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1. Introduction

The study of derivations on algebras of unbounded operators and in particular on
algebras of measurable operators affiliated with von Neumann algebras is one of the most
attractive parts of the general theory of unbounded derivations on operator algebras.

Given an algebra A, a linear operator D : A — A is called a derivation, if D(xy) =
D(z)y + xD(y) for all z,y € A (the Leibniz rule). Each element a € A implements a
derivation D, on A defined as D,(x) = ax — za, x € A. Such derivations D, are said
to be inner derivations. If the element a, implementing the derivation D,, belongs to
a larger algebra B containing A, then D, is called a spatial derivation on A.

If the algebra A is commutative, then it is clear that all inner derivations are trivial,
i.e. identically zero. One of the main problem concerning derivations is to prove that
a given derivation is inner or spatial, or to show the existence of non inner (resp. non
spatial) derivations and in particular non zero derivations in the commutative cases.

In the paper [5] A. F. Ber, V. L. Chilin and F. A. Sukochev obtained necessary and
sufficient conditions for the existence of non trivial derivations on regular commutative
algebras. In particular it was proved that the algebra L°(0, 1) of all (equivalence classes
of) complex measurable function on the (0,1) interval admits non trivial derivations.
Independently A. G. Kusraev [12] by the methods of Boolean analysis gave necessary
and sufficient conditions for the existence of non trivial derivations and automorphisms
in extended f-algebras. In particular he also has proved the existence of non trivial
derivations and automorphisms on the algebra L°(0, 1). It is clear that such derivations
are discontinuous and non inner. We have conjectured in [1]-[3] that the existence of
such ”pathological” examples of derivations is closely connected with the commutative
nature of these algebras. This was confirmed in the particular case of type I von
Neumann algebras. Namely in [1]-[3] we have investigated and complety described
derivations on the algebra LS(M) of all locally measurable operators affiliated with a
type I von Neumann algebra M and on its various subalgebras. Recently the above
conjecture was also confirmed for the type I case in the paper [6] by a representation
of measurable operators as operator valued functions. Another approach to similar
problems in AW*-algebras of type I was suggested in the recent paper [10].

In the paper [3] we have proved have the spatiality of derivations of the non com-
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mutative Arens algebra L“(M, 7) associated with an arbitrary von Neumann algebra
M and a faithful normal semi-finite trace 7. Moreover if the trace 7 is finite then every
derivation on L*(M, T) is inner.

There exist various types of linear operators which are close to derivations
[8],19],[11],[13]. In particular R. Kadison [11] has introduced and investigated so called
local derivations on von Neumann algebras and some polynomial algebras.

A linear operator A on an algebra A is called a local derivation if given any x € A
there exists a derivation D (depending on z) such that A(z) = D(x). The main problems
concerning this notion are to find conditions under which local derivations become
derivations and to present examples of algebras with local derivations that are not
derivations [11] , [13]. In particular Kadison [11] has proved that each continuous local
derivation from a von Neumann algebra M into a dual M-bimodule is a derivation.
Later this result was extended in [8] to a larger class of linear operators A from M into

a normed M-bimodule F satisfying the identity

A(p) = Ap)p + pA(p) (1)

for every idempotent p € M.

It is clear that each local derivation satisfies (1) since given any idempotent p € M
we have A(p) = D(p) = D(p*) = D(p)p + pD(p) = A(p)p + pA(p).

In [9] it was proved that every linear operator A on the algebra M, (R) satisfying
(1) is automatically a derivation, where M, (R) is the algebra of n x n matrices over a
unital ring R containing 1/2.

The present paper is devoted to the study of local derivations on the algebra S(M, 7)
of all 7-measurable operators affiliated with a von Neumann algebra M and a faithful
normal semi-finite trace 7. The main result (Theorem 2.2) presents an unbounded ver-
sion of Kadison’s result and it asserts that every local derivation on S(M, 1) which is
continuous in the measure topology automatically becomes a derivation. In particular
in the case of type I von Neumann algebra M all such local derivations on S(M, 1) are
inner derivations (Corollary 2.3). We prove also that for type I finite von Neumann al-
gebras without abelian direct summands as well as for von Neumann algebras with the
atomic lattice of projections, the continuity condition on local derivations in Theorem

2.2 is redundant (Theorem 2.5 and Proposition 2.7 respectively).
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In section 3 we consider the problem of existence of local derivations which are
not derivations on a class of commutative regular algebras, which include the algebras
of measurable functions on a finite measure space (Theorem 3.5). As a corollary we
obtain necessary and sufficient conditions for the existence of local derivation which are
not derivations on algebras of measurable and 7-measurable operators affiliated with a

commutative von Neumann algebra (Theorem 3.8).

2. Continuous local derivations on the algebra S(M, 1)

Let H be a Hilbert space and let B(H) be the algebra of all bounded linear operators
on H. Consider a von Neumann algebra M in B(H) with a faithful normal semi-finite
trace 7. Denote by P(M) the lattice of projections from M.

Recall that a linear subspace D in H is said to be affiliated with M (and denoted
DnM) if u(D) C D for each unitary u from the commutant M’ = {y € B(H) : xy =
yx, Vo € M} of the algebra M.

A linear operator x acting in H with the domain D(x) is said to be affiliated with
M (denoted znM) if D(x)nM and ux(§) = zu(§) for all u € M’ and & € D(x).

A linear subspace D in H is said to be strongly dense in H with respect to the von
Neumann algebra M, if DnM and there exists a sequence {p,}2>, in P(M) such that
pn 11, po(H) C D and p =1 — p, is a finite projection in M for all n € N, where 1
is the identity in M.

A closed linear operator x acting in the Hilbert space H is said to be measurable
with respect to M if znM and its domain D(z) is strongly dense in H.

A linear subspace D in H is called 7-dense in H if DnM and given any € > 0 there
exists a projection p € M such that p(H) C D and 7(pt) < e.

A linear operator x with the domain D(z) C H is said to be 7-measurable with
respect to M if znM and its domain D(z) is 7-dense in H.

Denote by S(M) and S(M,T) respectively the sets of all measurable and 7-
measurable operators affiliated with M and consider on S(M, 7) the topology of con-
vergence in measure (or briefly measure topology) t, which is given by the following

family of neighborhoods of zero:

V(e,8) ={z € S(M,7):3ec P(M) | 7(e*) < d,ze € M, ||ze||p < €},
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where ¢, are positive numbers.

It is well-known [14] that S(M,7) is a complete metrizable topological *-algebra
with respect to the measure topology ¢..

Lemma 2.1. The algebra S(M, 1) is semiprime, i.e. aS(M,T)a = {0} for a €
S(M, 1) implies a = 0.

Proof. Let a € S(M, 1) and aS(M, 7)a = {0}, i.e. aza =0 for all z € S(M, 7). In
particular for x = a* we have aa*a = 0 and hence a*aa*a = 0, i.e. |a|* = 0. Therefore
a = 0. The proof is complete. B

We are now in position to prove the main result of this section.

Theorem 2.2. Let M be a von Neumann algebra with a faithful normal semi-
finite trace 1. Then every t.-continuous linear operator A on the algebra S(M,T)
satisfying the identity (1) is a derivation on S(M, ). In particular any t,-continuous
local derivation is a derivation on the algebra S(M,T).

Proof. Given two orthogonal projections p, ¢ € P(M) we have
Ap) +AQ) =A(lp+9)?*) =Ap+ 9+ 9 + P+ DA +q) =

= [A@p+pAE)| + |A@)a+ad@)] + [Aw)a+pA0) + Ala)p + 4Ap)] =
— A(p) + Alg) + [Alp)a + pA(a) + Alg)p + aAp)].

Therefore

A(p)g + pA(q) + Alq)p + qA(p) = 0. (2)
Set DP(M) = {Z arpr - ax € R pi € P(./\/l),pkpl =0,k 7é Ik, :L_n,n S N}
k=1

For x = ) a;p; € Dp(a) we have

=1

n 2 n n
Az?) = A (Z Oéz‘]%‘) =A (Z O%sz‘) = ZQ?A(PJ,
i=1 i=1 i=1
1.e.
Al2?) =) a?A(py). (3)
i=1
Further we have

A(z)r + zA(z) = A (Z aipi> <Z aiPi) + (Z aipi> A <Z aiPi) =
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(Z 052A pz Di + Z Oézaj pl > (Z Q; pz p’L + Z &lajpl p] ) _

1#£] 1]
—Z [ (pi)pi + piA } Zozag[ (pi)pj + piA(p )]Z
i#]
= Z AP + > iy [ (pi)pj + piA(p;) + Aps)ps +ij(pz-)},
1<j

and thus

A(z)z +zA(z) = Z (i +Zala][ (pi pj+pzA(pj)+A(pj)p¢+pjﬁ(pi)]~ (4)

=1 1<J
Now (2) and (4) imply
A(x)r + zA(x ZazA Di) (5)

and therefore from (3) and (5) we obtain that A(z?) = A(z)z+zA(z) for all 2 € Dp(u).
Since the set Dp(pyy is t--dense in S(M, 7T)s, and the operator A is ¢.-continuous, we
have that A(2?) = A(z)r + zA(z) for all z € S(M, 7)., (the self-adjoint operators
from S(M,1)).

Now let us show that this relation is valid for arbitrary operators from S(M, 7).

Consider x € S(M, 1) and let = 1 + ixy, where x1, x5 € S(M, 7). The identity
T1T9 + 291y = (21 + 12)° — 27 — 23,
implies that
A(x1me + xom1) = A(21)22 + 1A (22) + A(22)T1 + 22A(27).
Therefore
A(2?) = A((z1 +ix9)?) = A(2}) + iA (2129 + 2911) — A(23),

1.e.

A(2?) = A(x7) + iA (2129 + T011) — A(23).
Further we have
A(x)x + xzA(x) = Az +ixg) (21 + ix2) + (21 + i) Ay + ixe) =
= A(azl)xl—l—xlA(Jcl)} +1 [A(:Cl)xQ—l—xlA(xg)—l—A(xg):cl—i—sz(xl)] - [A(xQ)xg—i—:ch(xQ)
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= A(x]) + iA(z179 + 2071) — A(23),
le.
A(x)r + zA(x) = A@?) + iA(z129 + 20m1) — A(2D).
Comparing this relation with the above one we obtain
A(z?) = A(z)z + 2A(x).

This means that A is a Jordan derivation on S(M,7) in the sense of [7]. In [7,
Theorem 1] it is proved that any Jordan derivation on a semiprime algebra is a (asso-
ciative) derivation. Thus Lemma 2.1 implies that the linear operator A is a derivation
on S(M, 7). The proof is complete. B

For type I von Neumann algebras the above result can be strengthened as follows

Corollary 2.3. Let M be a type I von Neumann algebra with a faithful normal
semi-finite trace T. Then every t,-continuous linear operator A on S(M,T) satisfying
(1) (in particular local derivation) is an inner derivation.

Proof. By Theorem 2.2 A is a derivation on S(M, 7). By [2, Corollary 4.5] every
t,-continuous derivation on S(M,7), with M of type I, is inner. Therefore A is an
inner derivation on S(M, 7). The proof is complete. B

Now let us show that for finite von Neumann algebras of type I without abelian
direct summands the assertion of Corollary 2.3 is valid for local derivations A without
assumption of t.-continuity.

Let M be a homogeneous von Neumann algebra of type I,,,n € N, with the center
7 and with a faithful normal semi-finite trace 7. In this case M is *-isomorphic to the
algebra M, (Z) of all n x n matrices over Z, and the algebra S(M, 1) is *-isomorphic to
the algebra M, (S(Z, 7)) of all n x n matrices over the commutative algebra S(Z, 1)
of 7z-measurable operators with respect to Z, where 7 is the restriction of the trace 7
onto Z. If {e;;, 1,7 = 1,n} is the set of matrix units in M, (S(Z, 7)) then each element
x € M,(S(Z,7z)) is represented as

€r = Z )\m-el-,j, )\i,j - S(Z, Tz), Z,j = 7

ij=1
Let 0 : S(Z,17) — S(Z,77) be a derivation. Setting

Ds(> Aijeig) = Y 6(Nijeis (6)

ij=1 ij=1



we obtain a linear operator Ds on M, (S(Z, 7)), which is a derivation on the algebra
M,(S(Z,7z)) (see [2]).

Now if M is an arbitrary finite von Neumann algebra of type I with the center Z,
then there exists a family {z,}n,ecr, F C N, of orthogonal central projections in M
such that supz, = 1 and M is *x-isomorphic to the C*-product of homogeneous von

nekr
Neumann algebras 2, M of type I, respectively n € F) i.e.

M= @ zZ, M.
neF
This implies that the algebra S(M, ) can be embedded as a subalgebra of the direct
product of the algebras S(z,M, 7,), where 7, is the restriction of the trace 7 onto the
algebra z, M, n € F (see for details [2, Section 4]).

Consider a derivation D on the algebra S(M, 7) and denote by 4 its restriction on the
center S(Z,7yz) of the algebra S(M, 7). Then 6 maps each 2,5(Z,77) = Z(S(z2,M,7,))
into itself and hence it induces a derivation d,, on z,S(Z, 77) for each n € F.

Define as in (6) the derivation Ds, on the matrix algebra M, (z,Z(S(M,1))) =
S(z,M,1,) for each n € F. Put

Ds({zn}ner) = {Ds,(n)}, {n}ner € SIM, 7). (7)

In [2] it is proved that Ds is a derivation on the algebra S(M, 7), which is restricted
to the center of S(M, ) coincides with ¢ (and thus with D). In [2, Lemma 4.3] it has
been proved that an arbitrary derivation D on the algebra S(M, 1) for the finite type

I von Neumann algebra M can be uniquely decomposed into the sum
D =D, + Ds (8)

where D, is an inner derivation on S(M, 1) implemented by an element a € S(M,T)
and Dy is the derivation defined as in (7).

Further we shall need the following technical result.

Lemma 2.4. Every local derivation A on the algebra S(M, 1) is necessarily P(Z)-

homogeneous, i.e.

A(zz) = zA(x)
for any central projections z € P(Z) = P(M) N Z, and for all x € S(M, 7).
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Proof. Take z € P(Z) and = € S(M, 7). For the element zx by the definition of the
local derivation A there exist a derivation D on S(M,7) such that A(zz) = D(zx).

Since the projection z is central one has D(z) = 0 and therefore
A(zz) = D(zx) = D(z)x + zD(x) = zD(x),
i.e. A(zz) = zD(x). Multiplying by z we obtain
zA(zz) = 2°D(x) = 2D(z) = A(z1)

1.e.

2 A(zz) = (1 — 2)Azz) = 0.

Therefore by the linearity of A we have zA(x) = 2A(zx) + 2zA(2 7)) = 2A(22) =
A(zx) that is zA(z) = A(zz). The proof is complete. B

Theorem 2.5. Let M be a finite von Neumann algebra of type I without abelian
direct summands and let 7 be a faithful normal semi-finite trace on M. Then every local
derivation A on the algebra S(M, 1) is a derivation and hence can be represented as
(8).

Proof. Let {z,}ner, F© C N be the family of orthogonal central projections in
M with sug z, = 1, such that 2, M is a homogeneous von Neumann algebra of type

ne

I,,n € F. Since M does not have an abelian direct summand we have that 1 & F.

Consider an arbitrary local derivation A on S(M, 7). By Lemma 2.4 we have that
A(zpx) = 2,A(x)

for each n € F. This implies that A maps each 2,5(M,7) = S(2,M,7,) into itself
and hence induces a local derivation A, = A|. gm,-) on the algebra S(z,M,7,) =
M, (Z(S(z,M,T,))) for each n € F. Since n # 1, [9, Theorem 2.3] implies that the
operator A, on the matrix algebra M, (Z(S(z,M,7,))) is a derivation. Therefore A =
{A, }ner is also a derivation and by [2, Lemma 4.3] can be uniquely represented in form

(8). The proof is complete. B

Remark 2.6. In the latter theorem the condition on M to have no abelian direct

summand is crucial, because in the case of abelian von Neumann algebras the picture is
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completely different. Local derivations on algebras of 7-measurable operators affiliated
with abelian von Neumann algebras will be considered in the next section.

Now let M be a von Neumann algebra with the atomic lattice of projections and
with a faithful normal semi-finite trace 7. Then the von Neumann algebra M is a direct
sum of type I, factors M, = B(H,), where H, is a Hilbert space with dim H, = «
and the algebra S(M, ) can be embedded as a subalgebra of the direct product of the
algebras S(M,, 7o), where 7, is the restriction of the trace 7 onto the algebra M,. As
in Theorem 2.5 by Lemma 2.4 we have that every local derivation maps each direct
summand S(M,,7,) = B(H,) into itself. Therefore we obtain from [9, Corollary 3.8]
(see also [13]) that every local derivation on the algebra S(M, ) is a derivation and
hence by [1, Corollary 3.11] and [2, Theorem 4.4] is inner derivation.

Thus, we have proved the following result.

Proposition 2.7. If M is a von Neumann algebra with the atomic lattice of projec-
tions and with a faithful normal semi-finite trace T, then every local derivation on the

algebra S(M, 1) is inner derivation.
3. Local derivations on commutative regular algebras

In this section we shall discuss the problem of existence of local derivations which are
not derivations on the algebras S(M) and S(M, 7) in the case where the von Neumann
algebra M is commutative. Following the approach of the paper [5] we shall consider
this problem in a more general setting — on commutative regular algebras.

Let A be a commutative algebra with the unit 1 over the field C of complex numbers.
We denote by V the set {¢ € A : e* = e} of all idempotents in A. For e, f € V we
set e < fif ef = e. With respect to this partial order, the lattice operation eV f =
e+f—ef, eAf = ef and the complement et = 1—e, the set V forms a Boolean algebra.
A non zero element ¢ from the Boolean algebra V is called an atom if 0 #e < ¢, e € V,
imply that e = ¢. If given any nonzero e € V there exists an atom ¢ such that ¢ < e,
then the Boolean algebra V is said to be atomic.

An algebra A is called regular (in the sense of von Neumann) if for any a € A there
exists b € A such that a = aba.

Further, we shall always assume that A is a unital commutative regular algebra

over C, and that V is the Boolean algebra of all its idempotents. In this case given any
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element a € A there exists an idempotent e € V such that ea = a, and if ga = a,g € V
then e < g. This idempotent is called the support of a and denoted by s(a).

Suppose that p is a strictly positive countably additive finite measure on the Boolean
algebra V of idempotent from A and consider the metric p(a,b) = pu(s(a—»>)), a,b € A.

From now on we shall assume that (A, p) is a complete metric space (cf. [4], [5]).

Example 3.1. The most important example of a complete commutative regular
algebra (A, p) is the algebra A = L°(Q) = L°(Q, X, u) of all (classes of equivalence of)
measurable complex functions on a measure space (€2, ¥, i), where p is finite countably
additive measure on ¥, and p(a,b) = p(s(a — b)) = p({w € Q : a(w) # b(w)}) (see for
details [4, Lemma] and [5, Example 2.5]).

Remark 3.2. If (2, %, u) is a general localizable measure space, i.e. the (not finite
in general) measure p has the finite sum property, then the algebra L°(Q2,3, ) is a
unital regular algebra, but p(a,b) = p(s(a —0b)) is not a metric in general. But one can
represent () as a union of pair-wise disjoint measurable sets with a finite measure and
thus this algebra is a direct sum of commutative regular complete metrizable algebras
from the above example.

Following [5] we call an element a € A finitely valued (respectively, countably valued)

if a = ) agep, where oy, € C, e, € V, ere; =0, k # 4, k,j =1,..,n, n € N
k=1

(respectively, a = i ager, where ap € C, e, € V, epe; =0, kK # 7, k7 =1,..,w,
where w is a natu]gi number or oo (in the latter case the convergence of series is
understood with respect to the metric p)). We denote by K(V)(respectively K.(V))
the set of all finitely valued (respectively countably valued) elements in A. It is known
that V. C K(V) C K.(V), both K(V) and K (V) are regular subalgebras in A, and
moreover the closure of K(V) in (A, p) coincides with K (V) (see [5, Proposition 2.8]).

Now let D be a derivation on the given regular commutative algebra A. By [5,
Proposition 2.3] (see also [4, Theorem]) we have that s(D(a)) < s(a) for any a € A,
and D|y = 0. Therefore by the definition, each local derivation A on A satisfies the

following two condition:

s(A(a)) < s(a), Ya € A, 9)
Aly = 0. (10)
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This means that (9) and (10) are necessary conditions for a linear operator A to be a
local derivation on the algebra A. We are going to show that in fact these two condition
are also sufficient.

First we recall some further notions from the paper [5].

Let B be a unital subalgebra in the algebra A. An element a € A is called:

— algebraic with respect to B, if there exists a polynomial p € Blz| (i.e. a polynomial
on x with coefficients from B), such that p(a) = 0;

— integral with respect to B, if there exists a unitary polynomial p € B[z] (i.e. the
coefficient of the largest degree of x in p(x) is equal to 1 € B), such that p(a) = 0;

— transcendental with respect to B, if a is not algebraic with respect to B;

— weakly transcendental with respect to B, if a # 0 and for any non-zero idempotent

e < s(a) the element ea is not integral with respect to B.

Lemma 3.3. Given any element a € A there exists an idempotent e € V such that

(i) ea is integral with respect to K.(V), moreover in this case ea € K.(V);

(i1) eta is weakly transcendental with respect to K.(V) , if e # 1.

Proof. Denote by V,,; the set of all idempotents e € V such that ea is integral
with respect to K.(V). By [5, Proposition 3.8] each integral element with respect to
K.(V) in fact belongs to K.(V). Therefore V;y = {e € V : ea € K. (V)}. We set
e = sup V. Since V is a complete Boolean algebra of countable type [5, Proposition
2.7], there exists a countable family of mutually disjoint elements {e;}r>1 in V such
that super = e and given any ¢ € V,;,; there exists & > 1 such that e, < €. It is
clear "E?at er, < €, e €V, imply that e, € Vy,; and thus ega € K.(V). Therefore
ea =Y epa € K. (V). Further since s(a)ta = 0 € K.(V) we have that s(a)t < e, i.e.
et < ksz(la) and hence s(eta) = et. Now let us show that if e # 1 then ela is weakly
transcendental with respect to K.(V). Suppose the opposite, i.e. there exists a non-zero
idempotent ¢ < et = s(eta) such that qga is integral with respect to K,.(V). This means
that ¢ € Vi, i.e. ¢ < e. This is a contradiction with 0 # ¢ < e*. Therefore eta is
weakly transcendental with respect to K.(V). The proof is complete. B

The following Lemma is the crucial step for the proof of main results in this section.

Lemma 3.4. Fach linear operator on the algebra A satisfying the conditions (9)
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and (10) is a local derivation on A.
Proof. Let A be a linear operator on the algebra A which satisfies the conditions
(9) and (10). Let us show that A|x vy = 0. Since A|y = 0 it is clear that Alxy) = 0.

Further for a,b € A we have from (9)

p(A(a), A(D)) = p(s(Ala) — A(D))) = u(s(Ala —b))) < p(s(a — b)) = p(a,b).

Thus implies that the linear operator A is uniformly continuous with respect to the
metric p. Since K (V) is dense in K (V) we obtain that A|x,v) = 0.

Now take a € A. By Lemma 3.3 there exists an idempotent e € V such that
ea € K. (V) and eta is weakly transcendental with respect to K.(V). Since A|g, vy =0
and ea € K.(V) we have

A(a) = Alea) + A(eta) = A(eta).

In particular s(A(a)) = s(A(eta)) < s(eta). Consider the trivial derivation § = 0 on
the regular subalgebra K.(V) in A. Now [5, Proposition 3.7] implies that for the weakly
transcendental element eta with respect to the regular subalgebra K.(V) and for the
element A(a) in A with s(A(a)) < s(eta) there exists a unique derivation ¢; : B — A
such that &;(eta) = A(a), and 61|k, (v)y = 0, where B is the subalgebra in A generated
by K.(V) and the element eta. Now by [5, Theorem 3.1] the derivation §; can be
extended to a derivation D : A — A and it is clear that D(eta) = §(eta) = A(a).
Further since ea € K.(V) and each derivation satisfies the conditions (9) and (10) we
have as above that D(ea) = 0. Therefore

D(a) = D(ea) + D(e*a) = D(e*a) = A(a),

i.e. for any a € A we have shown the existence of a derivation D on A such that
D(a) = A(a). This means that A is a local derivation on A. The proof is complete. H
The following is the main result concerning the existence of local derivations on

commutative regular algebras.

Theorem 3.5. Let A be a unital commutative reqular algebra over C and let p
be a finite strictly positive countably additive measure on the Boolean algebra NV of all
idempotents of A. Suppose that A is complete in the metric p(a,b) = p(s(a—"0)), a,b €

A. Then the following conditions are equivalent:

14



(i) Ku(V) £ 4
(i) the algebra A admits a non-zero derivation;

(iii) the algebra A admits a non-zero local derivation;

(iv) the algebra A admits a local derivation which is not a derivation,

Proof. The implications (i) < (ii) are proved in [5, Theorem 3.2]. The assertion

(ii) = (iii) is trivial because any derivation is a local derivation. In order to prove the

implication (iii) = (iv) we need the following Lemma

Lemma 3.6. If D is a derivation on a commutative reqular algebra A, then D? is
a derivation if and only if D = 0.
Proof. Suppose that D : A — A is a derivation such that D? is also a derivation.

The given any a € A we obtain from the Leibniz rule for D? and D respectively:
D?(a®) = 2aD?*(a)

and

D?*(a?) = D(D(a?)) = D(2aD(a)) = 2D(a)D(a) + 2aD(D(a)) = 2[D(a)]* + 2aD*(a),

and therefore [D(a)]* = 0.

Since A is regular there exists an element b € A such that D(a) = D(a)bD(a).
Commutativity of A implies that D(a) = [D(a)]?b = 0, i.e. D(a) =0 for all a € A. The
proof of Lemma 3.6 is complete. B

(iii) = (iv). Since A admits a non-zero local derivation, clearly it admits a non-zero
derivation (by the definition of local derivation). From [5, Theorem 3.2] this implies
that K.(V) # A. Take an element a € A\K (V). By Lemma 3.3 above there exists an
idempotent e € V such that ea € K.(V) and the element e*a is weakly transcendental
with respect to K.(V) provided that e # 1. Since a ¢ K.(V), we have that e # 1, and
hence the element b = eta is indeed weakly transcendental with respect to K.(V). By
[5, Proposition 3.7, Theorem 3.1] as in Lemma 3.4 there exists a derivation D on A
such that D(b) = b. Consider the linear map A = D2 Since D is a derivation on A,
A satisfies the conditions (9) and (10) and by Lemma 3.4 A is a local derivation on
A, and moreover A(b) = D(D(b)) = D(b) = b, i.e. A # 0. By Lemma 3.6 A is not a

derivation.
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(iv) = (i). Let A be a local derivation on A, which is not a derivation. Then it is
clear that A is not identically zero, i.e. A(a) # 0 for an appropriate element a € A.
By definition there exists a derivation D on A such that A(a) = D(a) # 0, i.e. D is
a non-zero derivation on A. Therefore by [5, Theorem 3.2] we obtain that K.(V) # A.
The proof of Theorem 3.5 is complete. B

The important special case of the last theorem is the following result concerning the

regular algebra L°(Q, 3, 1) from the example 3.1.

Corollary 3.7. Let (2,%, 1) be a finite measure space and let L°(2) = L°(Q, %, i)
be the algebra of all real or complex measurable functions on (2, X, p). Following con-
ditions are equivalent:

(i) the Boolean algebra of all idempotents from L°(Q) is not atomic;

(ii) L°(Q2) admits a mnon-zero derivation;

(iii) L%(QY) admits a non-zero local derivation;

(iv) L°(Q) admits a local derivation which is not a derivation.

Proof. This follows easily from Theorem 3.5, Example 3.1 and [5, Theorem 3.3]. B

It is well known that if M is a commutative von Neumann algebra with a faithful
normal semifinite trace 7, then M is x-isomorphic to the algebra L>() = L*(Q, %, u)
of all essentially bounded measurable complex function on some localizable measure
space (Q,%,p) and 7(f) = [ f(t)du(t) for f € L>(Q,%, n). In this case the algebra
S(M) of all measurable oper%tors affiliated with M may be identified with the algebra
L°(Q) = L°(Q, %, i) of all measurable functions on (£2, 3, ), while the algebra S(M, )

of 7-measurable operators from S(M) coincides with the algebra
{f € L(Q): IF € B, u(Q\ F) < +oo,xr - f € L*(Q)}

of all totally T-measurable functions on €2, where xr is the characteristic function of the
set F. In the trace 7 is finite then S(M) = S(M, 1) = L(Q) is a commutative regular
algebra. But if the trace 7 is not finite the algebra S(M,7) is not regular. In this
case considering () as a union of pairwise disjoint measurable sets with finite measures
we obtain that S(M) is a direct sum of commutative regular algebras (see Remark
3.2) and S(M,T) is a subalgebra of a direct sum of commutative regular algebras.

Therefore from Lemma 2.4 and the above Corollary 3.7 we obtain the following solution
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of the problem concerning the existence of non trivial local derivations on algebras of

measurable operator in the commutative case.

Theorem 3.8. Let M be a commutative von Neumann algebra with a faithful
normal semi-finite trace 7. The following conditions are equivalent:

(i) the lattice P(M) of projections in M is not atomic;

(ii) the algebra S(M) (respectively S(M,T)) admits a non-inner derivation;

(iii) the algebra S(M) (respectively S(M,T)) admits a non-zero local derivation;

(iv) the algebra S(M) (respectively S(M,T)) admits a local derivation which is not

a dertwation.

Remark 3.9. It should be noted that for general (non commutative) von Neumann
algebras the above conditions are not equivalent but some implications are valid.

The implication (i) = (ii) is not true in general because for a type I, von Neumann
algebra M with the non atomic center Z the lattice P(M) is not atomic but the
algebras S(M) and S(M,7) do not admit non inner derivations [2, Lemma 3.5 and
Theorem 4.1].

The implication (ii) = (i) is valid, because if we suppose the lattice P(M) to be
atomic then in view of [1, Corollary 3.1] and [2, Lemma 3.5 and Theorem 4.1] every
derivation on the algebras S(M) and S(M,7) is automatically Z-linear and hence it
is inner, i.e. these algebras do not admit non inner derivations.

The condition (iii) is always fulfilled in the non commutative case, because every
inner derivation which is implemented by a non central element is a non-zero derivation
and hence it is a non-zero local derivation.

The implications (i) = (iv) and (ii) = (iv) are not true in general, since if we take
a finite von Neumann algebra of type I,,, (n # 1), with a faithful normal finite trace 7
and with the non atomic center, then by Theorem 2.5 the algebra S(M) = S(M, 1)
does not admit a local derivation which is not a derivation, but it admits non inner
derivations of the form Ds (see Section 2).

The implication (iv) = (i) is true and follows from Proposition 2.7.

Finally, the implication (iv) = (ii) is an open problem in the general case.
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