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It is shown that uk ·vk converges weakly to u ·v if uk ⇀ u weakly
in Lp and vk ⇀ v weakly in Lq with p, q ∈ (1,∞), 1/p+1/q = 1,
under the additional assumptions that the sequences div uk and
curl vk are compact in the dual space of W 1,∞

0 and that uk · vk

is equi-integrable. The main point is that we only require equi-
integrability of the scalar product uk·vk and not of the individual
sequences.

1 Statement of the Theorem

The div–curl lemma is the cornerstone of the theory of compensated compact-
ness which was developed by Murat and Tartar in the late seventies [13, 14, 16,
17, 18], and is still a very active area of research [5]. In its classical form the
lemma states the following: if {uk}k∈N and {vk}k∈N are sequences in L2(Ω; Rn)
which converge weakly in L2(Ω; Rn) to u and v, respectively, and if div uk is
compact in H−1(Ω) and curl vk is compact in H−1(Ω; Mn×n), then

uk · vk ⇀ u · v in D′(Ω) .

A natural generalization concerned sequences bounded in Lp(Ω; Rn) and Lq(Ω; Rn),
respectively, where p, q ∈ (1,∞) are dual exponents, 1/p + 1/q = 1, div uk is
compact in W−1,p(Ω) and curl vk is compact in W−1,q(Ω; Mn×n), respectively,
see [14]. Important connections to Hardy spaces were established in [7].

This note is inspired by questions in nonlinear models in crystal plasticity [8]
in a two-dimensional setting. The key point in this context is to prove that the
determinant of the deformation gradient det∇ϕk converges to det∇ϕ under the
assumption that ∇ϕk = Gk + Bk where Gk ⇀ ∇ϕ weakly in L2 and Bk → 0
strongly in L1. The key additional information is that det∇ϕk is compact in
L1.

Motivated by this application, we present a generalization of the div–curl
lemma with very weak assumptions on div uk and curl vk and the additional
assumption that uk · vk is equi-integrable (see the remarks after the Theorem).
We denote the dual of W 1,∞

0 (Ω) by W−1,1(Ω).
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Theorem. Let Ω ⊂ R
n be an open and bounded domain with Lipschitz bound-

ary and let p, q ∈ (1,∞) with 1/p + 1/q = 1. Suppose uk ∈ Lp(Ω; Rn),
vk ∈ Lq(Ω; Rn) are sequences such that

uk ⇀ u weakly in Lp(Ω; Rn) and vk ⇀ v weakly in Lq(Ω; Rn) , (1)

and
uk · vk is equi-integrable. (2)

Finally assume that

div uk → div u in W−1,1(Ω) and curl vk → curl v in W−1,1(Ω; Mn×n) .
(3)

Then
uk · vk ⇀ u · v weakly in L1(Ω) . (4)

Remarks. 1. The statement is almost classical under the stronger hypothesis
that |uk|p and |vk|q are equi-integrable (see the Lemma below). The main
novelty is that here we require only that uk · vk is equi-integrable, and this
is crucial for the application in [8].

2. The assumption that the inner product uk ·vk is equi-integrable is necessary
as can be seen from the one dimensional example of a Fakir’s carpet. Let
uk = vk be given on the unit interval by uk =

√
k

∑k
ℓ=1 χ[ℓ/k,k−2+ℓ/k].

Then uk converges to zero weakly in L2(0, 1) and strongly in L1(0, 1), but
u2

k converges to one in the sense of distributions.

The crucial observation in the proof is the fact that given (2) we can construct
modified sequences ũk and ṽk such that ũk · ṽk has the same weak limit as uk ·vk

and the sequences |uk|p and |vk|q are equi-integrable and therefore compact in
W−1,p and W−1,q, respectively. The sequences are constructed using the biting
lemma [6, 3] and Lipschitz truncations of Sobolev functions which originate in
the work of Liu [11] and Acerbi and Fusco [1, 2] and have found important ap-
plications in the vector-valued calculus of variations, see, e.g., [4, 19, 12]. In two
dimensions, a change of variables leads to weak continuity of the determinant:

Corollary. Let Ω ⊂ R
2 be an open and bounded domain with Lipschitz bound-

ary, and let ϕk ∈ W 1,1(Ω; R2) be such that det∇ϕk = Gk + Bk, with Bk → 0
strongly in L1 and Gk ⇀ G weakly in L2. If the sequence det∇ϕk is equi-
integrable, then det∇ϕk ⇀ detG weakly in L1.

2 Proofs

We begin with the proof of the lemma that shows how equi-integrability of
|uk|p leads to compactness of div uk. We say that a sequence uk ∈ Lp(Ω; Rn)
is Lp-equi-integrable if there is an increasing function ω : [0,∞) → R with
limt→0 ω(t) = 0, such that

∫

A

|uk|p dx ≤ ω(t) for all A ⊂ Ω measurable with |A| ≤ t . (5)

2



Lemma. Let Ω ⊂ R
n be a bounded Lipschitz set, 1 < p < ∞, and let uk ∈

Lp(Ω; Rn) be an Lp-equi-integrable sequence. If div uk → 0 in W−1,1(Ω), then
div uk → 0 in W−1,p(Ω). The analogous statements hold for curluk and ∇uk.

Proof. Let ω be as in (5). By definition and density of C∞
0 (Ω) in W 1,q

0 (Ω),

‖ div uk‖W−1,p(Ω) = sup

{∫

Ω

∇ϕ · uk dx : ϕ ∈ C∞
0 (Ω),

∫

Ω

|∇ϕ|qdx ≤ 1

}
, (6)

where q is given by 1/p + 1/q = 1. Fix ϕ ∈ C∞
0 (Ω) with ‖∇ϕ‖q ≤ 1 and

t > 0. By the truncation argument in [9, Lemma 4.1] or [10, Prop. A.2]
there is a t-Lipschitz function ψ ∈ W 1,∞

0 (Ω) such that the measure of the set
M = {ψ 6= ϕ or ∇ψ 6= ∇ϕ} is bounded by c∗/t

q, where c∗ depends only on Ω.
We decompose

∫

Ω

∇ϕ · uk dx =

∫

Ω

(∇ϕ−∇ψ) · uk dx+

∫

Ω

∇ψ · uk dx . (7)

The second term is bounded by ‖∇ψ‖L∞‖ divuk‖W−1,1 . The first term is con-
centrated on the set M , and by Hölder’s inequality can be estimated by

∫

M

(∇ϕ−∇ψ) · uk dx ≤
(∫

M

(|∇ϕ| + t)q dx

)1/q (∫

M

|uk|p dx

)1/p

. (8)

The first factor is bounded by ‖∇ϕ‖Lq(M) + |M |1/qt ≤ 1 + c
1/q
∗ , the second

by (ω(c∗t
−q))

1/p
in view of the equi-integrability of the sequence |uk|p, and we

conclude that

‖ divuk‖W−1,p(Ω) ≤
(
1 + c

1/q
∗

) (
ω(c∗t

−q)
)1/p

+ t‖ div uk‖W−1,1(Ω) , (9)

with ω as in (5). The assertion follows with t = ‖ divuk‖−1/2

W−1,1(Ω).

Proof of the Theorem. We divide the proof into four steps. The first three treat
the case u = v = 0.
Step 1: Modification of uk and vk to obtain Lp and Lq–equi-integrable sequences,
respectively. The sequence |uk|p is bounded in L1, and therefore the biting
lemma [3, 15] implies the existence of a sequence of sets Ak ⊂ Ω such that
|Ak| → 0 and, after extracting a subsequence, |uk|pχΩ\Ak

is equi-integrable.

Set ũk = ukχΩ\Ak
. Since ‖ũk − uk‖L1(Ω) = ‖uk‖L1(Ak) ≤ |Ak|1/q‖uk‖Lp(Ω) it

follows that
ũk − uk → 0 in L1(Ω) . (10)

Therefore the two sequences uk, ũk have the same weak limit (in Lp). Fur-
thermore, ∇(ũk − uk) → 0 in W−1,1(Ω; Mn×n), and therefore div ũk → 0 in
W−1,1(Ω). One proceeds analogously with vk, obtains the corresponding sets
Bk and a sequence ṽk = vkχΩ\Bk

. To conclude this step it remains to prove that
uk · vk − ũk · ṽk ⇀ 0 in L1. To see this, we observe that this expression vanishes
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outside of Ak ∪ Bk, and that it equals uk · vk on this set. By equi-integrability
of uk · vk and the fact that |Ak ∪Bk| → 0, we conclude that uk · vk − ũk · ṽk → 0
in L1.
Step 2: Strong W−1,p convergence and reduction to the classical div-curl Lemma.
The sequence ũk is Lp-equi-integrable, and its divergence converges strongly to
zero inW−1,1. Therefore by the Lemma we obtain that div ũk → 0 inW−1,p(Ω).
Analogously one shows that curl ṽk → 0 in W−1,q(Ω). By the classical div-curl

Lemma we then conclude that ũk · ṽk
∗
⇀ 0 in D′(Ω).

Step 3: Identification of the L1-weak limit. Since the sequence uk · vk is by
assumption equi-integrable it has a subsequence which converges weakly in L1.
The same holds for ũk · ṽk. But the two limits are the same (Step 1) and the
latter is zero (Step 2). Since the limit does not depend on the subsequence, the
entire sequence converges. This concludes the proof if u = v = 0.
Step 4: General case. We set ũk = uk −u, ṽk = vk −v. Equi-integrability of the
sequence ũk · ṽk follows from

∫
A |uk · v| dx ≤ ‖uk‖Lp(Ω)‖v‖Lq(A) for all A ⊂ Ω

(and analogously for u · vk). By Steps 1-3, ũk · ṽk ⇀ 0 weakly in L1(Ω). The
proof is concluded observing that uk ·v and u ·vk converge weakly in L1 to u ·v.

Proof of the Corollary. Let uk = (e1 · Gk)⊥ = (−Gk
12, G

k
11), vk = e2 · Gk =

(Gk
21, G

k
22), so that detGk = uk · vk. Since Gk + Bk is a gradient, div uk =

∂1B
k
12−∂2B

k
11, and therefore ‖ divuk‖W−1,1 ≤ ‖Bk‖L1 → 0. The same estimate

holds for curl vk. At this point the Corollary follows from the Theorem.

Acknowledgements

This work was partially supported by the Deutsche Forschungsgemeinschaft
through FOR 797 Analysis and computation of microstructure in finite plastic-
ity, projects Co304/4-1, Do633/2-1, Mu1067/9-1.

References

[1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of varia-
tions, Arch. Ration. Mech. Anal. 86 (1984), 125–145.

[2] , An approximation lemma for W 1,p functions, Material instabilities
in continuum mechanics and related mathematical problems (J. M. Ball,
ed.), Oxford UP, 1988, pp. 1–5.

[3] J. M. Ball and F. Murat, Remarks on Chacon’s biting lemma, Proc. AMS
107 (1989), 655–663.

[4] J. M. Ball and K.-W. Zhang, Lower semicontinuity of multiple integrals and
the biting lemma, Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 367–379.

[5] M. Briane, J. Casado-Dı́az, and F. Murat, The div-curl lemma “trente ans
après” an extension and an application to the G–convergence of unbounded
monotone operators, J. Math. Pures Appl. 91 (2009), 476–494.

4



[6] J. K. Brooks and R. V. Chacon, Continuity and compactness of measures,
Adv. in Math. 37 (1980), 16–26.

[7] R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes, Compensated compact-
ness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247–286.

[8] S. Conti, G. Dolzmann, and C. Klust, Asymptotic behavior of crystal plas-
ticity with one slip system in the limit of rigid elasticity, in preparation
(2009).

[9] G. Dolzmann, N. Hungerbühler, and S. Müller, Uniqueness and maximal
regularity for nonlinear elliptic systems of n-Laplace type with measure val-
ued right hand side, J. reine und angew. Math. 520 (2000), 1–35.

[10] G. Friesecke, R. James, and S. Müller, A theorem on geometric rigidity and
the derivation of nonlinear plate theory from three dimensional elasticity,
Comm. Pure Appl. Math 55 (2002), 1461–1506.

[11] F.-C. Liu, A Luzin type property of Sobolev functions, Indiana Univ. Math.
J. 26 (1977), 645–651.

[12] S. Müller, A sharp version of Zhang’s theorem on truncating sequences of
gradients, Trans. Am. Math. Soc. 351 (1999), 4585–4597.
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