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Boundary differentiability for the solution to Hencky’s
law of elastic plastic plane stress
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Summary

We analyze a plane stress model of Hencky type concerning regularity properties
of the stresses up to the Dirichlet boundary. For curved boundary, we obtain that
the first order tangential derivatives and certain normal derivatives of the stresses are
in L2. For straight boundary we have square integrable fractional derivatives of the
stresses of order % in normal direction.
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1. Introduction

An important open problem in the basic theory of elasto-plasticity is the question of bound-
ary differentiability of the stresses for problems governed by Hencky’s law. Let @ C R? be
a bounded Lipschitz domain and I' C 0€2. The dual variational principle for this problem
reads as follows; Find o € (L*(Q; R? x R?) such that

1
J(o) = 5/90Aadm = min, (1)
where the compliance tensor A satisfies the ellipticity condition
T AT > \o|T]?, (2)
for symmetric 3 x 3-matrices 7, and o satisfies the side conditions
(i) o = and
(ii) dive = —f, on Q,
)

(ili) c-v=qon 'y =0Q\ T,

(iv) [on] < 4.
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((2) can be replaced by an integral version.) Equations (ii) and (iii) are understood in the
weak sense, i.e.

(0.V6) = (£.6) + | aodo, o€ HL,

where H} consists of all functions in H'(2, R?) such that the trace vanishes on T
Here, f € L*(©; R3) is the volume force, ¢ € L>°(T'y; R?) is the boundary traction, and
1 > 0 is the bound for the deviatoric part

op =0 — gtr(a)l

of the stress tensor.

It is known (see [15], [3]) that the stresses are locally in H' while the strains (c.f. (6)
in the limit case p — oo) are only measures ([18]). In the general n-dimensional case, the
displacements are in L#=1 ([18]), even in L1 ([9]). A remarkable discovery concerning
boundary differentiability has been done by Seregin [16]. He showed that the approximations
which he used for proving H} -regularity of o cannot be estimated in H' uniformly up to
the boundary, in general. (In fact, this concerns the normal derivative.) The limiting stress
in Seregin’s example, however, is contained in H' up to the boundary. In this context
we mention [6] where the n-dimensional Hencky problem is studied near portions of the
boundary which are circles or n-dimensional balls. It is proven that the first tangential
derivatives are in L?, and it is shown that the method of proof does not work for an ellipse
as boundary curve. Concerning fractional differentiaility, Knees [11] showed that the stresses
are in H'/27% up to the boundary of the basic domain, where H'/2~% refers to the Nikolskii
space (see 4. in the list below). This is related to the result of Repin and Seregin [14]
concerning O(h'/?~%)-convergence of related approximations. The only result concerning L>-
inclusion of the first derivatives of the stresses up to the boundary is contained in [8], where

it is shown that in the case of a circle as basic domain the tangential derivatives of ¢ are in
L.

In this paper we consider a two-dimensional version of (1), the so-called plane-stress
model. In this case, the basic domain is of the form Z := Q x [—d,d], where Q C R? has
a smooth boundary 0€2. The force f depends only on the variables xq,zs € €2, the third
component of f vanishes,

f:(f17f270)7 fi(x):fi(xbx?)?i:lﬂz' (3>
We assume Neumann boundary conditions on 2 x {£d} which, for small d, guarantee that
013 = 093 = 033 = 0, (4)

i.e. (b) holds on this part of the boundary.

For the rest of the boundary, we may assume mixed boundary conditions for the existence
part, for the differentiability up to the boundary we succeed, of course, only in a part where
pure Neumann or Dirichlet conditions hold. To be more precise, we may consider that
0 =TpUTI'y and that homogeneous Dirichlet conditions are posed on I'p x [—d, d] and a
Neumann condition is posed on I'y x [—d, d].

In this paper, we prove for the plane stress model under consideration

1. H} -differentiability of the stresses ¢ for the limiting problem p = oo, using, with

modifications, the dual approach of Bensoussan-Frehse [4], see Theorem 10.15.



2. L2-estimates and existence of the tangential derivatives up to the Dirichlet boundary.
Thus, in our setting, one gets rid of the restriction in [8] that the basic domain is a
circle, see Theorem 5 here.

3. In the case that x is the normal direction we have L%-estimates and L?-existence of
Dy019, Dyogs up to the boundary.

4. In the present paper, L*-estimates for the normal derivative D,oy; are missing. At
least we can show the following: In the case that x5 is the normal direction the missing
component has at least a fractional derivative of order 1/2 in L% more precisely o1, €
H/? which means that

sup h Do dr < K,
ho>h>0 unQ

see our Theorem 6. Thus, at least, for this problem one can get rid of the § in the
results of Repin and Knees, stating o € H?79 up to the boundary.

5. For future studies on the Prandtl-Reuss model we found it useful, to state also a part
of the differentiability results of the Rothe approximation of the Prandtl-Reuss model.

The first order necessary condition for the minimum problem (1) can be simply under-
stood by the so-called Norton-Hoff-approximation which reads:

Minimize

1 ur . .
J, = /Z{iaAJ + 5 lopl}di,  di = duydadg (5)
on the set
Vigi=A{0 € Ly | (0,V6) = (£,6) + | _addo , ¢ € HNZ R}
N

The corresponding Euler equation then reads as

/{UAT +pPloplP~Popr}de =0,

for all 7 € L2, such that (7,V¢) = 0 for all ¢ € H}(Z,R?). There exists a displacement
field u € H? such that
Vu + Vul
— = Ao + |oplPop, (6)
c.f. the discussion in Section 2.
Under the above assumption on plane stresses and under the additional assumption
(Ao)iz =0, i = 1,2, the Euler equation in fact reduces to a problem:

Find 0 = o(21,22), 0 = 0" = (o)} 11, 03 = 0, and u = u(xy, r2) such that

Dlul D1u2-5D2u1 0
DuadDawi  Dyuy 0 = Ao +pPlopP~?op, (7)
0 0 D3U3
where
tr(o tr(o tr(o
opl = o — T2 1 1, - D | M) g5

3 3 3

3 2

= 07y + 035, + 207, + (tr(a))2[§ - g]

(tr(0))?

2 2 2
=01+ 03 + 207, +



We observe that obviously
1 1
lop|* > 2‘7%2+§U%1+§U§2- (8)

The relation (7) consists of 4 nontrivial scalar equations, 011, 09, 012, are solutions of the
Euler equations of the minimum problem

1 2 P
/{5 > OikQikmnOmn + L]0D|p} dr, dr=dxridr,. 9)
Q p

m,n=1

In the limit case p — oo this is a Hencky type problem in two space dimensions, however,
with a modified definition of the deviatoric part op of the stress tensor.
The Euler equation to this problem reads

/Q [rAg + u~PloplP~2(op - 7p)] dz = 0, (10)

for all 7 € LE,, satisfying divr = 0, such that 7;3 = 0.
Concerning notation, we continue to denote by ¢ and 7 as symmetric 3 x 3-matrices with

the property ;3 = 7;3 = 0. Then

2 1
3711 — 3722 T12 0
2 1
™D = T12 3722 — 3722 0 ) (11)
0 0 —3 (111 + 722)

and op analogously. Furthermore, Ao remains to be a 3 x 3-matrix.
From (10) one can derive an equation for the symmetric 2 x 2-matrix

;[ 011 012 r [ Tt Ti2
o = , T = .
012 022 T2 T22

Using the fact that op : 7p = 6 : 7/, with

2011—022
. = 012
o= (T i), "
it reads with A’ = (az‘kmn>3k7m7n:1a
[ 40"+ i ol (er)] dz = 0, (13
Q

for all 7/ € L?

sym

(R? x R?) such that
(7', V¢) =0

for all ¢ € Hy7 (2, R2).
From (13) there follows the existence of a function v € H"57(€2; R?) such that

1
i(Vu +Vul, ') = /Q[T'A'U’ + u Plop|P 267 dx (14)

— /Q[TAO‘ + M_p|0D|p_20DTD] dx ,



for all 7/ € LE  (R?* x R?), resp. for all 7 € L2  (R® x R?) such that

sym
(T 0
T = O O .
o] B)T

Oz’ Oy

Here and in the following, V = (
For uniform estimates as p — oo we work with the safe load condition:

There exists a stress function
Og € Vf,q

such that
loo.p| < p—do, (15)

for some 9y > 0.

By convexity, equation (7), except the equation for Dsus, is equivalent to the property
that 011, 092, 012 minimize the functional in (9).

The derivation of regularity properties of the solution of the Norton-Hoff-problem is a
difficult and interesting problem for itself. For the classical Norton-Hoff-approximation to
Hencky’s problem (1), we would like to mention Steinhauer’s thesis [17] which contains the
remarkable theorem that in the case of 2 dimensions, for 2 < p < oo, the stresses o are
contained in C2 (€) and the displacements u are in C.7%(Q) for some a, § > 0. Later, but
independently, the same result for the displacements v was found by Bildhauer and Fuchs

5).

2. First estimates

In the following, we rescale o, A, and wu, such that we may choose p = 1 without loss of
generality.
For our analysis we need an additional approximation. Define

Br(o) =

2

Lo, for o] < L,
Lo 4 (L~ 1)L, for |o] > L.

It is easy to see that 3y is continuously differentiable and that

lo[P~207, for |o| < L,

L*~207, for|o| > L.

xmwwzimw+wmﬁz{

Using the abbreviation
o]1 = min{Jo], L}

this reads 3} (o) = [0]} 0.

Remark. The function at the right hand side is uniformly continuous. Hence the formula
can be extended for |o| = L.
Furthermore, (3, is convex. For this, we prove the monotonicity property

(8L(0) = BL(8)) - (0= &) > 0. (17)



Clearly, (17) holds if both tensors o, satisty |o| < L,|6| < L or |o| > L,|d| > L. We have
to analyze the case |o| < L,|d| > L:

(BL(0) = B(8)) - (0 = 5) = o0 - (0 = 6) = LP %6 - (0 — &)
1 1 1 1
Slol” = 5’0|p72’5\2 + §Lp72\&’2 - §Lp72|<7’2
1
= 5ol = L) (ol = 16) .
Since |o| < L < |&| we obtain the inequality (17). The case |o| = L and/or || = L follows
by continuous extension.
For later usage we remark that for |o| # L we have the representation

2
@5&0 + tT)\z:o = Z(U)T T

_ el er+ (p=2)lolHo - 7)?, for o] < L,
) LT, for |o] > L.

To prove existence of a solution we approximate the Norton-Hoff problem or problem (9)
by the truncated Norton-Hoff problem

1
Jp = /Q{§UAU + fr(op)}dr =min!, oceV, (18)

where
V ={o € H(div,Q)|o =", ~dive = f weakly,oc-v =q on 'y}

and p is fixed.

Theorem 1. Let the coerciveness condition (2) for A be satisfied. Let f € L? q € L®(09Q).
Furthermore, let the safe load condition (15) hold and let p > 1. Then there exists a unique
minimizer o* = UI];' € V of Jr, and we have

lollz < K, 1182(op)opllye-n < Ky, lloplly < Ky,

uniformly as L — oo.

Proof.

(i) Existence and uniqueness is an obvious consequence of the coerciveness in L? and the
strict convexity.

(ii) By comparison
JL(UL) S JL(Uo) S K

uniformly in L and p, where oy comes from the safe load condition. This implies
1
lo"l < & and [ [ohl; *obP dr < K

uniformly in p.



By routine analysis — optimization and monotonicity arguments — one has that

ol - o=0(p), o(p)— o, stronglyin L? as L — oo, resp. p — oo,

where o(p) is the solution of (5) in our setting, c.f., e.g., [18], [4]. The existence of the
deformations u = u” € H%’Q in (14) follows via an argument using orthogonal decomposition
in Hilbert spaces and Korn’s inequality. Thereafter one may use Theorem 2 below for
justifying the Vu + VuZ € L5 T for u = u(p). O

It is useful to analyze also the Rothe approximation of the Prandtl-Reuss-law. For
formulating the problem, we consider time steps t = mh, m € N, with some step size h > 0
and look for approximate displacement velocities v = % and stresses ¢ (¢, -) such that

WJ;VU = 214(0(75, Y=ot —h,)) +|op(t, )P 2op(t, ), t =mh, (19)

0(07 ) =04 € L2(Q>7 |0a,D| <1,

and (i)-(iv) holds for ¢ = o(¢,-). For the continuous Prandtl-Reuss-Norton-Hoff problem,
we simply replace (19) by the equation

T
vv_;vv - AO‘('[J, ) + |0D(t’ .)|p_20-D<t7 ) ) 3 Z 0.

For having reasonable applications, in this case a dependence of the boundary force with
respect to t is assumed.

Here we have already dropped the equation for Dsvs and consider (19) as an equation
for 2 x 2-matrices. The solution o = o(t,-), for given o(t — h,-), of (19) can be considered
as the minimizer of

1 1 wr o
zh/aAadac—h/aAa(t—h,-)dx—i—p/\aD| dr . (20)

Similar as in the Hencky-Norton-Hoff case above we approximate the penalty term by

J Br(op) dx.

For the Rothe problem, the assumptions for f, ¢ and the safe load condition are replaced
by

feC(0,T),L%, qeC((0,T),L®(y), (21)
oo € C((0,T), L™) satisfies (15) for t = mh. (22)

Then the following is easy to see.

Corollary 1. Under the assumptions (21), (22), (2), there exists a solution o(t,-) of (19),
(20), t = mh, m € N, such that the estimates of Theorem 1 hold, namely

lo@ll2 < Kn, 18 (en(t)on(®)llp/p-1) + lon(®)lly < Knp-

3. Uniform L'-estimate for the strain tensor

To obtain a uniform L!-estimate for the strain tensor & we start from the identity

Vu+ Vul

N o+ By(on) (23)



in the truncated Norton-Hoff approximation (18). The approach is in analogy to the corre-
sponding theorem in Temam’s book [18]. We test by o = o — 0 where oy comes from the
safe load condition. By the balance of forces and the above equation we get

Vu+ Vul
—5 o

= /QO’LA(O'L —00) + B,(05)(0h — go.p)dx =: By + By.

0=(

B; is uniformly bounded as L and p tend to co. In what follows we drop the index L in the
notation. Moreover, we set = 1 without loss of generality. For B, we get the estimate

K>B, = i lop[P~2op(op — 00.p) + /|0'D|ZL LP20p(op — 0op)
>5[ ool (P = loosl)
+; lop|>L Lp_2(|0D|2 - |00,D|2) (24)
- ;/1§|0D<L o~ (lop|* — |oo.n]*)
; lopl<1 lonl”(lop|* = |oo.pl*)
+; lop|>L L7~ *(|op|* — |oo,pl*) (25)

=: Bio+ By + B3
Clearly, By, > —1[9|, since the integrand is < 1. On account of the safe load condition,
lop|” = |oo.p|” > g >0 when |op| > 1.

Hence
o

By > & op|P~2dz and Bap > % / P2 dz,

~ 2 Jjopl<L lop|>L
where the constant K comes from the safe load condition. Since By, is bounded we have
arrived at estimates for

/ lop|P~2 dx and / LP~2dx .
lop|<L lop[>L

Inspecting (24) again we finally obtain the following result.

Theorem 2. Under the assumptions of Theorem 1 the minimizers ol of (18) satisfy
/ o5 P di + 2ot Pdr < K|
|O’D‘§L |0’D|>L

uniformly as L — oo and p — oo, where p = 1 without loss of generality.

Corollary 2. We have the following estimates (with the simplified notation u = u*, o = o*)
Ve + V()" 2, <K and [u"|> < K,
uniformly in L and p. Moreover we get, for fixed p, the bound
L
IVt e, < K,

uniformly in L.



Proof. We use the estimate
Vu+ Vul |71 < K|Ao|7T + K| (0p)]7T .

For the second summand we know that

Bloplts < {1720 on] = L
p— j2
B LE|O'D|P71, |0'D|>L
Hence )
[ Bt < K
lop|<L
and

P

/ 8/ (op)|7T = / LIJ_ZJFZ’%§|0D|”}%1
lop|>L

‘O’D|>L
_ _p_ p=2 _
< L? 2|CTD|P*1+P*1 = LP 2|O'D|2‘
lop|>L lop|>L

The inequality [julls < K follows via the (two-dimensional) embedding theorem presented
in Temam’s book,
|Vu+ Vu' |y > cl|ulls .

By almost the same proof if is easy to see

Corollary 3. The analogue of Theorem 2 and Corollary 2 hold for the Rothe approximation
for fixed h, namely

[ Jebrdes [ b de < K,
oD~

lop|>L

and
[(Vu+ Ve YD)l 2, < Ky and Ju(t)]l2 < K.

uniformly in L and p. Moreover, for fixed p, we get
IVt (0)] o, < Ky,
uniformly in L, t =mk,m e Nt <T'.

4. Interior differentiability of the stresses o”

The interior differentiability of the stresses and the strain tensor follows via the primal
formulation (eliminating ¢ and obtaining a uniformly elliptic equation in u. Students can
find the proof in the appendix to the preprint of the paper). Nevertheless we present the
proof via the dual approach since it is useful to be introduced to looking on the problem in
this way.

Proposition 1. Let the same hypotheses be satisfied as in Theorem 1 and let f € H22 ().
Then o' € H\.



Proof. Again we drop the dependency on L, setting u = u”,0 = o*. Let D7, h # 0,
denote the usual difference quotients:

1
Dlr(z) = E(T(x + hej) — 7(x)),
e; being the j-th unit vector. Let ¢ be a localization function. We test the Euler equation
for o by —D; h (CQD?U) and obtain, using also partial summation

(Vu+ Vul', D7"(¢2D"o)) (26)
= (D"0A,(*D"o) + (D}B'(0p)),(*Dliop) .
The left hand side Ly of (26) is rewritten
Lo = (D"Vu,(*D"o) = (V(¢*D"u), D"o) — (V¢*D"u, D"o)
= (V(¢*D"u), D" f) — (V¢(D"u,(*D"o) = Gy + Fy .

1
2

Since
Go = —(¢*D"u, D"divf)
we get

|Gol < ID"ullo|[V2fll2 < K (h—0).
Further, since Vu € L for fixed L, due to (23) and Korn’s inequality we have

Ryl < g/ §2|Dha]2da:+Ks/ Vul? dz
Q o
Finally, we see by a convexity argument that
(D?([O‘D]i_QO'D), D;-Za) >0. (27)
Thus we arrive at the inequality
¢ / C|D o2 da < (Do A, (2 Do)
Q
< (D"0A,¢*D"a) + (D;(lonl} "op). *Djop)
<|Go| + |Fo| < Ky + 5/ ¢?| Dhol? da + KE/ Vul? dz.
Q Q0

Thus we have found a uniform bound for ||[(?D"c* ||y as h — 0, for L,p fixed, and the
proposition follows. O

Remark. We note the following useful identity: Since u, o, |ok], [UIL)]IZ_Q etc. are in H', we

may in (26) pass to the limit h — 0. From the equation
— (2Dt DMdiv ) — (V¢D"ub, (?Dho)
= (D"o"A,¢*D"o") + (D"[o]ply, ", (*D"op)
we get in the limit
—(¢(Du*, Ddiv f) — (V¢Du",(*Do*)
= (Do A, (*Do*) + /D([JILD]’E—QJIL)) -(*Dok dx (28)

= (Do"A,¢*Do") +(p=2) [ |DIoh|Plonl"*¢*da

lop|<L
+ [1obl 1 Dop ¢ do.

Again, we have a similar proposition for the Rothe approximation:

10



Proposition 2. Under the conditions of Corollary 1 and the additional assumptions f &
L2(0,T, H22(Q)) and ¢(0) € H (), the inclusion o"(t,-) € H._ holds for fixed L and h
for the solution of the Rothe equation (19).

5. Hl -differentiability for the Norton-Hoff-approximation and the
Hencky-problem

In this section we show an H'-estimate for o” on interior subdomains Qq uniformly for L

and p — oo. We follow the proof in Bensoussan-Frehse ([3]) and ([4]).

Theorem 3. Let f € H2*(Q) and let the assumptions of Theorem 1 be satisfied. Then, for
o = o there holds the estimate

/ﬂo Vo> dr + (p — 2) /U -

IDlob|Plonl ¢ do
D|>

+ [loh); ?1Dov|¢? dv < Ko, .
uniformly as L,p — oo.

Corollary 4. In the limit case L = oo there holds
/ Vol|?de + (p — 2)/ V|on|[2op|r~2 dx+/ o P~2|Vop|? dr < Ka,,
Qo Qo Qo

uniformly as p — oo.

Proof. We test the Euler equation for u = u(L, p) by —D;"(¢*D%¢) and conclude
—(Vu, D;"(¢(*Dlo)) = (Dho(*, AD}o) + / DB (op))¢*D}op du (29)
Qo

The left hand side of (29) is rewritten
Ry := —(Vu, D;"(¢(*Dlo)) = (D}Vu,(* Do)
= —(D;‘u, diV(€4D§10‘)) =B+ Ey,

where

By = —(D'w,V¢'Dlo) and By = (D'u,('DIf).

We now pass to the limit 4 — 0 which is possible since v € HZ_,, oF € HL., and Af €
L?, f € L. Then the left hand side of (29) converges to

Ry = —(Dju, V(' Djo) + (Dju, ' D; f),

for h — oo. As concerns the right hand side of (29), the first summand converges to
(Djo,(*AD;o), the second summand satisfies

lim inf / DBy (op))¢*Dhop dx > - D;(B;(op))¢*Djop dx .
Qo op|#L

This follows via Fatou’s lemma from the fact that the integrand is nonnegative due to
monotonicity and that, for h — 0, D;-‘J converges a.e. for a subsequence to the limit D;o

11



and D"(07(op)op) to Dj(6'(op)op), the latter for |op| # L. The points where |op| = 0 are
just left off due to monotonicity.
Thus we arrive at the inequality

t@ DcnU)aCc&%i/ (Br(op)) Dok ¢t da
—(Dju, VC DJO') (Dju, C Djf): G + H. (30)

Now we have to use detailed index notation. For the first term G on the right of (30) we
get, with summation convention for ¢,k =1, 2,

—G = (Djuk, DiC4Dj0ik) =
(Djuk -+ Dkuj, (Di<4)Dj0'ik> - (DkUj, DiC4Dj0'ik) == G1 + Gg . (31)

For the second term on the right we get

|Go] = |(uj, Di(Di¢* Djoir))|
S |(Uj, DszC4D]0-zk)| —|— |(Uj, DZC4DJd1VfZ)| .
Since [|u||zz < K uniformly (cf. Corollary 2) we estimate the first term by
K||¢*Djoi]|2;

the second is bounded since f € H?.
Let us now estimate the term ;. For this term we get

G = /(AU)ijiC4DjUz‘k + /5,(0'D)jkDiC4Dj0'ik
=G+ G (32)
By Holder’s inequality, since ||o||zz < K and 0 < ¢ < 1, we get
G| < K|[[¢*Djol| 2

and, in view of (16),
Gl < K [looly *lon V¢ da+ [ oo}y *Djoul da (33)

The first summand on the right of (33) is bounded uniformly by Theorem 2. The second
summand is estimated using (8) with o replaced by D,o, which states that

|Djol < K|Djopl,
where k() € L. With this we obtain

5/0Dp ’|D;oil Cde<5/aD (|Djop|* + K)¢®dz .

This latter term is absorbed, for small § > 0, by the corresponding term at the left hand
side of (30). In fact, we calculate

/D (op) DoDC dx

= {|O’D|p ’|Djopl* + (p — 2)|op|P?|Djlop|*}¢° d

lop]<L

+ L2 Djop|*¢® dx

lop|>L

= [Joolt D00l dr - | (o= Dlonl*(Dylon)c" dr.

lop|<

12



Thus, we arrive at the inequality

1
| DioAD;o¢t dr+ 5 [ [onli *|Djonl* do

+(p— 2)/ lop|P72(Djlop|*)Pdr < K.

lop|<L

Again we have

Corollary 5. Under the assumptions of Proposition 2 the analogue statement of Theorem
3 holds for the Rothe approximation.

Thus, since the inequality in Theorem 3 and in Corollary 5 is uniform, we have Hj -
differentiability for the Hencky and the Rothe-Hencky problem.

6. Estimation of the tangential derivatives

6.1. Properties for L fixed

The boundary differentiability, i.e. ¢ € H*, for fixed L and p can be also done via estimating
difference quotients of o, similar as in the interior analysis. Since the precise treatment with
flattening the boundary locally is somewhat tedious, we prefer to argue that the Euler
equation of the approximation (18) is equivalent to a uniformly elliptic system in primal
formulation, with global Lipschitz nonlinearities

— > Digin(Vu) = f. (34)
ik=1

As already remarked in Section 4, an elementary proof is found in the appendix of the
preprint to this paper.

By the theory of these systems we know that the second derivatives of u are bounded
in L? up to the boundary, provided that we avoid neighborhood of boundary points where
Dirichlet and Neumann boundary have nonempty intersection. Let us assume

I'p, [y € H*>(09). (35)
In the case of Neumann boundary, we need some regularity of the boundary force,
q € Hl’OO(FN) . (36)

Of course we could have argued like this also for the interior differentiability, but we
preferred the dual approach in order to prepare the techniques.
Thus we state for the solution u”, o of the truncated Norton-Hoff model (18):

Theorem 4. Under the assumptions of Theorem 3 and, in addition, the boundary regularity
(35) und (36), there holds
Vol V2l e A(UNQ),

where U is an open subset such that either Uy N T'y or Uy N T'p is empty, U CC U,.
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6.2. Boundary estimates as L — oo, p — 00

Due to the preceding chapter we have Vol € L% |Voh|?|lokP~2 € L' up to the boundary
of 2, however we dot have uniform estimates yet. Let 1 be the mapping which flattens the
boundary locally. It is defined in the following way.

Let xg € 09, v : U(xy) — R? be a one-to-one mapping with ¢ € H>* det V4 # 0 such
that (02N U) C (z2=0), Y(QNU) C (x2 >0), and P(CANU) C (22 <0).

By the chain rule there holds

V(@™ () = V1) Vi~ (1)
and since (1)1 (y)) = y, we have
V@ (y) =1d, (V) @)V (y) =1d, Vo (y) = (V)i -

(Here, V1) is a row vector.)
Since ¢ : U N 9Q — V(0) N (22 = 0) and since ujpo = 0 we observe that

w(™ (g1 + 1, 0))) = u(® ™ ((11,0))) =0,

for (y1,0) € V(0). From this we conclude

o -
aﬁyl(u(iﬁ (¥1,0))) =0 and
fyl<w1>|<y1,o> V(i (2,0)) = 0 (37)

Since ¥ (v (y1,0)) = (y1,0) we have

0 _
V@/)wfl(ylmafyl(lﬁ Do = (1,0),  and

(fw(@b‘l)nyl,m = (V)7 (1,0) = (V#)

We set ((Vi))™!); = g and obtain from (37) that g- Vu = 0 at U NI, with a nonvanishing
smooth vector function g. The operator g - V is the ”"tangential derivative”.
With these notations we obtain

Theorem 5. Let u = u’, 0 = o* be the solution and assume the conditions of Theorem
1 and Theorem 4. Let U be an open subset such that U N0 C I'p (Dirichlet boundary)
Then the integrals over the tangential derivatives

/ lg - Vol du, / lg-Vo|*[op)y?dx, and (38)
UpNQ UpNQ

J ooy Vo] ds
UonQ{|op|<L}

are uniformly bounded in L*(UyN ), Uy CC U, as L,p — 0.

Proof. We apply the operation ¢ - V to the Euler equation of o in the set U N ). The
application of g - V is admissible since we have shown that o% is in H', hence v € H?

14



for L < co. Further, we test the arising equation with ¢%(g - V)o, where ¢? is a smooth
localization function, ( =1 in Uy CC U. This yields

Y (g-VDuy, (g -Vok) = (g Vo', Alg- V)o") + (g - VB,(0p), g - Vop)

i,k

On the right hand side, there occur terms which are positive definite and are estimated from
below by

o [ Cly- Vot

and
[ Clobl e VohP (39)
oD|>

-2 Clobr g ViehlIP+ 172 [ Clg- Vol
<L lop|>L

lop|<

The difficulty is to handle the left hand side

Left = > (g VD, (%g - Vok).
i,k

We approximate o% by a smoother function &y, such that — 3 D;54 — fr in L*(9).
This is possible: We have o € H'(Q), hence it can be extended to a H'(R?)-function by
Calderon’s extension theorem and be convoluted by a smooth mollifier. Then we perform
integration by parts putting the derivative D; on the right hand factor. In the case of Dirichlet
boundary for u, no boundary term occurs since g - Vu = 0 at U N 90N and V3u € L?. We
obtain

Left + o(1) = = (g Vuy, Di(C?9)Véu) — > (g Vuy,*gV DiGx)
ik ik

— N (Dig - Vuk,(2gVéy) =B+C+D.

In the terms B and D we may remove the ~-sign passing to the limit for the approximation
0k of 0. In the term C we temporarily put V on the other terms, go to the limit &;, — o,
—> 1 D;oi; — fr. Finally, we put V back to — 3, Do, = fi and obtain

Left = —> (g Vug, Di((*9)Vak) — > (g Vuy,(*gV fr)

—Z i~ Vuy,(*gVay) =B+C+D.

The term C is easily estimated by a constant putting the V off u; to the other factors. In
particular, a term like —(uf, D;(g;¢?gfi)) arises which remains bounded if V f;, € L? since
ul € L* due to Corollary 2. The term D is rewritten by

D=- Z(Dinglu£> ng : VUiLk;) = - Z(Digl(Dlué + DkUzL)y C29 : VUiLk)
ikl ik,l
+Z zngkul ) gvo_ﬁc) :Dl—l_DQ'
i,k,l

The term D, is treated via partial integration, putting the derivative D onto the other
factors. Similar to the treatment of the term C, the operations are justified introducing once

15



more approximations ;;. A boundary term does not occur since u; = 0 on U N 9S2. Thus
we obtain

Do ==Y (Digiu, (g -V fi) = > _(Digiur, Di(¢%g) - Vo) = Doy + Das .
i, i,k,l

The first term Dy is bounded uniformly since ||u;||zz < K uniformly and g and f are smooth.
The term Doy has the form ”integral of a smooth function multiplied by w; times Do;” plus
a bounded term.

Integrals of this type are bounded due to Lemma 1, below. As result we obtain the

uniform estimate
|Dayo| < K.

The term D; is rewritten by using the representation of Vu + Vu! via Euler’s equation,

D1 == (Digi((Ac™ ), + Bik(0D)), C*g - Voiy,) -
i,k,l

The term D; can be estimated by
Dl <20 [lobl I - Vot (40)
+ 50/ (Pg - Vo' [P dz + K., /ﬂ'(aé)aé dr + K .

The third summand in (40) is bounded due to Theorem 2. We further may estimate |Vol|by
|Vok| in the first two integrals, cf. (8) applied to Dop.

The term B+ o(1) = — >, 4(g - Vuj, Di(¢*9) V) is treated via partial integration in
the following way. The operator ¢ - V is moved off u¥ and the first order derivatives acting
on 7;, are moved off. One of the lower order terms which occur is of the type

uf - & times products of derivatives of ¢? and g.

These terms are fine since uX and G;;, are estimated in L2
Furthermore, after passing to the limit 5;, — o there occur terms of the type

uj Do - smooth function

which are treated by Lemma 1. There remains the term
B = _/DjuﬁDi(CQQj)(g - V)au + C,

where C' is a term with integrand Djuﬁc?ik times a smooth function, which is treated via
Lemma 1. We have

B'= =" (Djuy + Dyu?, Di((*g;)g - V)

i7k7j

+ > (Dyul, Di(¢*g)gVéu) = By + By .

i,k,j

We may pass to the limit to replace ¢ by ¢ in By. The first term B is rewritten using
Euler’s equation and we estimate as before in (40) using the regularity of g. This yields

B<K+B < so/[ag]g‘%%(g V)L di +60/C2|g VollPdr+ K + B,.

16



The second term Bs is estimated performing partial integration for the derivative D, and
we use the fact that — >} | Doy = fi. We pass to the limit 6, — o, moving g - V off
0;x- Finally, the derivative which reached u in this process, is moved back.This yields an
estimate for Bs.

Collecting our results we see that the good terms in (39) are estimated by g¢ times the
same ones plus a constant being uniformly bounded as L. — oo and p — oo. Thus the
theorem is proved. O

Lemma 1. Let u = u(-,L,p) and o0 = o(-,L,p) be the solution of (18), and let gy be a
Lipschitz-continuous function with support in U = U(xg),z9 € 0Q,U NTx = (. Then we
have

\ [ woDiusors da:] <K, \ [ gvuDiors da:] <K, (41)

uniformly as p, L — o0.

Proof. We clearly know that
lulle <K, Nowliz < K. [loliloplPde < K, (42)

uniformly as L,p — oo.

a) If i = k, then
Diug = Diu; = (Ac)y + [op]% 2(6)i

with ¢ defined in (12), and (41) follows from (42), using also (8).

b) Thus we assume i # k. Without loss of generality we may assume i = 1, k = 2,
since the proof can be repeated by permutation of the indices. We have the cases
(r,s) =(1,1), (r,s) = (1,2), and (r,s) = (2,2).

For (r,s) = (1,1) we have

/90D1U2<711 dr = — /90U2D1011 - /D190U2011 dx .

The second summand is bounded due to (42) and the assumption on gg. The first
summand is rewritten as

—/90U2D1011 dr = — /gouzfl dx + /90U2D2021 dv = Ey + Es.

E; is bounded due to the assumption that f; € L?. The term E, underlies a partial
integration (observe that us = 0 on 0f2) and we obtain

EQ = — /g()DQUQO'Ql dCL’ — /DQQQUQO'Ql dl’ = E12 + E22

The term Ej5 is estimated as in a), the term FEys is bounded obviously due to (42) and
the assumption on go.

For (r,s) = (1,2) we have

/90D1U2U12 dr = —/90U2D1012 dx — /D190U2012 dx

= —/90U2f2 dz + /90U2D2022 dr — /D190U2012 dz .
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The first the the third summand are obviously bounded, the second is rewritten as
Eyg = —/90D2U2022 dz

plus a bounded term. FEi3 is treated similar as in a).

If (r,s) = (2,2) we write

/goDl’LLQO'QQ dr = /g0<D1UQ + D2u1)022 dr — /ggD2U10'22 dx
= [ (9002[(A0)21 + o] 2(6)]) da

+{/D290U10’22 d:l:—l—/gou1D2c722 d%} .

The first summand is bounded uniformly due to te properties (42) of o, the second
summand analogously. The third summand is rewritten

/90U1D2022 dr = /goul(fz - D1021)d$

= /90U1f2 d33+/D190U1021 d33+/90D1U1021 dx .

The first two summands are bounded uniformly as before, the third summand via the
argument used in a).

This completes the proof of the lemma

O

For flat boundary, it is not hard to see that the proof of Theorem 5 works also for Neu-
mann zero boundary for . We did not analyze the transformed case with curved boundary
since Lemma 1 was proven only for Dirichlet boundary.

7. Nikolskii-H!/?-Differentiability of the stresses in normal direction

We consider the simple case of a flat boundary part, without loss of generality an interval I of
the hyperplane (z; = 0). Let U C R? be an open set with I C UNJQ and UNQ C (22 > 0).
In the case of Dirichlet boundary conditions in U N0JS2, we prove that the normal derivatives
of the stresses, i.e. those in xo-direction, are contained in the Nikolskii space H/2. In the
case of Neumann boundary we are only able to treat the part where the boundary force
vanishes.

We consider the case that

IClp or ICTyN(f=0). (43)

Theorem 6. Let u = u(p),0 = o(p) be the solution of the Norton-Hoff problem. Assume
the regularity condition (2), f € H*?(Q2), and the safe load condition (15). Then, in the
situation (43)

sup h Do de < K,

ho>h>0 unQ

uniformly as p — o0.
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In the classical Hencky case the borderline case 1/2 of the fractional differentiability ([14],
[11]) has not been achieved yet, but for the present problem it is possible.

Proof. Let ¢ € C°(U) be a localization such that ( = 1 in Uy(I), Uy CC U. In the
truncated Norton-Hoff approximation (18) (L < oo,p < o0) and in the case of Dirichlet
boundary conditions on U N (x5 = 0) we choose (Do as a test function. (Note that
o(xz+hey) and o(x) are defined for z € QNU.) In the case of Neumann boundary conditions
we apply the difference quotient D% to the Norton-Hoff equation and use o(? as a test
function.

(i) Dirichlet case.
At the right hand side R of the resulting equation we rewrite and estimate the integrands

o:ADlo = ;DS(U : Ao) — hD}o - ADlo
3'(op)Dyop < DyB(op)
due to the convexity of 3. Thus we obtain
R= [0 Ao + 3 (o) Diop] da
< /CQDS(;J : Ao + ((op)) do — h/gQDga : ADho dx

= —h/CQDga : ADho dx —/

UQ(IQ zh)

D;"¢(50 Ao + Blop)) da

0 [ G Ao+ Blon)¢? dndas,

where

My, := {1 |3z € (0, h) such that (x;,22) € UNQ}.

Thus, luckily, the boundary term has the same sign as the positively definite term containing
A. On the left hand side we obtain

2 2
Z /DiukDgaik@ dr = — Z /uk[DgkaQ + Dboy.Di¢? d .
i,k=1 ik=1

In the case of Dirichlet boundary for u no boundary terms occur.
The term with the integrand uy, D% f,¢? is uniformly bounded for p — oo and 0 < h < hy,
since ||ug||r2 is bounded and f is Lipschitz continuous. The last term is rewritten using

Dboy(z) = }1L /Oh Dyoy(x + eot) dt =: ]éh Dyoii(x + eqt) dt
(e9 unit vector in zy-direction) as
— /ukDgaikDiCQ dr = /Dguk][()h oi(r + egt)C? dt da (44)
+ /uk]gh oi(1 + egt) Do dt d .

The last term in (44) is uniformly bounded since uy, o; are uniformly bounded in L?. The
remaining term is rewritten

h
Z/Dzuk][ O'ik(l’ + €2t)<2 dtdx =
& 0
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h
3 / (Daty + Dyuiz) ]6 o (@ + eat)C? dt do
k

h
— Z / DkU2][ O'%(l’ + €2t)C2 dtdz .
. 0
Again, the last term is simple to estimate, since we move the derivatives D;, on the left factor

h h
Z/UZ[DIC][ O—ikcz +][ UikaCQ] dtdx = T'3 .
k 0 0

Using ||u||zz < K, — Xk Drow = fi, ||owl|zz < K, we obtain that T3 is bounded.
So, there remains

h h
/(Dguk + DkUQ)][ O'ikDiCQ dt de = /(AO')lk][ O'ikDiCQ dt dx
0 0
h
+ [lonP2(@)uf owDi? dtdz,
0

where ¢ has been defined in (12). Note that we need to treat only the index i = 1 since
D,(? has compact support in 2, but this is not important.
We estimate for ¢ # k

2
h h
ool @uf, ot < Kool + Kool ([ oue)

h p h

< Kloplf + K (f N dt) < Klop| + K][ lop|? dt
0 0

and for ¢ = k
h h
yaD\H@)%][ o dt < Klop|? + K\UDVD*?(][ Ok
0 0
h h
< Kloop + KlaoP ™ |(f ool + ([ [op)ary]

h h
< Klop|? + K][O (op) [P dt + Kjé (o )aal? dt .

Due to this estimate also the last integral is uniformly bounded and, finally, we have a
uniform estimate for the term

h 1
h . A2 -1 i 2
h/D2J.ADza§ dx +h /0 /Mh(za.Aa%—ﬁ(UD))g dxy .

(ii) Neumann zero-boundary
We arrive at the right hand side

R= /[C2cr : ADho + (*°D03 (o) - op) da
and estimate
hDgﬁ’(aD) cop = lop(z+ h€2)|p72O'D(l' + hey) :op — |opl|?
p—1
<

1
|0D(£L' + heg)’p + ];’Uplp — |0D’p

—1
_P . llon(z + hes) [P — |op?] .
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The first summand of R containing A is estimated as in the Dirichlet case, so we obtain

1 _1
R< —h/g2pgo— . ADYo dz + /C2D§(§a Ao+ P opP) da
b

1 -1
= —h/CQDgO' : ADho dx — /D;hCQ(ia Ao+ L lop|P) dz
D

11 p—1
—= —o: A P)dx .
P Ji G Ao+ I ool s

So the right hand side can be treated as in the Dirichlet case, the "boundary terms” with
% foh fortunately have the correct sign.

The left hand side is rewritten, using partial integration and exploiting the zero Neumann
condition

2 2
L=% / D! Doy de = — 3 / DhupDi(Cow)), do

ik=1 ik=1

2

ik=1

2 h
= - %::1 [ £ Dowila + ext) di(C2 i + 20 Dicoul da

2 h
== 3 [ £ (Dows+ Dywn)(a + ext) dhlC*fi+ 2 DiGoa] da

ik=1

2 h
—I— Z /][0 DkUQ(ZL' —|— egt) dt[csz + 2€D,C0'2k] de’ = Bl —|— BQ
i, k=1

The term Bj is essentially estimated as in the Dirichlet case; the term Douy 4+ Dyus has to
be expressed by the right hand side of the Euler equation.

For the term By we have two cases. For the index £ = 1 we may move the derivative D,
off uy via partial integration. No boundary term occurs since D, is tangential. The resulting
product

]Koh w dEDL[CEf 4+ 2CDiCoy]

can be estimated uniformly since we have estimates for uy, Vf, Do in L%
In the case k = 2 we represent Dyusy via the Euler equation by

(Ao)as + |op[P 620

and proceed as in the case k = 1.
The theorem is proved. O

Remark: It is of interest that the proof gives also an estimate for |trace o|? and the penalty
term at the boundary.

References

[1] Anzellotti, G., Giaquinta, M.: Existence of the displacements field for an elasto-plastic
body subject to Hencky‘s law and von Mises yield condition. manuscripta mathematica
32, 101-136 (1980)

21



2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Anzellotti, G., Giaquinta, M.: On the existence of the fields of stresses and dis-
placements for an elasto-perfectly plastic body in static equilibrium. Journal de
Mathématiques Pures et Appliquées 61, 219-244 (1982)

Bensoussan, A., Frehse, J.: Asymptotic behaviour of Norton-Hoff’s law in plasticity
theory and H' regularity. In: P.G. Ciarlet, J.L. Lions (eds.), Boundary Value Problems
for PDE and Applications (Volume in honor of Prof. E. Magenes), RMA Res. Notes in
Appl. Math. 29, 3-25, Masson, Paris (1993)

Bensoussan, A., Frehse J.: Regularity Results for Nonlinear Elliptic Systems and Ap-
plications. Springer Berlin, Applied Mathematical Sciences 151 (2002)

Bildhauer, M., Fuchs, M.: Smoothness of weak solutions of the Ramberg/Osgood equa-
tions on plane domains. ZAMM 87(1), 70-76 (2007)

Bulicek, M., Frehse, J., Malek, J., On boundary regularity of models of perfect elasto-
plasticity. to appear

Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer Berlin-
Heidelberg, Grundlehren der mathematischen Wissenschaften 219 (1976)

Frehse, J., Mélek, J.: Boundary regularity results for models of elasto-perfect plasticity.
Math. Models Methods Appl. Sci. 9(9), 1307-1321 (1999)

Hardt, R.M., Kinderlehrer, D.: Elastic plastic deformation. Appl. Math. Optim. 10,
203-246 (1983)

Hardt, R.M., Kinderlehrer, D.: Some regularity results in plasticity. Proc. of Symposia
in Pure Math. 44, 239-244 (1986)

Knees, D.: Global regularity of the elastic fields of a power-law model on Lipschitz
domains. Math. Methods Appl. Sci. 29(12), 1363-1391 (2006)

Kohn, R., Temam, R.: Dual spaces of stresses and strains, with applications to Hencky
plasticity. Appl. Math. Opt. 10, 1-35 (1983)

Lobach, D.: Interior stress regularity for the Prandtl Reuss and Hencky model of perfect
plasticity using the Perzyna approximation, Bonner Math. Schr. 386, Univ. Bonn (2007)

Repin, S., Seregin, G.: Error estimates for stresses in the finite element analysis of the
two-dimensional elasto-plastic problems. Int. J. Eng. Sci. 33(2), 255-268 (1995)

Seregin, G.A.: On differential properties of extremals of variational problems arising in
the theory of plasticity. Differ. Equations 26(6), 756-766 (1990)

Seregin, G.A.: Remarks on regularity up to the boundary for solutions to variational
problems in plasticity theory. J. Math. Sci. 93(5), 779-781 (1999)

Steinhauer, M., On analysis of some nonlinear systems of partial differential equations
of continuum mechanics, Bonner Math. Schr. 359, Univ. Bonn (2003)

Temam, R.: Mathematical Problems in Plasticity. Gauthier-Villars, Paris (1984)

22



Appendix

We present a proof, that the Euler equation (23) of the approximate dual variational problem
(18), with L fixed, together with the condition —dive = f, leads to a uniformly elliptic

equation.

Let M™ be the space of symmetric n x n-matrices and Mg C M? the space of matrices

(miy) satisfying m =0, ¢ = 1,2,3. For m € M? define mp € M? by

m 0 1
mD—< 0 0)—3tr(m)1.

Let y € M?, 0 € M satisfy
Cap — e L1p—2 . 2
T:y=71:Ac+[opl] “op:Tp, VTeE M.
Then there exists a globally Lipschitz continuous function g such that

o=g(y)

clyl <lgwI < Klyl,  (9(y) —9(2)) : (y = 2) = coly — 2, y, 2 € M.

Proof. We can write the right hand side of (45) in the form G(o’) = y, where

/
(% 8>:UEM§,

so G : M? — M?. The mapping G is globally Lipschitz continuous and satisfies
G(d) : o' = (0, Ac) + [0 |op|? > colop|? > o',

hence
|G(o")] = a1]o] .

Furthermore, |G(0”’)| < k|o’| and there holds the monotonicity condition
(G(o") = G(r)) : (0" = 7') = clo’ = 7'

Hence there is an inverse mapping g : M? — M? such that

Due to the above proved properties we have

colyl < gly) < eyl

and from the monotonicity property of G we conclude with ¢’ = g(y), 7" = g(2),

(y—2): (9(v) = 9(2)) > colg(y) — g(2)*.

From the global Lipschitz property of G we conclude

|G(o") = G(T)]* < Klo" = 7',
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hence
ly — 2" < Klg(y) — g(=)I*. (48)
From (47) and (48) we obtain (46). O

Thus we see that the dual problem

T
Vu+ Vu (o))
2
leads to
, (Vu + VuT>
o =g 5

and hence to the elliptic equation
T
_div (Q (V“ZV“» = f. (49)

This proves the equivalence of the dual problem (23) to (49) and allows us to apply standard
elliptic theory.
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