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Abstract

We consider parabolic systems u; — div(a(Vu)) = f in two space
dimensions where the elliptic part is derived from a potential and is
coercive, but not monotone. With natural assumptions on the data we
obtain the existence of a long time Hoélder continuous solution in the
sense of Young measures.
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1 Introduction

In a recent paper [7] we have presented an a priori estimate in Morrey spaces
for systems of evolution equations under coerciveness and entropy conditions
without assuming monotonicity or ellipticity. This method is used here to
show the existence of long time Holder continuous weak solutions to a class of
parabolic system in two space variables where only coercivity and the existence
of a potential for the second order part is needed. The price for the lack of an
ellipticity /monotonicity condition is that we have to accept weak solutions in
the sense of Young measures (cf. Section 5). Nevertheless it is of interest that
Holder continuity is achieved although the special second order operator need
not be elliptic.

*This research was supported by the DFG, SFB 611 ”Singulire Phanomene und
Skalierung in mathematischen Modellen” and the SFB/TR 30 ”Prozessintegrierte Herstel-
lung funktional gradierter Strukturen auf der Grundlage thermomechanisch gekoppelter
Phénomene”



Let 2 C R? be a bounded domain with Lipschitz boundary. We consider a
parabolic system of the form

up — Z Dja;(t,x,Vu) = f in [0,7% x €,
i=1,2 (1)
uw=(uy,...,uy), a;=(aj,...,aY), V=V,

79 7

with homogeneous Dirichlet boundary condition and initial value condition
u(0) = ug, ug € H (), (2)

where H;(€2) denotes the usual Sobolev spaces of L?-functions such that Vu €
L?, and the traces on the boundary vanish. For technical reasons, we need
the coefficient functions defined on a slightly larger domain than 2. More
precisely, we fix a domain €; C R? with Q C ;. As in [7] we need that the
coefficient functions are derived from a potential A with specific properties,
i.e. there exists a function A : [0,7°] x ; x RV*? — R such that

5 ~A(t,z,n) = aj(t,z,n),a. e. in (¢, )
Ua

0
o aA(t,% n) = Ai(t, z,n) exists for all n € RY*? and a.e. in (¢,z),

o A Ay a? satisfy the Caratheodory condition, this means measurability
with respect to (t,z) for all n and continuity with respect to n a. e. in

(t,2)

e the following growth and coerciveness conditions hold true a.e. in ¢ and

xZ:
Alty ) + Atz + 3 Jai(te ) < ol + K 3)
i=1,2
N
SNoSatt e > aonl — K, Altwn) > adlnlP K (4)
i=1,2 v=1

with positive constants Cp, ap, @ and K (the letter K is reserved for constants
which need not to be specified, they can change from line to line).

For regular solutions u, we may test the equation (1) with the function wu,p
where ¢ is a sufficiently smooth function and obtain

i=1,2

T (5)

—l—/Adx‘tTl://futgadxdt.

t1

T
//[ufgp — Apy + Z a;us Dip — Atgo} dz dt
t1



Equation (5) can be called "local energy conservation” or, with an inequal-
ity sign <, "entropy condition”, the integrals on the left hand side are fi-
nite also for functions u € L?(H}(Q)) such that u, € L*(L*(Q)). (Here
L"(V) = L"(0,7°;V) is the L" space of V-valued functions on [0,7°], where
V' is any Banach-space.) In [7] we derived from (5) and natural regularity
conditions for the data a Morrey condition for Vu

esssup{ / \Vu\de’OgtSTo,xOEQ}SKR2a (6)

BR(J}())

which implies that the solution uw of (1) is contained in the Holder space
C2([0,T° x Q) in the case of two space dimensions. The method can be
applied for space dimensions > 3, too, however, this implies only a slight
improvement of the Sobolev imbedding exponent.

Since (5) is not known a priori by a solution v € L?(H}), v, € L*(L?),
the result from [7] is only an a priori estimate. In order to obtain existence
results, one has to find approximations of (1) with smooth solutions, but with
a structure which allows to repeat the method of proof in [7]. In particular,
the structure of an Euler operator for the second order part D;a; has
to be preserved.

A singular pertubation of (1) does not look promising, since it is not clear
how the special technique of weighted estimates used in [7] can be carried over
then. The best way to approximate equation (1) seems to be the finite element
method using continuous linear spline functions u,. The finite element setting
is exposed in next chapter. We obtain a sequence of continuous piecewise linear
functions wy, such that

i=1,2

u, — w weakly in L*(Hy), 1y — u weakly in L*(L?), (7)
SUp [|un(t, )llce@) +sup [lun(, 2)lloerzio o < K, (8)

as h tends to 0. The functions uy, solve (1) approximately and satisfy a discrete
analog of (6) uniformly for 0 < h < hg. The discrete Morrey estimate is the
main difficulty to prove, it is elaborated in chapter 3 and 4.

From (8) we conclude that the limit u is contained in C*/2(C®). The limit
u satisfies equation (1) in the sense of Young measures, see the explanations
and Theorem 5.1 in chapter 5.

Typical examples for our result are generated with the potentials

At,z, Vu) = 1| Vul® + po| divul® + H(| det Vul),
H convex, |H(§)| < K+ K¢, |[H'| < K, py, g >0 or

_ (P -1
AW = e

There is a vast literature on regularity of parabolic systems, see the bibliog-
raphy in [7, 13, 16, 11]. The regularity theory in the scalar case for nonlinear
parabolic equations has been treated in the classical book of Ladyzhenskaja,



Solonnikov and Uralceva [9], where Hélder continuity of scalar weak solutions
is obtained for arbitrary space dimension and more general nonlinearities with
coercive non-monotone spatial principal part. In [10] an example for a two
dimensional parabolic system is presented, which has a nonconvex (in fact,
quasiconvex) potential A and a solution nowhere better than Lipschitz. For
the non-monotone case which naturally leads to Young measure solutions con-
sult [12, 3].

We list some frequently used notation:

The expressions (-, )z, || - ||z denotes the scalar product and norm, respec-
tively, in L?(Z) where = C R? (the integration is performed with respect to
the spatial variables only), we omit the subscript =, if no confusion arises. We
also omit the domain of integration in our calculations if it is obvious. For
vector valued functions u in L? we mainly write u*(= Y1, u2) instead of |ul?.

Further we use the notation G < F' to indicate that G < K F', where K is
a generic constant.

The expressions D; as well as V™ always refer to spatial derivatives, while
the partial derivative with respect to t is indicated either by the subscript ¢ or
a dot: u; = %u = 1.

For R > 0, 29 € R? we denote by Br = Bg(zo) the open disk around =z
with radius R and by Qg the parabolic cylinder [T — R?,T] x Bg(xy).

We specify the assumptions on the data uy and f, we extend uy by zero
to a function in H}(€y), we assume that f € L*(L*(€;)) and up and f satisfy
the following Morrey conditions for

/ Vuo|* doe < R*Y, for all Br(xg) C Q. (9)
Br(z0)
/ fPde < R*,  forall Qg C [0, T x Q. (10)
Qr

2 Finite element approximation

Let Q C O, C R? be specified as in Section 1. We choose a set 7}, of closed
triangles such that Q, :=J Arer, C 4 with the additional properties:

1. diam Ay, < h for all Ay, € T,

2. If ApN A}, consists of exactly one point P, then P is a corner of Ay, and
A
3. If Ap, N A} consists of more than one point, then the intersection is a

common edge of Ay, and A,

4. There is a constant k such that each Ay, € T, contains a circle of radius
kh.

5. The set Qp := |J approximates 0, i.e. dist(0Q2,00,) = O(h) .
AReTy



The corners of the triangles Aj are called nodal points. The discrete neigh-
borhood of a nodal point P ¢ 0€Y, is the set of nodal points

NMu(P)={Q ¢ Qh‘Q is corner of a triangle A, € 7 having P as a corner } .

We use the following special finite element space
Vh = {Uh S Hé(Q]J N C(Qh) Uh‘Ah is linear for all Ah € %}

To each nodal point P ¢ 052, we associate a basis function w,lf € Vj, defined
by

wi(P) =1, w; (Q) = 0 for all nodal points Q # P. (11)
Clearly, the set
{w}|P is a nodal point ¢ 9, }

forms a basis of V3,. With [V;]" we denote the space of vector functions whose
components are in Vj,. The functions wy, € [V;]V, such that N — 1 components
vanish and the remaining component is a basis function of type (11), give rise
to a basis By, of [V3,]V.

We choose a finite element approximation of (1) in the following way: Find

un(t,r) = Y cu(thw(x), (12)

such that

2

(U, n) + Z (ai(t, -, Vun), Dign) = (f, ¢n) (13)

i=1
for all ¢ € [V4]V, a. e. with respect to t,
un(0,+) = ugn(-) . (14)

Due to (9) we may assume for the approximation ugy, € [V4]™

Ugp — g strongly in H* () (15)
/ \Vuon|? dv < KR* uniformly as h — 0, (16)
Br(2o)

4h§R§R0, Q?UEQ.

The system (13) is equivalent to the system of ordinary differential equations

2

Z éw(t)(w,w) + Z (ai(t, " Z CwDiw)aw) = (f(,t),lb)

weB, =1 weBy

for all w € By, a. e. with respect to t. Since the matrix ((w, w))w beB, is non-

singular, the theory of ordinary differential equations for absolutely continuous

>



functions gives us the existence of a global solution uy, : [0, T°] — V4]V of the
finite element approximation.

In fact, local solvability follows via Peano’s theorem in the setting of abso-
lute continuous functions and the global solvability follows via the extension
argument from the discrete energy equation

%(’L.Lh, uh) + %/A(t, ) Vuh) dx — /At(t, ) Vuh) dr = (f(t, -),uh) . (17)

Qp Qp

From the energy equality (17) we obtain the following estimates for the solu-
tions wuy, of (13) uniformly as h — 0:

T
esssup/|Vuh|2 dx+//uidxdt < Kr (18)
Qp

0<t<T
0 Qp

This follows from (17) by integrating from 0 to ¢ or 0 to 7', using the growth and
coerciveness assumptions for A and a;, combined with Gronwall’s inequality
and the L2-assumptions on f and ug,. This procedure is standard and is not
elaborated here.

We need some tools from the theory of finite elements. To formulate the
result we introduce the notation

ol = (32 [P as)”

AhEThAh

For v € C(Q), we use the Lagrange interpolation Iv := Y, v(P)w}, with
w} asin (11). Clearly, if supp v is compact in €, then supp I;v is only slightly
larger, i.e. supp Ipv C {z | dist(z,suppv) < h}.

Proposition 2.1 (cf [?7, p. 105 ff], e.g.)

(i) (Properties of the interpolation operator) For v € C(Q,) with U‘Ah €
H?(Ay,) for all Ay € Ty, and Iv as above, the following estimates hold

true:
v = Iywolla, S A" V™]q,,m=1,2 (19)
IV (v = 1), S hIV0llG, (20)
1Tnvlla, < llvlle, + RIIVYlla, + V0], (21)

with some constant not depending on h — 0.

(ii) For all vy, € V}, there holds the so-called inverse inequality

1
IVonlle, < 7 llvnlle,. (22)



Observe that it is necessary to use the norm || - ||" since neither v € H?(£2;) nor
Iyv € H*(Qy) is required. The proposition can be applied to any subdomain
Qo C Qy, then we write ||, ||q, in the norms of the right hand side.

We also need a weighted variant of (20): Let W = W" be defined by

T—1
Whit,z) = — , then
(t,) |z —xo|2+h2+T —t
|z — x0|* + h?

(lz — mo2+h2+T —1)*

(23)
Wth(ta T) =

Proposition 2.2 For all v € C(Q), such that v|a, € H*(Ay) for any triangle
Ay, € Ty, the following inequality holds with a constant independent of h and v:

W, 29 (0 — L) || S bW P2

Proof: Since (20) is proved by reducing the assertion to the triangles A, € 7p,,
it is enough to show

(W, (2)| < sup W, (z)] < BW, !(z) for z € A,

TEA

where Ay € 7y, arbitrary. The first inequality is trivial, to show the second we
assume o = 0 for simplicity and consider the annuli

Ay = {kh < |z| < (k+2)h} , =0,1,....
For z € Ay we have by elementary calculations

(T — 1)
((k+h)?+1)h?

E*h* + h* +2(T —t) +

-1 — g2 4 B2 T=t
< W Mt,x)=|z]*+h +2(T—t)+h2+‘x’2
(T —t)? 4(k+1)

< W't z) +4(k + 1)R* +

h? o ((k+2)+1)(k2+1)
< 5Wt_1(t,a:)

hence sup W, ' < 5W, (t, ).
xGAk

3 Discrete Morrey estimates for truncation terms

In order to prove a uniform Morrey estimate for the finite element approxima-
tion we adopt the arguments of [7].

We need to use the discrete variant of the energy-equality (5) with ¢ = 73,
and p = W%, where R > 0 is fixed and 7 denotes a localization function of
the form

Tr(t, ) = Y(t)C(|x = wol) ,



where

0, t<T—2R*t>T
Y(t) =< R2(t— (T —2R?), T—-2R*<t<T— R?
L T-R<t<T,

and ¢ € CZ(R) such that ((r) =1 for 0 < r < R, {(r) = 0 for |r| > 2R,
(IS BT I¢"(n)| < R

Since w74, U, W73 and (uj, — )73 are not admissible test functions in
the finite element equation (13), some additional arguments are necessary. We
keep z¢ fixed during this section and set Br = B(xzg, R) with R > 4h. If
o(t,-) € HY(Q) a.e. in t, then I € Vj, and the discretized equation (13) leads
to the identity

(in, ) + Y (al, Dip)

= (in, 9 — Ingp) + Z (al, Di(e — 1Inp)) + (f. Ine)
=:Ti(p) + Ta(p) + T;(sf)) , (24)

with @ = a(.,., Vuy). Note that the application of the interpolation operator
I, implies Bsp.y, as domain of integration in the L2-scalar product for Tj(¢).

Proposition 3.1 While testing with ¢ = Thuy, the following estimate holds
true for the truncation terms:

T2 ()| + [Ta(p)| <
| (s ity — In(inTi) ) | + Z | (o, DiltinTs — In(iins))) | (25)

S lnlli,,, + B2 Vunl,,, +1

a.e. with respect to t, where Asgp = Bop+n\Br—h.

Remark. Proposition 3.1 states that the truncation terms T} (¢) and Ty(¢p),
with ¢ = 724y, are estimated by hole filling terms, i. e. terms where the
domain of integration has the hole Br_.

Proof: Since 73 = 1 on Bg, we obtain
upTh — In(upth) = 0 for ¥ € Br_p, and @ ¢ Bopyy,

hence the domain of integration reduces to Asgp = Bagin\Br—p in both terms
on the left hand side. Using the notations of (24), Holder’s inequality together
with the interpolation estimate (19) leads to

T3 ()| S il asre P21V () [, -

Due to the choice of the space Vj, we have V2, = 0 on each triangle T' € 7p,,
hence
IV2 (i)l S S I Diin Dy + llin Di D3| -

i,J



Now the inverse inequality (22), the properties |D;73| < R, |D;Dith| < R™2
and the relation R > 4h implies

: - h h .
IV Tl S I Vinllamse + g linllsnse S Flldnll s,

hence
Ty (anti)| S N, - (26)

In a similar manner, we can treat the second term on the left hand side of (25)

(To(ini)] S D llaf | g | Dslintiy = In(inti) | S

7

S (IR Vunllany, + B Aoral?) BRIV (inTi) Iy, -

Here we also used the growth condition of a;, and the same arguments as for
(26) lead to
hR|V2(in i) 4y, S il Az

hence
Ty ()| S NIR'Vunl%,,, + 1+ llanlls,,,, (27)

and (26) together with (27) gives the assertion (25). O
The second series of estimates is gathered in the following proposition:

Proposition 3.2 Let W (t,z) be defined as in (23), then with ¢ = Wrhiy, we
have

Ta(0)] + [Ta(p)] <

| (i, Wy — I (W) | + D | (al, Dyl Wrg — In(inWr3))) | (28)
< VW, + K (102, + il )

Proof: We start with various elementary estimates related to the weight W
and the localization function 73, namely

h
h < <1 2
VW= (T —t+h?+ |z —z)12 = (29)
WV ST,
[DiD;W| S (T =t +h* + |z — zof*) 7", (30)

W2W, DD < 1

independent of z,z, T,t and h. Furthermore, for x € Byr\ Br, we get

_ T —t+|z— x>+ h*)% 1

W 1 Dz 2\12 < ( < 1

t | (TR)| ~ |x_$0‘2 R2 ~

W, WD D3> < R72 for © € Bog\Brg. (31)



Again applying the interpolation inequality (19), we obtain with (29) and
W<

T3 i W) < | PV (W)
. . ho . .
S Vil (AIVinl o+ Sllinll s + i) (32)

< il ..,

independent of h, R, xq and T as long as R > 4h.

Finally we have to estimate the term Ty (1, 73W). Using Holder’s inequality,
the growth condition for a; and the weighted interpolation inequality of 2.2 we
get

| To (W) <

< Z HG?th/Q”BzRHL HWtil/zv(thTIQ% - Ih(thTIZ%)) H (33)

1/2 1/2 ~1/2 :
S (VW 2l + 10, ) RIWE V20 W TR,
Exploiting again D;D;tu; = 0 on the interior of the triangles Ay, we have

D;D;(u,Wtp) = (Dying) (D;W )17 + (Dyin)W (Dyp) + (34)
+ iy (D;W D7, + D;W Diti + (D:D;W) T + W(D; Dy77)) -
Next we use (29)—(31) to obtain

PIW, 22 G - WrR)|

S blIVin| By + AV L] By Bs + Q%HMHBQR\BR + [[énll By

S Mlanl Byp s

now estimate (28) follows from (32) and (33). 0

The proof of the Morrey estimate needs a third type of test functions,
namely ¢ = (u), — uy)75, where

1 f updx if Bop C €,

_ 4rR
Up = 0B2r
0 else,
Fr=C((z —x0) - Y(t+ (T — R?)). (35)

Again we have to estimate the truncation terms which one has to accept since
(u —u)73 ¢ [V3])V. This is done in the following proposition.

Proposition 3.3 With ¢ = (uj, — uy,)75 in (24) the following estimate holds
true:

Ti(p) + Ta(@) = | (in, (un — )7 — In((un — ) 73) |+
| (el il — )7 — (o —w))]) [ < (36)

< B (inlyy, + IV W21, )

10



Proof: Arguing as in Proposition 3.1 with 7 = 1 on Bpg, in the left-hand
side of (36) there appear only integrals over Aspj,. A variant of Poincaré’s
inequality, [7, Prop. 6.1] gives

/ lup, — p|* do < / |z — 0| Vuy|* dz, (37)
A2R,h

AR n

if Aspp C Q. If Asgpp MO, # 0, we extend uy, by zero outside of
and replace Asgp by Asg in the righthand side of (37). This works since
up, vanishes on a sufficiently large subset of Ayr. Furthermore, we have the
obvious inequality

R2+ |z — x|?R™* < Wy for @ € Asgp (38)
From Holder’s inequality and Proposition 2.2, it follows

7 < ||ah||A2R,h ’ h(Hvuh%éHAQR,h + ||(uh - ﬂh) ’ V(%}Qz)”)BzR\BR
2 2
S Rt Ay, + ﬁHWﬁRHim + ﬁ”“h - ah”zBm\BR

< Rl ., + P2 Vun W2,
< R (Jlal,,, + IVunlWil 22, )

(39)

for the last two inequalities we used (37), (38) and finally the condition 4h < R.

To estimate the second term, we first note that |[W,|~'/? < R for |z —z|? <
4R?, R* < T —t < 4R?. Applying Holder’s inequality, then again the growth
condition (3) and the Proposition 2.2 we gain

(. Dy [(wn — )7 — I (e — m)73)] )|

h . .
S RUNVurl Wl L agg s+ A2y ) S IOV IV (= @) 77) [y
2 2

h h _
< B|[Vun Wil 2|, +1+ @HV%Himh + pallu— s,

The last two terms can be treated exactly as in (39), so that we end up with
(36). 0
Finally we must estimate

IT3(0)| < 1 f 1 Boren |6l Barns < KellF I, + €My,

which comes down to estimate I, using (21). We carry out the calculations
for ¢ = WAy, in the other cases the arguments run in a completely analogous
way or even simpler. With

Dj(WT]%uh) = DJW T}%uh + WDJ<7'12%)U}L + WTIQ%D]‘?.L}L

relation (34) for the second derivatives and taking into account the bounds
(29), (30) and
W+ |m2] + R|VTh| + R Vi S 1

11



we obtain

W TR o S Mlin o

. h . .
IV (W) oy S Fllinll gz + Bl V]| 5o

|| V2 (Wi <l v b Yy
IV W gt o S Bllinllzer + ZIVirllsen + 7+ 1+ 55 ) linlsop-

R2
Now we again exploit % < 1 together with the inverse inequality (22) and
arrive at the following bounds:

(W T5tn) || Bagsn + e (TR0) | Barsn S Nkl Ban

“Ih((uh - ah)%}%)|‘B2R+h 5 ||uh||B2R‘

4 Discrete Morrey Estimates for the Finite Element So-
lutions

In order to obtain uniform convergence for a subsequence of u; we can repro-
duce our proof from [7] and obtain a hole filling inequality

// {lanl® + [Vun|*[Wi|} do < K // {lin)? + |Vun?|We|} do + K R>.
Qr QmR\QR
(40)

In fact, in the proof here we can choose M = 8§, e.g. which is quite rough, by
the way, since we deal with a Lipschitz boundary 02, in [7, Sec. 6] we have
dealt with slightly weaker assumptions on the boundary.

for R > 4h and all parabolic cylinders (g, uniformly as h — 0, here W,
is defined as in (23). From (40) we derive the Morrey condition for |u]? +
|Vuy|?|Wy| in a standard way via the hole filling argument, cf. [7, (23)] and
[15].

We emphasize that in [7], the inequality (40) was derived by using the
following assertions: u € L>®(Hg ()N H([0,T°] x Q), u; € L*([0,T° x Q), u
satisfies the initial condition together with

// —utgp—kzal Vu) - Dypl dz dt = //fgpdxdt (41)

and the entropy inequality (5), respectively, for the three special test functions
o =uth, o = uW7h and ¢ = (u—u)74. Other than this only the growth and
coerciveness properties of the coefficients a; and their potential A were needed
in the argumentation.

If replace u by wuy, there appear the additional truncation terms T;(¢),
i = 1,2,3 on the right hand sides of the weak equation (41) and the en-
tropy inequality (5) for the approximations uy. The corresponding estimates
of Section 3 are the main part in treating the finite element approximations.

12



Otherwise the proof for (40) runs just along the same lines as in [7], therefore
we confine us to a mere sketch of the proof here to avoid a complete repetition.
We introduce the time intervals and the space-time cylinder

Ip=[T—-RT|, Ip=[T-2RT-R, Hp=.JI;5x B\ Brg).
1. Bounds for [[|Vu,|?|W;|dz: We choose ¢ = 1, W} in the basic equation
Qr

(24) and proceed estimating as in the first step of Section 3 in our paper [7].
We arrive at the inequality

//|vuh|2ywt|7;dxdt5 // Vup 2R da i+

,712><B2R

+K//|Vuh|2|I/Vt|dxdt+//u27§d$dt+3%+ (42)
IR

+ truncation terms.

The truncation terms here can be estimated using Proposition 3.2 by

: / IVanW (3, di o+ KR+ K / linll3,, . dt
fﬁR f\/iR

If any of the time intervals touches the value t = 0, we have to replace it by
the corresponding intersection of the interval with ¢ > 0 while the initial value
appears on the right hand side. Note that the right hand side of (42) contains
good terms, namely K R?' (coming from the right hand side f and the initial

condition up) and the integral [[. The terms
IR

//uifgdxdt < / linlls,, . dt

ST

will be estimated in a second step, and we will deal with the critical integral

Iviy = / |Vup|? R dw dt (43)
jRXBQR

in a third step.
We do not want to repeat the arguments which lead to (42) in detail but
want to give the hint, that the term [[|Vuy,|?|W;|73 da dt arises from

> / / al Dy (4, W) da dt

i=1,2

:// K%A(.,.,wh) —At(.,.,Vuh))} W2 du di+
+ Z / / ali, Dy(Wr3) da dt

i=1,2

13



as lower estimate for

— / / AVVtTI%2 dx dt + a pollution term containing 7; .

The pollution term containing 7; creates our critical term.

2. Bounds for [[ 43 dxdt: We choose ¢ = 1,75 in (24) and obtain

//uiTRdﬁdzH—// -+, Vuy TRdxdt—
—//At(-,',Vuh)T]%dl'dt—‘—22//G?UhVTR7—Rd$dt: (44)
i=1

= // fupTh dr dt + truncation terms .

The truncation terms are estimated in Proposition 3.1. The left hand side of
(44) is treated exactly as in our paper [7, Formula (35)]. This leads to the
estimate

//uiﬁ%dxdtgIcrit+//quh\2th|d:cdt+//uidxdtJrR%, (15)

A A

where the term R?' comes from pollution terms and the integral over f in view
of (10), and I..;; is defined in (43).
Employing our estimate (25) we conclude from (45)

//uhTRdxdt It + / {|Vun|Wy| + 4} dadt + R (46)

IrXAsR n

uniformly as h — 0, R > h, which completes the second step.
We combine (46) by multiplying (46) with a large constant and adding the
result to inequality (42). This leads to the ”pre-hole-filling inequality”

/ {ai + |[Vup!|Wi|} mhdz dt S L+

/ {i; + |[Vup | |Wy|} dedt + R*, R > 4h.
IrXxAsR n

3. Estimating the critical term via Cacciopoli’s inequality:
We intend to give a bound for the term [f; . [Vu[?R™?dzdt. To this end,
we choose

= (un — ) 7g
in the equation (24), where 75 is defined as in (35) and u;, as in Proposition
3.3. From Proposition 3.3 we have

/uh(uh — Uy, ) 7 dx + Z / al D;((uy, — ) 73) dx

i=1,2

SIFE AN wn = an) 7Rl + B (lanllh,, , + IVun W22, )

S RF@ AP+ B2 un — nll o + B2 ([, + 1 Venl Wil 212, )
(47)
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The left hand side of (47) is estimated as in [7], using the coerciveness condition
for a; and, in particular, again Poincaré’s inequality in a special form, namely

R_Q/|uh—ﬂh|2dac§R_2/|x—x0|2|Vuh|2dx
Bagr Baogr

if Byr = Bog(zo) C Q, and Byg has to be replaced by Byg, if Byr N CQ # 0.
(Observe that uy, can be extended by zero outside of €2, and u;, = 0 by definition
in this case.) Further we can estimate

1
‘/uh(uh—ah)ﬁ%daz‘ §R2/uidx+ﬁ/|uh—ﬂh|2dx

Bar Baogr
. 1
<R / uy dx + o2 / |z — x0|*|Vuy|* dz,
Bagr Bor

a.e. on [T —4R?, T — R? =: . Thus we obtain

Iy S R? / / al Dyup b dr dt + KR? < / / w dx dt

jRXBQR
1
+ R / |z — 20| Vup|* do dt + o3 right hand side of (47).
«jRXB4R

We take into account that R~z — 202 < |W;| and S X Big C Qur \ Qr.
Then, for R > 4h, we arrive at

It S // {a + |Vun|*|Wi|} dodt + KR> .
Q4r\QR-n

Together with the results of the first and second step of this chapter we finally
arrive at the hole filling inequality (40) and we have obtained the following

Theorem 4.1 Let Q@ C R? be a Lipschitz domain. Assume the coefficient
functions a; of problem (1) and their potential A fulfill the conditions formu-
lated in Section 1, in particular (3), (4), and the Morrey conditions (9) and
(10) hold for the data f and ug. Then the finite element approximations uy,
defined by (13), (14) satisfy (8), in particular they are uniformly bounded in
the Hélder-space C*/2([0,T°] x (Q) as h tends to 0.

Proof. The hole filling inequality implies Morrey’s condition

/ ip|? + |Vup|*dedt < R*, R > 4h, (48)
Qr

uniformly in A and R, up to the boundary (read Qg as Qg N [0,7] x £}, near
the boundary). Since |W;| > ¢oR ™2, ¢o > 0, on B \ Bgyu, after redefining R
we have

/ |V |*dx dt < R*T20,
Qr
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(see [7, Sect. 5] for the detailed argument). We inspect equation (44) once

more and use the term fttf %A(-, -, Vup)thdz dt to create an estimate

/A(-, o Vup ) Thd =, < /A(-, -, Vup)T3dw|i—s, + remainder.

The remaining terms satisfy a Morrey condition to (48). Averaging t; on
[ty — R?, t5] leads to

/ Vo Pdalr < / Ar2de + R < R,
Br

Now we have to use a discrete version of Morrey’s lemma, which holds true for
functions from V}, provided R > 4h. The proof can be done analogously as
in the finite difference case, see [4] or using the ”singularity”-estimates for the
discrete Green function Gy, [6] together with the representation

’Bh| TR<uh — l_Lh)dJJ = (V[(uh — ﬂh)TR], VGh)

By,

These arguments give uniform Holder continuity for wy, in space direction, i.e.
a bound in L*°(0, 7% C%(2). Finally in view of this and the L*(L?) bound for
U, we derive also uniform Holder continuity of uy, in time direction, i.e. (8)
holds. O

5 Convergence of the Finite Element Approximation
and Existence of a Weak Solution in the Sense of
Young Measures

Due to the estimate (18) we may select a subsequence (uy|n—0) such that there
exists u € L*(H*(Q)):

up, — u strongly in L*(L?), Vu, — Vu, 1y, — u; weakly in L*(L?). (49)

Furthermore, (18) implies Vu € L*(L?). Since uy(t) € Hy(Q4) for all h and
dist (99, 9Qy,) — 0, it also follows that u(t) € H}(Q), a. e. with respect to
t € [0, 7°. This holds without any assumption on 952 - there is a proof using
capacity methods [5]. A simpler proof uses that 02 has the so called segment
property [14] which is, after all, a mild assumption, cf. [1].

Finally, by Theorem 4.1, we have uniform convergence of the functions uy, in
particular, the estimate

ess sup / [Vul?dz < KR*, hence u € C*(Q) a.e. in t.
0<t<T0
BrNQ
Unfortunately, due to the lack of monotonicity, we do not have
Vu, — Vu point-wise almost everywhere, so we cannot obtain that
a;(., Vup) — a;(.,.,Vu), and we do not obtain weak solutions in the usual
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way. Instead of this we have to confine us to solutions in the sense of Young
measures. We use the setting as it is exposed by [8, 3, 12].

To this end we introduce the following notation: If v is a probability mea-
sure on RV*? and g € C(RV*?), we set

(v,9) = /RM g(n)dv(n),

if it exists.

Definition 5.1 We call w € L*®(H}) N HY([0,T° x Q) with u(0) = ug a
measure valued solution to problem (1), (2) if there exists a parametrized family
(Vi) with (t,x) € [0,T°] x Q of probability measures on RN*2 such that the
mapping

0,7 x Q> (t,2) — (W10, a(t, x,))
is Lebesgue measurable for any Caratheodory function a (i.e. a is measurable
in (t,x) and continuous in n), and the following identities hold:

(Vt,id) = Vu a.e. in (t,x) (50)
// - o+ (Vg a)Vodrdt = / f-edxdt, (51)
[0,T0]1x [0,T0]x 2

for all ¢ € C§((0,t) x Q). The function is called a Young measure solution if
there exists a ¢ > 0 and a sequence (uy,) C L>(H') such that

[ eVuitz) ~ [ @ @)dat
A A
for any measurable set A C [0,T°] x Q and ® € C(RN*?) with ®(n) < 1+ |n|.

Note that condition (51) implies that for ¢ € C§°(2),

d

dt<u 90) + (<Vt,x7 a>7 V@) = (f7 SO) a.ein t.
We use the results of [2] to prove our main theorem.

Theorem 5.1 Let 2, a;, f and ug meet the requirements of theorem 4.1 and
T > 0 arbitrary. Then there exists a function

we L2(HY Q) NC?(10,T° x Q) N L>®(0,T°, C%(Q))

with uy € L*(L*(Q)) such that u solves the parabolic system (1) together with
the initial condition (2) in the sense of Young measure.

Proof. Let (hy) — 0 be a sequence of discretization parameters such that
(49) holds for h = hy. Applying Ball’s variant for the fundamental theorem
for Young measures [2] we obtain a family 14, of probability measures on
RN*2 such that (50) holds. Using the growth condition (3) for the coefficient

17



functions a; we obtain that the sequence a(-,-, Vuy) is bounded in L*(L?).
[

Hence the main theorem in [2] together with remark [2, 3, p. 210] imply
a(-, -, Vup) = (Ui, a) in L*(L?). (52)

)
In order to show (51) we use the finite element equation (13) in the formulation
(24) again:

{(in, ) + (af', Dig) = (f,0) } dt =

St~

(53)

:/{(ah,so—lhsowr (', Di(p — Inp)) — (f, 0 — Ing)} dt,

where ¢ € C'([0,7°] x (€2)), and ¢ = 0 on 99 for all t. Since uy,a? are
bounded in L?([0,7°] x ), the right hand side of (53) tends to 0 as h — 0, if
we take into account that

lon — InllLzqoroixe) + IV — VIrp|| L2 oo <o = o(1) .
Owing to (49) and (52), the terms on the left hand side of (53) converge to

T

/ut, dt+// / a;(-, -, m)dvy (n) dox dt — /

Q RNX2 0

and we obtain, that the weak limit u of the finite element approximation sat-
isfies the equation (51). Furthermore, by Theorem 4.1, u € C/? with respect
to t and u € C'“ with respect to the spatial variable, while the initial condition
is fulfilled due to (14) and (15). This finishes the proof of the theorem. O
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