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A FINITE ELEMENT SCHEME FOR THE EVOLUTION OF

ORIENTATIONAL ORDER IN FLUID MEMBRANES

SÖREN BARTELS, GEORG DOLZMANN, AND RICARDO H. NOCHETTO

Abstract. We investigate the evolution of an almost flat membrane driven
by competition of the homogeneous, Frank, and bending energies as well as the
coupling of the local order of the constituent molecules of the membrane to its
curvature. We propose an alternative to the model in [18, 39] which replaces a
Ginzburg-Landau penalization for the length of the order parameter by a rigid
constraint. We introduce a fully discrete scheme, consisting of piecewise linear
finite elements, show that it is unconditionally stable for a large range of the
elastic moduli in the model, and prove its convergence. We present numerical
simulations that examine typical model situations, confirm our theory, and
explore numerical predictions beyond theory.

1. Introduction

Lipid bilayers are the fundamental building block for fluid membranes that are
the main constituent of cell membranes in almost all cells of living organisms.
Their formation is driven by the tendency to shield the hydrophobic tails of the
amphiphilic lipid molecules from the aqueous environment. From a mathematical
point of view, the first papers [9, 23, 17, 26] were inspired by the quest to understand
the biconvex shape of red blood cells based on an energy minimization principle
(see also the review [36]).

Most models investigated so far are typically based on the assumptions (see,
e.g., [9]) that the membrane consists of two isotropic labile surfaces, that there
is no exchange of molecules between the two sides, and that the membrane has
the same physical properties over the entire surface. The conformation of the
membrane is driven by the curvature energy from bending elasticity, additional
geometric constraints like fixed enclosed volume or surface area, and a signature
of the bilayer aspect of the membrane. More recent work explores the formation
and dynamics of co-existing phases or domains on the membrane separated by line
tension [6], as well as the fluid-membrane coupling [11].

In this paper we focus on the analysis of mathematical models for membranes
in the gel phase in which the thermal fluctuations of the hydrophobic tails are
so small that one can define a two-dimensional order parameter or director. It is
experimentally observed that the tails form a fixed angle with respect to the layer
normal and have locally the same orientation [31, 25]. The interfaces between the
regions of different orientation, or domains, and their dynamics are of particular
interest in artificial vesicles since they could be used as functional parts of the
membrane.
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In order to formulate the energy of the system we adopt the local description
in the Monge Gauge, that has been widely used in the literature. We follow the
classical references [30, 29, 37] by defining the two-dimensional director n as the
projection of the direction of the tails onto the tangent plane to the surface and we
define the symmetric and traceless order parameter Q by

Q = S
(
n⊗ n− 1

2
I2×2

)
,(1.1)

where S is a variable scalar parameter. We assume that the energy of a flat piece
of the membrane, described by a graph u over a two-dimensional domain Ω, is
zero while a curved membrane has stored elastic energy. In the linearized setting
proposed by Uchida [39], corresponding to an almost flat membrane |∇u| ≪ 1 with
periodic boundary conditions (see also [32] and the references therein), the energy
E of the system

E[u,Q] =

∫

Ω

(
fhom[Q] + fF [Q] + fcurv[u,Q]

)
(1.2)

consists of three parts, the homogeneous, Frank, and curvature-elastic terms

fhom[Q] = −α
2
|Q|2 +

β

4
|Q|4 ,

fF [Q] =
ξ

2
|∇Q|2 ,

fcurv[u,Q] =
κ

2
(∆u)2 + δ Q : D2u,

where |Q|2 =
∑
i,j Q

2
ij is the square of the Frobenius norm of the matrix Q, ∆u is

the Laplacian of the height u (linearized mean curvature), and D2u is the Hessian of
u; moreover, α, β, ξ, κ, δ > 0 are parameters of the model. The coupling between the
elastic deformation and the order parameter is a lowest order approximation of the
formQ : D2u =

∑
i,j,k EijQjk∂i∂ku, where Eij = δij is the unit tensor for an achiral

membrane [18] or the totally antisymmetric tensor for a chiral membrane [33];
hereafter we consider the achiral case as in [39]. This is for example true for dioleoyl
phosphatidylcholine (DOPC) which is frequently used in artificial membranes.

The numerical analysis of models related to the shape of fluid membranes is
a challenging problem due to the complex interplay of several important physical
mechanisms. Previous work has mainly focused on the phase field approach for the
Canham–Helfrich functional [14, 15], which assumes that the shape of the vesicle
is determined from minimizing the square of mean curvature, possibly taking into
account the phenomenon of spontaneous curvature [23, 36]. The corresponding
gradient flow dynamics are usually referred to as Willmore flow [41], and pose a
challenging mathematical problem [13, 16, 35, 4]. The membrane-fluid interaction
has been recently investigated theoretically [11] as well as numerically [34].

We present a model that allows for effective computations with a minimal num-
ber of free parameters. Therefore we replace the homogeneous energy fhom[Q],
which contains two parameters, with the constraint |Q|2 = 1/2. This is justified in
Section 2.1 as a formal limit of a Ginzburg-Landau energy when the penalization
parameter tends to zero and, in turn, implies that the scalar parameter S in (1.1)
satisfies S → 1 in the limit. Such a constraint is natural in many systems with
orientational order. For example, the simplest models for liquid crystals reduce to
a minimization of the Dirichlet energy subject to this constraint [40]. We regard
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our model, and the ensuing discrete method, as a first step in estimating the cou-
pling parameters ξ, κ, and δ based on a comparison of experiment and numerical
simulation. The full model on a closed surface should penalize the condition that
the orientation of the tails of the lipid molecules has a fixed angle with respect
to the tangential plane to the membrane surface since there are no smooth vector
fields tangential to a closed surface in R3.

We introduce a fully discrete finite element scheme which is practical. Our
numerical method is flexible in terms of boundary conditions, and is capable of
simulating the dynamics over coarse meshes. This is due to the fact that we avoid
the diffusion mechanism typical of Ginzburg-Landau models which include a small
parameter ǫ. These models allow (regularized) defects of degree s, namely singular
solutions of the form n(x) ≈ exp(i arg(x)) with s = ±1/2,±1 and whose energy is
logarithmic in ǫ. Singularities of this form have infinite energy in the constrained
model and are therefore not admissible. However, our discrete model introduces an
alternate finite length scale, the meshsize h, and thus admits a discrete version of
these defects. We discuss this issue in Section 6.

This paper is the first to present a rigorous mathematical analysis of a model
that couples the orientation of lipid molecules with membrane bending. The gra-
dient flow dynamics of the free energy gives rise to a coupled parabolic system. In
Section 4, we find the range for the coupling parameter δ within which the discrete
system is unconditionally stable. This leads to several a priori bounds. We then
prove in Section 5 that the discrete solutions converge, thereby showing existence
of a weak solution for the limit system. We conclude with several numerical simu-
lations in Section 6; some of them examine typical model situations within theory
while others explore numerical predictions for defects beyond theory.

2. Mathematical model and weak formulation

We now modify Uchida’s model [39] in several respects and present a weak for-
mulation and discretization, along with the main theoretical results of this paper;
the model in [39] may be viewed as a simplified version of that in [18]. We show
first via nondimensionalization that the homogeneous energy fhom[Q] is a penaliza-
tion term for |Q| and replace it by a rigid constraint. We next change the energy
to accommodate boundary conditions other than periodic. We finally present the
discrete scheme and corresponding numerical analysis.

2.1. Nondimensionalization. Let L > 0 be comparable to the diameter of the

domain Ω, and set ε = L−1. If γ = β
1

2α− 1

2 , we impose the change of variables
x̂ = εx and

(2.1) û(x̂) = εu(x), Q̂(x̂) = γQ(x), ∀x ∈ Ω .

We observe that this scaling preserves the slope of membrane height, namely ∇̂û =
∇u ≪ 1, which is a critical assumption to formulate the linearized model (1.2).

The rescaled energy Ê is given by

(2.2) Ê[û, Q̂] =

∫

Ω̂

{ α2

2ε2β
|Q̂|2

(
|Q̂|2− 1

2

)
+

ξ

2γ2
|∇̂Q̂|2 +

κ

2
|∆̂û|2 +

δ

γε
D̂2û : Q̂

}
dx .

The parameters reported in (1.2) are

(2.3) α = 1, β = 20, ξ = δ = 1, κ = 20, L = 512,



4 SÖREN BARTELS, GEORG DOLZMANN, AND RICARDO H. NOCHETTO

which lead to α2

2ε2β ≈ 0.65 × 104. We can thus regard the homogeneous term as a

Ginzburg-Landau penalization of the rigid constraint |Q̂| = 1/
√

2.
Therefore, from now on we relabel all functions and parameters involved, impose

the rigid constraint |Q| = 1/
√

2, and rewrite the rescaled energy in (2.2) as follows:

(2.4) E[u,Q] =

∫

Ω

{ξ
2
|∇Q|2 +

κ

2
|∆u|2 + δD2u : Q

}
dx .

2.2. Modified energy and Euler-Lagrange equations. In Uchida’s model the
domain Ω is a square and periodic boundary conditions are imposed for both u
and Q. Since this does not provide enough flexibility for the study of the coupled
system, we further modify the energy E to accommodate the boundary conditions:

(2.5) u = uD, ∆u = g on Γ.

For g = 0 this corresponds to a freely supported Kirchhoff plate. We claim that
the correct form of the energy E[u,Q] in (2.4) is now

(2.6) E[u,Q] =

∫

Ω

{ξ
2
|∇Q|2 +

κ

2
|∆u|2 − δ∇u · DivQ

}
dx− κ

∫

Γ

g ∂νudS ,

where DivQ is a column vector obtained by computing the divergence of each row
of the matrix Q. To see this we compute formally the variational derivative δE/δu
with respect to u:

〈δE
δu
, v〉 =

∫

Ω

{
κ∆u∆v − δ∇v · DivQ

}
dx− κ

∫

Γ

g ∂νvdS

where the variation v vanishes on Γ. Formal integration by parts yields

〈δE
δu
, v〉 =

∫

Ω

{
− κ∇∆u · ∇v + δ div DivQv

}
dx+ κ

∫

Γ

(∆u − g)∂νvdS

=

∫

Ω

(
κ∆2u+ δ div DivQ

)
vdx+ κ

∫

Γ

(
∆u− g

)
∂νvdS .

This reveals the Euler-Lagrange equation for u, namely,

(2.7)
δE

δu
= κ∆2u+ δ div DivQ = 0,

as well as the desired boundary condition (2.5). We observe that (2.6) is consistent
with (1.2) for periodic boundary conditions because integration by parts gives

−
∫

Ω

∇u · DivQdx =

∫

Ω

D2u : Qdx ,

without boundary contributions. Consequently, we deal with (2.6) from now on.
We can yet simplify matters a bit further upon realizing that a symmetric and

traceless matrix Q can be written as follows:

(2.8) Q = Aq =
1

2

[ q1 q2
q2 −q1

]
,

where A is a linear operator. Moreover, imposing the constraint |Q| = 1/
√

2 is
equivalent to the holonomic constraint |q| = 1 for q = (q1, q2). To derive the Euler-
Lagrange equation for q we construct first a Lagrangian, or augmented energy, to
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account for the constraint |q| = 1, namely,

L[u, q, λ] =

∫

Ω

{µ
2
|∇q|2 +

κ

2
|∆u|2 − δ∇u · DivAq +

λ

2

(
|q|2 − 1

)}
dx

− κ

∫

Γ

g ∂νudS,

(2.9)

where we write µ = 2ξ. Formal variational differentiation of L[u, q, λ] with respect
to q implies

〈δL
δq
, p〉 =

∫

Ω

{
µ∇q · ∇p− δ∇u · DivAp+ λ q · p

}
dx = 0,

where the variation p vanishes on Γ. Formal integration by parts yields

δL

δq
= −µ∆q + δ A∗D2u+ λq = 0,

where A∗ is the adjoint of A and reads A∗D2u = [∂2
1u− ∂2

2u, 2∂12u]
T . To find the

multiplier λ we multiply the equation above by q and use that |q| = 1:

λ = µq · ∆q − δ D2u : Aq = −µ|∇q|2 − δ D2u : Aq.

In fact, for all v ∈ C∞
0 (Ω) and all j, we can write

∫

Ω

v∂2
j q · qdx = −

∫

Ω

∂jq · ∂jq vdx −
∫

Ω

∂jq · q∂jvdx = −
∫

Ω

∂jq · ∂jq vdx

because ∂jq · q = 0. This amounts to q · ∆q = −|∇q|2 and gives rise to the Euler-
Lagrange equation for q

(2.10) −µ∆q + δ A∗D2u−
(
µ |∇q|2 + δ A∗D2u · q

)
q = 0.

2.3. Special solutions and asymptotics. To get some insight on the interplay
between geometry and director field, we seek minimizers of E[u, q] = L[u, q, λ] given
by (2.9) for |q| = 1. We drastically simplify the search by considering quadratic
functions u of the form

(2.11) u(x1, x2) = σx2
1 + x2

2,

and a constant vector field q. Invoking (2.5) and ∆u = 2(σ + 1), we see that

L[u, q, λ] =
κ

2

∫

Ω

|∆u|2dx− κ

∫

Γ

g ∂νudS = −κ
2

∫

Ω

|∆u|2dx = −2κ(σ + 1)2|Ω|

does not depend on the value of q. To extract a nontrivial relation between u and
q we resort to (2.10), which gives the equations

(∂2
1u− ∂2

2u)
(
1 − q21

)
= 2∂2

12u q1 q2 ,

(∂2
1u− ∂2

2u)q1q2 = 2∂2
12u q1 q2.

In view of (2.11), this translates into the equations

2(σ − 1) (1 − q21) = 2(σ − 1) q1 q2 = 0.

We now choose σ 6= 1, which implies that the principal curvature directions of the
membrane described by u are parallel to the coordinates axes and

q1 = ±1, q2 = 0.
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Combining (1.1), with S = 1, and (2.8) we obtain the following relations between
the director field n and q:

n2
1 =

1

2
(1 + q1), n1n2 =

1

2
q2,

whence

q1 = 1 ⇒ |n1| = 1, n2 = 0; q1 = −1 ⇒ n1 = 0, |n2| = 1.

Consequently we conclude that
the director field n aligns with one of the directions of principal curvature
of the membrane, and the energy of an ellipsoid (σ > 0) is smaller than
that of a saddle (σ < 0).

This elementary calculation does not show any preferred curvature direction, which
seems to be consistent with interchanging the upper and the lower layer of the
membrane. We point out that a model that is quadratic in the coupling expression
D2u : Q was proposed in [7] and promotes the alignment of n with a zero curvature
direction.

The study of simple membranes of the form (2.11) sheds some light on equilib-
rium configurations, which are usually a combination of local bumps and saddles
(see Section 6); they can be reached as asymptotics of the dynamics described be-
low. Note also that they do not satisfy periodic boundary conditions and, therefore,
cannot be special solutions of Uchida’s model [39].

2.4. Dynamics. Following Uchida [39], we consider an evolution defined through
the L2-gradient flow of L, i.e., through the parabolic, nonlinear, coupled system of
partial differential equations

∂tq = −γq
δL

δq
= −γq

(
− µ∆q + δA∗D2u+ λq

)
,

∂tu = −γu
δL

δu
= −γu

(
κ∆2u+ δ div DivAq

)
,

(2.12)

as results from (2.7) and (2.10); here λ = −µ |∇q|2 − δ D2u : Aq is the Lagrange
multiplier that corresponds to the constraint |q| = 1 almost everywhere.

We supplement the problem with initial conditions

(2.13) q(0, ·) = q0 and u(0, ·) = u0

for given q0 ∈ H1(Ω; R2) satisfying |q0| = 1 almost everywhere in Ω and u0 ∈ H3(Ω)
as well as compatible, time-independent boundary conditions for t > 0

q(t, ·)|Γ = qD = q0|Γ ,
u(t, ·)|Γ = uD = u0|Γ ,(2.14)

∆u(t, ·)|Γ = g = ∆u0|Γ .
2.5. Weak formulation. In order to state precise mathematical results for the
Lagrangian (2.9) we need the space regularity u ∈ H2(Ω) and Q ∈ H1(Ω; R2×2).
Since our analysis requires full H2 regularity for the Laplace operator, we hereafter
assume that Ω is a convex and polygonal domain. This is not a serious restriction
in this setting since Ω is typically a square; see [39] and the simulations of Section 6.

The boundary condition ∆u = g corresponds to the case of a freely supported
plate. They are the natural boundary conditions in our variational formulation
and therefore included in the energy functional and not in the function spaces, as



FLUID MEMBRANES 7

already discussed in Section 2.2. As usual, we may replace u by u + u0 in order
to reduce the analysis of the system to the case of zero boundary conditions for u.
Moreover, the boundary integral in (2.9) does not pose any additional difficulties
and, hence, we assume in the following that

u(t, ·)|Γ = uD = 0 , ∆u(t, ·)|Γ = g = 0(2.15)

for t > 0. Alternatively we could impose periodic boundary conditions, for which
the boundary terms cancel by periodicity.

Notation. We use the standard notation for the function spaces of vector-valued
functions and we let (·, ·)X denote the inner product in L2(X ; Rℓ), ℓ ≥ 1. We omit
X whenever Ω is meant. Moreover, we set ‖ · ‖ = (·, ·)1/2.

After these preparations we define the appropriate notion of weak solution. We
stress that our formulation uses test fields that are tangential to the target manifold
of the holonomic constraint so that the multiplier λ in (2.12) disappears; see [20]
for conditions under which both formulations are equivalent.

Definition 2.1 (Weak solution). Given a time-horizon T > 0 and a bounded,
convex Lipschitz domain Ω ⊂ R2 we say that the pair (q, u) is a weak solution
of (2.12) in the time interval I = (0, T ) subject to the initial conditions (2.13) and
the boundary conditions (2.14) and (2.15) if

(i) q ∈ H1(I;L2(Ω; R2))∩L∞(I;H1(Ω; R2)), u ∈ H1(I;L2(Ω))∩L∞(I;H2(Ω));
(ii) |q(t, x)| = 1 for almost every (t, x) ∈ I × Ω;
(iii) q(0, ·) = q0, u(0, ·) = u0;
(iv) q(t, ·)|Γ = qD and u(t, ·)|Γ = 0 in the sense of traces for almost every t ∈ I;
(v) for all (ψ, φ) ∈ L2(I;H1

0 (Ω; R2))×L2
(
I;H2(Ω)∩H1

0 (Ω)
)

satisfying ψ ·q = 0
almost everywhere in I × Ω we have

∫

I

{ 1

γq
(∂tq, ψ) + µ(∇q,∇ψ) − δ(∇u,DivAψ)

}
dt = 0 ,

∫

I

{ 1

γu
(∂tu, φ) + κ(∆u,∆φ) − δ(DivAq,∇φ)

}
dt = 0;

(vi) for almost every T ′ ∈ I and E = L as in (2.9) with g = 0 we have

E[u(T ′, ·), q(T ′, ·)] +
1

γq

∫ T ′

0

‖∂tq‖2 dt+
1

γu

∫ T ′

0

‖∂tu‖2 dt ≤ E[u0, q0].

Remark 2.1 (Harmonic maps). The definition of a weak solution, particularly the
energy inequality (vi), is motivated by the notion of weak solutions for the harmonic
map heat flow problem discussed in [10, 38].

Remark 2.2 (Coercivity). We assume that Ω is convex in order to guarantee that
the biharmonic operator defines an elliptic bilinear form on H2(Ω) ∩H1

0 (Ω). The
coercivity of the associated form follows then with the H2 regularity of the Laplace
operator subject to homogeneous Dirichlet conditions on Γ.

Remark 2.3 (Test functions). Restricting to test functions ψ that are pointwise
orthogonal to q reflects the fact that only tangential perturbations of q are permitted
in the energy minimization. Including a Lagrange multiplier λ in the formulation
allows one to consider unconstrained vector fields ψ ∈ L2(I;H1

0 (Ω; R2)) ∩ L∞(I ×
Ω; R2) in item (v) of Definition 2.1.
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We informally summarize our results in the following theorem, see Theorem 5.2
below for the precise statement. In particular, the weak convergence is understood
as the weak convergence of a suitable time-continuous interpolation on (0, T )× Ω;
see Lemma 5.1 for details.

Theorem 2.2 (Existence). Suppose that Ω ⊂ R2 is a convex polygonal domain and
that the elastic moduli and the coupling constant satisfy δ2 ≤ µκ/8C2

P , where CP
is the Poincaré constant in H1

0 (Ω). Then there exists a weak solution of the sys-
tem (2.12) with initial conditions (2.13) and boundary conditions (2.14). Moreover,
∆u ∈ L2(I;H1

0 (Ω)) and the boundary condition ∆u = 0 holds in the sense of trace.

More precisely, we show the existence of a weak solution (u, q) that arises as a
limit of the following fully discrete scheme for the system (2.12).

2.6. Discretization. The following algorithm is partially motivated by recent work
in [1, 5, 2, 3]. Here qh ∈ [Vh]

2 and uh ∈ Vh are approximations to q and u with
Courant elements, ∆0

huh denotes a discrete analog of the Laplace operator defined
on the finite element space, and Fh is the space of finite element functions that are
tangential to the manifold |q| = 1 at all nodes, see Section 3 and (3.3) for the defi-
nitions and, in particular, (3.1) and (3.2) for the two types of backward difference
quotients which we use.

Algorithm 2.3. Choose (q0h, u
0
h) ∈

[
Vh

]2×V0
h such that |q0h(z)| = 1 for all z ∈ Nh,

q0h|Γ = qD,h. Set n = 0.

(1) Compute q̃n+1
h ∈ qnh + Fh

[
qnh

]
such that

1

γq
(d̃−τ q̃

n+1
h , ψh)h + µ(∇q̃n+1

h ,∇ψh) = δ(∇unh,DivAψh)

for all ψh ∈ Fh
[
qnh

]
.

(2) Define qn+1
h ∈

[
Vh

]2
satisfying the constraint |qn+1

h | = 1 at the nodes by

qn+1
h (z) =

q̃n+1
h (z)

|q̃n+1
h (z)| for all z ∈ Nh .

(3) Compute un+1
h ∈ V0

h such that

1

γu
(d−τ u

n+1
h , φh)h + κ(∆0

hu
n+1
h ,∆0

hφh)h = δ(DivAqn+1
h ,∇φh)

for all φh ∈ V0
h.

(4) Stop if n+ 1 ≥ T/τ ; set n = n+ 1 and go to (1) otherwise.

Remark 2.4 (Nodal constraint). Note that we are committing variational crimes [12]
in the sense that we impose the constraint on the length of the director and on the
orthogonality of the test fields only at the nodes of the triangulation.

Remark 2.5 (Stability). Discretizing explicitly the term on the right-hand side in
the equation defining q̃n+1

h does not affect the stability of the scheme. In fact, this
choice relates precisely to the delay in the discrete integration (or summation) by
parts formula; see (4.2) below.

The next theorem summarizes the properties of the numerical scheme.
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Theorem 2.4 (Convergence). Suppose that the assumptions of Theorem 2.2 hold.
Then there exists a weak solution which can be obtained as a limit of solutions of
a fully discrete semi-implicit numerical scheme. More precisely, suppose that Th,
h > 0 is a family of regular and weakly acute triangulations of Ω and that q0h → q0
and u0

h → u0 in H1(Ω; R2) and H1(Ω), respectively. Then there exists a constant
C1 that depends only on Ω and the geometry of Th with the following property.
Suppose that τ1−ρ ≤ C−1

1 µγ−1
q δ−2C−2

0 for some fixed ρ ∈ (0, 1), where C0 > 0 is
chosen in such a way that the initial conditions satisfy the discrete energy estimate

Eh
[
u0
h, q

0
h

]
≤ κ

4
C2

0 for all h > 0 .

Hereafter, the discrete energy is given by

(2.16) Eh[u
n
h, q

n
h ] =

∫

Ω

µ

2
|∇qnh |2dx+

κ

2
(∆0

hu
n
h,∆

0
hu

n
h)h −

∫

Ω

δ∇unh · DivAqnhdx .

Then for any sequence (h, τ) → 0 of meshsizes and time-steps there exists a sub-
sequence (h, τ) and corresponding solutions qnh and unh for n = 0, 1, 2, ..., NT =
⌊T/τ⌋ + 1 such that (qnh , u

n
h) converges to a weak solution (q, u) as (h, τ) → 0.

Remark 2.6 (Finite energy). The assumption that the initial conditions have finite
energy implies a restriction on the class of admissible initial director fields q0h. We
will come back to this issue in Section 6.

We split the analysis of Algorithm 2.3 into two parts. In Section 4 we study its
stability properties, whereas in Section 5 we prove convergence to a weak solution.

3. Finite element spaces, operators, and discrete estimates

In the following we assume that Th is a regular triangulation [12] of Ω into
triangles of maximal diameter h > 0. We denote by Vh the space of all globally
continuous functions that are affine on the elements in the triangulation and we set
V0
h = Vh∩H1

0 (Ω). We say that Th is weakly acute if the sum of every pair of angles
opposite to an interior edge is bounded by π. For a fixed time-step size τ > 0 we
define tn = nτ for all n ≥ 0 and for a sequence of functions

(
φn

)
n≥0

we use the

backward difference quotients in time,

d−τ φ
n+1 = τ−1

(
φn+1 − φn

)
.(3.1)

Moreover, if
(
φ̃n

)
n≥0

is a second sequence of functions such that φn is computed

from φn−1 via the auxiliary function φ̃n, then we set

d̃−τ φ̃n = τ−1
(
φ̃n − φn−1

)
.(3.2)

Given qh ∈
[
Vh

]2
we define the space of tangential updates at the nodes for a given

vector field qh by

Fh[qh] =
{
rh ∈

[
V

0
h

]2
: rh(z) · qh(z) = 0 for all z ∈ Nh

}
,(3.3)

where Nh denotes the set of nodes in Th. We use the standard nodal interpolation
operator Ih : C(Ω) → Vh to define a discrete inner product (also called mass
lumping)

(φ, χ)h =

∫

Ω

Ih[φ · χ] dx for φ, χ ∈ C(Ω; Rℓ), ℓ ≥ 1 ,

and we set ‖ · ‖h = (·, ·)1/2h .
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In the following we repeatedly use the well known estimate

(3.4)
∣∣(ψh, φh) − (ψh, φh)h

∣∣ ≤ Ch‖ψh‖‖∇φh‖
which holds for all φh, ψh ∈ Vh as well as the equivalence

(3.5) ‖φh‖ ≤ ‖φh‖h ≤ 2‖φh‖ ,
see, e.g., [22]. It is convenient to introduce discrete analogs of differential operators.

Definition 3.1. Let uh ∈ V
0
h. Then the discrete Laplace operator with homoge-

neous boundary conditions ∆0
huh ∈ V0

h is defined through

(∆0
huh, φh)h = −(∇uh,∇φh) for all φh ∈ V

0
h .

Moreover, we define the discrete second derivative D2
huh ∈

[
V0
h

]2×2
of a function

uh ∈ V0
h through

(3.6)
(
D2
huh, Ph

)
h

= −
(
∇uh,DivPh) for all Ph ∈

[
V

0
h

]2×2
.

We also recall the set-up of a typical mixed method for the approximation of the
fourth-order equation ∆2u = f in its weak form,

(∆u,∆φ) = (f, φ)

for all φ ∈ H2(Ω)∩H1
0 (Ω). In this formulation, the boundary condition ∆u = 0 on

Γ is a natural boundary condition and a discretization is given by

(vh,ψh)h + (∇uh,∇ψh) = 0,

(∇vh,∇φh) = −(f, φh)h

for all (ψh, φh) ∈ V0
h×V0

h. One easily verifies that the Babuška-Brezzi conditions [8]
are satisfied uniformly in h for this formulation. In view of Definition 3.1, the mixed
method can be summarized as

(∆0
huh,∆

0
hφh)h = (f, φh)h ∀φh ∈ V

0
h .

Imposing the boundary condition ∆0
huh = 0 on Γ explicitly seems necessary to

guarantee stability of the discretization with lowest order elements.
An important property of the discrete Laplace operator is the following estimate

‖∇vh‖ ≤ 2CP ‖∆0
hvh‖h for all vh ∈ V

0
h .(3.7)

where CP > 0 is the usual Poincaré constant. In fact, for all vh ∈ V
0
h, we have that

‖∇vh‖2 = −(∆0
hvh, vh)h

≤ ‖∆0
hvh‖h‖vh‖h = 2‖∆0

hvh‖h‖vh‖ ≤ 2CP ‖∆0
hvh‖h‖∇vh‖ .

We let qD,h ∈ V2
h|Γ denote an approximation of qD.

Lemma 3.2 (Anti-quasi-Ritz projection). Given vh ∈ V0
h let v ∈ H1

0 (Ω) be the weak
solution of −∆v = −∆0

hvh, i.e., (∇v,∇φ) = −(∆0
hvh, φ) for all φ ∈ H1

0 (Ω). Then
we have

‖∇[v − vh]‖ ≤ Ch‖D2v‖ + Ch‖∆0
hvh‖h

and

‖D2v‖ ≤ C‖∆0
hvh‖h.
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Proof. Let Rhv ∈ V0
h be the Ritz projection of v, i.e.,

(∇Rhv,∇φh) = (∇v,∇φh)
holds for all φh ∈ V0

h. Then, using the definition of ∆0
h, the H2 regularity of the

Laplace operator for the solution v, and (3.4), we have for all φh ∈ V0
h that

(∇[Rhv − vh],∇φh) = (∇v,∇φh) − (∇vh,∇φh) = −(∆v, φh) + (∆0
hvh, φh)h

= −(∆0
hvh, φh) + (∆0

hvh, φh)h ≤ Ch‖∆0
hvh‖‖∇φh‖

and thus, upon choosing φh = Rhv − vh and and using standard estimates for the
Ritz projection [12],

‖∇(v − vh)‖ ≤ ‖∇(v −Rhv)‖ + ‖∇(Rhv − vh)‖ ≤ Ch‖D2v‖ + Ch‖∆0
hvh‖.

The second estimate follows from the definition of v andH2 regularity of the Laplace
operator in convex domains [21]. �

Remark 3.1 (Quadrature). Note that vh is not the exact Ritz projection Rhv of v
in Lemma 3.2 since the definition of ∆0

h involves numerical integration.

Lemma 3.3 (Discrete H2 regularity). For all vh ∈ V0
h and Ph ∈

[
V0
h

]2×2
we have

(∇vh,DivPh) ≤ C‖∆0
hvh‖h‖Ph‖h.

In particular, we have for every vh ∈ V
0
h and D2

hvh defined in (3.6) that
∥∥D2

hvh‖h ≤ C‖∆0
hvh‖h.

Proof. Let v ∈ H1
0 (Ω) be as in Lemma 3.2. Then, with the bounds of Lemma 3.2

and the inverse estimate on finite dimensional spaces [12] we infer

(∇vh,DivPh) = (∇[vh − v],DivPh) + (∇v,Div Ph)

= (∇[vh − v],DivPh) − (D2v, Ph)

≤ Ch‖∆0
hv‖‖DivPh‖ + ‖∆0

hv‖‖Ph‖
≤ C‖∆0

hv‖‖Ph‖,
which implies the first assertion. The second estimate follows from the first one by
choosing Ph = D2

hvh. �

Lemma 3.4 (Monotonicity [5]). Suppose that Th is weakly acute. Then for every

q̃h ∈
[
Vh

]2
with |q̃h(z)| = 1 for all z ∈ Nh ∩ Γ and |q̃h(z)| ≥ 1 for all z ∈ Nh the

function qh ∈
[
Vh

]2
defined by

qh(z) =
q̃h(z)∣∣q̃h(z)

∣∣

for all z ∈ Nh satisfies

‖∇qh‖ ≤ ‖∇q̃h‖.

Proof. Under the assumption of the lemma the finite element stiffness matrix
K =

(
kzy

)
z,y∈Nh

defined through the nodal basis
(
ϕz : z ∈ Nh

)
satisfies kzy =

(∇ϕz ,∇ϕy) ≤ 0 whenever z 6= y and the line segment connecting z and y is not
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an edge on Γ. With the fact that the sum of the entries of every row of K vanishes
and the symmetry of K we infer that

‖∇qh‖2 =
∑

z,y∈Nh

kzyqh(z) · qh(y) =
∑

z,y∈Nh

kzyqh(z) ·
(
qh(y) − qh(z)

)

=
1

2

∑

z,y∈Nh

kzyqh(z) ·
(
qh(y) − qh(z)

)
+

1

2

∑

z,y∈Nh

kzyqh(y) ·
(
qh(z) − qh(y)

)

= − 1

2

∑

z,y∈Nh

kzy |qh(y) − qh(z)|2.

Lipschitz continuity with constant 1 of the projection q 7→ q/|q| for |q| ≥ 1, qh(z) =
q̃h(z) for all z ∈ Nh ∩ Γ, and the properties of the entries of K imply

−kzy|qh(y) − qh(z)| ≤ −kzy|q̃h(y) − q̃h(z)|

for all z, y ∈ Nh and this implies the assertion. �

4. Unconditional stability

In Lemma 4.1 and Proposition 4.2 we verify unconditional well-posedness and
stability of Algorithm 2.3.

Lemma 4.1 (Threshold). Suppose that

(4.1) δ2 ≤ µκ

8C2
P

,

where CP is the Poincaré constant in (3.7). If Eh[uh, qh] is the discrete energy

given by (2.16), then, for every (qh, uh) ∈
[
Vh

]2 × V0
h, we have that

κ

4
‖∆0

huh‖2
h +

µ

4
‖∇qh‖2 ≤ Eh[uh, qh] .

Proof. Using (3.7) and ‖DivAqh‖2 ≤ 1
2‖∇qh‖2 we have

δ

∫

Ω

|∇uh| |DivAqh| dx ≤ κ

16C2
P

‖∇uh‖2 +
δ24C2

P

κ
‖DivAqh‖2

≤ κ

4
‖∆0

huh‖2
h +

2δ2C2
P

κ
‖∇qh‖2 .

By (4.1) we may absorb the second term on the right-hand side into the middle
term of Eh[uh, qh], thereby establishing the assertion. �

Remark 4.1 (Threshold for the square). Since the smallest eigenvalue λ1 of the
Laplacian is explicit for Ω = (0, 1)2, and satisfies λ1 = C−2

P , we obtain CP = 1√
2π

.

Proposition 4.2 (Weak stability). All steps of Algorithm 2.3 are well defined.
Moreover, if (4.1) holds, if Th is weakly acute, and if τ1−ρ ≤ C−1

1 µδ−2γ−1
q C−2

0 for
some ρ ∈ (0, 1) and where the constants C0, C1 > 0 are chosen in such way that

Eh
[
u0
h, q

0
h

]
≤ κ

4
C2

0
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and C1 depends only on Ω and the geometry of Th, then the inequality

Eh
[
uN+1
h , qN+1

h

]
+ (1 − τρ)τ

N∑

n=0

1

γq
‖d̃−τ q̃n+1

h ‖2
h + τ

N∑

n=0

1

γu
‖d−τ un+1

h ‖2
h

+ τ

N∑

n=0

µτ

4
‖d̃−τ ∇q̃n+1

h ‖2 ≤ Eh
[
u0
h, q

0
h

]

holds for N = 0, 1, 2, ..., NT − 1 = ⌊T/τ⌋.

Remark 4.2 (Parameter ρ). The positive parameter ρ is needed to guarantee the
energy inequality stated in item (vi) of Definition 2.1 as (h, τ) → 0; see Remark 2.1
and Step 3 in the proof of Theorem 5.2 below.

Proof. We divide the proof in several steps.

Step 1: The scheme is well-defined. The existence of a unique q̃n+1
h in Step (1) of

Algorithm 2.3 follows from the Lax-Milgram theorem and the fact that Fh
[
qnh

]
is

a subspace of
[
V0
h

]2
. Since |qnh(z)| = 1 for all z ∈ Nh and q̃n+1

h = qnh + rnh for some

rh ∈
[
V0
h

]2
such that qnh(z) · rh(z) = 0 for all z ∈ Nh, we have |q̃n+1

h (z)| ≥ 1 for all
z ∈ Nh and hence the projection in Step (2) of Algorithm 2.3 is well defined. Fi-
nally, the existence of a unique un+1

h ∈ V
0
h in Step (3) follows from the Lax-Milgram

theorem. Note that the corresponding bilinear form is uniformly coercive (indepen-
dent of h) since the norm of the gradient is controlled by the discrete Laplacian,
see (3.7).

Step 2: Derivation of estimates from the weak equations. In order to prove the dis-

crete energy inequality we choose ψh = d̃−τ q̃
n+1
h and φh = d−τ u

n+1
h in the equations

of Step (1) and (3) in the definition of the algorithm, respectively, and obtain

1

γq
‖d̃−τ q̃n+1

h ‖2
h +

µ

2
d̃−τ ‖∇q̃n+1

h ‖2 +
µ

2
τ‖d̃−τ ∇q̃n+1

h ‖2 − δ(∇unh , d−τ DivAqn+1
h )

= δ(∇unh,DivA[d̃−τ q̃
n+1
h − d−τ q

n+1
h ])

and

1

γu
‖d−τ un+1

h ‖2
h +

κ

2
d−τ ‖∆0

hu
n+1
h ‖2

h +
κτ

2
‖d−τ ∆0

hu
n+1
h ‖2

h

− δ(d−τ ∇un+1
h ,DivAqn+1

h ) = 0.

These identities will be used together with the following discrete analogue of the
integration by parts formula,

τ

N∑

n=0

(d−τ ∇un+1
h ,DivAqn+1

h ) + τ

N∑

n=0

(∇unh , d−τ DivAqn+1
h )

= (∇uN+1
h ,DivAqN+1

h ) − (∇u0
h,DivAq0h) .(4.2)
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If we multiply the foregoing identities by τ and take the sum over n = 0, 1, 2, ..., N
then we find with (4.2) that

µ

2
max{‖∇q̃N+1

h ‖2 , ‖∇qN+1
h ‖2} +

κ

2
‖∆0

hu
N+1
h ‖2

h − δ(∇uN+1
h ,DivAqN+1

h )

+ τ
N∑

n=0

1

γq
‖d̃−τ q̃n+1

h ‖2
h + τ

N∑

n=0

1

γu
‖d−τ un+1

h ‖2
h

+ τ

N∑

n=0

µτ

2
‖d̃−τ ∇q̃n+1

h ‖2 + τ

N∑

n=0

κτ

2
‖d−τ ∆0

hu
n+1
h ‖2

h(4.3)

≤ µ

2
‖∇q0h‖2 +

κ

2
‖∆0

hu
0
h‖2
h − δ(∇u0

h,DivAq0h)

+ τ

N∑

n=0

δ(∇unh,DivA[d̃−τ q̃
n+1
h − d−τ q

n+1
h ]).

Here we used the estimate ‖∇qn+1
h ‖ ≤ ‖∇q̃n+1

h ‖ guaranteed by Lemma 3.4 in order

to estimate ‖∇qN+1
h ‖. However, we will use the stronger estimate with ∇qN+1

h

in (5.3) below.

Step 3: Estimates for the coupling term. To estimate the last term on the right-

hand side we notice that A[d̃−τ q̃
n+1
h − d−τ q

n+1
h ] ∈

[
V0
h

]2×2
and employ Lemma 3.3

to deduce that

(∇unh,DivA[d̃−τ q̃
n+1
h − d−τ q

n+1
h ]) ≤ C‖∆0

hu
n
h‖h ‖A[d̃−τ q̃

n+1
h − d−τ q

n+1
h ]‖h .

We directly verify for every z ∈ Nh the identity

∣∣A[d̃−τ q̃
n+1
h − d−τ q

n+1
h ](z)

∣∣ = τ−1
∣∣∣Aq̃n+1

h (z) − Aq̃n+1
h (z)

|q̃n+1
h (z)|

∣∣∣

= τ−1

∣∣Aq̃n+1
h (z)

∣∣
∣∣q̃n+1
h (z)

∣∣
(
|q̃n+1
h (z)| − 1

)
.

Since q̃n+1
h (z) = qnh(z) + τ d̃−τ q̃

n+1
h (z), qnh(z) · d̃−τ q̃n+1

h (z) = 0, and |qnh (z)| = 1 for all
z ∈ Nh we obtain that

|q̃n+1
h (z)| − 1 =

(
|qnh(z)|2 + τ2|d̃−τ q̃n+1

h (z)|2
)1/2 − 1

=
(
1 + τ2|d̃−τ q̃n+1

h (z)|2
)1/2 − 1

≤ 1

2
τ2|d̃−τ q̃n+1

h (z)|2,

where we used (1 + t2)1/2 ≤ 1 + t2/2 for all t ∈ R in the last estimate. For future
reference we note that the foregoing estimates imply

∣∣A[d̃−τ q̃
n+1
h − d−τ q

n+1
h ](z)

∣∣ ≤ Cτ |d̃−τ q̃n+1
h (z)|2 for all z ∈ Nh .(4.4)
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With the definition of ‖ · ‖h and appropriate coefficients (βhz : z ∈ Nh) such that
‖vh‖2

h =
∑
z∈Nh

βhz |vh(z)|2 for every vh ∈ Vh we infer

‖A[d̃−τ q̃
n+1
h − d−τ q

n+1
h ]‖2

h =
∑

z∈Nh

βhz |A[d̃−τ q̃
n+1
h − d−τ q

n+1
h ](z)|2

≤ 1

4
τ2‖A‖2

∑

z∈Nh

βhz |d̃−τ q̃n+1
h (z)|4

≤ Cτ2‖d̃−τ q̃n+1
h ‖4

L4(Ω) ,

where we used that
∑
z∈Nh

βhz |vh(z)|4 ≤ C‖vh‖4
L4(Ω). In view of the interpolation

estimate [28, page 45], there exists a constant C = C(Ω) such that

‖v‖2
L4(Ω) ≤ C‖v‖‖∇v‖ for v ∈ H1

0 (Ω) ,

We next apply Young’s inequality, together with (3.5), to deduce that

δ(∇unh ,DivA[d̃−τ q̃
n+1
h − d−τ q

n+1
h ])

≤Cτδ‖∆0
hu

n
h‖h‖d̃−τ q̃n+1

h ‖‖d̃−τ ∇q̃n+1
h ‖

≤ τρ

γq
‖d̃−τ q̃n+1

h ‖2
h +

(
C1γqµ

−1δ2τ1−ρ‖∆0
hu

n
h‖2
h

) µ
4
τ‖d̃−τ ∇q̃n+1

h ‖2 .(4.5)

Step 4: Verification of the discrete energy inequality. We are now going to verify
by induction that

max
n=0,1,...,N

‖∆0
hu

n
h‖h ≤ C0 for all N = 0, 1, ..., NT ,(4.6)

and that the discrete energy inequality follows under this assumption for N + 1
from the corresponding statement for N .

The estimate (4.6) is clearly true for N = 0 since u0
h = 0. Suppose next that

this estimate is true for some N ≥ 0. Since by assumption

τ1−ρ ≤ C−1
1 µδ−2γ−1

q C2
0 ,

we obtain

C1γqµ
−1δ2τ1−ρ‖∆0

hu
n
h‖2
h ≤ 1

for n = 0, 1, ..., N and infer, upon combining (4.5) and (4.3), that

µ

2
‖∇qN+1

h ‖2 +
κ

2
‖∆0

hu
N+1
h ‖2

h − δ(∇uN+1
h ,DivAqN+1

h )

+ (1 − τρ)τ

N∑

n=0

1

γq
‖d̃−τ q̃n+1

h ‖2
h + τ

N∑

n=0

1

γu
‖d−τ un+1

h ‖2
h

+ τ
N∑

n=0

µτ

4
‖d̃−τ ∇q̃n+1

h ‖2

≤ µ

2
‖∇q0h‖2 +

κ

2
‖∆0

hu
0
h‖2
h − δ(∇u0

h,DivAq0h) = Eh
[
u0
h, q

0
h

]
.

This completes the inductive proof for the discrete energy estimate. It remains to
prove that (4.6) is true for N + 1. However, since the left-hand side is an upper

bound for Eh[u
N+1
h , qN+1

h ] we conclude

κ

4
‖∆0

hu
N+1
h ‖2

h ≤ Eh
[
uN+1
h , qN+1

h

]
≤ Eh

[
u0
h, q

0
h

]
≤ κ

4
C2

0
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and therefore ‖∆0
hu

N+1
h ‖ ≤ C0. This establishes the induction step and the asser-

tion for all N . �

The following stronger estimate will be important in the compactness proof.

Proposition 4.3 (Strong stability). Suppose that the assumptions of Proposition 4.2
are satisfied. Then we have for every N = 0, 1, 2, ..., NT − 1 that

1

2γu
‖∇uN+1

h ‖2 + τ
N∑

n=0

τ

2γu
‖d−τ ∇un+1

h ‖2 + τ
N∑

n=0

κ

2
‖∇∆0

hu
n+1
h ‖2 ≤ CNτ.

Proof. We choose φh = −∆0
hu

n+1
h ∈ V0

h in Step (3) of Algorithm 2.3. This leads to
(4.7)

1

2γu
d−τ ‖∇un+1

h ‖2 +
τ

2γu
‖d−τ ∇un+1

h ‖2 + κ‖∇∆0
hu

n+1
h ‖2 = δ(DivAqn+1

h ,∇∆0
hu

n+1
h ).

We use Young’s inequality to bound the right-hand side as

δ(DivAqn+1
h ,∇∆0

hu
n+1
h ) ≤ δ2

2κ
‖DivAqn+1

h ‖2 +
κ

2
‖∇∆0

hu
n+1
h ‖2.

Proposition 4.2 implies ‖DivAqn+1
h ‖ ≤ CA‖∇qn+1

h ‖ ≤ C and the assertion follows
after multiplication of (4.7) by τ , summing the resulting inequalities from n =
0, 1, 2, ..., N , and recalling that u0

h = 0. �

5. Convergence

Our convergence analysis is based on compactness theorems in Sobolev spaces
together with a priori bounds that follow from the discrete estimates. For tn <
t ≤ tn+1 we define piecewise constant interpolants of the iterates of Algorithm 2.3
through

q̃′h(t) = d̃−τ q̃
n+1
h , q̃h(t) = q̃n+1

h , qh(t) = qn+1
h ,

qRh (t) = qnh , uh(t) = un+1
h , uRh (t) = unh,

and piecewise affine approximations via

ûh(t) = unh + (t− tn)d
−
τ u

n+1
h , q̂h(t) = qnh + (t− tn)d

−
τ q

n+1
h .

In terms of these functions we may rewrite the equations of Algorithm 2.3 as

1

γq
(q̃′h, ψh)h + µ(∇q̃h,∇ψh) − δ(∇uRh ,DivAψh) = 0,(5.1)

1

γu
(∂tûh, φh)h + κ(∆0

huh,∆
0
hφh)h − δ(DivAqh,∇φh) = 0(5.2)

for almost every t ∈ I, for all ψh ∈ Fh
[
qRh (t, ·)

]
, and for all φh ∈ V0

h.

The bounds in Propositions 4.2 and 4.3 allow us to select weakly convergent
subsequences with the following properties.

Lemma 5.1 (Weak convergence). Suppose that the assumptions of Proposition 4.2
are satisfied and that q0h → q0 in H1(Ω; R2). Then there exists a subsequence
(h, τ) → 0 and a pair (q, u) with
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(a) q̃′h, ∂tq̂h ⇀ ∂tq in L2(I;L2(Ω; R2)),

(b) q̂h, q̃h, qh, q
R
h

∗
⇀ q in L∞(I;H1(Ω; R2)),

(c) ∂tûh ⇀ ∂tu in L2(I;L2(Ω)),

(d) uh, u
R
h

∗
⇀ u in L∞(I;H1

0 (Ω)),

(e) ∆0
huh ⇀ ∆u in L2(I;H1

0 (Ω)),

(f) D2
huh, D

2
hu

R
h

∗
⇀D2u in L∞(I;L2(Ω; R2×2)).

Moreover, |q| = 1 almost everywhere in I × Ω, q(0, ·) = q0 as well as u(0, ·) = 0,
and q(t, ·)|Γ = qD in the sense of traces for almost every t ∈ I.

Proof. We first establish the convergence properties for qh, then verify that the
limit q satisfies the constraint, and finally prove the convergence for uh. All of
these results hold for suitably chosen subsequences.

Step 1: Convergence of qh. From the bounds in Proposition 4.2, the estimate (4.3),
the constraint on the length of qh in the nodes, and Poincaré’s inequality we im-
mediately deduce that

qh, q̃h ∈ L∞(I;H1(Ω; R2)), q̃′h ∈ L2(I;L2(Ω; R2))(5.3)

and that the sequences are uniformly bounded in these space. Thus there ex-

ists a q ∈ L∞(I;H1(Ω; R2)) and a q′ ∈ L2(I;L2(Ω; R2)) such that qh
∗
⇀ q in

L∞(I;H1(Ω; R2)) and q̃′h ⇀ q′ in L2(I;L2(Ω; R2)), respectively. We verify in (5.5)
below that q′ is indeed the time derivative of q. In order to verify the second
assertion in (a) we note that the estimate (4.4) implies

‖q̃′h − ∂tq̂h‖L1(I×Ω) ≤ Cτ‖q̃′h‖2
L2(I×Ω)(5.4)

and the right-hand side of this inequality tends to zero as (h, τ) → 0 since the L2

norms are uniformly bounded. It remains to prove a uniform L2 bound. It follows

from (1 + t2)1/2 ≤ 1 + t2/2 together with |qnh (z)| = 1 and qnh(z) · d̃−τ q̃n+1
h (z) = 0

that for all z ∈ Nh

∣∣qn+1
h (z) − qnh(z)

∣∣2 =
∣∣∣
qnh(z) + τ d̃−τ q̃

n+1
h (z)

|qnh(z) + τ d̃−τ q̃n+1
h (z)|

− qnh (z)
∣∣∣
2

= 2 − 2

|qnh(z) + τ d̃−τ q̃n+1
h (z)|

≤ 2
(
|qnh (z) + τ d̃−τ q̃

n+1
h (z)| − 1

)

= 2
((

1 + τ2|q̃n+1
h (z)|2

)1/2 − 1
)
≤ τ2|q̃n+1

h (z)|2

and this implies that ∂tq̂h is uniformly bounded in L2(I × Ω; R2). Hence there
exists a weakly convergent subsequence, and since weak limits are unique we deduce
from (5.4) that ∂tq̂h → q′ in L2(I;L2(Ω; R2)). We finally observe that for every
φ ∈ C∞

0 (I × Ω) we have

∫

I

(q, ∂tφ) dt = lim
(h,τ)→0

∫

I

(q̂h, ∂tφ) dt = − lim
(h,τ)→0

∫

I

(∂tq̂h, φ) = −
∫

I

(q′, φ) dt,

(5.5)

i.e., ∂tq = q′.
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To prove the assertions in (b), we first observe that the convergence of the piece-
wise constant functions qh to q and the boundedness of ∂tq̂h in L2(I;L2(Ω; R2))

imply q̂h, q
R
h

∗
⇀ q in L∞(I;H1(Ω)) as well. Thus we only need to show the conver-

gence of q̃h. Arguing as above we find that

‖q̃h − qh‖L1(I×Ω) ≤ Cτ2‖q̃′h‖2
L2(I×Ω)

so that also q̃h
∗
⇀ q in L∞(I;H1(Ω; R2)).

Step 2: Validity of the constraint. We first observe that

q̂h ∈ L2(I;H1(Ω; R2)), ∂tq̂h ∈ L2(I;L2(Ω; R2)) ⊂ L2(I;H−1(Ω; R2))

with uniform bounds in these space by (b) and (a), respectively. Hence the Aubin-
Lions Lemma implies that

q̂h → q in L2(I × Ω) .(5.6)

Since we have additionally q̂h− qh → 0 in L2(I×Ω) we have pointwise convergence
qh → q almost everywhere in I × Ω. The fact that |qh(t, z)| = 1 for all z ∈ Nh

and almost every t ∈ I implies the following estimate. Let K be an element of the
triangulation x ∈ K and let z be one of the nodes in K. Then

|qh(t, x)|2 − 1 = |qh(t, x)|2 − |qh(t, z)|2 =

∫ 1

0

d

ds

∣∣qh(t, sx+ (1 − s)z)
∣∣2ds

= 2

∫ 1

0

(
∇qh(t, sx+ (1 − s)z)

)
:
(
qh(t, sx+ (1 − s)z) ⊗ (x − z)

)
ds

and hence
∣∣|qh(t, x)|2 − 1

∣∣ ≤ ch|∇qh(t, x)| for all x ∈ K .

If we integrate the inequality in space-time, then
∫ T

0

∥∥|qh(t, ·)|2 − 1
∥∥2

dt ≤ Ch2

∫ T

0

‖∇qh(t, ·)‖2dt

and we obtain in view of (b) that |qh|2 → 1 in L2(I × Ω) and thus |qh(t, x)|2 → 1
for almost every (t, x) ∈ I × Ω. This implies |q| = 1 almost everywhere in I × Ω.
The assertion that q(t, ·)|Γ = qD for almost every t ∈ I follows from weak continuity
properties of the trace operator. Finally, q(0, ·) = q0 is derived with an integration
by parts in time and the limits identified above.

Step 3: Convergence of uh. It remains to prove the assertions for u. The bounds
of Propositions 4.2 and 4.3 imply that

∂tûh ∈ L2(I;L2(Ω)), ∆0
huh ∈ L∞(I;L2(Ω)), ∇∆0

huh ∈ L2(I;L2(Ω)) .

In view of the Poincaré-type inequality (3.7) for the discrete Laplacian and the
Poincaré inequality for uh and ∆0

huh we obtain that

uh ∈ L∞(I;H1
0 (Ω)) , ∆0

huh ∈ L2(I;H1
0 (Ω)) .

Since the sequences are uniformly bounded in these spaces we infer the existence
of a function u ∈ H1(I;L2(Ω)) ∩ L∞(I;H1

0 (Ω)) with

uh
∗
⇀ u in L∞(I;H1

0 (Ω)), ∂tûh ⇀ ∂tu in L2(I × Ω)
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and a function χ ∈ L2(I;H1
0 (Ω)) with

∆0
huh ⇀ χ in L2(I;H1

0 (Ω)) ,

respectively. The boundedness of ∂tûh implies uh−uRh → 0 in L2(I×Ω) and hence

uRh
∗
⇀ u in L∞(I;H1

0 (Ω)). This verifies (c) and (d). We show next that (e), i.e.,
χ = ∆u. With the definition of ∆0

huh and (3.4) we have for every φ ∈ C∞
0 (I × Ω)

that
∫

I

(χ, φ) dt = lim
(h,τ)→0

∫

I

(∆0
huh, φ) dt = lim

(h,τ)→0

∫

I

(∆0
huh, φ)h dt

= − lim
(h,τ)→0

∫

I

(∇uh,∇Ihφ) dt = −
∫

I

(∇u,∇φ) dt

and this proves χ = ∆u. Finally, to prove (f) note that the boundedness of ∆0
huh

in L∞(I;L2(Ω)) implies also that ∆0
hu

R
h is bounded in L∞(I;L2(Ω)) and with

Lemma 3.3 we find that

D2
huh, D

2
hu

R
h ∈ L∞(I;L2(Ω; R2×))

together with a uniform bound in this space. Hence, there exists a P, PR ∈
L∞(I;L2(Ω; R2×2) such that (up to a subsequence) D2

hu
R
h

∗
⇀ P and D2

hu
R
h

∗
⇀ PR,

respectively. We want to show that P = PR = D2u. For every ψ ∈ C∞
0 (I ×

Ω; R2×2) we deduce in view of the definition of D2
huh, the convergence (d) and with

‖∇[Ihψ − ψ]‖L2(I×Ω) → 0, that
∫ T

0

(P, ψ) dt = lim
(h,τ)→0

∫

I

(D2
huh, ψ)h dt

= − lim
(h,τ)→0

∫

I

(∇uh,Div Ihψ) dt = −
∫

I

(∇u,Divψ) dt

which proves P = D2u. The fact that u(0, ·) = 0 follows again from integrating
by parts in time. The assertion PR = D2u follows with the same argument since

uRh
∗
⇀ u in L∞(I;H1

0 (Ω)), and hence
∫ T

0

(P, ψ) dt = − lim
(h,τ)→0

∫

I

(∇uRh ,Div Ihψ) dt = −
∫

I

(∇u,Divψ) dt .

This concludes the proof. �

We are now in position to pass to the limit in the equations (5.1) and (5.2).

Theorem 5.2 (Existence). Under the assumptions of Lemma 5.1 the pair (q, u)
from Lemma 5.1 is a weak solution of (2.12) in the sense of Definition 2.1.

Proof. We first deal with the equation for the deformation u, then with the equation
for the director field, in which we need to pay attention to the constraint |q| = 1.
The last step is then the verification of the energy inequality for the solution (u, q).

Step 1: Passage to the limit in the equation for u. Let φ ∈ C∞
0 (I × Ω) and set

φh(t, ·) = Ihφ(t, ·) for all t ∈ I. We want to pass to the limit (h, τ) → 0 in the
integrated version of equation (5.2). For the first term we write

∫

I

(∂tûh, φh)h dt =

∫

I

(∂tûh, φh) dt+

∫

I

{
(∂tûh, φh)h − (∂tûh, φh)

}
dt .
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Since by Lemma 5.1 (c) ∂tûh ⇀ ∂tu in L2(I×Ω), and since by general interpolation
estimates φh → φ in L2(I ×Ω), we obtain together with (3.4) and ‖∇φh‖L2(I×Ω) ≤
Cφ that, as (h, τ) → 0,

(5.7)

∫

I

(∂tûh, φh)h dt →
∫

I

(∂tu, φ) dt .

Here we write Cφ for a constant that depends on φ but is independent on h and
all the other parameters. The definition of ∆0

h and the facts that ∆0
huh ⇀ ∆u in

L2(I;H1
0 (Ω)) and ∇φh → ∇φ in L2(I × Ω) imply that

∫

I

(∆0
huh,∆

0
hφh)h dt = −

∫

I

(∇∆0
huh,∇φh) dt

→ −
∫

I

(∇∆u,∇φ) dt =

∫

I

(∆u,∆φ) dt(5.8)

as (h, τ) → 0. Note that by Lemma 5.1 ∆u = 0 on ∂Ω. Since qh ⇀ q in
L2(I;H1(Ω; R2)) we verify that

(5.9)

∫

I

(DivAqh,∇φh) dt→
∫

I

(DivAq,∇φ) dt

as (h, τ) → 0. Combining (5.7)-(5.9) we conclude
∫

I

{ 1

γu
(∂tu, φ) + κ(∆u,∆φ) − δ(DivAq,∇φ)

}
dt = 0

holds for all φ ∈ C∞
0 (I × Ω). A density argument allows us to verify the same

identity for all φ ∈ L2(I;H2(Ω) ∩H1
0 (Ω)).

Step 2: Passage to the limit in the equation for q. Passage to the limit in (5.1)
is slightly more involved due to the constraint on the discrete test functions. Let
ξ ∈ C∞

0 (I × Ω) and define

ψh(t, ·) = Ih
[
ξ(t, ·)JqRh (t, ·)

]
,

for every t ∈ I, where

J =

[
0 −1
1 0

]

denotes the counter-clockwise rotation by π/2. With the usual convention to inter-
pret the second gradients as acting on the functions restricted to the elements, we
infer

‖ψh − ξJqRh ‖L2(I×Ω) ≤ Ch2‖∇2(ξJqRh )‖L2(I×Ω)

≤ Ch2‖ξ‖W 2,∞(I×Ω)

(
‖qRh ‖L2(I×Ω) + ‖∇qRh ‖L2(I×Ω)

)

and hence

lim
(h,τ)→0

‖ψh − ξJqRh ‖L2(I×Ω) = 0 .

Moreover ψh(t, z) · qRh (t, z) = 0 for almost every t ∈ I and every z ∈ Nh and ψh
is an admissible test function in (5.1). Observe next that in view of the strong
convergence (5.6) and the bound (a) in Lemma 5.1

lim
(h,τ)→0

‖qRh − q‖L2(I×Ω) = 0 .
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We set ψ = ξJq and conclude in view of the two foregoing estimates that

‖ψh − ψ‖L2(I×Ω) ≤ ‖ψh − ξJqRh ‖L2(I×Ω) + ‖ξ[qRh − q]‖L2(I×Ω)

≤ hCξ
(
1 + ‖∇qRh ‖L2(I×Ω)

)
+ ‖ξ‖L∞(I×Ω)‖qRh − q‖L2(I×Ω)

→ 0

as (h, τ) → 0. Since ‖∇ψh‖L2(I×Ω) ≤ Cψ we obtain as before in view of the weak
convergence (a) in Lemma 5.1

(5.10)

∫

I

(q̃′h, ψh)h dt→
∫

I

(∂tq, ψ) dt

as (h, τ) → 0. Using q̃h − qRh = τ q̃′h almost everywhere in I × Ω we have
∫

I

(∇q̃h,∇ψh) = τ

∫

I

[
(∇q̃′h,∇ψh) + (∇qRh ,∇[ψh − ξJqRh ]) + (∇qRh ,∇[ξJqRh ])

]
dt

=: T1 + T2 + T3 .

The bound of Proposition 4.2 implies τ1/2‖∇q̃′h‖L2(I×Ω) ≤ C so that

|T1| =
∣∣∣τ

∫

I

(∇q̃′h,∇ψh) dt
∣∣∣ ≤ τ‖∇q̃′h‖L2(I×Ω)‖∇ψh‖L2(I×Ω) → 0

as (h, τ) → 0. The error estimates for the nodal interpolation and |qRh | ≤ 1 almost
everywhere imply that for almost every t ∈ I and every K ∈ Th

‖∇[ψh − ξJqRh ]‖L2(K) ≤ Ch‖∇2[ξJqRh ]‖L2(K)

≤ Ch
(
‖∇2ξ‖L2(K) + ‖∇ξ‖L∞(K)‖∇qRh ‖L2(K)

)

and therefore we have that
|T2| → 0

as (h, τ) → 0. Since J is a rotation by π/2 we deduce

T3 =

∫

I

(∇qRh ,∇ξ ⊗ JqRh + ξ∇(JqRh )) dt =

∫

I

(∇qRh ,∇ξ ⊗ JqRh ) dt .

Since ∂iq
R
h ⇀ ∂iq in L2(I ×Ω; R2) and qRh → q ∈ L2(I ×Ω; R2) we may pass to the

limit in this equation and reverse the argument to obtain in the limit (h, τ) → 0

T3 →
∫

I

(∇q,∇ξ ⊗ Jq) dt =

∫

I

(∇q,∇[ξJq]) dt =

∫

I

(∇q,∇ψ) dt.

These identifications of the limits of the terms Ti, i = 1, 2, 3 allows us to conclude
that

(5.11)

∫

I

(∇q̃h,∇ψh) dt →
∫

I

(∇q,∇ψ) dt

as (h, τ) → 0. We next observe the convergence (f) in Lemma 5.1 implies

D2
hu

R
h ⇀ D2u in L2(I × Ω; R2×2) .

This fact, estimate (3.4), the definition of D2
hu

R
h and the strong convergence Aψh →

Aψ in L2(I × Ω; R2×2) imply for (h, τ) → 0
∫

I

(∇uRh ,DivAψh) dt = −
∫

I

(D2
hu

R
h , Aψh)h dt

→ −
∫

I

(D2u,Aψ) dt =

∫

I

(∇u,DivAψ) dt.(5.12)
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The combination of (5.10)–(5.12) proves that the identity
∫

I

{ 1

γq
(∂tq, ψ) + µ(∇q,∇ψ) − δ(∇u,DivAψ)

}
dt = 0

is satisfied for every ψ of the form ψ = ξJq with ξ ∈ C∞
0 (I × Ω). It remains to

prove this identity for all test functions ψ ∈ L2(I;H1
0 (Ω)). In order to do this we

first observe that functions ξ of the form ξ(t, x) = α(x)β(t) with α ∈ C∞
0 (Ω) and

β ∈ C∞
0 (I) allow us to conclude that

1

γq
(∂tq, ψ) + µ(∇q,∇ψ) − δ(∇u,DivAψ) = 0(5.13)

for all ψ of the form ψ(x, t) = α(x)Jq(t, x) with α ∈ C∞
0 (Ω) and for a.e. t ∈ I. Let

ρ ∈ H1
0 (Ω; R2) ∩ L∞(Ω; R2) with ρ · q = 0 for a.e. x ∈ Ω. Then define α ∈ L1(Ω)

by ρ(x) = α(x)Jq(x), i.e.,

α(x) = ρ(x) · Jq(x) a.e. x ∈ Ω .

Since |q| = 1 and ρ ∈ L∞(Ω; R2) we have α ∈ L∞(Ω) and the product rule for weak
derivatives implies that

∇α = (∇ρ)TJq + ρT∇Jq ∈ L2(Ω; R2) .

Since ρ ∈ H1
0 (Ω) we obtain α ∈ H1

0 (Ω) ∩ L∞(Ω) and hence there exists a sequence
of functions αǫ ∈ C∞

0 (Ω) with αǫ → α ∈ H1
0 (Ω) and αǫ ∈ L∞(Ω) uniformly in ǫ.

Let ψǫ = αǫJq and use ψǫ as test function in (5.13). Since

∇ψǫ = ∇αǫJq + αǫ∇Jq → ∇αJq + α∇Jq = ∇ρ

we conclude that (5.13) holds for all ψ ∈ H1
0 (Ω; R2)∩L∞(Ω; R2) with ψ · q = 0 a.e.

We next use the techniques in [19] to remove the constraint that ψ be bounded.
Let a : [0,∞) → [0,∞) be a bounded and smooth function with a(s) = s on [0, 1].
For R > 0 define

ωR(z) = Ra
( |z|
R

) z

|z| .

For any ψ ∈ H1
0 (Ω) with ψ · q = 0 a.e. we define ψk = ωk ◦ ψ, k ∈ N. Then

ψk · q = 0 a.e. and ψk → ψ pointwise a.e. The chain rule implies pointwise
convergence of

[
(∇ωk) ◦ ψ

]
∇ψ to ∇ψ together with a uniform L2 bound and thus

the same convergence in H1(Ω). This allows us to use ψk as a test function in (5.13)
and passing to the limit we obtain this identity for all ψ ∈ H1

0 (Ω) with ψ ·q = 0 a.e.
Finally the property (v) in the definition of the weak solution in Definition (2.1)
follows by approximation of functions in L2(I;H1

0 (Ω)) with simple functions of the
from α(x)β(t) with finite-valued functions β.

Step 3: Verification of the energy inequality. It remains to show that item (vi) in
Definition 2.1 is satisfied by the pair (q, u). Since q0h → q0 in H1(Ω; R2) and u0

h = 0
we find that Eh[u

0
h, q

0
h] → E[u0, q0]. By weak lower semi-continuity of norms and

the weak convergence properties of the discrete approximations the energy law for
(q, u) follows from Proposition 4.2 if we can show that for almost every t ∈ I we
have ∫

Ω

∇uh · DivAqh dx→
∫

Ω

∇u · DivAq dx
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as (h, τ) → 0. To verify this convergence we recall from Lemma 5.1 (f) that

D2
huh

∗
⇀ D2u in L∞(I;L2(Ω; R2×2)) and that by (5.6) qh(t, ·) → q(t, ·) in L2(Ω; R2)

as (h, τ) → 0. Since the boundary conditions are time independent we conclude
from the definition of the discrete second gradients that

lim
(h,τ)→0

∫

Ω

∇uh · DivAqh dx

= lim
(h,τ)→0

∫

Ω

∇uh · DivA[qh − q0h] dx+ lim
(h,τ)→0

∫

Ω

∇uh · DivAq0h dx

= − lim
(h,τ)→0

(D2
huh, A[qh − q0h])h + lim

(h,τ)→0

∫

Ω

∇uh · DivAq0h dx

= −(D2u,A[q − q0]) +

∫

Ω

∇u · DivAq0 dx

=

∫

Ω

∇u · DivAq dx.

This finishes the proof of the theorem. �

6. Numerical experiments

In this section we investigate the performance of Algorithm 2.3 in several typical
test scenarios. In our simulations the domain is the unit square in the plane,
Ω = (0, 1)2, and the implementation of Algorithm 2.3 was realized in Matlab. All
systems of linear equations were solved using the backslash operator in Matlab.
The underlying triangulations Tℓ were obtained by ℓ uniform refinements of the
coarse triangulation T c = {K1,K2} with

K1 = conv{(0, 0), (1, 0), (1, 1)}, K2 = conv{(0, 0), (1, 1), (0, 1)}
and T̃ℓ by subsequent perturbation of the interior nodes of Tℓ by a random vector
field of length at most hℓ/4, so as to avoid superconvergence effects due to high

symmetry of Tℓ; note that hℓ =
√

2 2−ℓ is the diameter of elements in Tℓ.
This work has been partially motivated by experimental observations in [27] and

by simulations reported in [39]; our simulations explore these connections. The
results in [39] are based on gradient flow dynamics analogous to (2.12) for the
energy F in (1.2) using the parameters in (2.3) as well as

T = 6400, γ∗u = γ∗q = 0.1.

If we complement our rescaling in Section 2.1 with a nondimensionalization in time
via t = Tτ , then the final time is 1 and the relaxation parameters are given by

γu = γq = Tε2γ∗u ≈ 2.4 × 10−3.

Comparing (2.2) with (2.4) and (4.1), we see that the physical coupling parameter
δ must satisfy

δ2 ≤ ε
µκ

8C2
P

in order to satisfy the assumptions of Lemma 4.1, and so of Theorems 2.2 and 2.4.
In view of Remark 4.1, which shows that CP = 1/(

√
2π), the choice of δ = 1 in [39]

seems to lead to a set of material parameters that is not covered by our stability
and convergence analysis, which in turn require δ ≤ 0.4391.
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error quantity ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6

maxn=0,1,...,N

∥∥∇(qnh − Ihq(tn, ·))
∥∥ 0.4295 0.1218 0.0409 0.0180

maxn=0,1,...,N

∥∥unh − Ihu(tn, ·)
∥∥ 0.0827 0.0138 0.0035 0.0009

maxn=0,1,...,N

∥∥∆0
hu

n
h − Ih∆u(tn, ·)

∥∥ 2.7849 0.5541 0.1494 0.0384

maxn=0,1,...,N

∣∣Enh − Ẽnh
∣∣ 92.4940 18.1884 5.2344 1.3301

Table 1: Errors in four significant quantities for the example in Section 6.1. Algo-
rithm 2.3 exhibits an excellent performance beyond theory. The experimental rates
of convergence (for two consecutive computations on refinement levels ℓ and ℓ+ 1)
are given by: 1.82, 1.5, 1.18 for the gradient of the director field; 2.5, 1.97, 1.95
for the deformation ; 2.33, 1.89, 1.96 for the curvature; and 2.34, 1.80, 1.97 for the

energy. The computations were done on meshes T̃ℓ, obtained by a random pertur-
bation of order O(hℓ/4) of the meshes Tℓ, in order to rule out superconvergence
effects.

6.1. Convergence analysis and experimental error. Our first set of experi-
ments concerns the numerical validation of the convergence result in Theorem 2.4.
In order to experimentally study the rate of convergence of approximations ob-
tained with our algorithm in case of smooth solutions, we introduce source terms
in the evolution equations (2.12), i.e., we consider the system

∂tu+ γu
(
κ∆2u+ δ div DivAq

)
= f ,

∂tq + γq
(
− µ∆q + δA∗D2u+ λq

)
= g .

This allows us to choose a deformation u and a corresponding order parameter
q and to obtain these functions as solutions of the evolution problem with the
corresponding forcing f and g. For simplicity, we identify C and R2 below, and
choose the set of parameters

T = 1, γu = γq = 0.1, κ = µ = δ = 1 .

For (t, x) ∈ (0, 1) × (0, 1)2 we define the functions

u(t, x) = sin(2πt) sin(2πx1) sin(2πx2),

q(t, x) = exp
(
i cos(2πt)4x1(1 − x1)x2(1 − x2)

)

and the corresponding forcing terms

f = ∂tu+ ∆2u+ div Div Aq,

g = ∂tq − ∆q +
[
∂2
1u− ∂2

2u, 2∂12u
]T

+ λq,

with λ = −µ|∇q|2−δ D2u : Aq. The initial data and the boundary conditions in the
algorithm are obtained by standard interpolation as q0h = Ihq(0, ·) and qh,D = q0h|Γ,
respectively. The algorithm itself was modified in order to take care of the (discrete)
forcing terms which are implemented using numerical integration as in Section 3.
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Table 1 summarizes our numerical results over (slightly distorted) triangulations

T̃ℓ and time-steps τℓ = hℓ/(10
√

2). For each ℓ we display the L∞(L2) error of the
gradient of the director field q, the deformation u, the (linearized) curvature ∆u
and the energy defined by

Enh = Eh
[
unh, q

n
h

]
, Ẽnh = Eh

[
Ihu(tn, ·), Ihq(tn, ·)

]
.

We observed that the convergence is linear in the gradient of the director and
quadratic in the deformation u, the curvature ∆u, and the total energy; see Table 1.
Our theory does not provide a rate of convergence but merely guarantees weak
convergence to the unique solution of our test example.

6.2. Ordering of random initial director field. Our second numerical example
aims at simulating the process of cooling the sample from its isotropic phase to the
gel phase. This process leads to the formation of local order and enforces a uniform
director field if the boundary conditions lead to an anchoring of the molecules in
one fixed direction.

In order to simulate this process after quenching, we choose again the set of
parameters

T = 1, γu = γq = 0.1, κ = µ = δ = 1 .

Let T5 be the triangulation of Ω = (0, 1)2 described above and define τ = h5/(10
√

2).
The initial data q0h ∈ V2

h for the vector field q are given by q0h(z) =
(
2n1(z)

2 −
1, 2n1(z)n2(z)

)
for z ∈ Nh where

(
n1(z), n2(z)

)
=

{
ξ(z) for z ∈ Ω,
(1, 0) for z ∈ ∂Ω,

and ξ(·) ∈ S1 is a random vector field. We set qh,D = q0h|Γ and we assume that
the initial configuration is a flat membrane with u0 ≡ 0. We first observe a very
rapid decay of the energy at the beginning of the evolution; see Figure 1. Figure 2
shows snapshots of the displacement uh and the discrete director field nh during
the evolution. For the purpose of visualization we do not plot the order parameter
q but the direction of alignment which can be obtained from q through the formula

(n1, n2) =

{ 1√
2
(q1 + 1)−1/2

(
q1 + 1, q2

)
if q1 6= −1,(

0, 1
)

otherwise

(we show the direction of the director without an orientation since the energy
depends only on n ⊗ n). As expected, the random initial director field induces
small perturbations of the initially flat membrane. However, at later stages of the
evolution the director field n decays to a constant field typical of the minimizing
state.

6.3. Nonflat initial states and spontaneous curvature. In our third set of
numerical experiments we include a non-vanishing initial displacement of the mem-
brane given by the scalar function u0 and consider compatible nonhomogeneous
boundary conditions u|Γ = uD = u0|Γ and ∆u|Γ = g = ∆u0|Γ. Moreover, we
extend our model to capture spontaneous curvature of the membrane [24]. That is,
we do not assume that the flat membrane has zero bending energy but that due
to corrugations of the substrate the ground state is no longer flat but has locally
a mean curvature prescribed by a scalar function gs, the spontaneous curvature,
which depends on the position.
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Figure 1: Rapid decay of the discrete energy Eh
[
uh(t), qh(t)

]
as a function of t ∈

[0, 1] for the setting defined in Setting 6.2 with random initial data for q.

It is straight-forward to modify Algorithm 2.3 and to adopt the techniques pre-
sented in this paper in order to handle the additional terms in the energy. For
simplicity we assume that gs|Γ = 0. If we write the displacement as a perturbation
of the initial state, u = ũ+ u0, then the generalized energy functional is given by

Ê
[
ũ, q

]
=
κ

2

∫

Ω

|∆(ũ + u0) − gs|2 dx+
µ

2

∫

Ω

|∇q|2 dx

− κ

∫

Γ

∆u0∂ν(ũ+ u0) ds− δ

∫

Ω

∇(ũ+ u0) · DivAq dx.

Integration by parts and binomial formulas show that we have

Ê
[
ũ, q

]
=
κ

2

∫

Ω

|∆ũ|2 dx− κ

2

∫

Ω

|∆u0|2 dx+ κ

∫

Ω

∇gs ·∇(ũ+ u0) dx +
µ

2

∫

Ω

|∇q|2 dx

− κ

∫

Ω

∇∆u0 ·∇(ũ+ u0) dx− δ

∫

Ω

∇(ũ+ u0) · DivAq dx+
κ

2

∫

Ω

g2
s dx.

We set µ = 1/90, δ = 1, and κ = 10, γu = γq = 1, and T = 1. We let T5 be the

triangulation of Ω = (0, 1)2 described above and define τ = h5/(10
√

2). We choose
q0h(z) ≡ (−1, 0) and u0,h = Ihu0, gs,h = Ihgs, where

u0(x) =
1

10
sin(4πx1) sin(4πx2), gs(x) =

1

2
∆u0(x)

for x = (x1, x2) ∈ Ω.
Figure 3 shows the deformation of the membrane and the director field for t = 0,

0.2, 0.4. As opposed to the discrete version of the energy E it is in general not

true that a discrete version of Ê, which uses interpolated functions and numerical
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quadrature, is non-negative. Indeed, for data defined above, the energy is negative
in this example and this effect seems to be due to a rough approximation of the linear
terms in the energy functional. To illustrate this, we computed for ℓ = 3, 4, 5, 6 the
quantity

ξℓ = −κ
2
‖Ih∆u0‖2

h − κ

∫

Ω

∇Ih∆u0 · ∇Ihu0

and obtained the values

ξ3 = 774.4, ξ4 = 1121.3 ξ5 = 1215.0, ξ6 = 1238.8.

In Figure 4 we compare the energies for different mesh-sizes and observe that they
quadratically converge to a value close to 0.

6.4. Discrete defects and their effect on shape. We conclude the discussion of
the practical performance of our algorithm with an experiment that is not entirely
covered by our theory in the sense that the discrete boundary data enforce director
fields and hence order parameters whose energy cannot be uniformly bounded as
h → 0. This effect is due to a nonvanishing winding number of the boundary
data which thus cannot be extended to the entire domain by a continuous unit-
length vector field. Nevertheless, the mesh-size may be regarded as a length scale
comparable to the physical scale and then the discrete evolution is still meaningful
though mesh-dependent.

In polar coordinates (ra, θa) about (a1, a2) = (1/4, 1/2) and (rb, θb) about (b1, b2) =
(3/4, 1/2) we define

n(x1, x2) =

{ (
cos(θa/2), sin(θa/2)

)
for x1 ≤ 1/2(

cos(−(θb + π)), sin(−(θb + π))
)

for x1 > 1/2

and set

q0h = Ih
[(

2n2
1 − 1/2, 2n1n2

)]

together with u0
h ≡ 0. Moreover, we use

T = 2, γq = γu = 0.1, κ = 1, M = 1, δ = 1.

Figure 6 shows the director field and the induced curvature for various times. The
degree −1 singularity initially located at (3/4, 1/2) immediately splits into two
singularities of degree −1/2 which is energetically preferable. In fact, the Frank
energy of a singularity of strength s in a neighborhood of the core after removing
a small disc of radius ǫ centered at the core is of order

∫

B(0,1)\B(0,ǫ)

|∇n|2dx ∼
∫

B(0,1)\B(0,ǫ)

s2

|x|2 dx ∼ s2| log ǫ| .

In our discretized setting the cut-off radius is comparable to h thus we expect
that the splitting of the singularity of strength −1 into two singularities of strength
−1/2 should be accompanied by a decay of the energy of order | log h|/2. Indeed, the
numerical simulations confirm that this splitting is accompanied by a large decay of
the energy and the energy decays further as the singularities separate, c.f. Figure 5.
The motion of the topological defects seems to be mesh-dependent and whenever
they move by one layer in the mesh the energy is reduced to a lower level. The
degree 1/2 singularity seems to have a larger influence on the curvature than the
ones of negative degree. It is interesting to note that the defects of opposite sign
did not tend to interact on the time scale of our simulation. However, we expect
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that defects of degree 1/2 and −1/2, respectively, will annihilate by diffusion for
large times.
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Figure 2: Graph of the displacement uh(t, ·) and the director field nh(t, ·) during
the evolution for t = 0.0, 0.1, and 0.3 (from top to bottom) in Section 6.2 with
random initial data of q. The gradient of the order parameter leads to a locally
uniform orientation with a few characteristic perturbations which introduce through
the coupling a deformation of the membrane. Once the director field is uniform the
deformation of the membrane is relaxed. At t = 1.0 it is of order 10−4.
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Figure 3: Graph of the displacement uh(t, ·) and the director field nh(t, ·) at
t = 0.0, 0.2, 0.4 (from top to bottom) in Section 6.3 which includes spontaneous
curvature. The observed patterns are consistent with the heuristic considerations
in Section 2.3. The principle curvature directions at the saddles (e.g. in the center
of the sample) are parallel to (1,±1). We also notice the effect of the boundary
conditions which dominates the behavior close to the boundary of the sample. This
configuration is very stable and does not change significantly during the remaining
part of the evolution up to time t = 1.0.
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]
as a function of t ∈ [0, 1] for the setting

including spontaneous curvature defined in Section 6.3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
30

35

40

45

50

55

60

65

70

 t

 E
h [ 

u h , 
q h ]

 

 

h = 2−4

h = 2−5

h = 2−6

Figure 5: Discrete energy Eh
[
uh(t), qh(t)

]
as a function of t ∈ [0, 1] for the initial

data including a degree -1 and a degree 1/2 singularity defined in Section 6.4.
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Figure 6: The director field nh(t, ·) and the discrete Laplacian ∆huh(t, ·) at the
early stages of the evolution for t = 0.0, 0.2, 0.4 in the example in Section 6.4.
Note that the singularity of degree −1 located at (3/4, 1/2) splits immediately into
two singularities of degree −1/2. The singularity of degree 1/2 located at (1/4, 1/2)
has a much stronger influence on the curvature of the surface. This configuration
is very stable and does not change significantly during the remaining part of the
evolution. As predicted by Uchida [39], we observe that a singularity of strength
−1/2 carries three lobes of positive curvature in which the director points toward
the core of the singularity. A singularity of strength +1/2 carries one lobe of positive
curvature and the curvature is negative in the region in which the director points
toward the core.
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