated in H1 uniformly up to
the boundary, in general. (In fact, this concerns the normal derivative.) The limiting stress
in Seregin’s example, however, is contained in H1 up to the boundary. In this context
we mention [6] where the n-dimensional Hencky problem is studied near portions of the
boundary which are circles or n-dimensional balls. It is proven that the first tangential
derivatives are in L2, and it is shown that the method of proof does not work for an ellipse
as boundary curve. Concerning fractional differentiaility, Knees [11] showed that the stresses
are in H1/2−δ up to the boundary of the basic domain, where H1/2−δ refers to the Nikolskii
space (see 4. in the list below). This is related to the result of Repin and Seregin [14]
concerning O(h1/2−δ)-convergence of related approximations. The only result concerning L2-
inclusion of the first derivatives of the stresses up to the boundary is contained in [8], where
it is shown that in the case of a circle as basic domain the tangential derivatives of σ are in
L2.

In this paper we consider a two-dimensional version of (1), the so-called plane-stress
model. In this case, the basic domain is of the form Z := Ω × [−d, d] , where Ω ⊂ R2 has
a smooth boundary ∂Ω. The force f depends only on the variables x1, x2 ∈ Ω, the third
component of f vanishes,

f = (f1, f2, 0) , fi(x) = fi(x1, x2) , i = 1, 2 . (3)

We assume Neumann boundary conditions on Ω× {±d} which, for small d, guarantee that

σ13 = σ23 = σ33 = 0 , (4)

i.e. (b) holds on this part of the boundary.
For the rest of the boundary, we may assume mixed boundary conditions for the existence

part, for the differentiability up to the boundary we succeed, of course, only in a part where
pure Neumann or Dirichlet conditions hold. To be more precise, we may consider that
∂Ω = ΓD ∪ ΓN and that homogeneous Dirichlet conditions are posed on ΓD × [−d, d] and a
Neumann condition is posed on ΓN × [−d, d].

In this paper, we prove for the plane stress model under consideration

1. H1
loc-differentiability of the stresses σ for the limiting problem p = ∞, using, with

modifications, the dual approach of Bensoussan-Frehse [4], see Theorem 10.15.
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2. L2-estimates and existence of the tangential derivatives up to the Dirichlet boundary.
Thus, in our setting, one gets rid of the restriction in [8] that the basic domain is a
circle, see Theorem 5 here.

3. In the case that x2 is the normal direction we have L2-estimates and L2-existence of
D2σ12, D2σ22 up to the boundary.

4. In the present paper, L2-estimates for the normal derivative D2σ11 are missing. At
least we can show the following: In the case that x2 is the normal direction the missing
component has at least a fractional derivative of order 1/2 in L2, more precisely σ11 ∈
H1/2 which means that

sup
h0>h>0

h
∫
U∩Ω
|Dhσ|2 dx ≤ K ,

see our Theorem 6. Thus, at least, for this problem one can get rid of the δ in the
results of Repin and Knees, stating σ ∈ H1/2−δ up to the boundary.

5. For future studies on the Prandtl-Reuss model we found it useful, to state also a part
of the differentiability results of the Rothe approximation of the Prandtl-Reuss model.

The first order necessary condition for the minimum problem (1) can be simply under-
stood by the so-called Norton-Hoff-approximation which reads:

Minimize

Jp =
∫
Z
{1

2
σAσ +

µ−p

p
|σD|p} dx̂ , dx̂ = dx1dx2dx3 (5)

on the set

Vf,q := {σ ∈ Lpsym | (σ,∇φ) = (f, φ) +
∫

ΓN

qφ do , φ ∈ H1
Γ(Z,R3)} .

The corresponding Euler equation then reads as∫
{σAτ + µ−p|σD|p−2σDτ} dx = 0 ,

for all τ ∈ L2
sym, such that (τ,∇φ) = 0 for all φ ∈ H1

Γ(Z,R3) . There exists a displacement

field u ∈ H1,p
Γ such that

∇u+∇uT

2
= Aσ + |σD|pσD , (6)

c.f. the discussion in Section 2.
Under the above assumption on plane stresses and under the additional assumption

(Aσ)i3 = 0 , i = 1, 2, the Euler equation in fact reduces to a problem:

Find σ = σ(x1, x2) , σ = σT = (σik)
3
i,k=1 , σi3 = 0 , and u = u(x1, x2) such that D1u1

D1u2+D2u1

2
0

D1u2+D2u1

2
D2u2 0

0 0 D3u3

 = Aσ + µ−p|σD|p−2σD , (7)

where

|σD|2 = |σ11 −
tr(σ)

3
|2 + |σ22 −

tr(σ)

3
|2 + |tr(σ)

3
|2 + 2|σ12|2

= σ2
11 + σ2

22 + 2σ2
12 + (tr(σ))2[

3

9
− 2

3
]

= σ2
11 + σ2

22 + 2σ2
12 +

(tr(σ))2

3
.

3



We observe that obviously

|σD|2 ≥ 2σ2
12 +

1

3
σ2

11 +
1

3
σ2

22 . (8)

The relation (7) consists of 4 nontrivial scalar equations, σ11 , σ22 , σ12 , are solutions of the
Euler equations of the minimum problem

∫
Ω
{1

2

2∑
m,n=1

σikaikmnσmn +
µ−p

p
|σD|p} dx , dx = dx1dx2 . (9)

In the limit case p → ∞ this is a Hencky type problem in two space dimensions, however,
with a modified definition of the deviatoric part σD of the stress tensor.

The Euler equation to this problem reads∫
Ω

[τAσ + µ−p|σD|p−2(σD · τD)] dx = 0 , (10)

for all τ ∈ Lpsym satisfying divτ = 0, such that τi3 = 0.
Concerning notation, we continue to denote by σ and τ as symmetric 3×3-matrices with

the property σi3 = τi3 = 0. Then

τD =


2
3
τ11 − 1

3
τ22 τ12 0

τ12
2
3
τ22 − 1

3
τ22 0

0 0 −1
3
(τ11 + τ22)

 , (11)

and σD analogously. Furthermore, Aσ remains to be a 3× 3-matrix.
From (10) one can derive an equation for the symmetric 2× 2-matrix

σ′ =

(
σ11 σ12

σ12 σ22

)
, τ ′ =

(
τ11 τ12

τ12 τ22

)
.

Using the fact that σD : τD = σ̂ : τ ′, with

σ̂ =

(
2σ11−σ22

3
σ12

σ21
2σ22−σ11

3

)
, (12)

it reads with A′ = (aikmn)2
i,k,m,n=1,∫

Ω
[τ ′A′σ′ + µ−p|σD|p−2(σ̂τ ′)] dx = 0 , (13)

for all τ ′ ∈ Lpsym(R2 ×R2) such that

(τ ′,∇φ) = 0

for all φ ∈ H
1, p

p−1

ΓN
(Ω,R2).

From (13) there follows the existence of a function u ∈ H1, p
p−1 (Ω; R2) such that

1

2
(∇u+∇uT , τ ′) =

∫
Ω

[τ ′A′σ′ + µ−p|σD|p−2σ̂τ ′] dx (14)

=
∫

Ω
[τAσ + µ−p|σD|p−2σDτD] dx ,
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for all τ ′ ∈ Lpsym(R2 ×R2), resp. for all τ ∈ Lpsym(R3 ×R3) such that

τ =

(
τ ′ 0
0 0

)
.

Here and in the following, ∇ = ( ∂
∂x1
, ∂
∂x2

)T .

For uniform estimates as p→∞ we work with the safe load condition:

There exists a stress function
σ0 ∈ Vf,q

such that
|σ0,D| ≤ µ− δ0 , (15)

for some δ0 > 0 .

By convexity, equation (7), except the equation for D3u3, is equivalent to the property
that σ11, σ22, σ12 minimize the functional in (9).

The derivation of regularity properties of the solution of the Norton-Hoff-problem is a
difficult and interesting problem for itself. For the classical Norton-Hoff-approximation to
Hencky’s problem (1), we would like to mention Steinhauer’s thesis [17] which contains the
remarkable theorem that in the case of 2 dimensions, for 2 < p < ∞, the stresses σ are
contained in Cα

loc(Ω) and the displacements u are in C1+β
loc (Ω) for some α, β > 0. Later, but

independently, the same result for the displacements u was found by Bildhauer and Fuchs
[5].

2. First estimates

In the following, we rescale σ, A, and u, such that we may choose µ = 1 without loss of
generality.

For our analysis we need an additional approximation. Define

βL(σ) =


1
p
|σ|p, for |σ| ≤ L ,

1
2
Lp−2|σ|2 + (1

p
− 1

2
)Lp, for |σ| ≥ L .

It is easy to see that βL is continuously differentiable and that

β′L(σ)τ :=
d

dt
βL(σ + tτ)|t=0 =

 |σ|
p−2στ , for |σ| < L ,

Lp−2στ , for |σ| > L .
(16)

Using the abbreviation
[σ]L := min{|σ|, L}

this reads β′L(σ) = [σ]p−2
L σ.

Remark. The function at the right hand side is uniformly continuous. Hence the formula
can be extended for |σ| = L.

Furthermore, βL is convex. For this, we prove the monotonicity property(
β′L(σ)− β′L(σ̃)

)
· (σ − σ̃) ≥ 0 . (17)
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Clearly, (17) holds if both tensors σ, σ̃ satisfy |σ| < L, |σ̃| < L or |σ| > L, |σ̃| > L. We have
to analyze the case |σ| < L, |σ̃| > L:(

β′L(σ)− β′L(σ̃)
)
· (σ − σ̃) = |σ|p−2σ · (σ − σ̃)− Lp−2σ̃ · (σ − σ̃)

≥ 1

2
|σ|p − 1

2
|σ|p−2|σ̃|2 +

1

2
Lp−2|σ̃|2 − 1

2
Lp−2|σ|2

=
1

2
(|σ|p−2 − Lp−2)(|σ|2 − |σ̃|2) .

Since |σ| ≤ L ≤ |σ̃| we obtain the inequality (17). The case |σ| = L and/or |σ̃| = L follows
by continuous extension.

For later usage we remark that for |σ| 6= L we have the representation

d2

dt2βL(σ + tτ)|t=0 = β′′L(σ)τ · τ

=

{
|σ|p−2τ · τ + (p− 2)|σ|p−4(σ · τ)2 , for |σ| < L ,
Lp−2τ · τ , for |σ| > L .

To prove existence of a solution we approximate the Norton-Hoff problem or problem (9)
by the truncated Norton-Hoff problem

JL =
∫

Ω
{1

2
σAσ + βL(σD)}dx = min! , σ ∈ V , (18)

where
V = {σ ∈ H(div,Ω) |σ = σT ,−divσ = f weakly, σ · ν = q on ΓN}

and p is fixed.

Theorem 1. Let the coerciveness condition (2) for A be satisfied. Let f ∈ L2, q ∈ L∞(∂Ω).
Furthermore, let the safe load condition (15) hold and let p > 1. Then there exists a unique
minimizer σL = σLp ∈ V of JL and we have

‖σ‖2 ≤ K , ‖β′L(σLD)σLD‖p/(p−1) ≤ Kp , ‖σLD‖p ≤ Kp ,

uniformly as L→∞.

Proof.

(i) Existence and uniqueness is an obvious consequence of the coerciveness in L2 and the
strict convexity.

(ii) By comparison
JL(σL) ≤ JL(σ0) ≤ K

uniformly in L and p, where σ0 comes from the safe load condition. This implies

‖σL‖2 ≤ K and
1

p

∫
Ω

[σLD]p−2
L |σLD|2 dx ≤ K

uniformly in p.
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By routine analysis – optimization and monotonicity arguments – one has that

σL → σ = σ(p) , σ(p)→ σ , strongly in L2 , as L→∞ , resp. p→∞ ,

where σ(p) is the solution of (5) in our setting, c.f., e.g., [18], [4]. The existence of the
deformations u = uL ∈ H1,2

Γ in (14) follows via an argument using orthogonal decomposition
in Hilbert spaces and Korn’s inequality. Thereafter one may use Theorem 2 below for
justifying the ∇u+∇uT ∈ L

p
p−1 for u = u(p). 2

It is useful to analyze also the Rothe approximation of the Prandtl-Reuss-law. For
formulating the problem, we consider time steps t = mh , m ∈ N , with some step size h > 0
and look for approximate displacement velocities v = u̇ and stresses σ̂(t, ·) such that

∇v +∇Tv

2
=

1

h
A(σ(t, ·)− σ(t− h, ·)) + |σD(t, ·)|p−2σD(t, ·) , t = mh , (19)

σ(0, ·) = σa ∈ L2(Ω) , |σa,D| ≤ 1 ,

and (i)-(iv) holds for σ = σ(t, ·). For the continuous Prandtl-Reuss-Norton-Hoff problem,
we simply replace (19) by the equation

∇v +∇Tv

2
= Aσ̇(t, ·) + |σD(t, ·)|p−2σD(t, ·) , t ≥ 0 .

For having reasonable applications, in this case a dependence of the boundary force with
respect to t is assumed.

Here we have already dropped the equation for D3v3 and consider (19) as an equation
for 2 × 2-matrices. The solution σ = σ(t, ·), for given σ(t − h, ·), of (19) can be considered
as the minimizer of

1

2h

∫
σAσ dx− 1

h

∫
σAσ(t− h, ·) dx+

µ−p

p

∫
|σD|p dx . (20)

Similar as in the Hencky-Norton-Hoff case above we approximate the penalty term by∫
βL(σD) dx.

For the Rothe problem, the assumptions for f, q and the safe load condition are replaced
by

f ∈ C((0, T ), L2) , q ∈ C((0, T ), L∞(ΓN) , (21)

σ0 ∈ C((0, T ), L∞) satisfies (15) for t = mh . (22)

Then the following is easy to see.

Corollary 1. Under the assumptions (21), (22), (2), there exists a solution σ(t, ·) of (19),
(20), t = mh , m ∈ N, such that the estimates of Theorem 1 hold, namely

‖σ(t)‖2 ≤ Kh , ‖β′(σD(t))σD(t)‖p/(p−1) + ‖σD(t)‖p ≤ Kh,p .

3. Uniform L1-estimate for the strain tensor

To obtain a uniform L1-estimate for the strain tensor ε we start from the identity

∇u+∇uT

2
= Aσ + β′L(σD) (23)
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in the truncated Norton-Hoff approximation (18). The approach is in analogy to the corre-
sponding theorem in Temam’s book [18]. We test by σ = σL − σ0 where σ0 comes from the
safe load condition. By the balance of forces and the above equation we get

0 = (
∇u+∇uT

2
, σL − σ0)

=
∫

Ω
σLA(σL − σ0) + β′L(σLD)(σLD − σ0,D) dx =: B1 +B2 .

B1 is uniformly bounded as L and p tend to ∞. In what follows we drop the index L in the
notation. Moreover, we set µ = 1 without loss of generality. For B2 we get the estimate

K ≥ B2 =
∫
|σD|<L

|σD|p−2σD(σD − σ0,D) +
∫
|σD|≥L

Lp−2σD(σD − σ0,D)

≥ 1

2

∫
|σD|<L

|σD|p−2(|σD|2 − |σ0,D|2)

+
1

2

∫
|σD|≥L

Lp−2(|σD|2 − |σ0,D|2) (24)

=
1

2

∫
1≤|σD|<L

|σD|p−2(|σD|2 − |σ0,D|2)

+
1

2

∫
|σD|≤1

|σD|p−2(|σD|2 − |σ0,D|2)

+
1

2

∫
|σD|≥L

Lp−2(|σD|2 − |σ0,D|2) (25)

=: B12 +B22 +B32 .

Clearly, B22 ≥ −1
2
|Ω|, since the integrand is ≤ 1. On account of the safe load condition,

|σD|2 − |σ0,D|2 ≥ α0 > 0 when |σD| ≥ 1 .

Hence
B12 ≥

α

2

∫
|σD|≤L

|σD|p−2 dx and B32 ≥
α0

2

∫
|σD|>L

Lp−2 dx ,

where the constant K comes from the safe load condition. Since B22 is bounded we have
arrived at estimates for∫

|σD|≤L
|σD|p−2 dx and

∫
|σD|>L

Lp−2 dx .

Inspecting (24) again we finally obtain the following result.

Theorem 2. Under the assumptions of Theorem 1 the minimizers σL of (18) satisfy∫
|σD|≤L

|σLD|p dx+
∫
|σD|>L

Lp−2|σLD|2 dx < K ,

uniformly as L→∞ and p→∞, where µ = 1 without loss of generality.

Corollary 2. We have the following estimates (with the simplified notation u = uL, σ = σL)

‖∇uL +∇(uL)T‖ p
p−1
≤ K and ‖uL‖2 ≤ K ,

uniformly in L and p. Moreover we get, for fixed p, the bound

‖∇uL‖ p
p−1
≤ Kp ,

uniformly in L.
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Proof. We use the estimate

|∇u+∇uT |
p

p−1 ≤ K|Aσ|
p

p−1 +K|β′(σD)|
p

p−1 .

For the second summand we know that

|β′(σD)|
p

p−1 ≤
{
|σD|p , |σD| ≤ L

L
p−2
p−1 |σD|

p
p−1 , |σD| > L

.

Hence ∫
|σD|≤L

|β′(σD)|
p

p−1 ≤ K

and ∫
|σD|>L

|β′(σD)|
p

p−1 =
∫
|σD|>L

Lp−2+ p−2
p−1 |σD|

p
p−1

≤
∫
|σD|>L

Lp−2|σD|
p

p−1
+ p−2

p−1 =
∫
|σD|>L

Lp−2|σD|2 .

The inequality ‖u‖2 ≤ K follows via the (two-dimensional) embedding theorem presented
in Temam’s book,

‖∇u+∇uT‖1 ≥ c‖u‖2 .

2

By almost the same proof if is easy to see

Corollary 3. The analogue of Theorem 2 and Corollary 2 hold for the Rothe approximation
for fixed h, namely ∫

|σD|≤L
|σLD(t)|p dx+

∫
|σD|≥L

Lp−2|σLD(t)|2 dx ≤ Kh ,

and
‖(∇u+∇uT )(t)‖ p

p−1
≤ Kh and ‖u(t)‖2 ≤ Kh ,

uniformly in L and p. Moreover, for fixed p, we get

‖∇uL(t)‖ p
p−1
≤ Kp,h ,

uniformly in L, t = mk ,m ∈ N , t ≤ T .

4. Interior differentiability of the stresses σL

The interior differentiability of the stresses and the strain tensor follows via the primal
formulation (eliminating σ and obtaining a uniformly elliptic equation in u. Students can
find the proof in the appendix to the preprint of the paper). Nevertheless we present the
proof via the dual approach since it is useful to be introduced to looking on the problem in
this way.

Proposition 1. Let the same hypotheses be satisfied as in Theorem 1 and let f ∈ H2,2
loc (Ω) .

Then σL ∈ H1
loc.
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Proof. Again we drop the dependency on L, setting u = uL, σ = σL. Let Dh
j τ , h 6= 0 ,

denote the usual difference quotients:

Dh
j τ(x) =

1

h
(τ(x+ hej)− τ(x)) ,

ej being the j-th unit vector. Let ζ be a localization function. We test the Euler equation
for σ by −D−hj (ζ2Dh

j σ) and obtain, using also partial summation

−1

2
(∇u+∇uT , D−h(ζ2Dhσ)) (26)

= (DhσA, ζ2Dhσ) + (Dh
j β
′(σD)), ζ2Dh

j σD) .

The left hand side L0 of (26) is rewritten

L0 = (Dh∇u, ζ2Dhσ) = (∇(ζ2Dhu), Dhσ)− (∇ζ2Dhu,Dhσ)

= (∇(ζ2Dhu), Dhf)− (∇ζDhu, ζ2Dhσ) = G0 + F0 .

Since
G0 = −(ζ2Dhu,Dhdivf)

we get
|G0| ≤ ‖Dhu‖2‖∇2f‖2 ≤ KL (h→ 0) .

Further, since ∇u ∈ L2
loc for fixed L, due to (23) and Korn’s inequality we have

|F0| ≤ ε
∫

Ω
ζ2|Dhσ|2 dx+Kε

∫
Ω0

|∇u|2 dx .

Finally, we see by a convexity argument that

(Dh
j ([σD]p−2

L σD), Dh
j σ) ≥ 0 . (27)

Thus we arrive at the inequality

c0

∫
Ω
ζ2|Dhσ|2 dx ≤ (DhσA, ζ2Dhσ)

≤ (DhσA, ζ2Dhσ) + (Dh
j ([σD]p−2

L σD), ζ2Dh
j σD)

≤ |G0|+ |F0| ≤ KL + ε
∫

Ω
ζ2|Dhσ|2 dx+Kε

∫
Ω0

|∇u|2 dx .

Thus we have found a uniform bound for ‖ζ2DhσL‖2 as h → 0, for L, p fixed, and the
proposition follows. 2

Remark. We note the following useful identity: Since u, σL, |σLD|, [σLD]p−2
L etc. are in H1, we

may in (26) pass to the limit h→ 0. From the equation

−(ζ2DhuL, Dhdiv f)− (∇ζDhuL, ζ2DhσL)

= (DhσLA, ζ2DhσL) + (Dh[σ]LD|
p−2
L , ζ2DhσLD)

we get in the limit

−(ζ2DuL, Ddiv f)− (∇ζDuL, ζ2DσL)

= (DσLA, ζ2DσL) +
∫
D([σLD]p−2

L σLD) · ζ2DσLD dx (28)

= (DσLA, ζ2DσL) + (p− 2)
∫
|σD|≤L

|D|σLD||2|σD|p−2ζ2 dx

+
∫

[σLD]p−2
L |DσD|2ζ2 dx .

Again, we have a similar proposition for the Rothe approximation:
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Proposition 2. Under the conditions of Corollary 1 and the additional assumptions f ∈
L2(0, T,H2,2

loc (Ω)) and σ(0) ∈ H1
loc(Ω), the inclusion σL(t, ·) ∈ H1

loc holds for fixed L and h
for the solution of the Rothe equation (19).

5. H1
loc-differentiability for the Norton-Hoff-approximation and the

Hencky-problem

In this section we show an H1-estimate for σL on interior subdomains Ω0 uniformly for L
and p→∞. We follow the proof in Bensoussan-Frehse ([3]) and ([4]).

Theorem 3. Let f ∈ H2,2
loc (Ω) and let the assumptions of Theorem 1 be satisfied. Then, for

σ = σL there holds the estimate∫
Ω0

|∇σL|2 dx+ (p− 2)
∫
|σD|≤L

|D|σLD||2|σD|p−2ζ2 dx

+
∫

[σLD]p−2
L |DσD|ζ2 dx ≤ KΩ0 ,

uniformly as L, p→∞.

Corollary 4. In the limit case L =∞ there holds∫
Ω0

|∇σ|2 dx+ (p− 2)
∫

Ω0

|∇|σD||2|σD|p−2 dx+
∫

Ω0

|σ|p−2|∇σD|2 dx ≤ KΩ0 ,

uniformly as p→∞.

Proof. We test the Euler equation for u = u(L, p) by −D−hj (ζ4Dh
j σ) and conclude

−(∇u,D−hj (ζ4Dh
j σ)) = (Dh

j σζ
4, ADh

j σ) +
∫

Ω0

Dh
j (β′(σD))ζ4Dh

j σD dx (29)

The left hand side of (29) is rewritten

R0 := −(∇u,D−hj (ζ4Dh
j σ)) = (Dh

j∇u, ζ4Dh
j σ)

= −(Dh
j u, div(ζ4Dh

j σ)) =: E1 + E2 ,

where
E1 = −(Dh

j u,∇ζ4Dh
j σ) and E2 = (Dh

j u, ζ
4Dh

j f) .

We now pass to the limit h → 0 which is possible since u ∈ H2
loc, σ

L ∈ H1
loc, and ∆f ∈

L2, f ∈ L2. Then the left hand side of (29) converges to

R∞0 = −(Dju,∇ζ4Djσ) + (Dju, ζ
4Djf) ,

for h → ∞. As concerns the right hand side of (29), the first summand converges to
(Djσ, ζ

4ADjσ), the second summand satisfies

lim inf
∫

Ω0

Dh
j (β′L(σD))ζ4Dh

j σD dx ≥
∫
|σD|6=L

Dj(β
′
L(σD))ζ4DjσD dx .

This follows via Fatou’s lemma from the fact that the integrand is nonnegative due to
monotonicity and that, for h → 0, Dh

j σ converges a.e. for a subsequence to the limit Djσ
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and Dh
j (β′L(σD)σD) to Dj(β

′(σD)σD), the latter for |σD| 6= L. The points where |σLD| = 0 are
just left off due to monotonicity.

Thus we arrive at the inequality∫
Ω0

DjσADjσζ
4 dx+

∫
Ω0

Dj(βL(σD))Djσ
L
Dζ

4 dx

≤ −(Dju,∇ζ4Djσ) + (Dju, ζ
4Djf)= G+H . (30)

Now we have to use detailed index notation. For the first term G on the right of (30) we
get, with summation convention for i, k = 1, 2,

−G = (Djuk, Diζ
4Djσik) =

(Djuk +Dkuj, (Diζ
4)Djσik)− (Dkuj, Diζ

4Djσik) = G1 +G2 . (31)

For the second term on the right we get

|G2] = |(uj, Dk(Diζ
4Djσik))|

≤ |(uj, DkDiζ
4Djσik)|+ |(uj, Diζ

4Djdivfi)| .

Since ‖u‖L2 ≤ K uniformly (cf. Corollary 2) we estimate the first term by

K‖ζ2Djσik‖L2 ;

the second is bounded since f ∈ H2.
Let us now estimate the term G1. For this term we get

G1 =
∫

(Aσ)kjDiζ
4Djσik +

∫
β′(σD)jkDiζ

4Djσik

= G11 +G12 . (32)

By Hölder’s inequality, since ‖σ‖L2 ≤ K and 0 ≤ ζ ≤ 1, we get

|G11| ≤ K‖ζ2Djσ‖L2

and, in view of (16),

|G12| ≤ Kδ

∫
[σD]p−2

L |σD|2jk|∇ζ|2 dx+ δ
∫

[σD]p−2
L |Djσik|2ζ6 dx (33)

The first summand on the right of (33) is bounded uniformly by Theorem 2. The second
summand is estimated using (8) with σ replaced by Djσ, which states that

|Djσ| ≤ K|DjσD| ,

where k(·) ∈ L∞. With this we obtain

δ
∫

[σLD]p−2
L |Djσik|2ζ6 dx ≤ δ

∫
[σLD]p−2

L (|DjσD|2 +K)ζ6 dx .

This latter term is absorbed, for small δ > 0, by the corresponding term at the left hand
side of (30). In fact, we calculate∫

Dj(β
′(σD))DjσDζ

6 dx

=
∫
|σD]≤L

{|σD|p−2|DjσD|2 + (p− 2)|σD|p−2|Dj|σD||2}ζ6 dx

+
∫
|σD|≥L

Lp−2|DjσD|2ζ6 dx

=
∫

Ω
[σD]p−2

L |DjσD|2ζ6 dx+
∫
|σD|≤L

(p− 2)|σD|p−2(Dj|σD|2)ζ6 dx .
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Thus, we arrive at the inequality∫
Ω
DjσADjσζ

4 dx+
1

2

∫
Ω

[σD]p−2
L |DjσD|2ζ2 dx

+ (p− 2)
∫
|σD|≤L

|σD|p−2(Dj|σD|2)ζ2 dx ≤ K .

2

Again we have

Corollary 5. Under the assumptions of Proposition 2 the analogue statement of Theorem
3 holds for the Rothe approximation.

Thus, since the inequality in Theorem 3 and in Corollary 5 is uniform, we have H1
loc-

differentiability for the Hencky and the Rothe-Hencky problem.

6. Estimation of the tangential derivatives

6.1. Properties for L fixed

The boundary differentiability, i.e. σ ∈ H1, for fixed L and p can be also done via estimating
difference quotients of σ, similar as in the interior analysis. Since the precise treatment with
flattening the boundary locally is somewhat tedious, we prefer to argue that the Euler
equation of the approximation (18) is equivalent to a uniformly elliptic system in primal
formulation, with global Lipschitz nonlinearities

−
2∑

i,k=1

Digik(∇u) = f̃ . (34)

As already remarked in Section 4, an elementary proof is found in the appendix of the
preprint to this paper.

By the theory of these systems we know that the second derivatives of u are bounded
in L2 up to the boundary, provided that we avoid neighborhood of boundary points where
Dirichlet and Neumann boundary have nonempty intersection. Let us assume

ΓD , ΓN ∈ H3,∞(∂Ω) . (35)

In the case of Neumann boundary, we need some regularity of the boundary force,

q ∈ H1,∞(ΓN) . (36)

Of course we could have argued like this also for the interior differentiability, but we
preferred the dual approach in order to prepare the techniques.

Thus we state for the solution uL, σL of the truncated Norton-Hoff model (18):

Theorem 4. Under the assumptions of Theorem 3 and, in addition, the boundary regularity
(35) und (36), there holds

∇σL , ∇2uL ∈ L2(U ∩ Ω) ,

where U is an open subset such that either U0 ∩ ΓN or U0 ∩ ΓD is empty, U ⊂⊂ U0.

13



6.2. Boundary estimates as L→∞, p→∞

Due to the preceding chapter we have ∇σL ∈ L2, |∇σLD|2|σLD|p−2 ∈ L1 up to the boundary
of Ω, however we dot have uniform estimates yet. Let ψ be the mapping which flattens the
boundary locally. It is defined in the following way.

Let x0 ∈ ∂Ω, ψ : U(x0)→ R2 be a one-to-one mapping with ψ ∈ H3,∞, det∇ψ 6= 0 such
that ψ(∂Ω ∩ U) ⊂ (x2 = 0), ψ(Ω ∩ U) ⊂ (x2 ≥ 0), and ψ(CΩ ∩ U) ⊂ (x2 ≤ 0).

By the chain rule there holds

∇y(w(ψ−1(y))) = ∇w|ψ−1(y)∇yψ
−1(y) ,

and since ψ(ψ−1(y)) = y, we have

∇(ψ(ψ−1(y)) = Id, (∇ψ)(ψ−1(y))∇ψ−1(y) = Id, ∇ψ−1(y) = (∇ψ)−1
|ψ−1(y) .

(Here, ∇ψ is a row vector.)
Since ψ : U ∩ ∂Ω→ V (0) ∩ (x2 = 0) and since u|∂Ω = 0 we observe that

u(ψ−1((y1 + h, 0))) = u(ψ−1((y1, 0))) = 0 ,

for (y1, 0) ∈ V (0). From this we conclude

∂

∂y1

(u(ψ−1(y1, 0))) = 0 and

∂

∂y1

(ψ−1)|(y1,0) · ∇u(ψ−1(y1, 0)) = 0 (37)

Since ψ(ψ−1(y1, 0)) = (y1, 0) we have

∇ψ|ψ−1(y1,0)

∂

∂y1

(ψ−1)|(y1,0) = (1, 0) , and

∂

∂y1

(ψ−1)|(y1,0) = (∇ψ)−1(1, 0) = ((∇ψ)−1)1 .

We set ((∇ψ)−1)1 = g and obtain from (37) that g · ∇u = 0 at U ∩ ∂Ω , with a nonvanishing
smooth vector function g. The operator g · ∇ is the ”tangential derivative”.

With these notations we obtain

Theorem 5. Let u = uL , σ = σL be the solution and assume the conditions of Theorem
1 and Theorem 4. Let U be an open subset such that U ∩ ∂Ω ⊂ ΓD (Dirichlet boundary)
Then the integrals over the tangential derivatives∫

U0∩Ω
|g · ∇σ|2 dx,

∫
U0∩Ω

|g · ∇σ|2[σD]p−2
L dx, and (38)∫

U0∩Ω∩{|σD|≤L}
|σD|p−2|g · ∇|σD||2 dx

are uniformly bounded in L2(U0 ∩ Ω) , U0 ⊂⊂ U , as L, p→∞ .

Proof. We apply the operation g · ∇ to the Euler equation of σL in the set U ∩ Ω. The
application of g · ∇ is admissible since we have shown that σL is in H1, hence u ∈ H2
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for L < ∞. Further, we test the arising equation with ζ2(g · ∇)σL, where ζ2 is a smooth
localization function, ζ ≡ 1 in U0 ⊂⊂ U . This yields∑

i,k

(g · ∇Diu
L
k , ζ

2g · ∇σLik) = (ζ2g · ∇σL, A(g · ∇)σL) + (ζ2g · ∇β′L(σLD), g · ∇σLD)

On the right hand side, there occur terms which are positive definite and are estimated from
below by

c0

∫
ζ2|g · ∇σL|2

and ∫
|σD|≤L

ζ2|σLD|p−2|g · ∇σLD|2 (39)

+ (p− 2)
∫
|σD|≤L

ζ2|σLD|p−2|g · ∇|σLD||2 + Lp−2
∫
|σD|>L

ζ2|g · ∇σD|2

The difficulty is to handle the left hand side

Left =
∑
i,k

(g · ∇Diu
L
k , ζ

2g · ∇σLik) .

We approximate σLik by a smoother function σ̃ik such that −∑Diσ̃ik → fk in L2(Ω).
This is possible: We have σL ∈ H1(Ω), hence it can be extended to a H1(R2)-function by
Calderon’s extension theorem and be convoluted by a smooth mollifier. Then we perform
integration by parts putting the derivativeDi on the right hand factor. In the case of Dirichlet
boundary for u, no boundary term occurs since g · ∇u = 0 at U ∩ ∂Ω and ∇2u ∈ L2. We
obtain

Left + o(1) = −
∑
i,k

(g · ∇uLk , Di(ζ
2g)∇σ̃ik)−

∑
i,k

(g · ∇uLk , ζ2g∇Diσ̃ik)

−
∑
i,k

(Dig · ∇uLk , ζ2g∇σ̃ik) = B̃ + C̃ + D̃ .

In the terms B̃ and D̃ we may remove the ∼-sign passing to the limit for the approximation
σ̃ik of σik. In the term C̃ we temporarily put ∇ on the other terms, go to the limit σ̃ik → σik,
−∑n

i=1 Diσ̃ik → fk. Finally, we put ∇ back to −∑iDiσik = fk and obtain

Left = −
∑
i,k

(g · ∇uLk , Di(ζ
2g)∇σLik)−

∑
i,k

(g · ∇uLk , ζ2g∇fk)

−
∑
i,k

(Dig · ∇uLk , ζ2g∇σLik) = B + C +D .

The term C is easily estimated by a constant putting the ∇ off uk to the other factors. In
particular, a term like −(uLk , Dj(gjζ

2gfk)) arises which remains bounded if ∇fk ∈ L2 since
uLk ∈ L2 due to Corollary 2. The term D is rewritten by

D = −
∑
i,k,l

(DiglDlu
L
k , ζ

2g · ∇σLik) = −
∑
i,k,l

(Digl(Dlu
L
k +Dku

L
l ), ζ2g · ∇σLik)

+
∑
i,k,l

(DiglDku
L
l , ζ

2g · ∇σLik) = D1 +D2 .

The term D2 is treated via partial integration, putting the derivative Dk onto the other
factors. Similar to the treatment of the term C, the operations are justified introducing once
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more approximations σ̃ik. A boundary term does not occur since ul = 0 on U ∩ ∂Ω. Thus
we obtain

D2 = −
∑
i,l

(Diglul, ζ
2g · ∇fi)−

∑
i,k,l

(Diglul, Dk(ζ
2g) · ∇σik) = D21 +D22 .

The first term D21 is bounded uniformly since ‖ul‖L2 ≤ K uniformly and g and f are smooth.
The term D22 has the form ”integral of a smooth function multiplied by ul times Dσik” plus
a bounded term.

Integrals of this type are bounded due to Lemma 1, below. As result we obtain the
uniform estimate

|D22| ≤ K .

The term D1 is rewritten by using the representation of ∇u+∇uT via Euler’s equation,

D1 = −
∑
i,k,l

(Digl((Aσ
L)lk + β′lk(σ

L
D)), ζ2g · ∇σLik) .

The term D1 can be estimated by

|D1| ≤ ε0

∫
[σLD]p−2

L |ζ2g · ∇σL|2 (40)

+ ε0

∫
|ζ2g · ∇σL|2 dx+Kε0

∫
β′(σLD)σLD dx+K .

The third summand in (40) is bounded due to Theorem 2. We further may estimate |∇σL|by
|∇σLD| in the first two integrals, cf. (8) applied to DσD.

The term B + o(1) = −∑i,k(g · ∇uLk , Di(ζ
2g)∇σ̃ik) is treated via partial integration in

the following way. The operator g · ∇ is moved off uLk and the first order derivatives acting
on σ̃ik are moved off. One of the lower order terms which occur is of the type

uLk · σ̃ik times products of derivatives of ζ2 and g .

These terms are fine since uLk and σ̃ik are estimated in L2.
Furthermore, after passing to the limit σ̃ik → σLik there occur terms of the type

uLkDσ
L
ik · smooth function

which are treated by Lemma 1. There remains the term

B′ = −
∫
Dju

L
kDi(ζ

2gj)(g · ∇)σ̃ik + C ,

where C is a term with integrand Dju
L
k σ̃ik times a smooth function, which is treated via

Lemma 1. We have

B′ = −
∑
i,k,j

(Dju
L
k +Dku

L
j , Di(ζ

2gj)g · ∇σ̃ik)

+
∑
i,k,j

(Dku
L
j , Di(ζ

2g)g∇σ̃ik) = B1 +B2 .

We may pass to the limit to replace σ̃ by σ in B1. The first term B1 is rewritten using
Euler’s equation and we estimate as before in (40) using the regularity of g. This yields

B ≤ K +B′ ≤ ε0

∫
[σLD]p−2

L ζ2|(g · ∇)σL|2 dx+ ε0

∫
ζ2|g · ∇σL|2 dx+K +B2 .
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The second term B2 is estimated performing partial integration for the derivative Dk and
we use the fact that −∑n

k=1Dkσik = fi . We pass to the limit σ̃ik → σik, moving g · ∇ off
σ̃ik. Finally, the derivative which reached u in this process, is moved back.This yields an
estimate for B2.

Collecting our results we see that the good terms in (39) are estimated by ε0 times the
same ones plus a constant being uniformly bounded as L → ∞ and p → ∞. Thus the
theorem is proved. 2

Lemma 1. Let u = u(·, L, p) and σ = σ(·, L, p) be the solution of (18), and let g0 be a
Lipschitz-continuous function with support in U = U(x0), x0 ∈ ∂Ω , U ∩ ΓN = ∅. Then we
have ∣∣∣∣∫ g0Diukσrs dx

∣∣∣∣ ≤ K ,

∣∣∣∣∫ g0ukDiσrs dx

∣∣∣∣ ≤ K , (41)

uniformly as p, L→∞ .

Proof. We clearly know that

‖ul‖L2 ≤ K , ‖σrs‖L2 ≤ K ,
∫

[σD]p−2
L |σD|2 dx ≤ K , (42)

uniformly as L, p→∞.

a) If i = k, then
Diuk = Diui = (Aσ)ii + [σD]p−2

L (σ̂)ii ,

with σ̂ defined in (12), and (41) follows from (42), using also (8).

b) Thus we assume i 6= k. Without loss of generality we may assume i = 1 , k = 2,
since the proof can be repeated by permutation of the indices. We have the cases
(r, s) = (1, 1) , (r, s) = (1, 2) , and (r, s) = (2, 2) .

For (r, s) = (1, 1) we have∫
g0D1u2σ11 dx = −

∫
g0u2D1σ11 −

∫
D1g0u2σ11 dx .

The second summand is bounded due to (42) and the assumption on g0. The first
summand is rewritten as

−
∫
g0u2D1σ11 dx = −

∫
g0u2f1 dx+

∫
g0u2D2σ21 dx = E1 + E2 .

E1 is bounded due to the assumption that f1 ∈ L2. The term E2 underlies a partial
integration (observe that u2 = 0 on ∂Ω) and we obtain

E2 = −
∫
g0D2u2σ21 dx−

∫
D2g0u2σ21 dx = E12 + E22

The term E12 is estimated as in a), the term E22 is bounded obviously due to (42) and
the assumption on g0.

For (r, s) = (1, 2) we have∫
g0D1u2σ12 dx = −

∫
g0u2D1σ12 dx−

∫
D1g0u2σ12 dx

= −
∫
g0u2f2 dx+

∫
g0u2D2σ22 dx−

∫
D1g0u2σ12 dx .
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The first the the third summand are obviously bounded, the second is rewritten as

E13 = −
∫
g0D2u2σ22 dx ,

plus a bounded term. E13 is treated similar as in a).

If (r, s) = (2, 2) we write∫
g0D1u2σ22 dx =

∫
g0(D1u2 +D2u1)σ22 dx−

∫
g0D2u1σ22 dx

=
∫ (

g0σ22[(Aσ)21 + [σD]p−2
L (σ̂)21]

)
dx

+
{∫

D2g0u1σ22 dx+
∫
g0u1D2σ22 dx

}
.

The first summand is bounded uniformly due to te properties (42) of σ, the second
summand analogously. The third summand is rewritten∫

g0u1D2σ22 dx =
∫
g0u1(f2 −D1σ21) dx

=
∫
g0u1f2 dx+

∫
D1g0u1σ21 dx+

∫
g0D1u1σ21 dx .

The first two summands are bounded uniformly as before, the third summand via the
argument used in a).

This completes the proof of the lemma

2

For flat boundary, it is not hard to see that the proof of Theorem 5 works also for Neu-
mann zero boundary for σ. We did not analyze the transformed case with curved boundary
since Lemma 1 was proven only for Dirichlet boundary.

7. Nikolskii-H1/2-Differentiability of the stresses in normal direction

We consider the simple case of a flat boundary part, without loss of generality an interval I of
the hyperplane (x2 = 0). Let U ⊂ R2 be an open set with I ⊂ U ∩∂Ω and U ∩Ω ⊂ (x2 ≥ 0).
In the case of Dirichlet boundary conditions in U ∩∂Ω, we prove that the normal derivatives
of the stresses, i.e. those in x2-direction, are contained in the Nikolskii space H1/2. In the
case of Neumann boundary we are only able to treat the part where the boundary force
vanishes.

We consider the case that

I ⊂ ΓD or I ⊂ ΓN ∩ (f = 0) . (43)

Theorem 6. Let u = u(p), σ = σ(p) be the solution of the Norton-Hoff problem. Assume
the regularity condition (2), f ∈ H2,2(Ω), and the safe load condition (15). Then, in the
situation (43)

sup
h0>h>0

h
∫
U∩Ω
|Dhσ|2 dx ≤ K ,

uniformly as p→∞.
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In the classical Hencky case the borderline case 1/2 of the fractional differentiability ([14],
[11]) has not been achieved yet, but for the present problem it is possible.

Proof. Let ζ ∈ C∞0 (U) be a localization such that ζ = 1 in U0(I), U0 ⊂⊂ U . In the
truncated Norton-Hoff approximation (18) (L < ∞, p < ∞) and in the case of Dirichlet
boundary conditions on U ∩ (x2 = 0) we choose ζ2Dh

2σ as a test function. (Note that
σ(x+he2) and σ(x) are defined for x ∈ Ω∩U .) In the case of Neumann boundary conditions
we apply the difference quotient Dh

2 to the Norton-Hoff equation and use σζ2 as a test
function.

(i) Dirichlet case.
At the right hand side R of the resulting equation we rewrite and estimate the integrands

σ : ADh
2σ =

1

2
Dh

2 (σ : Aσ)− hDh
2σ : ADh

2σ

β′(σD)Dh
2σD ≤ Dh

2β(σD)

due to the convexity of β. Thus we obtain

R =
∫

[ζ2σ : ADh
2σ + ζ2β′(σD)Dh

2σD] dx

≤
∫
ζ2Dh

2 (
1

2
σ : Aσ + β(σD)) dx− h

∫
ζ2Dh

2σ : ADh
2σ dx

= −h
∫
ζ2Dh

2σ : ADh
2σ dx−

∫
U∩(x2≥h)

D−h2 ζ2(
1

2
σ : Aσ + β(σD)) dx

−h−1
∫ h

0

∫
Mh

(
1

2
σ : Aσ + β(σD))ζ2 dx1dx2 ,

where
Mh := {x1 | ∃x2 ∈ (0, h) such that (x1, x2) ∈ U ∩ Ω} .

Thus, luckily, the boundary term has the same sign as the positively definite term containing
A. On the left hand side we obtain

2∑
i,k=1

∫
DiukD

h
2σikζ

2 dx = −
2∑

i,k=1

∫
uk[D

h
2fkζ

2 +Dh
2σikDiζ

2] dx .

In the case of Dirichlet boundary for u no boundary terms occur.
The term with the integrand ukD

h
2fkζ

2 is uniformly bounded for p→∞ and 0 < h < h0,
since ‖uk‖L2 is bounded and fk is Lipschitz continuous. The last term is rewritten using

Dh
2σik(x) =

1

h

∫ h

0
D2σik(x+ e2t) dt =: −

∫ h

0
D2σik(x+ e2t) dt ,

(e2 unit vector in x2-direction) as

−
∫
ukD

h
2σikDiζ

2 dx =
∫
D2uk−

∫ h

0
σik(x+ e2t)ζ

2 dt dx (44)

+
∫
uk−
∫ h

0
σik(x+ e2t)D2ζ

2 dt dx .

The last term in (44) is uniformly bounded since uk, σik are uniformly bounded in L2. The
remaining term is rewritten

∑
k

∫
D2uk−

∫ h

0
σik(x+ e2t)ζ

2 dt dx =
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∑
k

∫
(D2uk +Dku2)−

∫ h

0
σik(x+ e2t)ζ

2 dt dx

−
∑
k

∫
Dku2−

∫ h

0
σik(x+ e2t)ζ

2 dt dx .

Again, the last term is simple to estimate, since we move the derivatives Dk on the left factor∑
k

∫
u2[Dk−

∫ h

0
σikζ

2 +−
∫ h

0
σikDkζ

2] dt dx := T3 .

Using ‖u‖L2 ≤ K, −∑kDkσik = fi, ‖σik‖L2 ≤ K, we obtain that T3 is bounded.
So, there remains∫

(D2uk +Dku2)−
∫ h

0
σikDiζ

2 dt dx =
∫

(Aσ)ik−
∫ h

0
σikDiζ

2 dt dx

+
∫
|σD|p−2(σ̂)ik−

∫ h

0
σikDiζ

2 dt dx ,

where σ̂ has been defined in (12). Note that we need to treat only the index i = 1 since
D2ζ

2 has compact support in Ω, but this is not important.
We estimate for i 6= k

|σD|p−2(σ̂)2k−
∫ h

0
σik dt ≤ K|σD|p +K|σD|p−2

(
−
∫ h

0
σik dx

)2

≤ K|σD|p +K

(
−
∫ h

0
|σik| dt

)p
≤ K|σD|p +K−

∫ h

0
|σD|p dt

and for i = k

|σD|p−2(σ̂)2k−
∫ h

0
σik dt ≤ K|σD|p +K|σD|p−2(−

∫ h

0
σik dt)

2

≤ K|σD|p +K|σD|p−2

[
(−
∫ h

0
|(σD)11| dt)2 + (−

∫ h

0
|(σD)22 dt)

2

]

≤ K|σD|p +K−
∫ h

0
|(σD)11|p dt+K−

∫ h

0
|(σD)22|p dt .

Due to this estimate also the last integral is uniformly bounded and, finally, we have a
uniform estimate for the term

h
∫
Dh

2σ : ADh
2σζ

2 dx+ h−1
∫ h

0

∫
Mh

(
1

2
σ : Aσ + β(σD))ζ2 dx1 .

(ii) Neumann zero-boundary
We arrive at the right hand side

R =
∫

[ζ2σ : ADh
2σ + ζ2Dh

2β
′(σD) : σD] dx

and estimate

hDh
2β
′(σD) : σD = |σD(x+ he2)|p−2σD(x+ he2) : σD − |σD|p

≤ p− 1

p
|σD(x+ he2)|p +

1

p
|σD|p − |σD|p

=
p− 1

p
[|σD(x+ he2)|p − |σD|p] .
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The first summand of R containing A is estimated as in the Dirichlet case, so we obtain

R ≤ −h
∫
ζ2Dh

2σ : ADh
2σ dx+

∫
ζ2Dh

2 (
1

2
σ : Aσ +

p− 1

p
|σD|p) dx

= −h
∫
ζ2Dh

2σ : ADh
2σ dx−

∫
D−h2 ζ2(

1

2
σ : Aσ +

p− 1

p
|σD|p) dx

−1

h

∫ h

0

∫
Mh

(
1

2
σ : Aσ +

p− 1

p
|σD|p) dx .

So the right hand side can be treated as in the Dirichlet case, the ”boundary terms” with
1
h

∫ h
0 fortunately have the correct sign.
The left hand side is rewritten, using partial integration and exploiting the zero Neumann

condition

L =
2∑

i,k=1

∫
ζ2Dh

2Diukσik dx = −
2∑

i,k=1

∫
Dh

2ukDi(ζ
2σik)), dx

= −
2∑

i,k=1

∫
Dh

2uk[ζ
2fk + 2ζDiζσik] dx

= −
2∑

i,k=1

∫
−
∫ h

0
D2uk(x+ e2t) dt[ζ

2fk + 2ζDiζσik] dx

= −
2∑

i,k=1

∫
−
∫ h

0
(D2uk +Dku2)(x+ e2t) dt[ζ

2fk + 2ζDiζσik] dx

+
2∑

i,k=1

∫
−
∫ h

0
Dku2(x+ e2t) dt[ζ

2fk + 2ζDiζσik] dx = B1 +B2

The term B1 is essentially estimated as in the Dirichlet case; the term D2uk + Dku2 has to
be expressed by the right hand side of the Euler equation.

For the term B2 we have two cases. For the index k = 1 we may move the derivative D1

off u2 via partial integration. No boundary term occurs since D2 is tangential. The resulting
product

−
∫ h

0
uk dtD1[ζ2f + 2ζDiζσik]

can be estimated uniformly since we have estimates for uk, ∇f , D1σ in L2.
In the case k = 2 we represent D2u2 via the Euler equation by

(Aσ)22 + |σD|p−1σ̂22

and proceed as in the case k = 1.
The theorem is proved. 2

Remark: It is of interest that the proof gives also an estimate for |trace σ|2 and the penalty
term at the boundary.
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Mathématiques Pures et Appliquées 61, 219–244 (1982)

[3] Bensoussan, A., Frehse, J.: Asymptotic behaviour of Norton-Hoff’s law in plasticity
theory and H1 regularity. In: P.G. Ciarlet, J.L. Lions (eds.), Boundary Value Problems
for PDE and Applications (Volume in honor of Prof. E. Magenes), RMA Res. Notes in
Appl. Math. 29, 3–25, Masson, Paris (1993)

[4] Bensoussan, A., Frehse J.: Regularity Results for Nonlinear Elliptic Systems and Ap-
plications. Springer Berlin, Applied Mathematical Sciences 151 (2002)

[5] Bildhauer, M., Fuchs, M.: Smoothness of weak solutions of the Ramberg/Osgood equa-
tions on plane domains. ZAMM 87(1), 70–76 (2007)

[6] Bulicek, M., Frehse, J., Malek, J., On boundary regularity of models of perfect elasto-
plasticity. to appear

[7] Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer Berlin-
Heidelberg, Grundlehren der mathematischen Wissenschaften 219 (1976)
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Appendix

We present a proof, that the Euler equation (23) of the approximate dual variational problem
(18), with L fixed, together with the condition −divσ = f , leads to a uniformly elliptic
equation.

Let Mn be the space of symmetric n × n-matrices and M3
0 ⊂ M3 the space of matrices

(mik) satisfying mi3 = 0 , i = 1, 2, 3. For m ∈M2 define mD ∈M3 by

mD =

(
m 0
0 0

)
− 1

3
tr(m)I .

Let y ∈M2 , σ ∈M3
0 satisfy

τ : y = τ : Aσ + [σLD]p−2
L σD : τD , ∀τ ∈M2 . (45)

Then there exists a globally Lipschitz continuous function g such that

σ = g(y)

c|y| ≤ |g(y)| ≤ K|y| ,
(
g(y)− g(z)

)
: (y − z) ≥ c0|y − z|2 , y, z ∈M2 . (46)

Proof. We can write the right hand side of (45) in the form G(σ′) = y, where

(
σ′ 0
0 0

)
= σ ∈M3

0 ,

so G : M2 →M2. The mapping G is globally Lipschitz continuous and satisfies

G(σ′) : σ′ = (σ,Aσ) + [σLD]p−2
L |σD|2 ≥ c0|σD|2 ≥ c1|σ′|2 ,

hence
|G(σ′)| ≥ c1|σ′| .

Furthermore, |G(σ′)| ≤ k|σ′| and there holds the monotonicity condition(
G(σ′)−G(τ ′)

)
: (σ′ − τ ′) ≥ c|σ′ − τ ′|2 .

Hence there is an inverse mapping g : M2 →M2 such that

g(G(σ′)) = σ′ , G(g(y)) = y .

Due to the above proved properties we have

c0|y| ≤ g(y) ≤ c1|y| ,

and from the monotonicity property of G we conclude with σ′ = g(y) , τ ′ = g(z),

(y − z) :
(
g(y)− g(z)

)
≥ c0|g(y)− g(z)|2 . (47)

From the global Lipschitz property of G we conclude

|G(σ′)−G(τ ′)|2 ≤ K|σ′ − τ ′|2 ,
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hence
|y − z|2 ≤ K|g(y)− g(z)|2 . (48)

From (47) and (48) we obtain (46). 2

Thus we see that the dual problem

∇u+∇uT

2
= G(σ′)

leads to

σ′ = g

(
∇u+∇uT

2

)
and hence to the elliptic equation

−div

(
g

(
∇u+∇uT

2

))
= f . (49)

This proves the equivalence of the dual problem (23) to (49) and allows us to apply standard
elliptic theory.
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