The Div–Curl Lemma for Sequences whose Divergence and Curl are Compact in W−1,1

Sergio Conti, Georg Dolzmann, Stefan Müller

no. 451

Diese Arbeit ist mit Unterstützung des von der Deutschen Forschungsgemeinschaft getragenen Sonderforschungsbereichs 611 an der Universität Bonn entstanden und als Manuskript vervielfältigt worden.

Bonn, Juli 2009

The div–curl lemma for sequences whose divergence and curl are compact in $W^{-1,1}$

July 2, 2009

Sergio Conti¹, Georg Dolzmann², Stefan Müller^{1,3}

¹ Institut für Angewandte Mathematik, Universität Bonn Endenicher Allee 60, 53115 Bonn, Germany 2 Universität Regensburg, 93040 Regensburg, Germany 3 Hausdorff Center for Mathematics, Universität Bonn Endenicher Allee 60, 53115 Bonn, Germany

It is shown that $u_k \cdot v_k$ converges weakly to $u \cdot v$ if $u_k \rightharpoonup u$ weakly in L^p and $v_k \rightharpoonup v$ weakly in L^q with $p, q \in (1, \infty), 1/p+1/q=1$, under the additional assumptions that the sequences div u_k and curl v_k are compact in the dual space of $W_0^{1,\infty}$ and that $u_k \cdot v_k$ is equi-integrable. The main point is that we only require equiintegrability of the scalar product $u_k \cdot v_k$ and not of the individual sequences.

1 Statement of the Theorem

The div–curl lemma is the cornerstone of the theory of compensated compactness which was developed by Murat and Tartar in the late seventies [13, 14, 16, 17, 18], and is still a very active area of research [5]. In its classical form the lemma states the following: if $\{u_k\}_{k\in\mathbb{N}}$ and $\{v_k\}_{k\in\mathbb{N}}$ are sequences in $L^2(\Omega;\mathbb{R}^n)$ which converge weakly in $L^2(\Omega; \mathbb{R}^n)$ to u and v, respectively, and if div u_k is compact in $H^{-1}(\Omega)$ and curl v_k is compact in $H^{-1}(\Omega; \mathbb{M}^{n \times n})$, then

$$
u_k \cdot v_k \rightharpoonup u \cdot v \quad \text{ in } \mathcal{D}'(\Omega) \, .
$$

A natural generalization concerned sequences bounded in $L^p(\Omega; \mathbb{R}^n)$ and $L^q(\Omega; \mathbb{R}^n)$, respectively, where p, $q \in (1,\infty)$ are dual exponents, $1/p + 1/q = 1$, div u_k is compact in $W^{-1,p}(\Omega)$ and curl v_k is compact in $W^{-1,q}(\Omega; \mathbb{M}^{n \times n})$, respectively, see [14]. Important connections to Hardy spaces were established in [7].

This note is inspired by questions in nonlinear models in crystal plasticity [8] in a two-dimensional setting. The key point in this context is to prove that the determinant of the deformation gradient det $\nabla \varphi_k$ converges to det $\nabla \varphi$ under the assumption that $\nabla \varphi_k = G_k + B_k$ where $G_k \rightharpoonup \nabla \varphi$ weakly in L^2 and $B_k \rightharpoonup 0$ strongly in L^1 . The key additional information is that det $\nabla \varphi_k$ is compact in L^1 .

Motivated by this application, we present a generalization of the div–curl lemma with very weak assumptions on div u_k and curl v_k and the additional assumption that $u_k \cdot v_k$ is equi-integrable (see the remarks after the Theorem). We denote the dual of $W_0^{1,\infty}(\Omega)$ by $W^{-1,1}(\Omega)$.

Theorem. Let $\Omega \subset \mathbb{R}^n$ be an open and bounded domain with Lipschitz boundary and let $p, q \in (1, \infty)$ with $1/p + 1/q = 1$. Suppose $u_k \in L^p(\Omega; \mathbb{R}^n)$, $v_k \in L^q(\Omega;\mathbb{R}^n)$ are sequences such that

 $u_k \rightharpoonup u$ weakly in $L^p(\Omega; \mathbb{R}^n)$ and $v_k \rightharpoonup v$ weakly in $L^q(\Omega; \mathbb{R}^n)$ (1)

and

$$
u_k \cdot v_k \ \text{is equi-integrable.} \tag{2}
$$

Finally assume that

 $\text{div } u_k \to \text{div } u \quad in \ W^{-1,1}(\Omega)$ (Ω) and curl $v_k \to \text{curl } v$ in $W^{-1,1}(\Omega; \mathbb{M}^{n \times n})$. (3)

Then

 $u_k \cdot v_k \rightharpoonup u \cdot v$ $^{1}(\Omega)$ (4)

- Remarks. 1. The statement is almost classical under the stronger hypothesis that $|u_k|^p$ and $|v_k|^q$ are equi-integrable (see the Lemma below). The main novelty is that here we require only that $u_k \cdot v_k$ is equi-integrable, and this is crucial for the application in [8].
	- 2. The assumption that the inner product $u_k \cdot v_k$ is equi-integrable is necessary as can be seen from the one dimensional example of a Fakir's carpet. Let $u_k = v_k$ be given on the unit interval by $u_k = \sqrt{k} \sum_{\ell=1}^k \chi_{[\ell/k, k^{-2} + \ell/k]}$. Then u_k converges to zero weakly in $L^2(0,1)$ and strongly in $L^1(0,1)$, but u_k^2 converges to one in the sense of distributions.

The crucial observation in the proof is the fact that given (2) we can construct modified sequences \tilde{u}_k and \tilde{v}_k such that $\tilde{u}_k \cdot \tilde{v}_k$ has the same weak limit as $u_k \cdot v_k$ and the sequences $|u_k|^p$ and $|v_k|^q$ are equi-integrable and therefore compact in $W^{-1,p}$ and $W^{-1,q}$, respectively. The sequences are constructed using the biting lemma [6, 3] and Lipschitz truncations of Sobolev functions which originate in the work of Liu [11] and Acerbi and Fusco [1, 2] and have found important applications in the vector-valued calculus of variations, see, e.g., [4, 19, 12]. In two dimensions, a change of variables leads to weak continuity of the determinant:

Corollary. Let $\Omega \subset \mathbb{R}^2$ be an open and bounded domain with Lipschitz boundary, and let $\varphi_k \in W^{1,1}(\Omega;\mathbb{R}^2)$ be such that $\det \nabla \varphi_k = G^k + B^k$, with $B^k \to 0$ strongly in L^1 and $G^k \rightharpoonup G$ weakly in L^2 . If the sequence $\det \nabla \varphi_k$ is equiintegrable, then $\det \nabla \varphi_k \rightharpoonup \det G$ weakly in L^1 .

2 Proofs

We begin with the proof of the lemma that shows how equi-integrability of $|u_k|^p$ leads to compactness of div u_k . We say that a sequence u_k ∈ $L^p(\Omega;\mathbb{R}^n)$ is L^p -equi-integrable if there is an increasing function $\omega : [0, \infty) \to \mathbb{R}$ with $\lim_{t\to 0} \omega(t) = 0$, such that

$$
\int_{A} |u_k|^p \, \mathrm{d}x \le \omega(t) \qquad \text{for all } A \subset \Omega \text{ measurable with } |A| \le t. \tag{5}
$$

Lemma. Let $\Omega \subset \mathbb{R}^n$ be a bounded Lipschitz set, $1 < p < \infty$, and let $u_k \in \mathbb{R}^n$. $L^p(\Omega;\mathbb{R}^n)$ be an L^p -equi-integrable sequence. If div $u_k \to 0$ in $W^{-1,1}(\Omega)$, then div $u_k \to 0$ in $W^{-1,p}(\Omega)$. The analogous statements hold for curl u_k and ∇u_k .

Proof. Let ω be as in (5). By definition and density of $C_0^{\infty}(\Omega)$ in $W_0^{1,q}(\Omega)$,

$$
\|\operatorname{div} u_k\|_{W^{-1,p}(\Omega)} = \sup \left\{ \int_{\Omega} \nabla \varphi \cdot u_k \, \mathrm{d}x \colon \varphi \in C_0^{\infty}(\Omega), \int_{\Omega} |\nabla \varphi|^q \mathrm{d}x \le 1 \right\}, \tag{6}
$$

where q is given by $1/p + 1/q = 1$. Fix $\varphi \in C_0^{\infty}(\Omega)$ with $\|\nabla \varphi\|_q \leq 1$ and $t > 0$. By the truncation argument in [9, Lemma 4.1] or [10, Prop. A.2] there is a t-Lipschitz function $\psi \in W_0^{1,\infty}(\Omega)$ such that the measure of the set $M = \{ \psi \neq \varphi \text{ or } \nabla \psi \neq \nabla \varphi \}$ is bounded by c_*/t^q , where c_* depends only on Ω . We decompose

$$
\int_{\Omega} \nabla \varphi \cdot u_k \, dx = \int_{\Omega} (\nabla \varphi - \nabla \psi) \cdot u_k \, dx + \int_{\Omega} \nabla \psi \cdot u_k \, dx. \tag{7}
$$

The second term is bounded by $\|\nabla \psi\|_{L^{\infty}} \|\text{div } u_k\|_{W^{-1,1}}$. The first term is concentrated on the set M , and by Hölder's inequality can be estimated by

$$
\int_M (\nabla \varphi - \nabla \psi) \cdot u_k \, dx \le \left(\int_M (|\nabla \varphi| + t)^q \, dx \right)^{1/q} \left(\int_M |u_k|^p \, dx \right)^{1/p} . \tag{8}
$$

The first factor is bounded by $\|\nabla \varphi\|_{L^q(M)} + |M|^{1/q} t \leq 1 + c_*^{1/q}$, the second by $(\omega(c_*t^{-q}))^{1/p}$ in view of the equi-integrability of the sequence $|u_k|^p$, and we conclude that

$$
\|\operatorname{div} u_k\|_{W^{-1,p}(\Omega)} \le \left(1 + c_*^{1/q}\right) \left(\omega(c_* t^{-q})\right)^{1/p} + t \|\operatorname{div} u_k\|_{W^{-1,1}(\Omega)},\tag{9}
$$

with ω as in (5). The assertion follows with $t = || \operatorname{div} u_k ||_{W^{-1,1}(\Omega)}^{-1/2}$.

Proof of the Theorem. We divide the proof into four steps. The first three treat the case $u = v = 0$.

Step 1: Modification of u_k and v_k to obtain L^p and L^q -equi-integrable sequences, *respectively.* The sequence $|u_k|^p$ is bounded in L^1 , and therefore the biting lemma [3, 15] implies the existence of a sequence of sets $A_k \subset \Omega$ such that $|A_k| \to 0$ and, after extracting a subsequence, $|u_k|^p \chi_{\Omega \setminus A_k}$ is equi-integrable. Set $\tilde{u}_k = u_k \chi_{\Omega \setminus A_k}$. Since $\|\tilde{u}_k - u_k\|_{L^1(\Omega)} = \|u_k\|_{L^1(A_k)} \leq |A_k|^{1/q} \|u_k\|_{L^p(\Omega)}$ it follows that

$$
\widetilde{u}_k - u_k \to 0 \quad \text{in } L^1(\Omega). \tag{10}
$$

Therefore the two sequences u_k , \widetilde{u}_k have the same weak limit (in L^p). Furthermore, $\nabla(\widetilde{u}_k - u_k) \to 0$ in $W^{-1,1}(\Omega; \mathbb{M}^{n \times n})$, and therefore div $\widetilde{u}_k \to 0$ in $W^{-1,1}(\Omega)$. One proceeds analogously with v_k , obtains the corresponding sets B_k and a sequence $\widetilde{v}_k = v_k \chi_{\Omega \setminus B_k}$. To conclude this step it remains to prove that $u_k \cdot v_k - \tilde{u}_k \cdot \tilde{v}_k \to 0$ in L^1 . To see this, we observe that this expression vanishes outside of $A_k \cup B_k$, and that it equals $u_k \cdot v_k$ on this set. By equi-integrability of $u_k \cdot v_k$ and the fact that $|A_k \cup B_k| \to 0$, we conclude that $u_k \cdot v_k - \widetilde{u}_k \cdot \widetilde{v}_k \to 0$ in L^1 .

Step 2: Strong $W^{-1,p}$ convergence and reduction to the classical div-curl Lemma. The sequence \tilde{u}_k is L^p -equi-integrable, and its divergence converges strongly to W^{-1} \tilde{u}_k is W^{-1} \tilde{u}_k of W^{-1} \tilde{u}_k of W^{-1} \tilde{u}_k of \tilde{u}_k is \tilde{u}_k is \tilde{u}_k is \tilde{u}_k is zero in $W^{-1,1}$. Therefore by the Lemma we obtain that div $\widetilde{u}_k \to 0$ in $W^{-1,p}(\Omega)$. Analogously one shows that curl $\tilde{v}_k \to 0$ in $W^{-1,q}(\Omega)$. By the classical div-curl Lemma we then conclude that $\widetilde{u}_k \cdot \widetilde{v}_k \stackrel{*}{\sim} 0$ in $\mathcal{D}'(\Omega)$.

Step 3: Identification of the L^1 -weak limit. Since the sequence $u_k \cdot v_k$ is by assumption equi-integrable it has a subsequence which converges weakly in L^1 . The same holds for $\tilde{u}_k \cdot \tilde{v}_k$. But the two limits are the same (Step 1) and the latter is zero (Step 2). Since the limit does not depend on the subsequence, the entire sequence converges. This concludes the proof if $u = v = 0$.

Step 4: General case. We set $\tilde{u}_k = u_k - u, \tilde{v}_k = v_k - v$. Equi-integrability of the sequence $\widetilde{u}_k \cdot \widetilde{v}_k$ follows from $\int_A |u_k \cdot v| \, dx \leq ||u_k||_{L^p(\Omega)} ||v||_{L^q(A)}$ for all $A \subset \Omega$ (and analogously for $u \cdot v_k$). By Steps 1-3, $\tilde{u}_k \cdot \tilde{v}_k \rightharpoonup 0$ weakly in $L^1(\Omega)$. The proof is concluded observing that $u_k \cdot v$ and $u \cdot v_k$ converge weakly in L^1 to $u \cdot v$.

Proof of the Corollary. Let $u_k = (e_1 \cdot G^k)^{\perp} = (-G_{12}^k, G_{11}^k), v_k = e_2 \cdot G^k =$ (G_{21}^k, G_{22}^k) , so that $\det G^k = u_k \cdot v_k$. Since $G^k + B^k$ is a gradient, div $u_k =$ $\partial_1 B_{12}^k - \partial_2 B_{11}^k$, and therefore $|| \operatorname{div} u_k ||_{W^{-1,1}} \le ||B_k||_{L^1} \to 0$. The same estimate holds for curl v_k . At this point the Corollary follows from the Theorem.

Acknowledgements

This work was partially supported by the Deutsche Forschungsgemeinschaft through FOR 797 Analysis and computation of microstructure in finite plasticity, projects Co304/4-1, Do633/2-1, Mu1067/9-1.

References

- [1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal. 86 (1984), 125–145.
- [2] $_____$, An approximation lemma for $W^{1,p}$ functions, Material instabilities in continuum mechanics and related mathematical problems (J. M. Ball, ed.), Oxford UP, 1988, pp. 1–5.
- [3] J. M. Ball and F. Murat, Remarks on Chacon's biting lemma, Proc. AMS 107 (1989), 655–663.
- [4] J. M. Ball and K.-W. Zhang, Lower semicontinuity of multiple integrals and the biting lemma, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 367–379.
- [5] M. Briane, J. Casado-Díaz, and F. Murat, The div-curl lemma "trente ans $apr\`es"$ an extension and an application to the G–convergence of unbounded monotone operators, J. Math. Pures Appl. **91** (2009), 476-494.
- [6] J. K. Brooks and R. V. Chacon, Continuity and compactness of measures, Adv. in Math. 37 (1980), 16–26.
- [7] R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247–286.
- [8] S. Conti, G. Dolzmann, and C. Klust, *Asymptotic behavior of crystal plas*ticity with one slip system in the limit of rigid elasticity, in preparation $(2009).$
- [9] G. Dolzmann, N. Hungerbühler, and S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side, J. reine und angew. Math. 520 (2000), 1-35.
- [10] G. Friesecke, R. James, and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math 55 (2002), 1461–1506.
- [11] F.-C. Liu, A Luzin type property of Sobolev functions, Indiana Univ. Math. J. 26 (1977), 645–651.
- [12] S. Müller, A sharp version of Zhang's theorem on truncating sequences of gradients, Trans. Am. Math. Soc. 351 (1999), 4585–4597.
- [13] F. Murat, *Compacité par compensation*, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 5 (1978), 489–507.
- $[14]$, Compacité par compensation: condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 8 (1981), 69–102.
- [15] M. Saadoune and M. Valadier, Extraction of a "good" subsequence from a bounded sequence of integrable functions, J. Convex Anal. 2 (1995), 345– 357.
- $[16]$ L. Tartar, Une nouvelle méthode de résolution d'équations aux dérivées partielles non linéaires, Journ. d'Anal. non lin., Proc., Besancon 1977, Lect. Notes Math. 665, 228-241, 1978.
- [17] Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symp., Vol. 4, Edinburgh 1979, Res. Notes Math. 39, 136-212, 1979.
- [18] L. Tartar, The compensated compactness method applied to systems of conservation laws, Systems of nonlinear partial differential equations (Oxford, 1982), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 111, Reidel, Dordrecht, 1983, pp. 263–285.
- [19] K. Zhang, A construction of quasiconvex functions with linear growth at infinity, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 19 (1992), 313–326.

Bestellungen nimmt entgegen:

Sonderforschungsbereich 611 der Universität Bonn Poppelsdorfer Allee 82 D - 53115 Bonn

Telefon: 0228/73 4882 Telefax: 0228/73 7864 E-Mail: astrid.link@ins.uni-bonn.de http://www.sfb611.iam.uni-bonn.de/

Verzeichnis der erschienenen Preprints ab No. 430

- 430. Frehse, Jens; Málek, Josef; Ružička, Michael: Large Data Existence Result for Unsteady Flows of Inhomogeneous Heat-Conducting Incompressible Fluids
- 431. Croce, Roberto; Griebel, Michael; Schweitzer, Marc Alexander: Numerical Simulation of Bubble and Droplet Deformation by a Level Set Approach with Surface Tension in Three Dimensions
- 432. Frehse, Jens; Löbach, Dominique: Regularity Results for Three Dimensional Isotropic and Kinematic Hardening Including Boundary Differentiability
- 433. Arguin, Louis-Pierre; Kistler, Nicola: Small Perturbations of a Spin Glass System
- 434. Bolthausen, Erwin; Kistler, Nicola: On a Nonhierarchical Version of the Generalized Random Energy Model. II. Ultrametricity
- 435. Blum, Heribert; Frehse, Jens: Boundary Differentiability for the Solution to Hencky's Law of Elastic Plastic Plane Stress
- 436. Albeverio, Sergio; Ayupov, Shavkat A.; Kudaybergenov, Karim K.; Nurjanov, Berdach O.: Local Derivations on Algebras of Measurable Operators
- 437. Bartels, Sören; Dolzmann, Georg; Nochetto, Ricardo H.: A Finite Element Scheme for the Evolution of Orientational Order in Fluid Membranes
- 438. Bartels, Sören: Numerical Analysis of a Finite Element Scheme for the Approximation of Harmonic Maps into Surfaces
- 439. Bartels, Sören; Müller, Rüdiger: Error Controlled Local Resolution of Evolving Interfaces for Generalized Cahn-Hilliard Equations
- 440. Bock, Martin; Tyagi, Amit Kumar; Kreft, Jan-Ulrich; Alt, Wolfgang: Generalized Voronoi Tessellation as a Model of Two-dimensional Cell Tissue Dynamics
- 441. Frehse, Jens; Specovius-Neugebauer, Maria: Existence of Hölder Continuous Young Measure Solutions to Coercive Non-Monotone Parabolic Systems in Two Space **Dimensions**
- 442. Kurzke, Matthias; Spirn, Daniel: Quantitative Equipartition of the Ginzburg-Landau Energy with Applications
- 443. Bulíček, Miroslav; Frehse, Jens; Málek, Josef: On Boundary Regularity for the Stress in Problems of Linearized Elasto-Plasticity
- 444. Otto, Felix; Ramos, Fabio: Universal Bounds for the Littlewood-Paley First-Order Moments of the 3D Navier-Stokes Equations
- 445. Frehse, Jens; Specovius-Neugebauer, Maria: Existence of Regular Solutions to a Class of Parabolic Systems in Two Space Dimensions with Critical Growth Behaviour
- 446. Bartels, Sören; Müller, Rüdiger: Optimal and Robust A Posteriori Error Estimates in
L c (L²) for the Approximation of Allen-Cahn Equations Past Singularities $(L²)$ for the Approximation of Allen-Cahn Equations Past Singularities
- 447. Bartels, Sören; Müller, Rüdiger; Ortner, Christoph: Robust A Priori and A Posteriori Error Analysis for the Approximation of Allen-Cahn and Ginzburg-Landau Equations Past Topological Changes
- 448. Gloria, Antoine; Otto, Felix: An Optimal Variance Estimate in Stochastic Homogenization of Discrete Elliptic Equations
- 449. Kurzke, Matthias; Melcher, Christof; Moser, Roger; Spirn, Daniel: Ginzburg-Landau Vortices Driven by the Landau-Lifshitz-Gilbert Equation
- 450. Kurzke, Matthias; Spirn, Daniel: Gamma-Stability and Vortex Motion in Type II **Superconductors**
- 451. Conti, Sergio; Dolzmann, Georg; Müller, Stefan: The Div–Curl Lemma for Sequences whose Divergence and Curl are Compact in $W^{-1,1}$