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ON BOUNDARY REGULARITY FOR THE STRESS IN
PROBLEMS OF LINEARIZED ELASTO-PLASTICITY

M. BULÍČEK, J. FREHSE, AND J. MÁLEK

Abstract. We investigate regularity properties of the stress tensor near the
boundary for models of elasto-plasticity in arbitrary dimension. Focusing on
special geometries, namely on balls and infinite strips, we obtain L2-estimates
for the tangential derivatives of the stress tensor near the boundary. We indi-
cate why these estimates may fail for more general domains. In addition, we
establish L2-estimates for (the trace of) the stress tensor on the boundary.

1. Introduction

We study regularity properties of solutions to problems arising from mechanics
of linearized elastic plastic materials (this part of continuum mechanics is usually
called linearized elasto-plasticity). Before we formulate results regarding mathemat-
ical analysis for some of these problems we briefly characterize what we mean by
linearized elastic plastic response of materials and we end up the presentation with
the formulations of relevant boundary value problems for the Prandtl-Reuss and
Hencky model of plasticity. Then we provide an overview of known results concern-
ing theoretical analysis of problems of linearized elasto-plasticity. We also introduce
notation, define suitable approximations of the original problem and summarize re-
sults concerning mathematical properties of these approximations. Boundary regu-
larity is then investigated for the Hencky model of plasticity although the analysis
for the Prandtl-Reuss model can be treated in a similar manner. In Section 2, we
establish results on uniform (approximation independent) estimates of tangential
derivatives in special geometries, and we indicate in Appendix why these estimates
are not proved for more general domains. Section 3 is devoted to the uniform
estimates for σσσ on the boundary again in special geometries. Finally, for sake of
completeness, interior regularity estimates are proved in Appendix. Moreover, some
version of the Korn-type inequality and the trace theorem in infinite domains are
established in Appendix as well.

1.1. Linearized Elasto-Plasticity. Let us consider a cylindrical steel bar with
the cross-section A subjected to a cyclic loading consisting of tension and compres-
sion along the axis of the bar. Assuming that the load F is uniformly distributed
over the end cross-sections of the bar then the stress σ equals F/A. The associated
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strain ε is equal to (∆`)/`, where ` is the original length of the bar and ∆` is its ex-
tension. It reveals (and these investigations go back to Hooke (1678)) that for small
deformations the ration between σ and ε is a constant of a given material. This
constant E is called Young’s modulus. Thus, for a bar under small cyclic loadings
we have E = σ/ε. Such a linearized elastic response holds up to a certain values
of the stress and strain. Complicated responses happen once this critical point in
the stress-strain plane is overcome; these responses are connected with the phe-
nomena such as nonlinear elasticity, yielding, (kinematic and isotropic) hardening,
softening, fatigue, to name a few. Except for nonlinear elastic response, the other
phenomena are associated with undergoing microstructural (entropy producing, ir-
reversible) changes in the body. Similar results as in the tension and compression
tests concern torsion or bending as well.

Linearized elasto-(perfect) plasticity idealizes this (in general very complicated)
response of the material as follows. If the value of the stress is below a critical
value κ (called the yield stress) the material responds as a linearized elastic solid.
Once the value of the yield stress κ is attained during the loading process then
without any change of stress the strain increases and this type of response is called
perfect plasticity. Upon unloading the material responds as a linearized elastic
material and we assume (as it is mostly done in linearized elasto-plasticity) that
this elastic response is the same independently of the state of the body in which the
unloading takes place. Due to microstructural irreversible changes that took place
when the yield condition was activated, this unloading process leads to a stress-
free state that is different from the initial (stress free) state. Rajagopal (1995)
and Rajagopal and Srinivasa (2004) call this stress-free configuration natural (or
preferred) configuration associated to the body. Thus, we can view (see Rajagopal
and Srinivasa (2004) for details) linearized elasto-plasticity as a class of elastic
responses from a corresponding class of evolving natural configurations (as said
above in the context of traditional elasto-plasticity it is assumed that these elastic
response functions are identical). From this point of view it is natural to split
the deformation into the sum1 of plastic and elastic response. How the class of
underlining natural configuration evolves (or how to characterize the constitutive
relation for the response relevant to plasticity) is determined by the maximization
of the rate of entropy production. For the sake of completeness we repeat here
this procedure in the context of small deformations (and refer to Rajagopal and
Srinivasa (2004) and Kratochv́ıl et al. (2004) for the complete treatment in the
context of large deformations).

Let us assume that a body occupies a set Ω ⊂ Rd. Since we assume a priori
that considered deformations are small, the initial, current and preferred (natural)
configurations coincide and the deformation gradient is well approximated by the
linearized strain tensor εεε(u) defined as

εεε(u) :=
1
2
(∇u + (∇u)T ) ,

where u is the displacement. We also assume that the density is uniform (and the
balance of mass is automatically fulfilled) and the inertia effects in the balance of

1In the context of large deformations the sum is ”replaced” by a composition of two deformation
tensors; one is relevant to instanteneous elastic (reversible) response of the body, the other to
microstructural (irreversible) changes, see Rajagopal and Srinivasa (2004).
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linear momentum are neglectable, which leads to the equation

(1.1) − divσσσ = f in [0, T ]× Ω,

where σσσ is the Cauchy stress, f denotes the density of given external body forces
and T > 0 is a given time.

Even in a purely mechanical context considered here we require that the reduced
thermomechanical identity (RTI in short) holds. Since for the linearized strain the
symmetric part of the velocity gradient equals to εεε(u̇), RTI takes the form

(1.2) σσσ · εεε(u̇)− ψ̇∗ = ξ ,

where ψ∗ is the Helmholtz potential and ξ denotes the rate of entropy production;
if ξ ≥ 0 then the second law of thermodynamics is satisfied. At this point we focus
on the appropriate constitutive equations for ξ and ψ∗.

As stated above, the linearized elasto-plasticity is characterized by the decom-
position of the linearized strain εεε(u) into the elastic part eel and the plastic part
ep, i.e.,

(1.3) εεε(u) = eel + ep .

The Helmholtz potential is supposed to be a function of eel. This means that

(1.4) ψ∗ = ψ∗(eel) = ψ∗(εεε(u)− ep) .

Inserting (1.4) with eel = εεε(u)− ep into (1.2) we obtain

(1.5)
(

σσσ − ∂ψ∗

∂eel

)
· εεε(u̇) +

∂ψ∗

∂eel
· ėp = ξ .

If the response of the material does not dissipate any energy, i.e., if the material
responds elastically, then ξ = 0, ep = 0 and2

(1.7) σσσ =
∂ψ∗

∂eel
.

In elasto-plasticity, requiring that (1.7) holds, (1.5) simplifies to

(1.8)
∂ψ∗

∂eel
· ėp = ξ .

Next, we assume that the constitutive equation for ξ is of the form

(1.9) ξ = ξ̃(ėp) = κ|ėp|
(
= κ

(
ėp · ėp

)1/2
)

(κ > 0) .

Since the plastic part of the strain is relevant to fluid like behavior of the incom-
pressible material it is reasonable to also assume that

(1.10) trep = 0 .

Applying the principle of maximization of the rate of entropy production, which
means that we maximize ξ̃ w.r.t. ėp considering (1.8) and (1.10) as the constraints,
the necessary condition for the extremum of this constrained maximization then

2For example, the isotropic homogeneous linearized elastic solid is characterized by the consti-
tutive equation:

(1.6) ψ∗(eel) =
λ

2
(tr eel)

2 + µ eel · eel .

Note that if ep = 0 (1.7) leads to σσσ = λ trεεε(u) + 2µεεε(u).
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leads to the equation (here γ1 and γ2 denote Lagrange multipliers associated to the
constraints (1.8) and (1.10))

(1.11)
1 + γ1

γ1

∂ξ̃

∂ėp
=

∂ψ∗

∂eel
− γ2

γ1

∂ tr ėp

∂ėp
= σσσ − γ2

γ1
III ,

where the last equality holds due to (1.7).
Hence, taking the scalar product of (1.11) with ėp and using (1.8) and (1.9)

we deduce that (1 + γ1)/γ1 = 1. Then, taking the trace of (1.11) and using the
constraint (1.10) we obtain that γ2/γ1 = 1

d trσσσ. Thus, setting σσσD := σσσ − 1
d (trσ)III

(the deviatoric part of σσσ) and using (1.9) and (1.11) we end up with the equation

(1.12) κ
ėp

|ėp| = σσσD .

This equation however holds only if ėp 6= 0. If so, then (1.12) implies the so-called
von Mises yield condition

(1.13) |σσσD| = κ.

It also follows from (1.12) that |σσσD| < κ implies ėp = 0 and the material responds
purely elastically. One can thus summarize all these observations into the following
compact Kuhn-Tucker form

ėp = φσσσD with φ ≥ 0 , |σσσD| − κ ≤ 0 and φ (|σσσD| − κ) = 0 ,(1.14)

where φ = |ėp|/κ = |ėp|/|σσσD|.
There are other activation criteria that may be obtained by considering aniso-

tropic elastic response and that are connected with names such as Rankine, Saint-
Venant, Tresca, etc. Since we deal in our theoretical analysis only with von Mises
condition (1.13) we skip details concerning the other conditions here.

1.2. Formulations of boundary value problems. Let us assume that the do-
main Ω that is occupied by the body is an open (possibly unbounded) C2-domain
with two parts of boundary ∂Ω1 and ∂Ω2. We assume that the displacement is
given on ∂Ω1 and the normal traction is given on ∂Ω2. We also prescribe the
initial stress and assume that (1.7) and (1.14) hold. If we summarize all these rela-
tions we obtain a mixed boundary value problems for the Prandtl-Reuss model of
elasto-plasticity (see Prandtl (1924); Reuss (1930)):

To find (σσσ, u, eel,ep) : [0, T ]× Ω → Rd×d × Rd × Rd×d × Rd×d such that

− divσσσ = f , εεε(u) = eel + ep, σσσ =
∂ψ∗(eel)

∂eel
in [0, T ]× Ω,

ėp = |ėp|σ
σσD

κ
with |σσσD| ≤ K and |ėp|(|σσσD| − κ) = 0 ,

u = u0 on [0, T ]× ∂Ω1, σσσn = fn on [0, T ]× ∂Ω2 ,

σσσ(0, x) = σσσ0(x) in Ω.

(1.15)

Another popular model of elastoplasticity is the Hencky model that is fomally
obtained from (1.15) by replacing ėp by ep. Thus, the mixed boundary value
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problem for the Hencky model (see Hencky (1924)) of elasto-plasticity reads as:

To find (σσσ, u, eel, ep) : Ω → Rd×d × Rd × Rd×d × Rd×d such that

− divσσσ = f , εεε(u) = eel + ep, σσσ =
∂ψ∗(eel)

∂eel
in Ω,

ep = |ep|σ
σσD

κ
with |σσσD| ≤ K and |ep|(|σσσD| − κ) = 0 ,

u = u0 on ∂Ω1, σσσn = fn on ∂Ω2.

(1.16)

Before we provide a variational formulation of (1.15) and (1.16) we recall several
facts concerning primar and dual formulations in linearized elasticity. In what
follows, we thus assume that ep = 0 (and consequently εεε(u) = eel) and that the
stress and the strain are given by an invertible mapping

(1.17) σσσ = BBB(x,εεε) :=
∂ψ∗(x,εεε)

∂εεε
, εεε = BBB−1(x,σσσ) = AAA(x,σσσ) =:

∂ψ(x,σσσ)
∂σσσ

.

If the relations in (1.17) are linear and the material is homogeneous in the sense
that the response is the same at all x ∈ Ω (1.17) simplifies to

(1.18) σσσ = BBBεεε and εεε = AAAσσσ (BBB = AAA−1) .

Recall that the invertibility of AAA and the symmetry of AAAσσσ lead to the observation
that AAA has to satisfy

(1.19) Aijkh = Aijhk = Ajikh = Akhij (i, j, k, h = 1, . . . , d)

and that BBB is consequently given by

BijkhAkhlm = δilδjm.

It is also worth remarking that the linear structure stated in (1.18) gives the relation
between the corresponding Helmoltz potential ψ∗(εεε) and its dual potential ψ(σσσ),
namely,

(1.20) 2ψ(σσσ) = AAAσσσ · σσσ = BBBεεε · εεε = 2ψ∗(εεε).

This (and Hooke’s relation as well) underlies certain symmetric role of σσσ and εεε in the
linearized elasticity. Recently, Rajagopal and Srinivasa (2007) develop the elasticity
for general ψ of the form ψ = ψ̃(σσσ,εεε) and showed that one can incorporate a
very complicated nonlinear hysteretic response within such an implicit constitutive
framework.

A reason why the explicit form (1.18)1 has been preferable is obvious: inserting
(1.18)1 into (1.1), we see that it immediately leads to an elliptic partial differential
equation of second order (assuming that BBB is positively definite) for which the theory
is well known (see Korn (1907); Lichtenstein (1921) for the proof of the existence
of a classical solution and Duvaut and Lions (1976); Nečas and Hlaváček (1980) for
the formulation in Sobolev spaces). In addition, the regularity of the solution for
these models is known and one can simply apply the theory developed for elliptic
partial differential equations of second order.

It is however well known that (weak formulations of) mixed boundary value
problems of the linearized elasticity can be reformulated equivalently (again either
in terms of εεε(u) or in terms of σσσ) by incorporating methods of calculus of variations.
Indeed, if we define the set of all admissible displacements as

Del := {u ∈ W 1,2(Ω)d; u = u0 on ∂Ω1},



6 M. BULÍČEK, J. FREHSE, AND J. MÁLEK

and the set of all admissible stresses as

Fel := {σσσ ∈ L2(Ω)d×d; σσσ = σσσT , −divσσσ = f , σσσ · n = fn on ∂Ω2},
then (weak formulations of) mixed boundary value problems of the linearized elas-
ticity is equivalent to (note that εεε := εεε(u))

Find u ∈ Del that minimizes:
1
2

∫

Ω

BBBεεε · εεε− f · εεε dx−
∫

∂Ω2

fn · u dS ,(1.21)

or to

Find σσσ ∈ Fel that minimizes:
1
2

∫

Ω

AAAσσσ · σσσ dx−
∫

∂Ω1

σσσn · u0 dS .(1.22)

For the proof of equivalence we refer to Duvaut and Lions (1976) or to Temam
(1985). Note that (1.21) is called primary formulation (of relevant problem) and
(1.22) is called the dual formulation.

At this point, we return to the boundary value problems 1.15 and 1.16 of lin-
earized elasto-plasticity by generalizing the dual formulation (1.22). We first ob-
serve that in the linearized elasto-(perfect) plasticity the Helmholtz potential is
given through (compare it with (1.20)1)

ψpl(σσσ) :=





1
2
AAAσσσ · σσσ if |σσσD| ≤ κ,

+∞ if |σσσD| > κ.
(1.23)

Such a formulation reflects the requirement that the magnitude of σD cannot over-
come the critical yield stress κ and consequently such a possibility is penalized by
infinite amount of energy.

Thus, defining a new set of admissible stresses as

F := {σσσ ∈ L2(Ω)d×d; σσσ = σσσT , −divσσσ = f , σσσ · n = fn on ∂Ω2, |σσσD| ≤ κ},
we can reformulate the Hencky model (1.16) (and generalize (1.22)) in the following
way:

(H) Find σσσ ∈ F that minimize:
1
2

∫

Ω

AAAσσσ · σσσ dx−
∫

∂Ω1

σσσn · u0 dS.

Analogously, we can reformulate the Prandtl-Reuss model (1.15):

(PR) Find σσσ ∈ F that minimize:
1
2

∫

Ω

AAAσ̇σσ · σ̇σσ dx−
∫

∂Ω1

σ̇σσn · u̇0 dS.

Note that a function ψ∗ that would be dual to ψpl from (1.23) cannot be written
down explicitly as a function of εεε in general, but only as a function of eel. For further
discussion see3 Duvaut and Lions (1976); Prager and Hodge (1951), Anzellotti and
Giaquinta (1980, 1982) (where the authors firstly recovered the displacements in a
primal formulation for which they used variational integrals with convex functions

3Note also that in this case (1.17)1 is still valid but (1.17)2 must be represented as a multi-
valued mapping that has the form

εεε = AAAσσσ + εεε1,

where εεε1 is an arbitrary matrix satisfying for all ξξξ, |ξξξD| ≤ κ the relation εεε1 · (ξξξ−σσσ) ≤ 0. Here, we
refer to Rajagopal (2003), Rajagopal (2005) and Rajagopal and Srinivasa (2008) for more details
regarding modeling of material responses within the context of implicit constitutive theory, and
to Buĺıček et al. (2009) and Málek (2008) for mathematical results for implicitely constituted fluid
models.
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of measures), Kohn and Temam (1983) (who firstly presented the adequate setting
of the function spaces which are used in the dual formulation of Hencky’s model)
and Temam (1985) (where the existence of a solution of such a minimum problem
and also the corresponding displacement u is established in details).

1.3. A survey of results dealing with regularity of stress tensor in lin-
earized elasto-plasticity. We are interested in knowing if it is possible to prove
that for some α > 0 the quantity σσσ, a unique solution of (H), belongs to Wα,2(Ω)d×d,
and if the analogous result holds for the Prantl-Reuss model (PR) as well.

Interior regularity (it means σσσ ∈ W 1,2
loc (Ω)d×d) to (H) has been established in

Seregin (1990, 1992, 1996a) (for primal formulation) and Bensoussan and Frehse
(1993) (for dual formulation). See also Bensoussan and Frehse (1996) for the exten-
sion of the same result to (PR) (and Demyanov (2009) for an alternative proof).
On the other hand, there are only few results for regularity of σσσ near the bound-
ary: while the results proved in Frehse and Málek (1999); Knees (2006); Steinhauer
(2003) and Blum and Frehse (2008) suggest that at least L2 -regularity of the
tangential derivatives of σσσ should hold up to the boundary and that the normal
derivatives belongs to some fractional Sobolev space, the result of Seregin (1996b)
who constructed a sequence of approximations for which some essential quantity
explodes when approaching the limit problem (H) gives a significant warning re-
garding the global (even fractional) regularity. We discuss both types of results in
a more detail.

The usual procedure how to obtain the desired regularity (or even how to es-
tablish the existence result) is to penalize the problem (H) in a suitable way (this
approach is used in Duvaut and Lions (1976) and Johnson (1976) for problems
involving perfect-plasticity problem, and by Johnson (1978) and Hlaváček et al.
(1988) for problems with hardening). One such a possibility is to replaced the
Helmholtz potential Ψpl, see (1.23), by a penalized function Ψp of the form (here a
real parameter p should guarantee the validity of von Mises yield condition |σD| ≤ κ
if p →∞)

(1.24) ψp(σσσ) :=
1
2
AAAσσσ · σσσ + ψp

pen(σσσD),

Then one can similarly as in (1.17) look for the solution to (1.1) with relevant
boundary condition and the constitutive relation of the form

(1.25) AAAσσσ +
∂ψp

pen(σσσD)
∂σσσD

= εεε(u) .

Assuming that AAA, one can insert (1.25) into (1.1) and apply the theory for elliptic
PDE’s (for a fixed p) and then investigate the behavior of soutions as p → ∞.
Among many, there are several kinds of penalization that are frequently used. The
first one is the so-called4 Norton-Hoff model (see Hoff (1954); Norton (1929) or
Temam (1985))

(1.26) ψp
pen(σσσD) :=

1
pκp

|σσσD|p.
Next, a very important general class of penalizations is the so-called Hohenemser-
Prager model dated to 30’s, see Lubliner (1990). If one is interested in approxi-
mating the von Mises relation (1.13) by the Hohenemser-Prager model, then one

4This model is also called the Ramberg-Osgood model (see Ramberg and Osgood (1943)).
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arrives at the Perčina-Mises model (see Lubliner (1990) for details) for which the
penalty term has the form

(1.27) ψp
pen(σσσD) :=

1
2p

((|σσσD| − κ)+)2.

Another possibility for approximation is to penalize the distance of σσσ from the set
{σσσ; |σσσD| ≤ κ} (see Lubliner (1990) for details).

In the present paper we use the Perčina-Mises model (1.27). The main advan-
tage of this approximation is the fact that one can use standard L2 theory for
elliptic PDEs to get W 1,2 regularity for the approximation from the very begin-
ning. On the other hand, it is an interesting open problem for this approximation
to get W 1,2

loc (Ω) estimates independently of p for dimension d ≥ 5 (see Appendix for
details) although we already know that the limit solution of the Hencky problem
satisfies such a property. This can be shown by using for example the Norton-Hoff
approximation. Indeed, in case we consider (1.26), we immediately get Lp estimates
on σσσD which are used to estimate certain pollution terms while proving W 1,2

loc es-
timates on σσσ independently of p. However, also the Norton-Hoff approximation
(1.26) is connected with some open problems: it is not known whether for fixed
p, the stress tensor σσσ is bounded; the regularity near the boundary is worse (for
fixed p) than the regularity of the solution to the model (1.27) and it depends very
essentially on p and moreover blows up as p →∞.

There are only a few results dealing with regularity near the boundary. The first
global result was established by Frehse and Málek (1999) where the Norton-Hoff
approximation is used and the uniform (p-independent) estimates on tangential
derivatives in whole Ω in case that Ω is a two-dimensional ball and if ∂Ω2 = ∅
and u0 ≡ 0 are established. If d = 2, 3, Knees (2006) (Theorem 3.6, page 1373)
showed (by using the Norton-Hoff approximation) that for sufficiently smooth data
the solution σσσ belongs for all δ > 0 to the space W

1
2−δ,2(Ω) uniformly as p → ∞.

Steinhauer (2003) showed that for d = 2 and all p ∈ (2,∞) fixed, the solution σσσ
of the Norton-Hoff approximation of the Hencky problem belongs to Cα(Ω)2×2 for
some α > 0 (for similar result ses also Bildhauer and Fuchs (2007)). Recently,
Blum and Frehse (2008) have considered a planar stress model where the three-
dimensional situation is reduced to a two-dimensional Hencky type model where
the von Mises condition (1.13) is replaced by the condition

σσσ ∈ R3×3
sym; σi3 = 0 for all i = 1, 2, 3; |σσσ − trσσσ

3
III| ≤ κ.

The authors used the fact that tensors from this set have better properties than
tensors satisfying |σσσD| = |σσσ− trσσσ

2 III| ≤ κ, that is of course the relation corresponding
to (1.13) and to the two-dimensional setting. and this fact allowed them to establish
that the tangential derivatives of the stress σσσ belongs to the space L2 and that the
normal derivatives belongs to the space5 W− 1

2 ,2 provided that Ω is smooth enough
(Ω is C1,1 domain). It remains to mention that for sufficiently smooth f it is an
consequence of a priori estimates and the Nečas theorem that the solution of Hencky
model σσσ ∈ Lq(Ω)d×d for arbitrary q ∈ [1,∞) (see Temam (1985); Steinhauer (2003)
for details).

5In fact the authors showed the estimate on derivatives in normal direction only for flat bound-
ary, but it can be straight-forwardly generalized to arbitrary domains.
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An observation made by Seregin (1996b) is of a completely different character.
In the two-dimensional torus Ω := B(0, 2) \B(0, 1) Seregin constructed a sequence
of smooth approximations (σp, up) that converges to the solution of (H) and in
addition satisfying

(1.28)
∫

∂Ω

εεε(up) · ∇σσσpn dS
p→∞→ ∞ .

Seregin’s conjecture was that either his approximation is not suitable or W 1,2 regu-
larity does not hold at least for non-convex domains. The fact that (1.28) strongly
indicates irregular behavior of the solution to (H) follows from the following ob-
servation. Applying ∇ to (1.25) and multiplying the result by ∇σσσp and finally
integrating over Ω we obatin the identity where the integrals that give the desired
estimates for W 1,2-regularity remain on the left hand side (we assume that ψp

pen

is a “good” penalization). However, on the right hand side one obtains (assuming
u = 0 on boundary; see Appendix for details) that

∫

Ω

∇εεε(up) · ∇σσσp dx = −
∫

Ω

up · 4f dx +
∫

∂Ω

εεε(up) · ∇σσσpn dS.

Since the first integral on the right hand side can be usually bounded from apriori
estimates if one puts a suitable assumption on f , we indeed observe that (1.28)
indicates some blow-up effects.

This paper shows how one can overcome such difficulties in some domains of
special geometry (the domain from Seregin (1996b) is allowed) and how one can
get the full estimates on tangential derivatives in arbitrary dimension. Moreover,
if Ω is a d-dimensional ball, we establish the estimates on L2-norm of σσσ on the
boundary that are independent of approximation. Having in addition interior reg-
ularity and also regularity in tangential directions, this also indicates that at least
W

1
2−δ,2 regularity should hold that is in perfect coincidence of 2D or 3D results in

Knees (2006); Blum and Frehse (2008). For simplicity we prove our results only for
homogeneous Dirichlet boundary condition on ∂Ω1, i.e, we set

u0 ≡ 0.

To complete this overview of known results we recall the results concerning the
regularity of the displacement u. It is a consequence of embedding theorem that
u ∈ L

d
d−1 (Ω)d (see Temam (1985) for details). Moreover, Hardt and Kinderlehrer

(1986) proved that there exists δ > 0 such that u ∈ L
d

d−1+δ(Ω)d. Concerning the
higher regularity of the displacement u, in general dimension it is known that εεε(u)
belongs to the space of measures.

1.4. Notation and auxiliary results. By bold italic letters we always mean a
vector or a vector-valued function on Rd, i.e. v(x) := (v1(x), . . . , vd(x)). Tensors of
d×d order are written by bold Greek letters, e.g. (σσσ)ij := σij . Tensors of d×d×d×d

order are written by bold capital letters. If a ∈ Lp(Ω) and b ∈ Lp′(Ω) (p′ denote
the dual exponent, i.e., p′ := p

p−1 ) we use the abbreviation (a, b) :=
∫
Ω

ab dx and
we use the same notation also for vector- or tensor-valued functions. We also use
the standard notation for Lebesgue and Sobolev spaces. Moreover, for these spaces
on unbounded domains Ω and for some α ∈ R we define

Lp
α(Ω) := {v;

∫

Ω

(|v|(1 + |x|)α)p dx ≤ C}
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and similarly we define

W k,p
α (Ω) := {v;∀i = 0, . . . , k

∫

Ω

(|∇iv|(1 + |x|)α)p dx ≤ C}.

Consequently, we define ‖u‖k,p,(α) :=
∑k

i=0(
∫
Ω
(|∇iu|(1 + |x|)α)p dx)

1
p . Since we

consider only one type of unbounded domain we say that Ω is an infinite strip if
Ω := {(x1, . . . , xd); 0 < xd < 1}.

For simplicity, we omit the dependence of AAA on x and we assume that it is a
constant symmetric tensor that for all σσσ ∈ Rd×d

sym satisfies

(1.29) ν0|σσσ|2 ≤ AAAσσσ · σσσ ≤ ν1|σσσ|2.
In order to be able to get some a priori uniform estimates we have to assume the
existence of a “safe” load (introduced by Duvaut and Lions (1976), see also Johnson
(1976)), i.e., the existence of some σσσ0 such that for some fixed δ0 > 0

(1.30) |(σσσ0)D| ≤ κ− δ0, −divσσσ0 = f , σσσ0 · n|∂Ω2 = fn.

Next, we introduce a µ-approximation of (H) for which we get the final estimates
on regularity near the boundary and consequently, after letting µ → 0+ also for
limit problem (H). Such a procedure is somehow standard and from this reason we
focus only on the estimates that are independent of µ. Hence, we define (by using
(1.25) and (1.27))

AAAσσσ + µ−1(|σσσD| − κ)+
σσσD

|σσσD| = εεε(u) in Ω,

− divσσσ = f in Ω,

u = 0 on ∂Ω1,

σσσ · n = fn on ∂Ω2.

(Hµ)

Note, that one can also introduce the corresponding approximation to (PR) as

AAAσ̇σσ + µ−1(|σσσD| − κ)+
σσσD

|σσσD| = εεε(u̇) in Ω,

− divσσσ = f in Ω,

u = 0 on ∂Ω1,

σσσ · n = fn on ∂Ω2.

(PRµ)

We should mention that in Frehse and Málek (1999), that is somehow basis
for this paper, the authors considered the Norton-Hoff approximation, for which
they were able to establish their regularity results. The reason why we use slightly
different structure is that we can simply use elliptic theory to obtain regularity
of solution for our approximative problem and therefore at least on the level of
approximation we have regularity up to the boundary. These results are formulated
without proof in the following lemma where the constant C is an universal constant
depending only on the data but not on the order of approximation µ. If there is
any dependence on µ it is clearly denoted in the text.

Lemma 1.1. Let Ω be an open bounded smooth domain or infinite strip. Assume
that f ∈ L2(Ω). In addition, if ∂Ω1 = ∅, assume that the compatibility condition

(1.31) −
∫

Ω

f dx =
∫

∂Ω2

fn dS
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holds. Then there exists a solution to (Hµ) such that

(1.32) ‖σσσ‖1,2 + ‖u‖2,2 ≤ C(µ−1).

Moreover, if (1.30) holds and f ∈ W 1,d
α (Ω)d for some α > d−1

2 then the following
uniform estimate holds

‖σσσ‖2 + ‖div u‖2 + µ−1‖(|σσσD| − κ)+(1 + |σσσD|)‖1 ≤ C,

‖u‖ d
d−1 ,(−α) + ‖εεε(u)‖1,(−α) ≤ C.

(1.33)

Moreover, assuming that f ∈ W 2,d
loc (Ω)d and that d ≤ 4 we have

(1.34) ‖∇σσσ‖2,loc + µ−1

∫

Ωloc

(|σσσD| − κ)+
|σσσD| |∇σσσD|2 dx ≤ C.

Here we add only a few comments to the proof of Lemma 1.1. The existence and
uniqueness of solution that satisfies (1.32) follows from standard elliptic theory.
The first part of the estimate (1.33) can be shown by testing (Hµ)1 by σσσ − σσσ0

and by using (1.30) (Note that σσσ0 satisfies the safe load condition (1.30)). The
second part then follows from the Korn-type inequality. For the proof of uniform
(µ-independent estimate) (1.34), see Lemma C.1 in Appendix.

For sake of completeness we recall the Korn-type inequality and the trace theo-
rem for bounded domains. The proof can be found in Temam (1985). A proof for
unbounded domains is given in Appendix of this paper.

Lemma 1.2. Let Ω ∈ C1 be an open bounded set. Define the space LD as

(1.35) LD := {u ∈ L1(Ω)d;εεε(u) ∈ L1(Ω)d×d}
endowed with the norm ‖u‖LD := ‖u‖1 + ‖εεε(u)‖1. Then the space LD is continu-
ously embedded into Ld′(Ω)d. Moreover, there exists the linear continuous surjective
trace operator tr : LD → L1(∂Ω)d such that for all u ∈ C1(Ω)d, tr u = u|∂Ω. In
addition, assume that either there exists ∂Ω3 ⊂ ∂Ω of non-zero measure such that
tru = 0 on ∂Ω3 or that

∫
Ω

u = 0, then there holds

‖u‖1,∂Ω ≤ C‖εεε(u)‖1,(1.36)

‖u‖d′ ≤ C‖εεε(u)‖1.(1.37)

2. Uniform estimates of tangential derivatives for (Hµ)

This section consists of the estimates of derivatives of σσσ in tangential directions
for the approximative model (Hµ). We deal with two types of domain Ω. The
first one consists of a ball or an annulus, the second one is an infinite band located
between two parallel plates.

First, we assume the case for balls centered at zero with radii R, i.e., we assume
that the normal vector n at each point of ∂Ω can be written as n = ±|R|−1(x1, . . . , xd).
We also introduce the projection of the gradient of a scalar function w to the tangent
plane as (we denote x := (x1, . . . , xd))

(2.1) TTTw := |x|2∇w − (∇w · x)x.

In such a setting we prove the following uniform estimate for tangential derivatives
of σσσ, i.e., for TTTσσσ, where (TTTσσσ)ij := TTTσij .
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Theorem 2.1. Let d be arbitrary, R > r > 0. Assume that Ω = B(0, R) \B(0, r),
∂Ω2 = ∂B(0, r) and ∂Ω1 = ∂B(0, R). In addition assume that fn ≡ 0. If σσσ is a
solution to (Hµ) and f ∈ W 2,d(Ω)d then σσσ obeys the following uniform estimate

(2.2) ‖TTTσσσ‖22 + µ−1

∫

Ω

(|σσσD| − κ)+
|σσσD| |TTTσσσ|2 + µ−1κ

∫

Ω

χ{|σσσD|>κ}
|TTT|σσσD|2|2
|σσσD|3 ≤ C.

Theorem 2.1 extends the result established in Frehse and Málek (1999) and Blum
and Frehse (2008) in two directions. First, it holds in arbitrary dimension while
in Frehse and Málek (1999) and in Blum and Frehse (2008) the same6 result was
proved only in dimension two. Second, we permit also the Neumann boundary
condition for σσσ which was also not included in Frehse and Málek (1999) and Blum
and Frehse (2008). The result of Theorem 2.1 can be also easily extended to the
case when ∂Ω1 = ∅ or ∂Ω2 = ∅, or onto the case when Ω = B(0, R), i.e., Ω is a
ball. However, since this is in fact no generalization but just a simplification we do
not deal with it.

In addition, if one considers only two-dimensional case than the result can be
strengthen also for non-concentric balls (now circles) and we formulate the result in
the following Corollary. Since the proof is based on using interior regularity result
(see (1.34)) and on using the same procedure as in the proof of Theorem 2.1 with
a proper cut-off function, we do not present it here for simplicity.

Corollary 2.1. Assume that Ω ⊂ R2 be a bounded open set with smooth boundary
∂Ω. In addition, assume that there are x0 ∈ Ω and r > 0 such that the one-
dimensional Hausdorf measure of7 Γ := ∂Ω1 ∩ ∂B(x0, r) is not zero. In addition
assume that fn ≡ 0. If σσσ is a solution to (Hµ) and f ∈ W 2,2(Ω)2 then σσσ obeys the
following uniform estimate

(2.3) ‖TTTσσσξ‖22+µ−1

∫

Ω

(|σσσD| − κ)+
|σσσD| |TTTσσσ|2ξ+µ−1κ

∫

Ω

χ{|σσσD|>κ}
|TTT|σσσD|2|2
|σσσD|3 ξ ≤ C(h−1),

where ξ ∈ D(R2) such that 0 ≤ ξ ≤ 1, and for sufficiently small h there holds
ξ(x) = 1 for all x ∈ Ω such that dist (x, Γ) ≤ h and dist (x, ∂Γ) ≥ 2h, and
ξ(x) = 0 if dist (x,Γ) ≥ 2h or dist (x, ∂Γ) ≤ h.

The second setting we want to deal with is the case when ∂Ω consists of two
infinite hyperplanes, i.e., we assume that Ω := {x ∈ Rd; 0 < xd < 1}. For this
model we establish the following result:

Theorem 2.2. Let d be arbitrary, ∂Ω1 = {x; xd = 0} and ∂Ω2 = {x; xd = 1}.
Assume that f ∈ W 2,d

α (Ω)d for some α > d−1
2 . Setting Ds = ∂

∂xs
for all s =

1, . . . , d− 1, then the following estimate holds for the same s:

(2.4) ‖Dsσσσ‖22 + µ−1

∫

Ω

(|σσσD| − κ)+
|σσσD| |Dsσσσ|2 + µ−1κ

∫

Ω

χ{|σσσD|>κ}
|Ds|σσσD|2|2
|σσσD|3 ≤ C.

We would like to emphasize that the right-hand side of (2.4) is µ-independent
and that we are able to include also the Neumann boundary condition. It is also
clear from the proof that as in Theorem 2.1 we can extend our results to case
with only Neumann boundary conditions or Dirichlet boundary conditions. For
simplicity we omit it here.

6In fact, in Blum and Frehse (2008) the result holds for slightly different yield condition.
7The same result holds if one replaces ∂Ω1 by ∂Ω2.
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Proof of Theorem 2.1. For simplicity, we assume that R = 1 and r = 1
2 . We also

introduce the notation for tangential derivatives in one tangential direction as8

(2.5) Ta1...ad−2 := εija1...ad−2xiDj

that fully describes all tangential derivatives on ∂Ω. Note that the symbol εa1...ad

(with ak ∈ {1, . . . , d}) represents the d-generalization of the classical Levi-Civita
symbol, i.e., we assume that it is fully antisymmetric d−order tensor, or in other
words it can be defined as εa1...ad

:= sign {a1, . . . , ad}. To be more specific, in three
dimensional setting, the definition (2.5) includes just three tangential derivatives

T1 := x2D3 − x3D2, T2 := x3D1 − x1D3, and T3 := x1D2 − x2D1.

Finally, it is easy to observe that the operator TTT is generated by operators Ta1...ad−2 ,
namely we have that |TTTu(x)|2 = C(d)|x|2 ∑ |Ta1...ad−2u(x)|2. Having (2.5), one can
easily observe the following commutator relation

(2.6) DlTa1...ad−2 − Ta1...ad−2Dl = εlma1...ad−2Dm.

Next, we apply the operator Ta1...ad−2 to (Hµ), take the scalar product with Ta1...ad−2σσσ,
sum over all indices a1, . . . , ad−2 and integrate the result over9 Ω, we simply get
(using Einstein summation convention)

(AAATa1...ad−2σσσ, Ta1...ad−2σσσ) + µ−1

∫

Ω

(|σσσD| − κ)+
|σσσD| |Ta1...ad−2σσσD|2

+ 4−1µ−1κ

∫

Ω

χ{|σσσD|>κ}
|Ta1...ad−2 |σσσD|2|2

|σσσD|3 = (Ta1...ad−2εεε(u), Ta1...ad−2σσσ).

(2.7)

The left hand side of (2.7) can be estimated as follows

(LHS) ≥ C(d)
(
ν0‖TTTσσσ‖2 + µ−1

∫

Ω

(|σσσD| − κ)+
|σσσD| |TTTσσσD|2

+ µ−1κ

∫

Ω

χ{|σσσD|>κ}
|TTT|σσσD|2|2
|σσσD|3

)
.

(2.8)

The essential step is to estimate the right hand side of (2.7). In order to do
it rigorously, we define for arbitrary δ > 0 the cut-off function Vδ ∈ D(Ω) as
Vδ(x) := Vδ(|x|2) such that Vδ(s) = 0 for s ∈ [1− δ, 1], V (s) = 1 for s ∈ [0, 1− 2δ]
and such that |V ′

δ | ≤ Cδ−1 uniformly for all δ. Then the RHS of (2.7) can be
rewritten as

(Ta1...ad−2εεε(u), Ta1...ad−2σσσ) = (Ta1...ad−2Djui, Ta1...ad−2σijVδ)

+ (Ta1...ad−2Djui, Ta1...ad−2σij(1− Vδ)).
(2.9)

Clearly, the second term in (2.9) tends to 0 as δ → 0. So it remains to discuss
the first integral in (2.9). Next, for fixed δ, we define for arbitrary 0 < η < δ the
standard mollification uη := u ∗ νη where νη is standard mollification kernel with

8Note that some of them are taken several times. Also, for d = 2 we set T := x1D2 − x2D1.
9Note that due to the even nonuniform estimates (1.32) such procedure is rigorous at the level

of µ-approximations
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support in a ball of radii η. Hence, for fixed δ, we can decompose the first integral
in (2.9)

(Ta1...ad−2Djui, Ta1...ad−2σijVδ) = (Ta1...ad−2Dj(ui − uη
i ), Ta1...ad−2σijVδ)

+ (Ta1...ad−2Dju
η
i , Ta1...ad−2σijVδ)

(2.10)

such that the first integral tends to zero (for fixed δ) as η → 0. Finally, we start to
estimate the remaining integral from (2.10). Hence,

Iδ
η := (Ta1...ad−2Dju

η
i , Ta1...ad−2σijVδ)

(2.6)
= (DjTa1...ad−2u

η
i , Ta1...ad−2σijVδ)− εjma1...ad−2(Dmuη

i , Ta1...ad−2σijVδ)
by parts

= −(Ta1...ad−2DjTa1...ad−2u
η
i , σijVδ)− (DjTa1...ad−2u

η
i , σijTa1...ad−2Vδ)

+ εkla1...ad−2(DjTa1...ad−2u
η
i , σijVδxknl)∂Ω − εjma1...ad−2(Dmuη

i , Ta1...ad−2σijVδ).

Since εkla1...ad−2 is antisymmetric w.r.t. k, l and xknl is symmetric on ∂Ω the
third integral vanishes (it is a consequence of the fact that Ta1...ad−2 is a derivative
in a tangential direction). Also since Vδ depends only on |x| and consequently
Ta1...ad−2Vδ = 0, the second integral vanishes as well. Therefore

Iδ
η = −(Ta1...ad−2DjTa1...ad−2u

η
i , σijVδ)− εjma1...ad−2(Dmuη

i , Ta1...ad−2σijVδ)
(2.6)
= −(DjTa1...ad−2Ta1...ad−2u

η
i , σijVδ) + εjma1...ad−2(DmTa1...ad−2u

η
i , σijVδ)

− εjma1...ad−2(Dmuη
i , Ta1...ad−2σijVδ).

Next, we apply the integration by parts to the first term and use (Hµ)2. We obtain

Iδ
η = −(Ta1...ad−2Ta1...ad−2u

η
i , fiVδ) + (Ta1...ad−2Ta1...ad−2u

η
i , σijDjVδ)

− (Ta1...ad−2Ta1...ad−2u
η
i , σijnjVδ)∂Ω + εjma1...ad−2(DmTa1...ad−2u

η
i , σijVδ)

− εjma1...ad−2(Dmuη
i , Ta1...ad−2σijVδ).

The third integral again vanishes because σijnj = 0 on ∂Ω2 and Vδ = 0 on ∂Ω1.
Next, integration by parts applied to the second integral leads to (boundary integral
again vanishes since Ta1...ad−2 is tangential derivative)

Iδ
η = −(Ta1...ad−2Ta1...ad−2u

η
i , fiVδ)− (Ta1...ad−2u

η
i , Ta1...ad−2σijDjVδ)

− (Ta1...ad−2u
η
i , σijTa1...ad−2(DjVδ)) + εjma1...ad−2(DmTa1...ad−2u

η
i , σijVδ)

− εjma1...ad−2(Dmuη
i , Ta1...ad−2σijVδ).

Next, we let η → 0 and then δ → 0 and investigate behavior of involved terms
separately. This procedure is simple with the first, fourth and fifth term on the
right hand side since we have to our disposal the estimate (non-uniform in µ) (1.32).
It is also easy to take the limit η → 0 in the second and third term and observe
that

lim
η→0

(Ta1...ad−2ui, Ta1...ad−2σ
η
ijDjVδ) = (Ta1...ad−2ui, Ta1...ad−2σijDjVδ),

lim
η→0

(Ta1...ad−2u
η
i , σijTa1...ad−2(DjVδ)) = (Ta1...ad−2ui, σijTa1...ad−2(DjVδ)).

Moreover, since Ta1...ad−2Vδ=0 and the commutator relation (2.6) holds we obtain

(Ta1...ad−2ui, σijTa1...ad−2(DjVδ)) = εjma1...ad−2(Ta1...ad−2ui, σijDmVδ)).
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The next step is to let δ → 0 in remaining integrals. Since ∇2u ∈ L2(Ω)d×d×d and
u = 0 on ∂Ω1, we see (since Ta1...ad−2 is derivative in tangential direction) that

Ta1...ad−2ui = 0 on ∂Ω1 and therefore
Ta1...ad−2ui(x)

dist (x,∂Ω1)
∈ L2(Ω). Hence,

(Ta1...ad−2ui, Ta1...ad−2σijDjVδ) ≤ C

∥∥∥∥
Ta1...ad−2ui(x)
dist (x, ∂Ω)

∥∥∥∥
2

‖∇σσσ‖2,B(0,1)\B(0,1−2δ)
δ→0→ 0.

Using the same procedure we also obtain that

(Ta1...ad−2ui, σijDmVδ))
δ→0→ 0.

Thus, we can conclude that

(Ta1...ad−2εεε(u), Ta1...ad−2σσσ) = lim
δ→0

lim
η→0

Iδ
η

= −(Ta1...ad−2Ta1...ad−2ui, fi) + εjma1...ad−2(DmTa1...ad−2ui, σij)

− εjma1...ad−2(Dmui, Ta1...ad−2σij) =: I1 + I2 + I3.

(2.11)

Regarding I1 we first integrate by parts (note that boundary term vanishes due
to the fact that Ta1...ad−2 represents a derivative in tangential direction) and then
conlcude that

(2.12) I1 = −(ui, Ta1...ad−2Ta1...ad−2fi) ≤ C‖u‖ d
d−1

‖f‖2,d

(1.33)

≤ C

Regarding I2 we use the commutator estimate (2.6) and then integrate by parts
w.r.t. Ta1...ad−2 (boundary integral again vanishes) and obtain

I2
(2.6)
= εjma1...ad−2(Ta1...ad−2Dmui, σij) + εjma1...ad−2εmna1...ad−2(Dnui, σij)

= −εjma1...ad−2(Dmui, Ta1...ad−2σij) + εjma1...ad−2εmna1...ad−2(Dnui, σij).

(2.13)

Consequently, combining (2.11) and (2.13), we deduce that

I2 + I3 = −2εjma1...ad−2(Dmui, Ta1...ad−2σij) + εjma1...ad−2εmna1...ad−2(Dnui, σij)
=: I4 + I5.

Next, recalling the definition of εjma1...ad−2 and we observe that it is enough to take
the sum in for I5 only over indices j = n. Moreover, using the antisymmetry of
εjma1...ad−2 and integrating by parts (boundary integral disappears because u = 0
on ∂Ω1 and σσσ · n = 0 on ∂Ω2) we are led to the following observation:

I5 = −εmna1...ad−2εmna1...ad−2(Dnui, σin) = −(d− 1)!(Dnui, σin)

= (d− 1)!(ui, Dnσin)
(Hµ)2= −(d− 1)!(u,f) ≤ C‖u‖ d

d−1
‖f‖d

(1.33)

≤ C.

Regarding I4, we have

I4 = −2εjma1...ad−2(Dmui + Dium, Ta1...ad−2σij) + 2εjma1...ad−2(Dium, Ta1...ad−2σij)

= −2εjma1...ad−2(Dmui + Dium, Ta1...ad−2(σD)ij)

− 2εjma1...ad−2(Dmui + Dium, Ta1...ad−2(σij − (σD)ij))

+ 2εjma1...ad−2(Dium, Ta1...ad−2σij) =: I6 + I7 + I8.

To estimate I6 we use the equation (Hµ)1 and obtain
1
2
(Dmui + Dium, Ta1...ad−2σij) ≤ ‖AAAσσσ‖2‖TTTσσσD‖2 + µ−1((|σσσD| − κ)+|TTTσσσD|)(2.14)
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Consequently, using the assumption on AAA (1.29), the estimates that are uniform
w.r.t. µ (1.33), the relation (2.8), and the Young inequality, we observe that

I6 ≤ Cd!ν1‖σσσ‖2‖TTTσσσ‖2 + Cd!µ−1((|σσσD| − κ)+|TTTσσσD|) ≤ C +
1
2
(LHS) of (2.7).

Further, since σij − (σD)ij = d−1δijtrσσσ, we can simplify the equation for I7 and
obtain

I7 = −2d−1εjma1...ad−2(Dmuj + Djum, Ta1...ad−2 trσσσ).

Since εjma1...ad−2 is antisymmetric w.r.t. j, m and Dmuj + Djum is symmetric, we
can easily conclude that I7 = 0. Finally, to estimate I8 we integrate twice by parts,
first10 w.r.t. Ta1...ad−2 (boundary integral vanishes, since Ta1...ad−2 is derivative in
tangential direction on the boundary), secondly we use the commutator relation
(2.6) and finally we integrate by parts w.r.t. Di (the boundary integral again
vanishes since Ta1...ad−2u = 0 on ∂Ω1 and σσσn = 0 on ∂Ω2), more precisely

I8 = −2εjma1...ad−2(Ta1...ad−2Dium, σij)

= −2εjma1...ad−2(DiTa1...ad−2um, σij) + 2εjma1...ad−2εina1...ad−2(Dnum, σij)

= −2εjma1...ad−2(Ta1...ad−2um, fj) + 2εjma1...ad−2εina1...ad−2(Dnum, σij)
=: I9 + I10.

In I9 we integrate again by parts to obtain

I9 = 2εjma1...ad−2(um, Ta1...ad−2fj) ≤ C‖u‖ d
d−1

‖f‖1,d

(1.33)

≤ C.

Finally, we need to estimate I10. To do it, we first observe that it is enough to take
into account the case when j = i and m = n, or the case when j = n and i = m.
(Another choice of indices leads to εjma1...ad−2εina1...ad−2 = 0.) Hence we have

I10 = −2εmja1...ad−2εina1...ad−2(Dnum, σij)

= −2ε2
mna1...ad−2

(Dnum, σmn) + 2ε2
mia1...ad−2

(Dmum, σii)

= 2(d− 2)!(δmn − 1) ((Dnum, σmn)− (Dmum, σnn))

= 2(d− 2)! (−(Dnum, σmn) + (Dnun, σnn)− (Dnun, σnn) + (Dmum, σnn))

= −2(d− 2)!(∇u,σσσ) + 2(d− 2)!(div u, trσσσ).

Consequently, integrating by parts in the first term and using (1.33) we conclude

I10 = −2(d− 2)!(u, f) + 2(d− 2)!(div u, trσσσ) ≤ C .

Combining all the above estimates for I1–I10 and inserting them into (2.7), we
observe that the estimate (2.2) holds. The proof of Theorem 2.1 is complete. ¤

Proof of Theorem 2.2. First, we define the cut-off function Vk as

Vk(x) := Vk(x1, . . . , xd−1) =

{
1 if |xi| ≤ k ∀i ∈ {1, . . . , d− 1},
0 if ∃i ∈ {1, . . . , d− 1}, |xi| > 2k,

(2.15)

such that

(2.16) |DsVk| ≤ C

k
.

10This procedure is possible because for the approximate problem we have enough regularity,
namely (1.32)
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Then, for arbitrary fixed s ∈ {1, . . . , d−1}, we apply Ds to the equation (Hµ), take
the scalar product of the result with DsσσσVk and integrate the result over Ω. This
results to the equality∫

Ω

AAADsσσσ ·DsσσσVk + µ−1

∫

Ω

(|σσσD| − κ)+
|σσσD| |DsσσσD|2Vk

+ 4−1µ−1κ

∫

Ω

χ{|σσσD|>κ}
|Ds|σσσD|2|2
|σσσD|3 Vk =

∫

Ω

Dsεεε(u) ·DsσσσVk := I1.

(2.17)

It follows from the assumption (1.29) that LHS of (2.17) leads precisely (after
letting k →∞ and using e.g. the Fatou lemma) to the LHS of (2.4). So, it remains
to estimate I1. To do it, we use integration by parts11 and since Dsui|∂Ω1 = 0
and Dsσid|∂Ω2 = 0 all boundary integrals are zero. Hence, using also the fact that
−divσσσ = f , we observe that

I1 = (DsDjui, DsσijVk) = (Dsui, DsfiVk)− (Dsui, DsσijDjVk)

= −(ui, D
2
sfiVk)− (ui, DsfiDsVk)− (Dsui, DsσijDjVk) := I2 + I3 + I4.

Using the a priori estimates (1.33) and the assumption on f , one can easily conclude
that

I2 ≤ ‖u‖ d
d−1 ,(−α)‖f‖2,d,(α) ≤ C.

Using also the property of Vk (2.16), we immediately obtain that

I3
k→∞→ 0.

Finally, to estimate I4, we use (1.32) and (2.16) and observe that

I4 ≤ C(µ−1)
1
k

k→∞→ 0 ,

which completes the proof of Theorem 2.2. ¤

3. L2-estimate of σσσ on the boundary

In this section we establish L2 estimates on boundary for σσσ provided that Ω is a
ball. Even if the proof is very straightforward it seems that it is a new result.

Theorem 3.1. Let d be arbitrary, Ω = B(0, R) be a ball and f ∈ W 1,d(Ω)d.
Assume that either ∂Ω1 = ∅ and fn ∈ L∞(∂Ω)d, or ∂Ω2 = ∅. Then there holds

(3.1)
∫

∂Ω

|σσσ|2 + µ−1((|σσσD| − κ)+)2 dS ≤ C.

Proof of Theorem 3.1. First we denote by symbol DN the normal derivative, i.e.,
we define

DN := xiDi.

Note that we immediately obtain the commutator relation

(3.2) DjDN −DNDj = Dj .

First we consider the case ∂Ω2 = ∅, which means that u = 0 on ∂Ω. We multiply
(Hµ) by DNσσσ and integrate the result over Ω to get

(3.3) I1 + I2 + I3 := (AAAσσσ,DNσσσ) + µ−1(
(|σσσD| − κ)+

|σσσD| σσσD, DNσσσ)− (εεε(u), DNσσσ) = 0.

11We prove it only formally, since we do not know what is the meaning of DsDjσij . However

the whole procedure can be made rigorously, for details see the proof of Theorem 2.1.
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Using the symmetry of AAA we observe that

I1 =
1
2

∫

Ω

DN (AAAσσσ · σσσ) =
R

2

∫

∂Ω

AAAσσσ · σσσ − d

2
(AAAσσσ,σσσ)

(1.33),(1.29)

≥ ν0

2

∫

∂Ω

|σσσ|2 dS − C.

(3.4)

For I2 we use similar procedure to get

I2 =
1
2µ

∫

Ω

DN ((|σσσD| − κ)+)2

=
R

2µ

∫

∂Ω

((|σσσD| − κ)+)2 dS − d

2µ

∫

Ω

((|σσσD| − κ)+)2

(1.33)

≥ R

2µ

∫

∂Ω

((|σσσD| − κ)+)2 dS − C.

(3.5)

Finally, considering I3, we integrate by parts (boundary integral disappears because
u = 0 on boundary), use the commutator relation (3.2) and the equation − divσσσ =
f . Then we conclude that

(3.6) −I3 = (Djui, DNσij) = (u, DNf) + (u,f)
(1.33)

≤ C‖f‖1,d ≤ C.

Combining (3.3)–(3.6) we easily get (3.1).
For second case, i.e., if ∂Ω1 = ∅ we slightly change the procedure as follows. We

apply DN to (Hµ)1 and then multiply the result by σσσ and integrate over Ω to get

(3.7) I1 +I2 +I3 := (AAADNσσσ,σσσ)+µ−1(DN (
(|σσσD| − κ)+

|σσσD| σσσD),σσσ)−(DNεεε(u),σσσ) = 0.

The reason for this change follows from the way how I3 is treated. Now we can
again integrate by parts in I3 (all boundary integrals vanish because σσσ · n = 0 on
∂Ω) to obtain

−I3 = (DNDjui, σij) = −(DjDNui, σij)− (Djui, σij) = −(DNui, fi)− (ui, fi)

= (d− 1)(u, f) + (u, DNf)−R2

∫

∂Ω

uifi dS

(1.33)(1.36)

≤ C(‖f‖1,d + ‖f‖∞,∂Ω) ≤ C.

(3.8)

For I1 we have exactly same relation as (3.4). So it remains to estimate I2.

I2 = µ−1

∫

Ω

(
(|σσσD| − κ)+ + κξ{|σσσD|>κ}

)
DN |σσσD|

= µ−1

∫

Ω

DN

(
((|σσσD| − κ)+)2 + κ(|σσσD| − κ)+

)

= Rµ−1

∫

∂Ω

(
((|σσσD| − κ)+)2 + κ(|σσσD| − κ)+

)
dS

− dµ−1

∫

Ω

((|σσσD| − κ)+)2 + κ(|σσσD| − κ)+

(1.33)

≥ Rµ−1

∫

∂Ω

(
((|σσσD| − κ)+)2 + κ(|σσσD| − κ)+

)
dS − C.

(3.9)

Consequently, having (3.7)–(3.9), (3.1) easily follows. ¤
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Appendix A. Why the proof of Theorem 2.1 fails for ellipse

This part is devoted to a short discussion why the proof of Theorem 2.1 cannot
be simply adapted to other domains, e.g., ellipse. Hence we assume that Ω ⊂ R2 is
an ellipse with center at 0 and axis of the length a, b. In this setting, the tangential
derivative (now we denote it by T ) is given by

T := ax1D2 − bx2D1

and the corresponding commutator relation has the form

(A.1) D1T − TD1 = aD2, D2T − TD2 = −bD1.

Next, we will follow step by step the proof of Theorem 2.1 (we just omit the regu-
larization procedure and we will make all computation formally). Hence, applying
T to (Hµ), taking the scalar product with Tσσσ and integrating it over Ω, we get

ν0‖Tσσσ‖2 + µ−1

∫

Ω

(|σσσD| − κ)+
|σσσD| |TσσσD|2

+ 4−1µ−1κ

∫

Ω

χ{|σσσD|>κ}
|T |σσσD|2|2
|σσσD|3 ≤ C(TDjui, Tσij).

(A.2)

Following the proof of Theorem 2.1 (we also use the same notation for In for
corresponding terms), we integrate by parts (all boundary integrals again vanish)

I := (TDjui, Tσij)
(A.1)
= (DjTui, Tσij)− (aD2ui, Tσi1) + (bD1ui, Tσi2)

= −(Tui, DjTσij)− (aD2ui, Tσi1) + (bD1ui, Tσi2)

= −−(Tui, T fi)︸ ︷︷ ︸
I1

− (Tui, aD2σi1) + (Tui, bD1σi2)︸ ︷︷ ︸
I2

− (aD2ui, Tσi1) + (bD1ui, Tσi2)︸ ︷︷ ︸
I3

.

Similarly as before, we deduce that

(A.3) I1 ≤ C‖u‖ d
d−1

‖f‖2,d.

Next,

I2 + I3 = −a(D2ui, Tσi1)− ab(D1ui, σi1) + b(D1ui, Tσi2)− ab(D2ui, σi2)

− (aD2ui, Tσi1) + (bD1ui, Tσi2)

= −ab(u, f)︸ ︷︷ ︸
I5

− 2a(D2ui, Tσi1) + 2b(D1ui, Tσi2)︸ ︷︷ ︸
I4

.

For I4 we derive

I4 = −2a(D2ui + Diu2, T (σD)i1) + 2b(D1ui + Diu1, T (σD)i2)

− 2a(D2ui + Diu2, T (σ − σD)i1) + 2b(D1ui + Diu1, T (σ − σD)i2)

+ 2a(Diu2, Tσi1)− 2b(Diu1, Tσi2) =: I6 + I7 + I8.

The integral I6 can be estimated in the exactly same way as in the proof of Theorem
2.1. Note that the fact that we test the equation by tensor with zero trace is
essential. For I8, we can compute
1
2
I8 = −a(u2, DiTσi1) + b(u1, DiTσi2) = a(u2, Tf1)− b(u1, T f2)

− a2(u2, D2σ11) + ab(u2, D1σ21) + ab(u1, D2σ12)− b2(u1, D1σ22) =: I9 + I10
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and we see that I9 can be again simply bounded. Thus, it remains to estimate I7

and I10. Since σij − (σD)ij = 2−1δijtrσσσ, we can simplify the relation for I7 as

I7 = (b− a)(D1u2 + D2u1, T trσσσ)

and we see that I7 = 0 only if a = b, i.e., for ball. From a similar reason the
computation that has been successfully used in the proof of Theorem 2.1 to bound
I10 cannot be used here and we are not able to handle I10.

Appendix B. Trace theorem and Korn-type inequality in unbounded
domains

This part of the appendix is devoted to estimates in unbounded domain that
corresponds to

‖ · ‖d′ ≤ C‖εεε(·)‖1, ‖ · ‖1,∂Ω ≤ C(‖ · ‖1 + ‖εεε(·)‖1)
that are valid in bounded open sufficiently smooth domains (for proof see for exam-
ple Temam (1985)). For simplicity12, we assume that Ω = {(x1, . . . , xd); 0 < xd <
1}. For such domain we can proof the following

Lemma B.1. Let d ≥ 2 and u ∈ W 1,2(Ω)d. Then for all α < − (2−p)(d−1)
2p and

all13 p ∈ [1, 2), there holds

(B.1) ‖u‖ dp
d−p ,α ≤ C(α)‖εεε(u)‖p,α

whenever the right hand side of (B.1) is finite.

Proof. From the definition W 1,2(Ω) we can find a sequence {un}∞n=1 ⊂ D(R)d

such that ∇un → ∇u strongly in L2. Defining V (x) := (K + |x|)−α and using
the standard Korn inequality (for the case p = 1 see (Temam, 1985, the proof of
Theorem 1.2, page 125)) we get that

(B.2) ‖unV ‖ dp
d−p

≤ C‖εεε(unV )‖p,

where the constant C depends only on the dimension. Next, we can compute
‖εεε(unV )‖p ≤ ‖εεε(un)V ‖p + ‖un|∇V ‖p

≤ ‖εεε(un)V ‖p + ‖unV ‖ dp
d−p

‖V −1|∇V |‖d
(B.3)

Next, since |∇V |V −1 ≤ C(d)(K+|x|)−1, we see that (using the fact the our domain
is “infinite” only in (d − 1) variables) we have that ‖V −1|∇V |‖d ≤ C(K), where
C(K) → 0 as K →∞. Hence, we can find such K ∈ (0,∞) that

‖V −1|∇V |‖d ≤ 1
2
.

Substituting this into (B.3) and using (B.2), we finally get

(B.4) ‖unV ‖ dp
d−p

≤ C‖εεε(un)V ‖p.

12In fact, the result can be extended in many directions. First one is that we may assume
more general domains for which we get estimates with slightly different weights. Second possible
extension is that we can prove the result under weaker hypothesis on u, namely we could assume
that

εεε(u) = FFF1 + FFF2

where FFF ∈ Lq(Ω) and FFF2 being a measure.
13If d ≥ 3 we may consider also the case p = 2.
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In order to pass to the limit in (B.4), we use the Fatou lemma to get the lower
limit on LHS of (B.4). Such a procedure is possible, because of locally compact
embedding W 1,2 ↪→↪→ L2

loc. To pass to the limit on the right hand side it is enough
to show (since εεε(un) is compact in L2) that V ∈ L

2p
2−p . This is however equivalent

to

α >
(2− p)(d− 1)

2p
,

which is exactly the assumption put on α. Thus, the proof is complete. ¤

As a simple consequence of Lemma B.1 is the following

Corollary B.1. Let u ∈ W 1,2(Ω) be such that

εεε(u) = FFF1 + FFF2,

where FFF1 ∈ L2(Ω)d×d and FFF2 ∈ L1(Ω)d×d. Then for all α < −d−1
2 there holds

(B.5) ‖u‖d′,(α) ≤ C(α)(‖FFF2‖2 + ‖FFF1‖1).
Proof. Using (B.1) we obtain that

‖u‖d′,(α) ≤ C(‖FFF1‖1,(α) + ‖FFF2‖1,(α)) ≤ C(‖FFF2‖2‖(1 + |x|)α‖2 + ‖FFF2‖1)
and (B.5) easily follows provided that (1 + |x|)α ∈ L2 ⇐⇒ α < −d−1

2 . ¤

We also establish the estimates concerning the behavior of the trace.

Lemma B.2. Let d ≥ 2 and u ∈ W 1,2(Ω)d. Then for all α < −d−1
2 , there holds

(B.6)
∫

∂Ω

|u|(1 + |x|)α dS ≤ C(α)(‖u‖1,(α) + ‖εεε(u)‖1,α)

whenever the right hand side of (B.6) is finite.

Proof. Here, we give only a formal proof. For details we refer to the procedure
described in (Temam, 1985, Proof of Theorem 1.1, page 121). For simplicity we
analyye the behavior of u only on the part of the boundary consisting from Γ :=
{x; xd = 1}. First, we estimate the behavior of ud. For a.a. x ∈ Γ, we have

ud(x) = ud(x1, . . . , xd−1, s) +
∫ 1

s

∂

∂xd
ud(x1, . . . , xd−1, s) ds.

Multiplying it by (1 + |x|)α, taking absolute value and integrating over Γ w.r.t.
x1, . . . , xd−1 we obtain

∫

Γ

|ud|(1 + |x|)α dS ≤
∫ ∞

−∞
· · ·

∫ ∞

−∞
|ud(x1, . . . , xd−1, s)|(1 + |x|)α dx1 . . . dxd−1

+ ‖∂ud

∂xd
‖1,(α).

Consequently, integrating the result over s ∈ (0, 1) and using the fact that |∂ud

∂xd
| ≤

|εεε(u)| we obtain
∫

Γ

|ud|(1 + |x|)α dS ≤ ‖u‖1,(α) + ‖εεε(u)‖1,(α).
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Next, we prove the same result but for different component of u. For simplicity we
prove it only for u1, for other ui’s the proof is same. First, we deduce that

u1(x) + ud(x) = u1(x1 + s− 1, x2, . . . , xd−1, s) + ud(x1 + s− 1, x2, . . . , xd−1, s)

+
∫ 1

s

d

dt
(u1(x1 + t− 1, x2, . . . , xd−1, t)) dt(B.7)

+
∫ 1

s

d

dt
(ud(x1 + t− 1, x2, . . . , xd−1, t)) dt.

Since ∣∣∣∣
d

dt
(u1(x1 + t− 1, x2, . . . , xd−1, t) + ud(x1 + t− 1, x2, . . . , xd−1, t))

∣∣∣∣
≤ 2|εεε(u(x1 + t− 1, x2, . . . , xd−1, t))|

we can take absolute value in (B.7) multiply the result by (1 + |x|)α and integrate
w.r.t. x1, . . . , xd−1 and s to get

∫

Γ

|u1 − ud|(1 + |x|)α dS ≤ C‖u‖1,(α) + C‖εεε(u)‖1,(α).

Using the same procedure for arbitrary ui we finally conclude (B.6). ¤

Appendix C. Interior regularity estimates

For the sake of completeness we end this paper with the proof of interior reg-
ularity result for our approximative problem and consequently (as the estimates
are µ independent) also for limit problem. To be more concrete under non-uniform
assumption (1.32) we prove uniform estimate (1.34). This result can be found also
in Löbach (2007) by using the same approximation or in Bensoussan and Frehse
(1993), via the Norton-Hoff approximation that has the advantage that it works in
arbitrary dimension. The approach here works also for our different approximation
but from very essential reasons we are able to prove local regularity result only for
d ≤ 4 (see also Löbach (2007)).

Lemma C.1. Let d ≤ 4. Assume that (σσσ, u) is a solution to (Hµ) satisfying (1.33)
and (1.32). If f ∈ W 2,d

loc (Ω) then (1.34) holds.

Proof. Let x ∈ Ω and let ε > 0 be such that B(x, 2ε) ⊂ Ω. We find ξ ∈ D(B(x, 2ε))
such that ξ ≡ 1 in B(x, ε). Next, we apply the operator ∇ to equation (Hµ)1, take
the scalar product with ∇σσσξ2m for some m ∈ N and integrate the result over Ω.
Note that having (1.32), such procedure is rigorous. Hence, we get the equation

(C.1) (AAA∇σσσ,σσσξ2m) + µ−1(∇ (|σσσD| − κ)+σσσD

|σσσD| ,∇σσσξ2m) = (∇εεε(u),∇σσσξ2m).

Using (1.29), we immediately deduce that

LHS of (C.1) ≥ cµ−1

∫

B(x,2ε)

(|σσσD| − κ)+
|σσσD| |∇σσσD|2ξ2m

+ cµ−1κ

∫

B(x,2ε)

χ{|σσσD|>κ}
|∇|σσσD|2|2
|σσσD|3 ξ2m + ν0

∫

B(x,2ε)

∇σσσ · ∇σσσξ2m dx

(C.2)
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that is in fact the LHS of the estimate (1.34). We follow by estimating RHS of
(C.2). Hence, we use integration by parts and the identity (Hµ)2 to get

RHS of (C.1) = (DkDjui, Dkσijξ
2m)

= (Dkui, Dkfiξ
2m)− (Dkui, DkσijDjξ

2m)

= −(u,4fξ2m)− (ui, DkfiDkξ2m)− (Dkui, DkσijDjξ
2m)

=: J1 + J2 + J3.

(C.3)

Using (1.33) and the fact that f ∈ W 2,d
loc (Ω) we immediately deduce that

J1 + J2 ≤ C(ε,m).

The remaining integral is estimated as follows

J3 = −(Dkui + Diuk, DkσijDjξ
2m) + (Diuk, DkσijDjξ

2m)

= −(Dkui + Diuk, DkσijDjξ
2m) + (uk, DkfjDjξ

2m)− (uk, DkσijDiDjξ
2m)

=: J4 + J5 + J6.

Next, for J4 we use the equation (Hµ)1 to obtain that (using that |∇ξ2m| ≤ C(ε)ξm)

J4 ≤ C(ε)‖σσσ‖2‖∇σσσξm‖2 + C(ε)µ−1

∫

B(x,2ε)

(|σσσD| − κ)+|∇σσσ|ξm dx.

Consequently, having the point-wise estimate |∇σσσ| ≤ C|∇σσσD|+C|divσσσ| and using
the Young inequality, a priori estimate (1.33) and the assumption on f we conclude

J4 ≤ ν0

2
‖∇σσσξm‖22 + C(ε, ν0)‖σσσ‖22

+ C(ε)µ−1

∫

B(x,2ε)

(|σσσD| − κ)+

(
C|f |+ 1

2
|∇σσσDξm|2
|σσσD| + C|σσσD|

)
dx

≤ C(ε, ν0) +
1
2
(LHS of (C.1)).

The term J5 can be simply estimated as

J5 ≤ ‖u‖d′‖f‖1,d

(1.33)

≤ C.

For the remaining integral, we have

J6 = (div u,σσσ · ∇2ξ2m) + (uk, σijDiDjDkξ2m)
(1.33)

≤ C +
∫

Ω

|u||σσσ||∇3ξ2m| dx.

The last term is simply bounded if dimension d = 2 (using (1.33)). For d = 3, 4 we
use Hölder inequality to conclude that

∫

Ω

|u||σσσ||∇3ξ2m| dx ≤ ‖uξ−m|∇3ξ2m|‖d′‖σσσξ‖d =: J7.

Next, setting m = 3 we see that ξ−m|∇ξ2m| ≤ C. By means of the embedding
theorem, we obtain

J7 ≤ C‖u‖d′‖∇(σσσξm)‖2
(1.33)

≤ C + C‖|∇σσσ|ξm‖ ≤ C +
1
8
(LHS of (C.1)).

Finally, combining all above estimates, we come to the conclusion that (1.34) holds.
¤



24 M. BULÍČEK, J. FREHSE, AND J. MÁLEK

References

G. Anzellotti and M. Giaquinta. Existence of the displacements field for an elasto-
plastic body subject to Hencky‘s law and von Mises yield condition. Manuscripta
Math., 32:101–136, 1980.

G. Anzellotti and M. Giaquinta. On the existence of the fields of stresses and
displacements for an elasto-perfectly plastic body in static equilibrium. J. Math.
Pures et Appl., 61:219–244, 1982.

A. Bensoussan and J. Frehse. Asymptotic behaviour of Norton-Hoff’s law in plastic-
ity theory and H1 regularity. In Boundary value problems for partial differential
equations and applications, volume 29 of RMA Res. Notes Appl. Math., pages
3–25. Masson, Paris, 1993.

A. Bensoussan and J. Frehse. Asymptotic behaviour of the time dependent Norton-
Hoff law in plasticity theory and H1 regularity. Comment. Math. Univ. Carolin.,
37:285–304, 1996.

M. Bildhauer and M. Fuchs. Smoothness of weak solutions of the Ramberg/Osgood
equations on plane domains. Z. Angew. Math. Mech., 87:70–76, 2009.

H. Blum and J. Frehse. Boundary differentiability for the solution to Hencky’s law
of elastic plastic plane stress. Preprint 435 SFB611, University of Bonn, 2008.
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