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Systems in Two Space Dimensions with Critical Growth

Behaviour
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Abstract

We consider parabolic systems

ut − div
(
a(t, x, u,∇u)

)
+ a0(t, x, u,∇u) = 0

in two space dimensions with initial and Dirichlet boundary conditions. The
elliptic part including a0 is derived from a potential with quadratic growth in
∇u and is coercive and monotone.

The term a0 may grow quadratically in ∇u and satisfies a sign condition
a0 · u ≥ −K. We prove the existence of a regular long time solution verifying a
regularity criterion of Arkhipova. No smallness is assumed on the data.
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AMS classification: 35K55, 35K50

1 Introduction

Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary. We consider a parabolic
system of the form

ut −
∑

i=1,2

Diai(t, x, u,∇u) + a0(t, x, u,∇u) = 0 in [0, T 0]× Ω,

u = (u1, . . . , uN ), ai = (a1
i , . . . , a

N
i ), ∇ = ∇x

(1)

with homogeneous Dirichlet boundary condition and initial value condition

u(0) = u0, u0 ∈ H1
0 (Ω), (2)

where H1
0 (Ω) denotes the usual Sobolev spaces of L2-functions such that ∇u ∈

L2(Ω), and the traces on the boundary vanish. We will show the existence of a
regular long time solution under the assumptions that the coefficient functions are
derived from a potential A with quadratic growth in ∇u together with coercivity
and monotonicity conditions, while a0 may grow quadratically in u. The precise

∗Corresponding author. Email: specovi@mathematik.uni-kassel.de. This research was supported
by the DFG, SFB 611 ”Singuläre Phänomene und Skalierung in mathematischen Modellen” and the
SFB/TR TRR 30 ”Prozessintegrierte Herstellung funktional gradierter Strukturen auf der Grund-
lage thermomechanisch gekoppelter Phänomene”
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assumptions will be specified in Section 2. Due to the critical growth behavior of
the term a0, the theory of monotone operators cannot be applied directly to obtain
the existence of a long time weak solution to the system (1). However, with an
additional coerciveness condition (see (9) below) for the lower order term a0 we
succeed to prove the existence of a solution

u ∈ L∞(0, T 0; H1(Ω)) such that ut ∈ L2([0, T 0]× Ω) (3)

which even is Hölder continuous. Thereby, the estimate of the modulus of continuity
of u is crucial for our result. Once having that u ∈ Cα for some α ∈ (0, 1) regularity
techniques are available to prove that the solution u ∈ Lp(W 1,p)∩L2(H2) with∇ut ∈
L2(L2), ut ∈ Lp(Lp)

⋂
L∞(L2+δ), p > 4 and furthermore

∫∫ |∇ut|2|ut|δdx dt < ∞
which implies Hölder continuity of ∇u. This, in turn, implies higher order regularity
using the linear theory of parabolic systems.

For scalar problems Hölder continuity of weak solutions of (1) and long time exis-
tence can be found in the famous book of Solonnikov [15] (together with Ladyzhenskaya-
Uralzeva), where also a lot of basic facts about nonlinear parabolic systems can be
found.

For diagonal systems with elliptic principal part coming from a variational inte-
gral

∑

i,k=1,2

N∑

ν,µ=1

∫

Ω

bνµ(u)aik(x)Diu
µDku

ν , (4)

and, more general, for harmonic flows, many results concerning long time existence
of weak solutions are known, also for dimension n ≥ 2, including results of partial
regularity for the solution (see Hamilton’s book [13] for a more extensive bibliog-
raphy). Struwes result [21] implies for the two dimensional case the existence of
long time solutions which may have isolated point singularities. With our condition
(9) his methods would give full regularity of the global solution. The first global
existence result for a regular harmonic flow is due to Eells-Sampson [6].

The case of non-diagonal parabolic systems with elliptic principal part coming
from a variational integral

∑

i,k=1,2

N∑

ν,µ=1

∫

Ω

bνµ
ik (t, x, u)Diu

µDku
ν , or

∫

Ω
A(t, x, u,∇u)dx

(with growth, coerciveness and monotonicity conditions) Arkhipova [4] proved that
smooth solutions of (1) can be extended to a larger time interval provided that a
uniform smallness property

sup
0<t≤t1

sup
x0∈Ω

∫

Br(x0)
|∇u|2dx ≤ ε for r ≤ r0 = r0(ε) (5)

for the solutions is available. From this condition she obtains further a priori es-
timates for smooth solutions in L2(W 2,p), p ≥ 2, with the additional regularity
properties mentioned above; thus one can deduct the existence of smooth long time
solutions. In the present paper we prove that the condition (5) is satisfied under the
additional assumption a0 · u ≥ −K (see Section 2 for the complete assumptions).

The elliptic analogue of this paper is contained in [8]. We use ideas like inhomo-
geneous hole filling and logarithmic Morrey estimates from this paper, however the
tools form the present paper would simplify the proofs of [8].
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The plan of the paper is as follows: In Section 2 we recall some notations,
formulate the precise assumptions for the coefficient ai and the main result. In
principle, it suffices to to prove Arhipova’s smallness criterion (5). In this context
only the Sections 3.2 and 3.4 are needed. However, we also present our approach
obtaining uniform Cα-estimates for solutions which are sufficiently smooth. For
this alternative proof, which is described in Section 3, we use a new hole filling
argument [9] dedicated to evolutional problems. After all, our approach is based on
the extension argument, too, since the global uniform Cα-estimate only works for
smooth solutions (in fact, for solutions satisfying (3) and u ∈ Cα.) An alternative
way of proving the main theorem consists in using finite element approximations
as in [10] and performing a discrete analogue of the proof. Thereby, long time Cα

-solutions can be obtained directly without proving further regularity. However,
the finite element technique used in this setting are as lengthy as the approach via
extension and regularity arguments.

2 Assumptions for the coefficient functions and the main results

We start with a tabular list of frequently used common notations. We use

Wm,r(Ω) the Sobolev space of functions with derivatives of order ≤ m in Lr,

Hm(Ω) = Wm,2(Ω),

Wm,r
0 (Ω) the closure of smooth functions with compact support in Wm,r(Ω),

Cm+α(Ω) the space of m-times continuously differentiable functions where the deriva-
tives of order m are Hölder continuous with Hölder exponent α,

Lr(V ) = Lr(0, T ;V ) the Lr-space (in the sense of Bochner-Lebesgue) of V -valued
functions on [0, T ], where V is any Banach-space,

BR(x0) the open disc around x0 of radius R,

QR(t1, x0) = [max(t1 −R2, 0), t1]×BR(x0) the (truncated) parabolic cylinder.

In general K stands for a constant which needs not to be specified and can change
from line to line, we frequently use the symbol . . . . instead of ≤ K . . ..

Next we specify our technical assumptions on the coefficients.
For simplicity we assume that the coefficients ai are continuous differentiable with
respect to all variables, moreover they must be derived from a potential with specific
properties. In detail we have

1. There exists a C1-function A : [0, T1] × Ω × RN × R2N → R such that
∂

∂ην
i
A(t, x, µ, η) = aν

i (t, x, µ, η), i = 1, 2, ∂
∂µν A(t, x, µ, η) = aν

0(t, x, µ, η).

2. The potential A and the coefficient functions ai follow the growth conditions

A(t, x, η) + |At(t, x, µ, η)|+ |a0(t, x, µ, η)|+∑

i=1,2

|ai(t, x, µ, η)|2 ≤ C0|η|2 + κ|µ|q + K (6)
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for some q < ∞,

∣∣ ∂

∂η
ai(·, ·, µ, η)

∣∣ ≤ κ|µ|q + K, i = 1, 2

∣∣ ∂

∂η
a0(·, ·, µ, η)

∣∣ +
∣∣ ∂

∂µ
ai(·, ·, µ, η)

∣∣ ≤ K|η|+ κ|µ|q + K,

∣∣ ∂

∂µ
a0(·, ·, µ, η)

∣∣ ≤ K|η|2 + κ|µ|q + K

(7)

the coercivity conditions

∑

i=1,2

N∑

ν=1

aν
i (·, ·, ·, η)ην

i ≥ α0|η|2 −K, A(·, ·, µ, η) ≥ α1|η|2 −K , (8)

a0(·, ·, µ, η) · µ ≥ −K , (9)

the monotonicity condition

∑

i=1,2

N∑

ν=1

(
aν(t, x, µ, η)− aν(t, x, µ, η̂)

) · (ην − η̂ν) ≥ α2|η − η̂|2

η, η̂ ∈ R2N ,

(10)

with positive constants C0, α0, α1 and κ.

We note that some of the regularity assumptions may be weakened. Moreover, the
assumption ∂µA = a0 can be weakened in such a way such that the elliptic part
is ”close to variational” (cf. [4] for more details.) In [4], the conditions (6) - (10)
were required with κ = 0. For increasing the applicability, we added the term with
κ > 0. Due to embedding arguments this term only leads to pollution terms and
could be treated in [3] as well. The additional requirement here is the condition (9).
This allows us to prove the uniform smallness condition which is sufficient for the
extension of the local smooth solution.

Further we use the following assumptions on the data of the problem: The initial
value

u0 = û0|t=0,

û0 ∈ W 1,p([0, T 0]× Ω) ∩ Lp(W 2,p(Ω)), û0(t, ·) = 0 on ∂Ω,
(11)

and the right hand side

f ∈ Lp([0, T 0]× Ω), (p > 4), (12)

in particular the data satisfy the Morrey conditions

R−2γ

∫

BR(x0)

|∇u0|2 dx ≤ K , 0 < R ≤ R0, x0 ∈ Ω. (13)

R−2γ

∫∫

QR(t1,x0)

|f |2 dx dt ≤ K, 0 < R ≤ R0, t1 ∈ (0, T 0), x0 ∈ Ω . (14)

Now we can formulate our main result.
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Theorem 2.1 Under the assumptions for the coefficients and the data listed above
there exists a strong solution u to problem (1) with

u ∈ L∞(0, T 0;H1(Ω)) ∩ Cα
(
[0, T 0]× Ω), ut ∈ L∞(0, T 0; L2(Ω))

)

for some α > 0.

The additional Cα regularity implies the following

Corollary 2.2 The solution is regular in the following sense:

u ∈ L2(0, T 0; H2(Ω)) ∩ L2(0, T 0;W 1,p(Ω)) ∩ Cα([0, T 0]× Ω̄)), p > 4

ut ∈ L2(0, T 0, L2) ∩ L∞(δ0, T
0;L2+δ(Ω)), ∇ut ∈ L2(δ0, T

0;L2(Ω)), δ0 > 0.
(15)

These properties imply also ∇u ∈ Cα([0, T 0]× Ω̄)).

Remark: Under appropriate smoothness conditions for ∂Ω and the data and
eventually additionally compatibility conditions at t = 0 a classical bootstrap ar-
gument leads higher regularity for u. The exponent α depends on the growth and
coerciveness constants C0, α0 in (6) and (8), (9) and γ in (13), (14) and the Lipschitz
constant of ∂Ω. The Cα-semi-norm of u can be estimated uniformly with respect
to the constants K in the data and the measure of Ω and the Lipschitz constant of
∂Ω. However, the norms in (15)2 need not have a bound uniform with respect to δ0

as δ0 → 0.
We understand a function u ∈ L2(0, T 0; (H1,2

loc )N ) with ut ∈ L2([0, T 0]× Ω) as a
weak solution u of (1) if u satisfies (2) and the equation

T 0∫

0

∫

Ω

[
utϕ +

∑

i=1,2

ai(·, u,∇u) ·Diϕ + a0(·, u,∇u)ϕ
]
dx dt =

T 0∫

0

∫

Ω

fϕ dx dt (16)

for all ϕ ∈ C1
(
(0, T 0) × Ω

)
such that suppϕ(t, · ) ⊂⊂ Ω and ϕ|T 0 = 0. One of the

technical problems for the proof is the fact, that we have to work with the energy
equality

T∫

t1

∫

Ω

u2
t ϕdx dt +

T∫

t1

∫

Ω

(−Aϕt −Atϕ +
∑

i=1,2

aiutDiϕ
)
dx dt

+
∫

Ω

Aϕdx
∣∣∣
T

t1
=

T∫

t1

∫
futϕdx dt for a.a. t1, T.

(17)

Note that (17) is true for t1 = 0 since in our setting the problem has a suffi-
ciently regular solution on small time intervals (see the explanations below), hence
A(t, ·, u,∇u) → A(t, ·, u0,∇u0) in L1(Ω). For smooth solutions of (1) this identity
follows by testing the equation with utϕ, where ϕ ≥ 0, ϕ Lipschitz. One can prove
that (17) is satisfied if u ∈ Cα∩L∞(H1), ut ∈ L2(L2) (see Appendix). Furthermore,
we need for the Cα-estimate of u that the quantity

ess sup
t,x0,R

{
R−α

∫

BR(x0)

|∇u(t, ·)|2 dx
}

, x0 ∈ Ω, t ∈ [0, T ], R ∈ (0, R0],
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is bounded (without using this bound in estimates). So we have to arrange a setting
where we work with smooth solutions. For this reason we use the continuation
method (similar as in [4]) to obtain global smooth solutions to parabolic systems.
We give a scetch of the arguments below: By the local theory [1, 11, 4] there exists
a small time interval [0, t1) such that (1) has a sufficiently regular solution u, i. e. u
has the regularity properties (15) now on the time interval [0, t1] instead of [0, T 0].
For this local result, Arkhipova assumes still more regularity on the domain and the
initial data than we did, however one can approximate the data and prove that the
local solution is uniformly in Cα with respect to the approximations parameter, just
by the methods exposed in this paper. Using this additional estimate the passage
to the limit for subsequences of weakly convergent approximations is possible via
the monotonicity argument. Since the Cα property is preserved, the regularity
techniques described below can be applied and we obtain the properties (15). Hence
we have, as a starting point, a local solution with the properties (15). Thus the set

Ξ =
{

t1 ≤ T 0
∣∣∣ (1) has a solution u ∈ [0, t1] which enjoys (15)

}

is not empty. Let T ∗ = sup{t|t ∈ Ξ}. Suppose T ∗ < T 0. Then T ∗ − δ ∈ Ξ and
we will show that u remains uniformly Hölder continuous as δ → 0 for some Hölder
exponent α which does not depend on regularity properties of u other than those in
(3). From the Hölder continuity one can derive (15) and further regularity via the
following steps:

1. Estimation of the difference quotients in space direction together with bound-
ary analysis gives ∇u ∈ L2(L2). Thereby on uses

∫
|∇u|4dx . K[u]2α

∫
|∇2u|2dx + pollution terms (18)

with [u]α = supx 6=y |x − y|−α|u(x) − u(y)| (”interpolation between Cα and
H2”). This argument has been used in [20, 16, 17].

2. By an additional interpolation argument one achieves

∇u ∈ L4+δ(L4+δ).

3. Once having this, one uses difference quotient technique in time direction and
arrives at

∇ut ∈ L2(L2), ut ∈ L∞(L2).

4. Finally, similar as in [2], one can apply the time derivative Dt to the equation
and uses ut|ut|δ′ with small δ′ as a test function. This yields

ut ∈ L∞(L2+δ′)

and one obtains ∇u ∈ L∞(Cα) via the elliptic theory (considering ut as right
hand side. Since ∇ut ∈ L2(L2), it follows then ∇u ∈ Cα/2 in space and time.

5. After having ∇u ∈ Cα, the linear theory of parabolic systems [15] can be
applied.
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The steps explained above correspond to the arguments in [4]. Now we may deal
with a regular solution u of problem (1) which exists on the time interval [0, T ∗− δ)
for every δ > 0. Since we will prove uniform Cα-estimates for u, the bounds for the
norms in (15) are valid independent of δ as δ → 0, we obtain ∇u ∈ Cα[(0, T ∗] ×
Ω] ∩H1, ut ∈ L∞(L2(0, T ∗] × Ω) with the further regularity properties (15) in the
interval [0, T ∗], and we can extend u into an interval [T ∗, T ∗+ δ1] applying the local
theory of the first step again. This contradicts that T ∗ is maximal, thus u exists on
[0, T 0]× Ω.

3 The uniform Cα-Estimate

3.1 Preliminary inequalities and the frame

Here and in the following sections we use the same name for u and its canonical
extension (by zero) to R2. Using embedding theorems, the following estimates are
simple consequences of a bound for u in L∞(0, T 0; H1

0 (Ω)):

ess sup
0≤t≤T 0

∫

Ω

|u|rdx ≤ K for all r > 1, (19)

∫

BR(x0)

|u|qdx .




∫

BR

|u|rdx




r/q

R2−2q/r . R2−ε for any ε > 0. (20)

We recall an argument from [9], where we derived Hölder-continuity from a weighted
Morrey type estimate. To this end we introduce the weight function |Wt| as the
modulus of the time derivative of

W (T, x0, x, t) =
T − t

|x− x0|2 + T − t
, hence (21)

Wt(T, x0, x, t) =
−|x− x0|2

(|x− x0|2 + T − t)2
, (22)

DiW (T, x0, x, t) =
−2(xi − x0,i)(T − t)
(|x− x0|2 + T − t)2

. (23)

The properties (6), (8) lead to the following global bound independent x0 and R

sup
R,x0,T

∫∫

QR(x0,T )

|∇u|2|Wt|dx dt ≤ K. (24)

Indeed, we apply (17) with ϕ = Wε = T−t
|x−x0|2+T−t+ε

, then

−
T∫

t1

∫

Ω

AWε,tdx dt +

T∫

t1

∫

Ω

u2
t Wdxdt ≤

∫

Ω

A(t1, ·)Wε(t1, ·) + dx

T∫

t1

∫

Ω

(|At|Wε +
∑

i=1,2

|ai||ut||DiWε|
)
dx dt +

T∫

t1

∫
futWε dx dt.

The left hand side can be estimated from below using |Wε,t| = −Wε,t, the coercivity
condition (8) for A, the terms on the right hand side can be controlled by the growth
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conditions, the assumptions on the data and using the a priori bounds for u (see [9,
Sect. 3] for the details). Finally we may pass to the limit ε → 0 via the theorem on
monotone convergence.
Further we frequently use the following localization function τR = τR(x0, T, ·, ·)

τR(t, x) = ψ(t)ζ(|x− x0|) , (25)

where

ψ(t) =





0, t < T − 2R2, t > T ,

R−2
(
t− (T − 2R2)

)
, T − 2R2 ≤ t < T −R2 ,

1, T −R2 ≤ t ≤ T ,

and ζ ∈ C1
0 (R) such that ζ(r) = 1 for 0 ≤ r ≤ R, ζ(r) = 0 for |r| ≥ 2R, |ζ ′(r)| . R−1.

In particular we have
|DiτR| . R−1, |∂tτR| . R−2. (26)

We need Morrey’s Lemma in its qualitative assertion, therefore we recall the precise
formulation for the reader’s convenience.

Proposition 3.1 (Morrey [14, p.79]) Suppose u ∈ H1(Bρ(x0)), and
∫

Br(x′)

|∇u|2dx ≤ M2
(r

δ

)2α
, for 0 ≤ r ≤ δ =: dist(x′, ∂Bρ(x0)) (27)

for every x ∈ Bρ(x0). Then u ∈ Cα(Br(x0)) for each r < ρ and

|u(x)− u(x′)| ≤ C M
|x− x′|α

δα
for |x− x′| ≤ δ/2, (28)

where C > 0 is an absolute constant independent of u, ρ and x′.

Remark. From Morrey’s lemma it follows in particular: if
∫

Br(x′)

|∇u|2dx ≤ M2r2α independent of x ∈ Bρ(x0), r ≤ dist(x′, ∂Bρ(x0)) (29)

then for x, x′ ∈ Bρ/2(x0) with |x− x′| ≤ ρ/4,

|u(x)− u(x′)| ≤ 2αC M |x− x′|α. (30)

Indeed, from (29) it follows with δ = dist(x′, ∂Bρ(x0))

δ2α

∫

Br(x′)

|∇u|2dx ≤ M2r2αρ2α.

Since δ ≥ ρ/2 for x′ ∈ Bρ/2(x0), now (28) implies

|u(x)− u(x′)| ≤ C Mρα |x− x′|α
δα

≤ 2αC M |x− x′|α,
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Proposition 3.2 Let u ∈ L∞(0, T 0; H1
0 (Ω)) be a function which has the properties

(15) and fulfills the entropy equality (17). Moreover, for 0 < R ≤ R0, t ∈ [0, T ′]
∫∫

QR

|ut|2 + |∇u|2|Wt| dx dt ≤ M2R2α (31)

with a suitable constant M > 0 and a fixed α ∈ (0, γ], where γ is defined by the
assumptions on the data. Then for T ∈ [0, T ′], we have

sup
t∈[T−R2,T ]

‖u(t, ·)‖Cα(R2) . M + R1−ε/2−α (32)

where the constant depends on ∂Ω, the constants in condition (6)-(10) and the bounds
for the norms in (15).

Proof. Let (x0, T ) ∈ Ω × (0, T 0] be arbitrary. An elementary calculation shows
R−2 . |Wt(T, x0, x, t)| as long as |x0 − x| ≥ R/4. From here we get

∫∫

QR/4(x′,t)

|ut|2 +
|∇u|2
R2

dx dt .
∫∫

QR(x0,t)

|ut|2 + |∇u|2|Wt| dx dt (33)

for |x0 − x′| ≥ R/2. Since x0 can vary freely in Ω this implies (replace R/4 by R)
∫∫

QR(x′,t)

|ut|2 +
|∇u|2
R2

dx dt ≤ M̃R2α for R ≤ R0/4. (34)

Then we apply the coercivity condition (8), the entropy equality with ϕ = τ2
R, the

decay properties (26) and the growth condition (6) and arrive at
∫

BR(x0)

|∇u|2 ≤ 1
α1

∫

BR(x0)

Adx + KR2 .
∫

B2R(x0)

Aτ2
Rdx + R2

.
∫∫

Q2R

(
u2

t + R−2A + |At|+ R−2|ai|2 + |f |2) dx dt + R2

.
∫∫

Q2R

(
u2

t + R−2|∇u|2 + R−2|u|q + |u|2 + |u|q + |f |2) dx dt + R2

. R2α + R2−ε + R2.

For the last inequality we also used the embedding (19) and the estimate (20). Now
the assertion follows from Proposition 3.1. ¥

Our goal is now to prove inequality (31) with a global hole filling argument
depending on the following estimate

∫∫

QR

u2
t + |∇u|2|Wt| dx dt ≤ Λ

∫∫

Q2R\QR

u2
t + |∇u|2|Wt| dx dt + KR2γ + Jcrit. (35)

In spite of the slightly different assumptions on the coefficients ai, the entropy in-
equality used in [9] was exactly of the form (17). Together with the weak formulation
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of the boundary value problem this inequality was employed to derive the estimate
(35) without the last term which comes from the term a0 in (1), namely

Jcrit =

T−R2∫

T−3R2

∫

B2R

|∇u|2|u− ūR|R−2 dx dt,

where

ūR =





(4πR)−1
∫

∂B2R

u(t, ·)ds if B2R ⊂ Ω,

0 if B2R ∩ {Ω 6= 0.

Let us outline how (35) leads to (31). With

G = G(T, x0, ·, ·) =: u2
t + |∇u|2|Wt(T, x0, ·, ·)|

we conclude from (35)
∫∫

QR

Gdx dt ≤ Λ
Λ + 1

∫∫

Q2R

Gdx dt + Jcrit + CR2γ . (36)

We choose α = α(Λ) small enough such that 4αΛ(Λ + 1)−1 = θ < 1, α < γ, and
multiply (36) by R−2α. For fixed ρ > 0, we put

Sρ = sup
R,T,x0

R−2α

∫∫

QR

G(T, x0, ·, ) dx dt,

where the supremum is taken over 0 < R ≤ ρ, x0 ∈ Ω (or x0 ∈ R2, respectively),
0 ≤ T ≤ T ∗ − δ. Now there are two possibilites: Either we we have

(2R)−α

∫∫

Q2R

G(T, x0, ·, ·)dx dt ≤ Sρ (37)

for all R, x0 and T in question or

(2R)−α

∫∫

Q2R

G(T, x0, ·, ·)dx dt > Sρ

for some T , x0, and R. The second case can only happen if 2R > ρ but then

Sρ ≤ ρ−2α

∫∫

Q2R

G(T, x0, ·, ·) ≤ K

due to (24), in which case we have already achieved the desired inequality (31) once
ρ is fixed. Otherwise, we conclude from (37) and (36) that

Sρ ≤ θSρ + C + sup
{
R−2αJcrit

∣∣R ≤ ρ, x0 ∈ Ω, T ≤ T ∗ − δ
}

(38)

To control the last term we observe that Hölder’s inequality together with (33) gives

R−2αJcrit ≤ K


sup

∫∫

Q2R

Gdx dt




1/2

S1/2
ρ R−α sup

{
osc

B2R(x0)
u(t1)

∣∣ t1 ∈ [T −R2, T ]
}

,

(39)
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where osc
M

u =
( ∑

i=1,2
| sup

M
ui − inf

M
ui|2

)1/2
. We also have

osc
B2R(x0)

u(t1) ≤ K sup
x1∈Ω

{ oscu
BR/2(x1)

} for t1 ∈ [T −R2, T ],

where the right hand side can be estimated using (32) by K(RαS
1/2
ρ + R1−ε). From

(39) we thus obtain

R−2αJcrit .
[ ∫∫

Q2R

Gdx dt
]1/2

Sρ + R1−ε−α .

The critical term in (38) can be absorbed, if we can show that for ε0 > 0, there
exists a ρ such that

∫∫
Q2R

Gdxdt ≤ ε0, in this case we can apply Proposition 3.2.
The last smallness condition is the most delicate matter. In Section 3.2 and 3.4 we
prove a uniform estimate

∫∫

Q2R

G dxdt ≤ K√
ln | lnR| ≤ ε0 for R ≤ ρ ≤ ρ(ε) . (40)

Resume: Thus, the theorem will be proved if we obtain (35) and (40). Inequality
(35) is derived in Section 3.2 and the first part of 3.4, inequality (40) in Section 3.3
and the second part of 3.4.

3.2 The Pre-Hole-Filling Inequality

If we use the energy-equality (17) with ϕ = τ2
R, and ϕ = Wτ2

R, where R > 0 is fixed
and τR is defined in (25) we may argue exactly in the same way estimate as in [9],
since the potential A has similar growth and coerciveness properties. The combi-
nation of both inequalities (ϕ = τ2

R and ϕ = Wτ2
R in (17)) gives the corresponding

inequality stated in Proposition 3.1 of [9]. To this end, we introduce the following
abbreviations:

ĨR := [T − 2R2, T −R2], HR := [T − 2R2, T ]×B2R\BR. (41)

Proposition 3.3 Let f and u0 fulfil the requirements (13) and (14), respectively.
Let u ∈ L∞(0, T 0;H1(Ω)) with ut ∈ L2(L2) satisfy the energy equality (17); further
let W be defined by (21) and τR by (25). Then for all x0 ∈ Ω, 0 < T ≤ T ∗ − δ and
0 < R < R0 the following estimate holds true:

∫∫

supp τR
T

(t>0)

(|∇u|2|Wt|+ u2
t

)
τ2
R dx dt .

∫∫

eIR
T{t≥0}×B2R

|∇u|2R−2 dx dt+

+
∫∫

HR
T

(t>0)

(
u2

t + |∇u|2|Wt|
)

dx dt + KR2γ .

(42)

We do not repeat the proof from [9]; the proof is elementary, but lengthy, properties
of τR and W are used, in particular the inequality |Wt| ≥ KR−2 on HR.

Inequality (42) is ”almost” a hole filling inequality for the quantity
G = u2

t + |∇u|2|Wt|, however, on the right hand side of (42) there arises the critical
term

J0
crit =

∫∫

ĨR
T{t>0}×B2R

|∇u|2R−2 dx dt .

11



Since the integration runs over B2R and not over B2R\BR, the factor R−2 cannot be
estimated by |Wt|. Otherwise we would already have achieved a hole filling inequality

∫∫

QR

Gdx dt .
∫∫

Q2R\QR

Gdxdt + KRα .

The term Wcrit has to be estimated using Cacciopoli’s inequality which is done in
Section 3.4.

3.3 Auxiliary lemmata concerning logarithmic Dirichlet growth

In order to continue the proof of the main theorem we consider the following situa-
tion: Let

G :
[
[0, T1]× Ω

]2 → R be measurable, G ≥ 0 a.e. , (43)

ess sup





T1∫

0

∫

Ω

G(t1, x0; . . .) dx dt
∣∣(t1, x0) ∈ [0, T1]× Ω



 ≤ K . (44)

Then we have the following elementary auxiliary result.

Lemma 3.4 Let R = 2−N , N ∈ N, N ≥ 2. For every t1 ∈ (0, T1], and x0 ∈ Ω
there exists

r′ = r′(t1, x0) ∈
[
2−Ne

, 2−N
]

=
[
2−(| ln(R)|/ ln 2)e

, R
]
, e = exp(1) ,

such that
∫∫

Q2r′ (t1,x0)\Qr′ (t1,x0)

G(t1, x0; . . .) dx dt ≤ ln 2
| ln r′| ln | ln r′|

∫∫

Q2R(t1,x0)

G(t1, x0; . . .) dx dt

Proof: We fix t1 > 0, x0 ∈ Ω and put S(j) =: Q(t1, x0; 2−j+1) \Q(t1, x0; 2−j), then
the sets S(j) are mutually disjoint and for R = 2−N , we have

∞⋃

j=N

S(j) = Q(t1, x0; 2R) .

If M > N , assertion (44) implies

M∑

j=N

:=
M∑

j=N

∫∫

S(j)

G(t1, x0; ·) dx dt ≤
∫∫

Q2R(t1,x0)

G(t1, x0; ·) dx dt . (45)

Suppose now that
∫∫

S(j)

G(t1, x0; ·) dx dt >
1

j ln j

∫∫

Q2R

G(t1, x0; ·) dx dt (46)
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for all integers j ∈ [N, M ]. Then

M∑

j=N

≥
M−1∑

j=N

≥
M∫

N

dξ

ξ ln ξ

∫∫

Q2R

G(t1, x0; ·) dx dt =

=
[
ln lnM − ln lnN

] ∫∫

Q2R

G(t1, x0; ·) dx dt .

We have
[
ln lnM − ln lnN

]
> 1 (47)

if ln M > e ln N which is equivalent to M > N e. However, (47) contradicts (45) and
we conclude: If M ≥ (N + 1)e there exists an N0 ∈ [N,M ] such that

∫∫

S(N0)

G(t1, x0; ·) dx dt ≤ 1
N0 lnN0

∫∫

Q2R

G(t1, x0; ·) dx dt . (48)

For r′ = 2−N0 we have

1
N0 ln N0

=
ln 2

| ln r′| ln(| ln r′|/ ln 2)
≤ ln 2
| ln r′| ln | ln r′| .

The Lemma is proved. ¥

Due to estimate (24) and ut ∈ L2(L2), Lemma 3.4 leads to the inequality
∫∫

Q2r′ (t1,x0)\Qr′ (t1,x0)

|∇u|2|Wt(t1, x0; ·)| dx dt

≤ ln 2
| ln r′| ln | ln r′|

∫∫
|∇u|2|Wt(t1, x0; ·)| dx dt

(49)

for some r′ ∈ [2−| ln R/ ln 2|e , R], r′ = r′(t1, x0), where R ∈ (0, R0] is arbitrarily given.

The second Lemma uses Trudinger’s inequality [12, Thm.7.15] which implies that
the quantity

ess sup
t

∫

Ω

eα|u|2 ≤ K (50)

for some constant α depending only on ess sup
t

∫
Ω

|∇u|2 dx (in two space dimensions).

Lemma 3.5 Let u satisfy (50). Then
∫

BR

|u| dx ≤ K0

√
| ln R|R2

for all balls BR with R < 1/2, K0 depending on α,K in (50).

13



Proof: For any α′ < α, we have

|u|eα′|u|2 ≤ Kα,α′e
α|u|2 . (51)

Let M =
{
x
∣∣|u(x)| ≥ [

(2/α′) ln(1/R)
]1/2. Then eα′|u|2 ≥ R−2 on M , and from (50)

and (51) we conclude

K &
∫

M

eα|u|2 dx &
∫

M

|u|eα′|u|2 dx &
∫

M

|u| dxR−2 . (52)

On {M ∩BR we have
∫

{M∩BR

|u| dx ≤ [
(2/α′) ln(1/R)

]1/2
R2 ,

which together with (52) prove Lemma 3.5. ¥

3.4 Cacciopoli’s Inequality and Uniformly Small Dirichlet Growth

In this chapter we derive uniform smallness of the quantities
∫∫

Qr

[|ut|2 + |∇u|2]∣∣Wt(t1x0, ., ·)
∣∣ dx dt

for r sufficiently small. To this end we use the function (u− c)τ̃2
R as a test function

in the weak formulation (16) of the parabolic system where c = c(t) will be defined
later on. The localization function τ̃R has similar properties as the function τR in
(25), but the support is shifted, this means

τ̃R = ζ(x− x0) · ψ
(
t + (T −R2)

)
, hence supp τ̃R ⊂ Q2R \QR . (53)

Then τ̃R is Lipschitz continuous for t ≤ T − R2. With this test function we obtain
(here we omit the integration domain support τ̃R for simplicity)

∫∫
ut(u− c)τ̃2

R dx dt +
∑

i=1,2

∫∫
ai(·, ·, u,∇u)Diuτ̃2

R dx dt

+
∫∫

a0(·, ·, u,∇u)(u− c)τ̃2
R dx dt+

+ 2
∑

i=1,2

∫∫
ai(·, ·,∇u)(u− c)(Diτ̃R)τ̃R dx dt

=
∫∫

f(u− c)τ̃2
R dx dt .

(54)

For the first version of Cacciopoli’s inequality we choose c = 0 and use the hypothesis
a0 · u ≥ −K and the coerciveness property for

∑
i=1,2

ai(·, u,∇u)Diu. This yields an

estimate
∫∫

|∇u|2τ̃2
R dx dt .

∫∫
|ut||u|τ̃2

R dx dt+

+ R−1

∫∫

Q2R\QR

|∇u||u| dx dt +
∫∫

f |r|τ̃Rdx dt
(55)
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We define
AR := B2R \BR, ũR(t) = |AR|−1

∫

AR

u dx

(using the natural extension of u). From (55) we conclude
∫∫

|∇u|2τ̃2
R dx dt .

∫∫

supp τ̃R

|ut||u− ũR| dx dt +
∫∫

supp∇τ̃R

|∇u|
R

|u− ũR| dx dt

+
∫∫

supp τ̃R

|ut||ũR|dx dt +
∫∫

supp∇τ̃R

|∇u|
R

|ũR|dx dt

+
∫∫

supp τ̃R

|f ||u− ũR|+ |f ||ũR|dx dt

.
∫∫

supp τ̃R

(
R2|ut|2 +

|u− ũR|2
R2

)
dx dt +

∫∫

supp∇τ̃R

|∇u|2dx dt

+ R2+2γ + ε2

∫∫

supp τ̃R

|ũR|2
R2

dx dt

+
1
ε2




∫∫

supp τ̃R

(
R2|ut|2 +

|u− ũR|2
R2

)
dx dt +

∫∫

supp∇τ̃R

|∇u|2dx dt


 (56)

For the second inequality we used applied Young’s inequality to all products and
assumption (14) for f Now we apply the following variant of Poincaré’s inequality
(cf [9, Prop.6.1])

∫

B2R(x0)

|u− ũR(t)|2 dx .
∫

B2R

|x− x0|2|∇u|2 dx independent of x0, R,

divide the resulting inequality by R2, und recall the the following elementary in-
equalities, which are valid independent on x0 and R:

R−2 . |Wt| on supp∇τ̃R, R−4|x− x0|2 . |Wt| on Q2R. (57)

Finally with supp∇τ̃R ⊂ supp τ̃R ⊂ Q2R \QR and G(T, x0, ·, ·) = |ut|2 + |∇u|2|Wt|
we arrive at

R−2

∫∫
|∇u|2τ̃2

R dx dt .
∫∫

Q2R\QR

Gdxdt + ε2

∫∫

supp τ̃R

|ũR|2
R2

+
1
ε2

∫∫

Q2R\QR

Gdx dt + R2γ

(58)

Let us fix R for a moment. From Lemma 3.4 we conclude that there exists

r = r(T, x0) ∈
[
2−(| ln R|/ ln 2)e

, 2R
]

such that ∫∫

Q2r\Qr

Gdx dt . (ln | ln r|)−1| ln r|−1 ,
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and from Lemma 3.5

ε2

∫∫

supp τ̃r

|ũr|2
r2

. ε2| ln r| .

We choose
ε2 = | ln r|−1(ln | ln r|)−1/2 ,

and we conclude
r−2

∫∫
|∇u|2τ̃2

r dx dt . (ln | ln r|)−1/2

Thus we have shown: Let ε > 0. Then for any R ≤ R0, there exists a radius

r ∈ [
2−| ln(R/2)|e , 2R

]
(59)

such that

r−2

T−r2∫

T−3r2

∫

B2r

|∇u|2τ̃2
r dx dt ≤ ε, r = r(T, x0) .

Thus we have estimated the critical term J0
crit in the pre-hole-filling inequality (42);

i. e.
J0

crit < ε

for the above choice of r.
Inspecting the other terms on the right hand side of (42) we see: For sufficiently
small R and for r as in (59) we may apply Lemma 3.4, to all terms on the right
hand side hence we obtain from (42)

∫∫ (|∇u|2|Wt|+ u2
t

)
τ2
r dx dt ≤ 4ε (60)

for r = r(T, x0, R).
We diminish the domain of integration in (60) choosing the minimal

r = 2−(| ln R|/ ln 2)e
(61)

and conclude

Lemma 3.6 For ε > 0 there exists r∗ > 0 such that
∫∫

Qr∗

(|∇u|2|Wt|+ u2
t ) dx dt ≤ ε. (62)

This smallness property holds uniformly with respect to δ, x0, T = T ∗ − δ.

3.5 Cacciopoli’s Inequality II

In equation (54) we choose

ūR(t) =




|∂B2R|−1

∫
∂B2R

u do if B2R ⊂ Ω

0 else
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and proceed estimating as in [9], Section 4, Proposition 4.1, and Theorem 6.1. Re-
peating the arguments of the proofs we arrive at

∫∫

ĨR×B2R

|∇u|2R−2 dx .
∫∫

Q2R\QR

[|∇u|2|Wt|+ |ut|2
]
dx dt + Jcrit + R2γ . (63)

We have to comment on one technical detail here. If the ball B2R ⊂ Ω we arrive at
the estimate (63) with

∫∫
Q2R\QR

. . . on the right hand side. In the case B2R∩{Ω 6= ∅
we have to enlarge the domain of integration from B2R to BMR in order to apply
the inequality ∫

B2R

|u|2dx ≤ Cp

∫

BMR

|x− x0|2|∇u|2dx (64)

(see [9, Section 6]), basically because the measure of the points where u vanishes
must be large enough. If the boundary ∂Ω is Lipschitz then M = 4 is sufficient. In
order to keep the setting in Section 3 we may argue in the following way: If even
BR ∩ {Ω 6= ∅, then (64) is´valid with M = 2, and no change is necessary at all. If
only B2R ∩ {Ω 6= ∅´we change the localization function ζ in (25) in such a way that
still ζ = 1 on BR(x0), ∇ζ . R−1, supp ζ ⊂ B3R/2. If B3R/2 ⊂ Ω we proceed as in
the ”interior” case, if B3R/2 ∩ {Ω 6= ∅, the preimage of zero in B2R is large enough,
and we may use (64) with M = 2.

The difference to the arguments used in [9] is that we have the additional term
(coming from a0)

Jcrit =
∫∫

Q2R

|∇u|2|u− ūR|(t)| dx .

Obviously, (63) is also an estimate for the critical term J0
crit occuring in (42). So, we

combine (63) and (42) and arrive at the desired inequality (35) which finishes the
proof of the theorem 2.1.

Appendix

In this appendix we show: The properties (3) and u ∈ Cα suffice to prove the entropy
inequality (17).

Lemma A.1 Let u be a weak solution of (16) satisfying the standard conditions
(3) and u ∈ L∞(0, T 0; Cα(Ω̄). Then u satisfies the entropy inequality (17).

Proof: By well known theorems, due to the additional properties u ∈ Cα, we
have u ∈ L2(0, T 0,H2(Ω))∩H1([0, T 0]×Ω)∩L∞(0, T 0;H1(Ω)), (difference quotient
technique!) and the system of differential equations (1) is satisfied point-wise almost
everywhere. With

aνµ
ik (t, x, z, η) = ∂ηµ

k
aν

i (t, x, z, η), aνµ
i0 (t, x, z, η) = ∂zµaν

i (t, x, z, η),

aν
i,xi

(t, x, z, η) = ∂xia
ν
i (t, x, z, η)

this means

Lνuν :=uν
t −

N∑

µ=1

∑
i=1,2

k=0,1,2

aνµ
ik (t, x, u,∇u)DiDku

µ

+
∑

i=1,2

aν
i,xi

(t, x, u,∇u) + aν
0(t, x, u,∇u) = fν
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By simple interpolation arguments we deduct from u ∈ L2(H2) ∩ L∞ that ∇u ∈
L4(L4). Now we choose smooth approximations ũm such that

um → u in L2(H2) ∩ L4(W 1,4), um,t → ut in L2([0, T 0 × Ω), um|t=0 → u0 ∈ H1(Ω).

and
ess sup

t

∫
|∇um| ≤ K uniformly in m.

Then we have Lνuν
m = fm, and from (7) we obtain fm → f in L2. Clearly um fulfils

(16) with u replaced by um and f by fm, respectively. Since um is smooth now,
we may use um,tϕ as a test function where again ϕ ∈ C1

(
(0, T 0) × Ω

)
such that

suppϕ(t, · ) ⊂⊂ Ω and ϕ|T 0 = 0. Then we arrive at

T 0∫

0

∫

Ω

[
u2

m,tϕ +
∑

i=1,2

ai(·, um,∇um) ·Di(um,tϕ)

+ a0(·, um,∇um)um,tϕ
]
dx dt =

T 0∫

0

∫

Ω

fmum,tϕdx dt

(65)

We rewrite
∑

i=1,2

ai(·, um,∇um) ·Dium,t ϕ + a0(·, um,∇um)um,t ϕ

=
d

dt
A(·, um,∇um)ϕ−At(·, um,∇um),

which leads to the approximated entropy inequality (with Am = A(t, x, um,∇um))

T∫

t1

∫

Ω

u2
m,tϕdx dt +

T∫

t1

∫

Ω

(−Amϕt −Am
t ϕ +

∑

i=1,2

ai(·, um∇um)um,tDiϕ
)
dx dt

+
∫

Ω

Amϕdx
∣∣∣
T

t1
=

T∫

t1

∫
fmum,tϕdx dt.

Here we may pass to the limit in all space-time integrals, and for almost all t1 and
T in the boundary integrals, which leads to (17) for u.
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