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Abstract

We consider parabolic systems ut − div(a(∇u)) = f in two space
dimensions where the elliptic part is derived from a potential and is
coercive, but not monotone. With natural assumptions on the data we
obtain the existence of a long time Hölder continuous solution in the
sense of Young measures.
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1 Introduction

In a recent paper [7] we have presented an a priori estimate in Morrey spaces
for systems of evolution equations under coerciveness and entropy conditions
without assuming monotonicity or ellipticity. This method is used here to
show the existence of long time Hölder continuous weak solutions to a class of
parabolic system in two space variables where only coercivity and the existence
of a potential for the second order part is needed. The price for the lack of an
ellipticity/monotonicity condition is that we have to accept weak solutions in
the sense of Young measures (cf. Section 5). Nevertheless it is of interest that
Hölder continuity is achieved although the special second order operator need
not be elliptic.

∗This research was supported by the DFG, SFB 611 ”Singuläre Phänomene und
Skalierung in mathematischen Modellen” and the SFB/TR 30 ”Prozessintegrierte Herstel-
lung funktional gradierter Strukturen auf der Grundlage thermomechanisch gekoppelter
Phänomene”
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Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary. We consider a
parabolic system of the form

ut −
∑
i=1,2

Diai(t, x,∇u) = f in [0, T 0]× Ω ,

u = (u1, . . . , uN) , ai = (a1
i , . . . , a

N
i ) , ∇ = ∇x

(1)

with homogeneous Dirichlet boundary condition and initial value condition

u(0) = u0, u0 ∈ H1
0 (Ω), (2)

where H1
0 (Ω) denotes the usual Sobolev spaces of L2-functions such that ∇u ∈

L2, and the traces on the boundary vanish. For technical reasons, we need
the coefficient functions defined on a slightly larger domain than Ω. More
precisely, we fix a domain Ω1 ⊂ R2 with Ω ⊂ Ω1. As in [7] we need that the
coefficient functions are derived from a potential A with specific properties,
i.e. there exists a function A : [0, T 0]× Ω1 × RN×2 → R such that

• ∂

∂ην
i

A(t, x, η) = aν
i (t, x, η), a. e. in (t, x)

• ∂

∂t
A(t, x, η) = At(t, x, η) exists for all η ∈ RN×2 and a.e. in (t, x),

• A, At, aν
i satisfy the Caratheodory condition, this means measurability

with respect to (t, x) for all η and continuity with respect to η a. e. in
(t, x)

• the following growth and coerciveness conditions hold true a.e. in t and
x:

A(t, x, η) + |At(t, x, η)|+
∑
i=1,2

|ai(t, x, η)|2 ≤ C0|η|2 + K , (3)

∑
i=1,2

N∑
ν=1

aν
i (t, x, η)ην

i ≥ α0|η|2 −K, A(t, x, η) ≥ α1|η|2 −K (4)

with positive constants C0, α0, α1 and K (the letter K is reserved for constants
which need not to be specified, they can change from line to line).

For regular solutions u, we may test the equation (1) with the function utϕ
where ϕ is a sufficiently smooth function and obtain

T∫

t1

∫ [
u2

t ϕ− Aϕt +
∑
i=1,2

aiutDiϕ− Atϕ
]
dx dt

+

∫
Adx

∣∣T
t1

=

T∫

t1

∫
futϕdx dt .

(5)
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Equation (5) can be called ”local energy conservation” or, with an inequal-
ity sign ≤, ”entropy condition”, the integrals on the left hand side are fi-
nite also for functions u ∈ L2(H1

0 (Ω)) such that ut ∈ L2(L2(Ω)). (Here
Lr(V ) = Lr

(
0, T 0 ; V

)
is the Lr space of V -valued functions on [0, T 0], where

V is any Banach-space.) In [7] we derived from (5) and natural regularity
conditions for the data a Morrey condition for ∇u

ess sup
{ ∫

BR(x0)

|∇u|2 dx
∣∣∣ 0 ≤ t ≤ T 0 , x0 ∈ Ω

}
≤ KR2α (6)

which implies that the solution u of (1) is contained in the Hölder space
Cα/2([0, T 0] × Ω) in the case of two space dimensions. The method can be
applied for space dimensions ≥ 3, too, however, this implies only a slight
improvement of the Sobolev imbedding exponent.

Since (5) is not known a priori by a solution u ∈ L2(H1
0 ), ut ∈ L2(L2),

the result from [7] is only an a priori estimate. In order to obtain existence
results, one has to find approximations of (1) with smooth solutions, but with
a structure which allows to repeat the method of proof in [7]. In particular,
the structure of an Euler operator for the second order part

∑
i=1,2 Diai has

to be preserved.
A singular pertubation of (1) does not look promising, since it is not clear

how the special technique of weighted estimates used in [7] can be carried over
then. The best way to approximate equation (1) seems to be the finite element
method using continuous linear spline functions uh. The finite element setting
is exposed in next chapter. We obtain a sequence of continuous piecewise linear
functions uh such that

uh ⇀ u weakly in L2
(
H1

0

)
, u̇h ⇀ u weakly in L2(L2), (7)

sup
t
‖uh(t, ·)‖Cα(Ω) + sup

x
‖uh(·, x)‖Cα/2[0,T 0] ≤ K, (8)

as h tends to 0. The functions uh solve (1) approximately and satisfy a discrete
analog of (6) uniformly for 0 < h < h0. The discrete Morrey estimate is the
main difficulty to prove, it is elaborated in chapter 3 and 4.

From (8) we conclude that the limit u is contained in Cα/2(Cα). The limit
u satisfies equation (1) in the sense of Young measures, see the explanations
and Theorem 5.1 in chapter 5.

Typical examples for our result are generated with the potentials

A(t, x,∇u) = µ1|∇u|2 + µ2| div u|2 + H(| det∇u|) ,

H convex, |H(ξ)| ≤ K + K|ξ|, |H ′| ≤ K, µ1, µ2 > 0 or

A(η) =
(|η|2 − 1)2

1 + |η|2 .

There is a vast literature on regularity of parabolic systems, see the bibliog-
raphy in [7, 13, 16, 11]. The regularity theory in the scalar case for nonlinear
parabolic equations has been treated in the classical book of Ladyzhenskaja,
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Solonnikov and Uralceva [9], where Hölder continuity of scalar weak solutions
is obtained for arbitrary space dimension and more general nonlinearities with
coercive non-monotone spatial principal part. In [10] an example for a two
dimensional parabolic system is presented, which has a nonconvex (in fact,
quasiconvex) potential A and a solution nowhere better than Lipschitz. For
the non-monotone case which naturally leads to Young measure solutions con-
sult [12, 3].

We list some frequently used notation:
The expressions (·, ·)Ξ, ‖ · ‖Ξ denotes the scalar product and norm, respec-

tively, in L2(Ξ) where Ξ ⊂ R2 (the integration is performed with respect to
the spatial variables only), we omit the subscript Ξ, if no confusion arises. We
also omit the domain of integration in our calculations if it is obvious. For
vector valued functions u in L2 we mainly write u2(=

∑N
i=1 u2

i ) instead of |u|2.
Further we use the notation G . F to indicate that G ≤ K F , where K is

a generic constant.
The expressions Di as well as ∇m always refer to spatial derivatives, while

the partial derivative with respect to t is indicated either by the subscript t or
a dot: ut = ∂

∂t
u = u̇.

For R > 0, x0 ∈ R2, we denote by BR = BR(x0) the open disk around x0

with radius R and by QR the parabolic cylinder [T −R2, T ]×BR(x0).
We specify the assumptions on the data u0 and f , we extend u0 by zero

to a function in H1
0 (Ω1), we assume that f ∈ L2(L2(Ω1)) and u0 and f satisfy

the following Morrey conditions for

∫

BR(x0)

|∇u0|2 dx . R2γ , for all BR(x0) ⊂ Ω1. (9)

∫∫

QR

f 2 dx . R2γ , for all QR ⊂ [0, T 0]× Ω1. (10)

2 Finite element approximation

Let Ω ⊂ Ω1 ⊂ R2 be specified as in Section 1. We choose a set Th of closed
triangles such that Ωh :=

⋃
∆h∈Th

⊂ Ω1 with the additional properties:

1. diam ∆h ≤ h for all ∆h ∈ Th.

2. If ∆h∩∆′
h consists of exactly one point P , then P is a corner of ∆h and

∆′
h.

3. If ∆h ∩ ∆′
h consists of more than one point, then the intersection is a

common edge of ∆h and ∆′
h.

4. There is a constant κ such that each ∆h ∈ Th contains a circle of radius
κh.

5. The set Ωh :=
⋃

∆h∈Th

approximates Ω, i.e. dist(∂Ω, ∂Ωh) = O(h) .
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The corners of the triangles ∆h are called nodal points. The discrete neigh-
borhood of a nodal point P /∈ ∂Ωh is the set of nodal points

Nh(P ) =
{
Q ∈ Ωh

∣∣Q is corner of a triangle ∆h ∈ T having P as a corner
}

.

We use the following special finite element space

Vh = {vh ∈ H1
0 (Ωh) ∩ C(Ω̄h)

∣∣∣ vh|∆h
is linear for all ∆h ∈ Th}

To each nodal point P /∈ ∂Ωh we associate a basis function wP
h ∈ Vh defined

by

wP
h (P ) = 1 , wP

h (Q) = 0 for all nodal points Q 6= P. (11)

Clearly, the set {
wP

h

∣∣P is a nodal point /∈ ∂Ωh

}

forms a basis of Vh. With [Vh]
N we denote the space of vector functions whose

components are in Vh. The functions wh ∈ [Vh]
N , such that N − 1 components

vanish and the remaining component is a basis function of type (11), give rise
to a basis Bh of [Vh]

N .
We choose a finite element approximation of (1) in the following way: Find

uh(t, x) =
∑
w∈Bh

cw(t)w(x), (12)

such that

(u̇h, ϕh) +
2∑

i=1

(
ai(t, ·,∇uh), Diϕh

)
= (f, ϕh) (13)

for all ϕh ∈ [Vh]
N , a. e. with respect to t ,

uh(0, ·) = u0h(·) . (14)

Due to (9) we may assume for the approximation u0h ∈ [Vh]
N

u0h → u0 strongly in H1(Ω1) (15)∫

BR(x0)

|∇u0h|2 dx ≤ KR2γ uniformly as h → 0, (16)

4h ≤ R ≤ R0, x0 ∈ Ω .

The system (13) is equivalent to the system of ordinary differential equations

∑
w∈Bh

ċw(t)(w, ŵ) +
2∑

i=1

(
ai(t, ·,

∑
w∈Bh

cwDiw), ŵ
)

= (f(·, t), ŵ)

for all ŵ ∈ Bh, a. e. with respect to t. Since the matrix
(
(w, ŵ)

)
w,ŵ∈Bh

is non-

singular, the theory of ordinary differential equations for absolutely continuous
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functions gives us the existence of a global solution uh : [0, T 0] → [Vh]
N of the

finite element approximation.
In fact, local solvability follows via Peano’s theorem in the setting of abso-

lute continuous functions and the global solvability follows via the extension
argument from the discrete energy equation

1

2
(u̇h, u̇h) +

d

dt

∫

Ωh

A(t, ·,∇uh) dx−
∫

Ωh

At(t, ·,∇uh) dx =
(
f(t, ·), u̇h

)
. (17)

From the energy equality (17) we obtain the following estimates for the solu-
tions uh of (13) uniformly as h → 0:

ess sup
0≤t≤T

∫

Ωh

|∇uh|2 dx +

T∫

0

∫

Ωh

u̇2
h dx dt ≤ KT (18)

This follows from (17) by integrating from 0 to t or 0 to T , using the growth and
coerciveness assumptions for A and ai, combined with Gronwall’s inequality
and the L2-assumptions on f and u0h. This procedure is standard and is not
elaborated here.

We need some tools from the theory of finite elements. To formulate the
result we introduce the notation

‖w‖′ =
( ∑

∆h∈Th

∫

∆h

|w|2 dx
)1/2

.

For v ∈ C(Ωh), we use the Lagrange interpolation Ihv :=
∑

P v(P )wP
h , with

wP
h as in (11). Clearly, if supp v is compact in Ωh, then supp Ihv is only slightly

larger, i.e. supp Ihv ⊂ {x | dist(x, supp v) ≤ h}.
Proposition 2.1 (cf [?, p. 105 ff], e.g.)

(i) (Properties of the interpolation operator) For v ∈ C(Ωh) with v
∣∣
∆h

∈
H2(∆h) for all ∆h ∈ Th, and Ihv as above, the following estimates hold
true:

‖v − Ihv‖Ωh
. hm‖∇mv‖′Ωh

,m = 1, 2 (19)

‖∇(v − Ihv)‖Ωh
. h‖∇2v‖′Ωh

(20)

‖Ihv‖Ωh
. ‖v‖Ωh

+ h‖∇v‖Ωh
+ h2‖∇2v‖′Ωh

(21)

with some constant not depending on h → 0.

(ii) For all vh ∈ Vh there holds the so-called inverse inequality

‖∇vh‖Ωh
. 1

h
‖vh‖Ωh

. (22)
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Observe that it is necessary to use the norm ‖ ·‖′ since neither v ∈ H2(Ωh) nor
Ihv ∈ H2(Ωh) is required. The proposition can be applied to any subdomain
Ω0 ⊂ Ωh, then we write ‖, ‖Ω0 in the norms of the right hand side.

We also need a weighted variant of (20): Let W = W h be defined by

W h(t, x) = − T − t

|x− x0|2 + h2 + T − t
, then

W h
t (t, x) =

|x− x0|2 + h2

(|x− x0|2 + h2 + T − t)2 .

(23)

Proposition 2.2 For all v ∈ C(Ω̄), such that v|∆h
∈ H2(∆h) for any triangle

∆h ∈ Th the following inequality holds with a constant independent of h and v:

‖W−1/2
t ∇(v − Ihv)‖ . h‖W−1/2

t ∇2v‖′ .
Proof: Since (20) is proved by reducing the assertion to the triangles ∆h ∈ Th,
it is enough to show

|W−1
t (x)| ≤ sup

x∈∆h

|W−1
t (x)| ≤ BW−1

t (x) for x ∈ ∆h ,

where ∆h ∈ Th arbitrary. The first inequality is trivial, to show the second we
assume x0 = 0 for simplicity and consider the annuli

Âk = {kh ≤ |x| ≤ (k + 2)h} , k = 0, 1, . . . .

For x ∈ Âk we have by elementary calculations

k2h2 + h2 + 2(T − t) +
(T − t)2

(
(k + h)2 + 1

)
h2

≤ W−1
t (t, x) = |x|2 + h2 + 2(T − t) +

(T − t)2

h2 + |x|2

≤ (
(k + 2)2 + 1

)
h2 + 2(T − t) +

(T − t)2

(k2 + 1)h2

≤ W−1
t (t, x) + 4(k + 1)h2 +

(T − t)2

h2

4(k + 1)(
(k + 2)h + 1

)
(k2 + 1)

≤ 5W−1
t (t, x)

hence sup
x∈Âk

W−1
t ≤ 5W−1

t (t, x).

3 Discrete Morrey estimates for truncation terms

In order to prove a uniform Morrey estimate for the finite element approxima-
tion we adopt the arguments of [7].

We need to use the discrete variant of the energy-equality (5) with ϕ = τ 2
R,

and ϕ = Wτ 2
R, where R > 0 is fixed and τR denotes a localization function of

the form

τR(t, x) = ψ(t)ζ(|x− x0|) ,
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where

ψ(t) =





0, t < T − 2R2, t > T

R−2(t− (T − 2R2)), T − 2R2 ≤ t < T −R2,

1, T −R2 ≤ t ≤ T,

and ζ ∈ C2
0(R) such that ζ(r) = 1 for 0 ≤ r ≤ R, ζ(r) = 0 for |r| ≥ 2R,

|ζ ′(r)| . R−1, |ζ ′′(r)| . R−2.
Since u̇hτ

2
R, u̇hWτ 2

R and (uh − ūh)τ
2
R are not admissible test functions in

the finite element equation (13), some additional arguments are necessary. We
keep x0 fixed during this section and set BR = B(x0, R) with R ≥ 4h. If
ϕ(t, ·) ∈ H1

0 (Ω) a.e. in t, then Ihϕ ∈ Vh and the discretized equation (13) leads
to the identity

(u̇h, ϕ) +
∑
i=1,2

(
ah

i , Diϕ
)

=
(
u̇h, ϕ− Ihϕ

)
+

∑
i=1,2

(
ah

i , Di(ϕ− Ihϕ)
)

+
(
f, Ihϕ

)

=: T1(ϕ) + T2(ϕ) + T3(ϕ) , (24)

with ah
i = a(., .,∇uh). Note that the application of the interpolation operator

Ih implies B2R+h as domain of integration in the L2-scalar product for Tj(ϕ).

Proposition 3.1 While testing with ϕ = τ 2
Ru̇h, the following estimate holds

true for the truncation terms:

|T1(ϕ)|+ |T2(ϕ)| ≤
∣∣(u̇h, u̇hτ

2
R − Ih(u̇hτ

2
R)

)∣∣ +
∑

i

∣∣(ah
i , Di(u̇hτ

2
R − Ih(u̇hτ

2
R))

)∣∣

. ‖u̇h‖2
A2R,h

+ R−2‖∇uh‖2
A2R,h

+ 1

(25)

a.e. with respect to t, where A2R,h = B2R+h\BR−h.

Remark. Proposition 3.1 states that the truncation terms T1(ϕ) and T2(ϕ),
with ϕ = τ 2

h u̇h, are estimated by hole filling terms, i. e. terms where the
domain of integration has the hole BR−h.

Proof: Since τ 2
R = 1 on BR, we obtain

uhτ
2
R − Ih(uhτ

2
R) = 0 for x ∈ BR−h and x /∈ B2R+h ,

hence the domain of integration reduces to A2R,h = B2R+h\BR−h in both terms
on the left hand side. Using the notations of (24), Hölder’s inequality together
with the interpolation estimate (19) leads to

|T1(u̇hτ
2
R)| . ‖u̇h‖A2R,h

h2‖∇2(u̇hτ
2
R)‖′A2R,h

.

Due to the choice of the space Vh we have ∇2u̇h = 0 on each triangle T ∈ Th,
hence

‖∇2(u̇hτ
2
R)‖′ .

∑
i,j

‖Diu̇hDjτ
2
R‖+ ‖u̇hDiDjτ

2
R‖ .
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Now the inverse inequality (22), the properties |Diτ
2
R| . R−1, |DjDiτ

2
R| . R−2

and the relation R ≥ 4h implies

h2‖∇2(u̇hτ
2
R)‖′ . h2

R
‖∇u̇h‖B2R\BR

+
h2

R2
‖u̇h‖B2R\BR

. h

R
‖u̇h‖A2R,h

,

hence

|T1(u̇hτ
2
R)| . ‖u̇h‖2

A2R,h
. (26)

In a similar manner, we can treat the second term on the left hand side of (25)

|T2(u̇hτ
2
R)| .

∑
i

‖ah
i ‖A2R,h

‖Di(u̇hτ
2
R − Ih(u̇hτ

2
R))‖ .

.
(‖R−1∇uh‖A2R,h

+ R−1|A2R,h|1/2
)
Rh‖∇2(u̇hτ

2
R)

)‖′A2R,h
.

Here we also used the growth condition of ai, and the same arguments as for
(26) lead to

hR‖∇2(u̇hτ
2
R)‖′A2R,h

. ‖u̇h‖A2R,h

hence

|T2(u̇hτ
2
R)| . ‖R−1∇uh‖2

A2R,h
+ 1 + ‖u̇h‖2

B2R+h
(27)

and (26) together with (27) gives the assertion (25). 2

The second series of estimates is gathered in the following proposition:

Proposition 3.2 Let W (t, x) be defined as in (23), then with ϕ = Wτ 2
Ru̇h we

have

|T1(ϕ)|+ |T2(ϕ)| ≤
∣∣(u̇h, u̇hWτ 2

R − Ih(u̇Wτ 2
R)

)∣∣ +
∑

i

∣∣(ah
i , Di(u̇hWτ 2

R − Ih(u̇hWτ 2
R))

)∣∣

≤ ε‖∇uhW
1/2
t ‖2

B2R+h
+ K

(
‖W 1/2

t ‖2
B2R+h

+ ‖u̇h‖2
B2R+h

)
.

(28)

Proof: We start with various elementary estimates related to the weight W
and the localization function τ 2

R, namely

h|∇W | ≤ h

(T − t + h2 + |x− x0|2)1/2
≤ 1 , (29)

W−1
t |∇W |2 . 1 ,

|DiDjW | . (T − t + h2 + |x− x0|2)−1, (30)

h2W−1
t |DiDjW |2 . 1

independent of x, x0, T, t and h. Furthermore, for x ∈ B2R\BR, we get

W−1
t |Di(τ

2
R)|2 . (T − t + |x− x0|2 + h2)2

|x− x0|2
1

R2
. 1

W−1
t |W |2|DiDjτ

2
R|2 . R−2 for x ∈ B2R\BR . (31)
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Again applying the interpolation inequality (19), we obtain with (29) and
W ≤ 1

|T1(u̇hτ
2
RW )| ≤ ‖u̇h‖B2R+h

h‖∇(u̇hτ
2
RW )‖ ,

. ‖u̇h‖B2R+h

(
h‖∇u̇h‖B2R

+
h

R
‖u̇h‖B2R\BR

+ ‖u̇h‖B2R

)

. ‖u̇h‖2
B2R+h

(32)

independent of h,R, x0 and T as long as R ≥ 4h.
Finally we have to estimate the term T2(u̇hτ

2
RW ). Using Hölder’s inequality,

the growth condition for ai and the weighted interpolation inequality of 2.2 we
get

|T2(u̇hτ
2
RW )| ≤

≤
∑

i

‖ah
i W

1/2
t ‖B2R+h

‖W−1/2
t ∇(

u̇hWτ 2
R − Ih(u̇hWτ 2

R)
)‖

.
(
‖∇uhW

1/2
t ‖B2R+h

+ ‖W 1/2
t ‖B2R+h

)
h ‖W−1/2

t ∇2(u̇hWτ 2
R)‖′B2R

.

(33)

Exploiting again DiDju̇h = 0 on the interior of the triangles ∆h, we have

DiDj(u̇hWτ 2
R) = (Dju̇h)(DiW )τ 2

R + (Dju̇h)W (Diτ
2
R)+

+ u̇h

(
DiWDjτ

2
R + DjWDiτ

2
R + (DiDjW )τ 2

R + W (DiDjτ
2
R)

)
.

(34)

Next we use (29)–(31) to obtain

h‖W−1/2
t ∇2(u̇h ·Wτ 2

R)‖
. h‖∇u̇h‖B2R

+ h‖∇u̇h‖B2R\BR
+ 2

h

R
‖u̇h‖B2R\BR

+ ‖u̇h‖B2R

. ‖u̇h‖B2R+h
,

now estimate (28) follows from (32) and (33). 2

The proof of the Morrey estimate needs a third type of test functions,
namely ϕ = (uh − ūh)τ̃

2
R, where

ūh =





1
4πR

· ∫
∂B2R

uh dx if B2R ⊂ Ω,

0 else,

τ̃R = ζ(x− x0) · ψ
(
t + (T −R2)

)
. (35)

Again we have to estimate the truncation terms which one has to accept since
(u− ū)τ̃ 2

R /∈ [Vh]
N . This is done in the following proposition.

Proposition 3.3 With ϕ = (uh − ūh)τ̃
2
R in (24) the following estimate holds

true:

T1(ϕ) + T2(ϕ) =
∣∣(u̇h, (uh − ūh)τ̃

2
R − Ih

(
(uh − ūh)τ̃

2
R

)∣∣+
+

∣∣∣
(
ah

i , Di

[
(uh − ūh)τ̃

2
R − Ih

(
(uh − ūh)τ̃

2
R

)])∣∣∣ ≤

≤ R2
(
‖u̇h‖2

A2R,h
+ ‖∇uh|Wt|1/2‖2

A2R,h

)
.

(36)
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Proof: Arguing as in Proposition 3.1 with τ̃R = 1 on BR, in the left-hand
side of (36) there appear only integrals over A2R,h. A variant of Poincaré’s
inequality, [7, Prop. 6.1] gives

∫

A2R,h

|uh − ūh|2 dx .
∫

A2R,h

|x− x0|2|∇uh|2 dx, (37)

if A2R,h ⊂ Ωh. If A2R,h ∩ ∂Ωh 6= ∅, we extend uh by zero outside of Ωh

and replace A2R,h by A4R in the righthand side of (37). This works since
uh vanishes on a sufficiently large subset of A4R. Furthermore, we have the
obvious inequality

R−2 + |x− x0|2R−4 . |Wt| for x ∈ A2R,h (38)

From Hölder’s inequality and Proposition 2.2, it follows

T1 ≤ ‖u̇h‖A2R,h
· h(‖∇uhτ̃

2
R‖A2R,h

+ ‖(uh − ūh) · ∇(τ̃ 2
R)‖)

B2R\BR

. R2‖u̇h‖A2R,h
+

h2

R2
‖∇uhτ̃

2
R‖2

A2R,h
+

h2

R4
‖uh − ūh‖2

B2R\BR

. R2‖u̇‖2
A2R,h

+ h2‖∇uh|Wt|1/2‖2
A2R,h

. R2
(‖u̇‖2

A2R,h
+ ‖∇uh|Wt|1/2‖2

A2R,h

)
,

(39)

for the last two inequalities we used (37), (38) and finally the condition 4h < R.
To estimate the second term, we first note that |Wt|−1/2 . R for |x−x0|2 ≤

4R2, R2 ≤ T − t ≤ 4R2. Applying Hölder’s inequality, then again the growth
condition (3) and the Proposition 2.2 we gain

∣∣∣
(
ah

i , Di

[
(uh − ūh)τ̃

2
R − Ih

(
(uh − ūh)τ̃

2
R

)] )∣∣∣

. R(‖∇uh|Wt|1/2‖A2R,h
+ ‖|Wt|1/2‖A2R,h

)
h

R
‖|(Wt)|−1/2∇2

(
(uh − ūh)τ̃

2
R

)‖′A2R,h

. R2‖∇uh|Wt|1/2‖2
A2R,h

+ 1 +
h2

R2
‖∇uh‖2

A2R,h
+

h2

R4
‖u− ūh‖2

A2R,h
.

The last two terms can be treated exactly as in (39), so that we end up with
(36). 2

Finally we must estimate

|T3(ϕ)| ≤ ‖f‖B2R+h
‖ϕ‖B2R+h

≤ Kε‖f‖2
B2R+h

+ ε‖Ihϕ‖2
B2R+h

,

which comes down to estimate Ihϕ using (21). We carry out the calculations
for ϕ = Wτ 2

Ru̇h, in the other cases the arguments run in a completely analogous
way or even simpler. With

Dj(Wτ 2
Ru̇h) = DjW τ 2

Ru̇h + WDj(τ
2
R)u̇h + Wτ 2

RDju̇h

relation (34) for the second derivatives and taking into account the bounds
(29), (30) and

|W |+ |τ 2
R|+ R|∇τ 2

R|+ R2|∇2τ 2
R| . 1

11



we obtain

‖Wτ 2
Ru̇h‖B2R+h

. ‖u̇h‖B2R
,

h‖∇(Wτ 2
Ru̇h)‖B2R+h

. h

R
‖u̇h‖B2R

+ h‖∇u̇h‖B2R
,

h2‖∇2(Wτ 2
Ru̇h)‖B2R+h

. h

R
‖u̇h‖B2R

+
h2

R
‖∇u̇h‖B2R

+

(
h

R
+ 1 +

h2

R2

)
‖u̇h‖B2R

.

Now we again exploit h
R

. 1 together with the inverse inequality (22) and
arrive at the following bounds:

‖Ih(Wτ 2
Ru̇h)‖B2R+h

+ ‖Ih(τ
2
Ru̇h)‖B2R+h

. ‖u̇h‖B2R

‖Ih((uh − ūh)τ̃
2
R)‖B2R+h

. ‖uh‖B2R
.

4 Discrete Morrey Estimates for the Finite Element So-
lutions

In order to obtain uniform convergence for a subsequence of uh we can repro-
duce our proof from [7] and obtain a hole filling inequality

∫∫

QR

{|u̇h|2 + |∇uh|2|Wt|
}

dx ≤ K

∫∫

QMR\QR

{|u̇h|2 + |∇uh|2|Wt|
}

dx + KR2γ.

(40)

In fact, in the proof here we can choose M = 8, e.g. which is quite rough, by
the way, since we deal with a Lipschitz boundary ∂Ω, in [7, Sec. 6] we have
dealt with slightly weaker assumptions on the boundary.

for R ≥ 4h and all parabolic cylinders QR, uniformly as h → 0, here Wt

is defined as in (23). From (40) we derive the Morrey condition for |u̇h|2 +
|∇uh|2|Wt| in a standard way via the hole filling argument, cf. [7, (23)] and
[15].

We emphasize that in [7], the inequality (40) was derived by using the
following assertions: u ∈ L∞(H1

0 (Ω))∩H1([0, T 0]×Ω), ut ∈ L2([0, T 0]×Ω), u
satisfies the initial condition together with

T0∫

0

∫

Ω

[− utϕ +
n∑

i=1

ai(.,∇u) ·Diϕ
]
dx dt =

T0∫

0

∫

Ω

fϕ dx dt (41)

and the entropy inequality (5), respectively, for the three special test functions
ϕ = u̇τ 2

R, ϕ = u̇Wτ 2
R and ϕ = (u− ū)τ 2

R. Other than this only the growth and
coerciveness properties of the coefficients ai and their potential A were needed
in the argumentation.

If replace u by uh, there appear the additional truncation terms Ti(ϕ),
i = 1, 2, 3 on the right hand sides of the weak equation (41) and the en-
tropy inequality (5) for the approximations uh. The corresponding estimates
of Section 3 are the main part in treating the finite element approximations.

12



Otherwise the proof for (40) runs just along the same lines as in [7], therefore
we confine us to a mere sketch of the proof here to avoid a complete repetition.
We introduce the time intervals and the space-time cylinder

IR = [T −R2, T ], ĨR = [T − 2R2, T −R2], HR = I√
2R × (B2R \BR).

1. Bounds for
∫∫
QR

|∇uh|2|Wt| dx: We choose ϕ = u̇hWτ 2
R in the basic equation

(24) and proceed estimating as in the first step of Section 3 in our paper [7].
We arrive at the inequality

∫∫
|∇uh|2|Wt|τ 2

R dx dt .
∫∫

ĨR×B2R

|∇uh|2R−2τR dx dt+

+ K

∫∫

HR

|∇uh|2|Wt| dx dt +

∫∫
u̇2

hτ
2
R dx dt + R2γ+

+ truncation terms.

(42)

The truncation terms here can be estimated using Proposition 3.2 by

ε

∫

I√2R

‖∇uhW
1/2
t ‖2

B2R+h
dt + KR2 + K

∫

I√2R

‖u̇h‖2
B2R+h

dt .

If any of the time intervals touches the value t = 0, we have to replace it by
the corresponding intersection of the interval with t > 0 while the initial value
appears on the right hand side. Note that the right hand side of (42) contains
good terms, namely KR2γ (coming from the right hand side f and the initial
condition u0) and the integral

∫∫
HR

. The terms

∫∫
u̇2

hτ
2
R dx dt ≤

∫

I√2R

‖u̇h‖2
B2R+h

dt

will be estimated in a second step, and we will deal with the critical integral

Icrit =

∫∫

ĨR×B2R

|∇uh|2 R−2 dx dt (43)

in a third step.
We do not want to repeat the arguments which lead to (42) in detail but

want to give the hint, that the term
∫∫ |∇uh|2|Wt|τ 2

R dx dt arises from

∑
i=1,2

∫∫
ah

i Di(u̇hWτ 2
R) dx dt

=

∫∫ [(
d

dt
A(·, ·,∇uh)− At(., .,∇uh)

)]
Wτ 2

R dx dt+

+
∑
i=1,2

∫∫
ah

i u̇hDi(Wτ 2
R) dx dt

13



as lower estimate for

−
∫∫

AWtτ
2
R dx dt + a pollution term containing τt .

The pollution term containing τt creates our critical term.

2. Bounds for
∫∫

u̇2
h dx dt: We choose ϕ = u̇hτ

2
R in (24) and obtain∫∫

u̇2
hτ

2
R dx dt +

∫∫
d

dt
A(·, ·,∇uh)τ

2
R dx dt−

−
∫∫

At(·, ·,∇uh) τ 2
Rdx dt + 2

2∑
i=1

∫∫
ah

i u̇h∇τRτR dx dt =

=

∫∫
fu̇hτ

2
R dx dt + truncation terms .

(44)

The truncation terms are estimated in Proposition 3.1. The left hand side of
(44) is treated exactly as in our paper [7, Formula (35)]. This leads to the
estimate∫∫

u̇2
hτ

2
R dx dt . Icrit +

∫∫

HR

|∇uh|2|Wt| dx dt +

∫∫

HR

u̇2
h dx dt + R2γ, (45)

where the term R2γ comes from pollution terms and the integral over f in view
of (10), and Icrit is defined in (43).

Employing our estimate (25) we conclude from (45)∫∫
u̇2

hτ
2
R dx dt . Icrit +

∫∫

ĨR×A2R,h

{|∇uh|2|Wt|+ u̇2
h

}
dx dt + R2γ (46)

uniformly as h → 0, R ≥ h, which completes the second step.
We combine (46) by multiplying (46) with a large constant and adding the

result to inequality (42). This leads to the ”pre-hole-filling inequality”∫∫ {
u̇2

h + |∇uh|2|Wt|
}

τ 2
R dx dt . Icrit+

+

∫∫

ĨR×A2R,h

{
u̇2

h + |∇uh|2|Wt|
}

dx dt + R2γ, R ≥ 4h .

3. Estimating the critical term via Cacciopoli’s inequality:
We intend to give a bound for the term

∫∫
ĨR×B2R

|∇u|2R−2 dx dt. To this end,
we choose

ϕ = (uh − ūh)τ̃
2
R

in the equation (24), where τ̃R is defined as in (35) and ūh as in Proposition
3.3. From Proposition 3.3 we have∫

u̇h(uh − ūh)τ̃
2
R dx +

∑
i=1,2

∫
ah

i Di

(
(uh − ūh)τ̃

2
R

)
dx

. ‖f(t, ·)‖‖(uh − ūh)τ̃
2
R)‖+ R2

(‖u̇h‖2
A2R,h

+ ‖∇uh|Wt|1/2‖2
A2R,h

)

. R2‖f(t, ·)‖2 + R−2‖uh − ūh‖B2R
+ R2

(‖u̇h‖2
A2R,h

+ ‖∇uh|Wt|1/2‖2
A2R,h

) .

(47)
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The left hand side of (47) is estimated as in [7], using the coerciveness condition
for ai and, in particular, again Poincaré’s inequality in a special form, namely

R−2

∫

B2R

|uh − ūh|2 dx . R−2

∫

B2R

|x− x0|2|∇uh|2 dx

if B2R = B2R(x0) ⊂ Ω, and B2R has to be replaced by B4R, if B2R ∩ {Ω 6= 0.
(Observe that uh can be extended by zero outside of Ωh and ūh = 0 by definition
in this case.) Further we can estimate

∣∣
∫

u̇h(uh − ūh)τ̃
2
R dx

∣∣ ≤ R2

∫

B2R

u̇2
h dx +

1

R2

∫

B2R

|uh − ūh|2 dx

. R2

∫

B2R

u̇2
h dx +

1

R2

∫

B2R

|x− x0|2|∇uh|2 dx,

a.e. on [T − 4R2, T −R2] =: ÎR. Thus we obtain

Icrit . R−2

∫∫
ah

i Diuhτ̃
2
R dx dt + KR2 .

∫∫

ÎR×B2R

u̇2
h dx dt

+ R−4

∫∫

ÎR×B4R

|x− x0|2|∇uh|2 dx dt +
1

R2
right hand side of (47) .

We take into account that R−4|x − x0|2 . |Wt| and ÎR × B4R ⊂ Q4R \ QR.
Then, for R ≥ 4h, we arrive at

Icrit .
∫∫

Q4R\QR−h

{
u̇2

h + |∇uh|2|Wt|
}

dx dt + KR2γ .

Together with the results of the first and second step of this chapter we finally
arrive at the hole filling inequality (40) and we have obtained the following

Theorem 4.1 Let Ω ⊂ R2 be a Lipschitz domain. Assume the coefficient
functions ai of problem (1) and their potential A fulfill the conditions formu-
lated in Section 1, in particular (3), (4), and the Morrey conditions (9) and
(10) hold for the data f and u0. Then the finite element approximations uh

defined by (13), (14) satisfy (8), in particular they are uniformly bounded in
the Hölder-space Cα/2([0, T 0]× (Ω) as h tends to 0.

Proof. The hole filling inequality implies Morrey’s condition
∫∫

QR

|u̇h|2 + |∇uh|2dx dt . R2β, R ≥ 4h, (48)

uniformly in h and R, up to the boundary (read QR as QR ∩ [0, T ]× Ωh near
the boundary). Since |Wt| ≥ c0R

−2, c0 > 0, on BR \ BR/4, after redefining R
we have ∫∫

QR

|∇uh|2dx dt . R2+2β,
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(see [7, Sect. 5] for the detailed argument). We inspect equation (44) once
more and use the term

∫ t2
t1

d
dt

A(·, ·,∇uh)τ
2
Rdx dt to create an estimate

∫
A(·, ·,∇uh)τ

2
Rdx|t=t2 ≤

∫
A(·, ·,∇uh)τ

2
Rdx|t=t1 + remainder.

The remaining terms satisfy a Morrey condition to (48). Averaging t1 on
[t2 −R2, t2] leads to

∫

BR

|∇uh|2dx|T .
∫

Aτ 2
Rdx + R2γ . R2β.

Now we have to use a discrete version of Morrey’s lemma, which holds true for
functions from Vh, provided R ≥ 4h. The proof can be done analogously as
in the finite difference case, see [4] or using the ”singularity”-estimates for the
discrete Green function Gh [6] together with the representation

|Bh|
∫

Bh

τR(uh − ūh)dx = (∇[(uh − ūh)τR],∇Gh).

These arguments give uniform Hölder continuity for uh in space direction, i.e.
a bound in L∞(0, T 0, Cα(Ω). Finally in view of this and the L2(L2) bound for
u̇h we derive also uniform Hölder continuity of uh in time direction, i.e. (8)
holds. 2

5 Convergence of the Finite Element Approximation
and Existence of a Weak Solution in the Sense of
Young Measures

Due to the estimate (18) we may select a subsequence (uh|h→0) such that there
exists u ∈ L2

(
H1(Ω)

)
:

uh → u strongly in L2(L2), ∇uh ⇀ ∇u, u̇h ⇀ ut weakly in L2(L2). (49)

Furthermore, (18) implies ∇u ∈ L∞(L2). Since uh(t) ∈ H1
0 (Ωh) for all h and

dist(∂Ω, ∂Ωh) → 0, it also follows that u(t) ∈ H1
0 (Ω) , a. e. with respect to

t ∈ [0, T 0]. This holds without any assumption on ∂Ω - there is a proof using
capacity methods [5]. A simpler proof uses that ∂Ω has the so called segment
property [14] which is, after all, a mild assumption, cf. [1].
Finally, by Theorem 4.1, we have uniform convergence of the functions uh, in
particular, the estimate

ess sup
0≤t≤T 0

∫

BR∩Ω

|∇u|2 dx ≤ KRα, hence u ∈ Cα
(
Ω

)
a.e. in t.

Unfortunately, due to the lack of monotonicity, we do not have
∇uh → ∇u point-wise almost everywhere, so we cannot obtain that
ai(.,∇uh) → ai(., .,∇u), and we do not obtain weak solutions in the usual
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way. Instead of this we have to confine us to solutions in the sense of Young
measures. We use the setting as it is exposed by [8, 3, 12].

To this end we introduce the following notation: If ν is a probability mea-
sure on RN×2 and g ∈ C(RN×2), we set

〈ν, g〉 =

∫

RN×2

g(η)dν(η),

if it exists.

Definition 5.1 We call u ∈ L∞(H1
0 ) ∩ H1([0, T 0] × Ω) with u(0) = u0 a

measure valued solution to problem (1), (2) if there exists a parametrized family
(νt,x) with (t, x) ∈ [0, T 0]× Ω of probability measures on RN×2, such that the
mapping

[0, T 0]× Ω 3 (t, x) → 〈νt,x, a(t, x, ·)〉
is Lebesgue measurable for any Caratheodory function a (i.e. a is measurable
in (t, x) and continuous in η), and the following identities hold:

〈νt,x, id〉 = ∇u a.e. in (t, x) (50)∫∫

[0,T 0]×Ω

ut · ϕ + 〈νt,x, a〉∇ϕdx dt =

∫∫

[0,T 0]×Ω

f · ϕdx dt, (51)

for all ϕ ∈ C∞
0 ((0, t)×Ω). The function is called a Young measure solution if

there exists a q > 0 and a sequence (uk) ⊂ L2(H1) such that

∫

A

Φ(∇uk)d(x, y) →
∫

A

〈νt,x, Φ〉d(x, t)

for any measurable set A ⊂ [0, T 0]×Ω and Φ ∈ C(RN×2) with Φ(η) . 1+ |η|q.

Note that condition (51) implies that for ϕ ∈ C∞
0 (Ω),

d

dt
(u̇, ϕ) + (〈νt,x, a〉,∇ϕ) = (f, ϕ) a.e in t.

We use the results of [2] to prove our main theorem.

Theorem 5.1 Let Ω, ai, f and u0 meet the requirements of theorem 4.1 and
T > 0 arbitrary. Then there exists a function

u ∈ L∞(H1(Ω)) ∩ Cα/2([0, T 0]× Ω) ∩ L∞(0, T 0, Cα(Ω))

with ut ∈ L2(L2(Ω)) such that u solves the parabolic system (1) together with
the initial condition (2) in the sense of Young measure.

Proof. Let (hk) → 0 be a sequence of discretization parameters such that
(49) holds for h = hk. Applying Ball’s variant for the fundamental theorem
for Young measures [2] we obtain a family νt,x of probability measures on
RN×2 such that (50) holds. Using the growth condition (3) for the coefficient
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functions ai we obtain that the sequence a(·, ·,∇uh) is bounded in L2(L2).
Hence the main theorem in [2] together with remark [2, 3, p. 210] imply

a(·, ·,∇uh) ⇀ 〈νt,x, a〉 in L2(L2). (52)

In order to show (51) we use the finite element equation (13) in the formulation
(24) again:

T∫

0

{
(u̇h, ϕ) + (ah

i , Diϕ)− (f, ϕ)
}

dt =

=

T∫

0

{
(u̇h, ϕ− Ihϕ) +

(
ah

i , Di(ϕ− Ihϕ)
)− (f, ϕ− Ihϕ)

}
dt,

(53)

where ϕ ∈ C1
(
[0, T 0] × (Ω)

)
, and ϕ = 0 on ∂Ω for all t. Since u̇h, a

h
i are

bounded in L2([0, T 0]×Ω), the right hand side of (53) tends to 0 as h → 0, if
we take into account that

‖ϕh − Ihϕ‖L2([0,T 0]×Ω) + ‖∇ϕh −∇Ihϕ‖L2([0,T 0])×Ω = o(1) .

Owing to (49) and (52), the terms on the left hand side of (53) converge to

T∫

0

(ut, ϕ) dt +

T∫

0

∫

Ω

∫

RN×2

ai(·, ·, η)dνx,t(η) dx dt−
T∫

0

(f, ϕ)dt,

and we obtain, that the weak limit u of the finite element approximation sat-
isfies the equation (51). Furthermore, by Theorem 4.1, u ∈ Cα/2 with respect
to t and u ∈ Cα with respect to the spatial variable, while the initial condition
is fulfilled due to (14) and (15). This finishes the proof of the theorem. 2
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