
Adaptive Cross Approximation of
Multivariate Functions

Mario Bebendorf

no. 453

Diese Arbeit ist mit Unterstützung des von der Deutschen Forschungs-

gemeinschaft getragenen Sonderforschungsbereichs 611 an der Universität

Bonn entstanden und als Manuskript vervielfältigt worden.

Bonn, August 2009

Adaptive Cross Approximation of Multivariate

Functions

M. Bebendorf∗

August 11, 2009

In this article we present and analyze a new scheme for the approximation of multivari-
ate functions (d = 3, 4) by sums of products of univariate functions. The method is based
on the Adaptive Cross Approximation (ACA) initially designed for the approximation of
bivariate functions. To demonstrate the linear complexity of the schemes we apply it to
large-scale multidimensional arrays generated by the evaluation of functions.

AMS Subject Classification: 41A80, 41A63, 15A69.
Keywords: data compression, dimensionality reduction, adaptive cross approximation.

1 Introduction

Representations of functions κ of several variables by sums of functions of fever variables have been
investigated in many publications; see [22] and the references therein. The best L2-approximation of
functions of two variables is shown in [23, 25] to be given by the truncated Hilbert-Schmidt decom-
position. This result was extended by Pospelov [21] to the approximation of functions in d variables
by sums of products of functions of one variable. For some classes of fuctions the approximation by
specific function systems such as exponential functions might be advantageous; see [8, 9], [7]. One
of the best known decompositions in statistics is the analysis of variance (ANOVA) decomposition
[15]. Related to this field of research are sparse grid approximations; see [28, 10].

An important application of this kind of approximation is the approximation of multidimensional
arrays generated by the evaluation of functions. In this case a d-dimensional tensor is approximated
by the tensor product of a small number of vectors, which significantly improves the computational
complexity. Multidimensional arrays of data appear in many different applications, e.g. statistics,
chemometrics, and finance. While for d = 2 a result due to Eckart and Young [12] states that the
optimal rank-k approximation can be computed via the singular value decomposition (SVD), the
generalization of the SVD for tensors of order more than two is not clear; see the counterexample in
[18]. In the Tucker model [27] a third order tensor is approximated by

r1
∑

i=1

r2
∑

j=1

r3
∑

k=1

gijk xi ⊗ yj ⊗ zk

with the so-called core array g and the Tucker vectors xi, yj, and zk. The PARAFAC model [11] uses
diagonal core arrays. A method for third order tensors is proposed in [16]. Multi-level decompositions

∗Institut für Numerische Simulation, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstrasse 6, 53115 Bonn,

Germany, Tel. +49 228 733144, bebendorf@ins.uni-bonn.de.

1

are presented in [17]. The most popular method is based on alternating least squares minimization
[19, 26]. In [29] an incremental method, i.e. the approximation is successively constructed from the
respective remainder, is proposed. While our technique also is based on successive rank-1 approxi-
mations, in [29] the optimal rank-1 approximation is computed via a generalized Rayleigh quotient
iteration. Since all previous methods require the whole matrix for constructing the respective ap-
proximation, they may be computationally still too expensive. We present a method having linear
complexity using a small portion of the original matrix entries.

In [3] the adaptive cross approximation (ACA) was introduced. ACA approximates bivariate
functions κ by sums of products of univariate functions. A characteristic property of ACA is that
the approximation is constructed from restrictions of κ to lower dimensional domains of definition,
i.e.

κ(x, y) ≈
k
∑

i,j=1

αijκ(xi, y)κ(x, yj)

with points xi, yj and coefficients αij which constitute the inverse of the matrix κ(xi, yj), i, j =
1, . . . , k. The advantages of the fact that the restrictions κ(xi, y) and κ(x, yj), i, j = 1, . . . , k, are
used, are manifold. First of all it can be seen that this kind of approximation allows to guarantee
quasi-optimal accuracy, i.e. the quality of the approximation will (up to constants) be at least as good
as the approximation in any other system of functions of the same cardinality. Furthermore, matrix
versions of ACA are able to construct approximations without computing all the matrix entries in
advance, only the entries corresponding to the restrictions have to be evaluated. Furthermore, the
method is adaptive because it is able to find the required rank k in the course of the approximation.

In the present article the adaptive cross approximation will be extended to functions of three and
four variables. The latter two classes of functions will be treated by algorithms which together with
the bivariate ACA can be investigated in the general setting of what we call incremental approxima-
tion. These will be introduced and investigated in Sect. 2. The convergence analysis of the bivariate
ACA can be obtained as a special case. Furthermore, in Sect. 3 we will show convergence also for
singular functions. A principle difference appears if ACA is extended to more than two variables, be-
cause the dimension of the restricted domains of definition of the approximations are still more than
one-dimensional. Hence, further approximation of these restrictions by an ACA of lower dimension
is required. As a consequence, the influence of perturbation on the convergence has to be analyzed.
In the trivariate case treated in Sect. 4 one additional approximation using bivariate ACA per step
is sufficient. The approximation of functions of four variables is treated in Sect. 5 and requires two
additional bivariate ACA approximations per step. To demonstrate the linear complexity of the
presented techniques, our theoretical findings are accompanied by the application of the presented
schemes to large-scale multidimensional arrays. A method that is similar to the kind of matrix ap-
proximation treated in this article (at least for the trivariate case) was presented in [20]. Although
it is proved in [20] that low-rank approximations exist, the convergence of the actual scheme has not
been analyzed.

As the need for techniques required to analyze the influence of perturbations on the convergence
already appears in the cases of three and four variables, the results of this article are expected to
be useful also for problems of more than four dimensions, because algorithms can be constructed by
recursive bisection of the set of variables; see also [14]. In this sense this article lays ground to the
adaptive cross approximation of high-dimensional functions.

2

2 Incremental Approximation

The approximation schemes considered in this article will be of the following form. Given a set X
and a function f : X → C, define r0[f] := f and rk[f], k = 1, 2, . . . , as

rk[f] = rk−1[f] − rk−1[f](xk)

ℓk(xk)
ℓk. (1)

Here, xk is chosen such that ℓk(xk) 6= 0. The choice of the functions ℓk : X → C defines the respective
approximation scheme. Since the evaluation of functions at given points is central for our methods,
we assume that f and ℓk are continuous on X. In the following lemmas properties of rk[f] will be
investigated.

Lemma 1. For rk[f] the non-recursive representation

rk[f] = f −

f(x1)
...

f(xk)

T

U−1
k

ℓ1
...
ℓk

(2)

holds, where

Uk :=

ℓ1(x1) ℓ1(xk)

0 ℓ2(x2)
...

...
. . .

. . .
...

0 . . . 0 ℓk(xk)

.

Proof. The assertion is obviously true for k = 1. Assume that it is valid for k − 1. Then we obtain
that

rk = rk−1 −
rk−1(xk)

ℓk(xk)
ℓk

= f −

f(x1)
...

f(xk−1)

T

U−1
k−1

ℓ1
...

ℓk−1

−

f(xk) −

f(x1)
...

f(xk−1)

T

U−1
k−1

ℓ1(xk)
...

ℓk−1(xk)

ℓk
ℓk(xk)

,

which ends the proof, because

[

A b
γ

]−1

=

[

A−1 −A−1b/γ
1/γ

]

, (3)

where A is a non-singular matrix and 0 6= γ ∈ C.

The previous lemma shows that the constructed approximation

sk[f] := f − rk[f]

is in the linear hull of the functions ℓ1, . . . , ℓk. The following lemma shows an equivalent expression
for the coefficients. In addition to the vector in (4) the quantities

σi,k := sup
x∈X

k
∑

ν=i

|ξ(k)ν (x)|

3

defined on the components of ξ(k) : X → C
k,

ξ(k) := U−1
k

ℓ1
...
ℓk

,

will play an important role in the stability analysis.

Lemma 2. It holds that

U−T
k

f(x1)
...

f(xk)

=

r0[f](x1)
ℓ1(x1)

...
rk−1[f](xk)
ℓk(xk)

. (4)

Hence,

sk[f] =

k
∑

i=1

ri−1[f](xi)
ℓi

ℓi(xi)
.

Proof. Formula (4) is obviously true for k = 1. Assume that it is valid for k − 1, then using (3)

f(x1)
...

f(xk)

T

U−1
k =

f(x1)
...

f(xk)

T
[

U−1
k−1 vk−1

1
ℓk(xk)

]

,

where

vk−1 = −U−1
k−1

ℓ1(xk)
...

ℓk−1(xk)

/ℓk(xk).

From (2) together with the assumption, we obtain

f(x1)
...

f(xk)

T

U−1
k =

r0(x1)
ℓ1(x1) , . . . ,

rk−2(xk−1)
ℓk−1(xk−1)

,

f(x1)
...

f(xk−1)

T

vk−1 +
f(xk)
ℓk(xk)

=
[

r0(x1)
ℓ1(x1) , . . . ,

rk−1(xk)
ℓk(xk)

]

.

In the following lemma we will investigate under which conditions on ℓk the function sk[f] in-
terpolates f . Notice that rk[f](xk) = 0. However, rk[f](xj) does not vanish for j < k in general.
The desired interpolation property will be characterized by the coincidence of the upper triangular
matrix Uk with the k × k matrix

Mk :=

ℓ1(x1) . . . ℓ1(xk)
...

...
ℓk(x1) . . . ℓk(xk)

or equivalently by ℓi(xj) = 0 for i > j.

Lemma 3. For 1 ≤ j < k it holds that

rk[f](xj) = −

f(x1)
...

f(xk)

T

U−1
k

0
...
0

ℓj+1(xj)
...

ℓk(xj)

. (5)

4

Hence, sk[f](xj) = f(xj), 1 ≤ j ≤ k, if Mk = Uk. In the other case we have that sk[f](xj) = (f̃k)j ,
1 ≤ j ≤ k, where

f̃k := (U−1
k Mk)

T

f(x1)
...

f(xk)

.

Proof. Since rj(xj) = 0, we have that

f(xj) =

f(x1)
...

f(xj)

T

U−1
j

ℓ1(xj)
...

ℓj(xj)

.

Formula (5) follows from

rk(xj) = f(xj) −

f(x1)
...

f(xk)

T

U−1
k

ℓ1(xj)
...

ℓk(xj)

(6)

and the upper triangular structure of Uk which contains Uj in the leading j × j subblock.
The second part

sk(x1)
...

sk(xk)

T

=

f(x1)
...

f(xk)

T

U−1
k Mk

follows from sk = f − rk and (6).

Remark 1. Let Mk be non-singular. We denote by M
(i)
k (x) ∈ C

k×k the matrix which arises from
replacing the i-th column of Mk by the vector vk := [ℓ1(x), . . . , ℓk(x)]

T . The functions

Li[f](x) := (M−1
k vk)i =

detM
(i)
k (x)

detMk
∈ span{ℓ1, . . . , ℓk}

are Lagrange functions for the points x1, . . . , xk, i.e. Li[f](xj) = δij , i, j = 1, . . . , k. As a consequence
of Lemma 3, the approximation

sk[f] =

k
∑

i=1

(f̃k)iLi[f]

is the uniquely defined Lagrangian interpolating function.

The following lemmas will help estimating the remainder rk of the approximation. We first observe
the following property.

Lemma 4. Let Mk = Uk and let functions ℓ̂1, . . . , ℓ̂k satisfy span{ℓ̂1, . . . , ℓ̂k} = span{ℓ1, . . . , ℓk}.
Then M̂ ∈ C

k×k defined by M̂ij = ℓ̂i(xj), i, j = 1, . . . , k, is non-singular and

rk[f] = f −

f(x1)
...

f(xk)

T

M̂−1
k

ℓ̂1
...

ℓ̂k

.

5

Proof. Let C ∈ C
k×k be an invertible matrix such that

ℓ1
...
ℓk

= C

ℓ̂1
...

ℓ̂k

.

Then it follows from Mk = CM̂k that M̂k is invertible and

M−1
k

ℓ1
...
ℓk

= M̂−1

k

ℓ̂1
...

ℓ̂k

.

Lemma 1 gives the assertion.

In the following lemma the remainder rk[f] is expressed as the error

Ek[f](x) := f(x) −

f(x1)
...

f(xk)

T

Ψk(x)

of a linear approximation in an arbitrary system {ψ1, . . . , ψk} ⊂ C(X) of functions. Here, we set
Ψk := [ψ1, . . . , ψk]

T .

Lemma 5. It holds that

rk[f] = Ek[f] −

f(x1)
...

f(xk)

T

U−1
k (Mk − Uk)Ψk −

f(x1)
...

f(xk)

T

U−1
k

Ek[ℓ1]
...

Ek[ℓk]

.

In particular, if Mk = Uk, then

rk[f] = Ek[f] −

f(x1)
...

f(xk)

T

M̂−1
k

Ek[ℓ̂1]
...

Ek[ℓ̂k]

,

where M̂k and ℓ̂1, . . . , ℓ̂k are as in Lemma 4.

Proof. The assertion follows from

rk = f −

f(x1)
...

f(xk)

T

U−1
k

ℓ1
...
ℓk

= f −

f(x1)
...

f(xk)

T

U−1
k MkΨk −

f(x1)
...

f(xk)

T

U−1
k

ℓ1
...
ℓk

−MkΨk

= f −

f(x1)
...

f(xk)

T

Ψk −

f(x1)
...

f(xk)

T

U−1
k (Mk − Uk) Ψk −

f(x1)
...

f(xk)

T

U−1
k

Ek[ℓ1]
...

Ek[ℓk]

.

The second part of the assertion follows from Lemma 4.

6

Remark 2. The previous lemma relates the remainder rk[f] to the error Ek[f] in the system Ψk.
Assume that Ψk are Lagrange functions, i.e. ψi(xj) = δij , i, j = 1, . . . , k. If rk[f] is to be estimated
by the best approximation error in Ψk, then one can use the estimate

‖Ek[f]‖∞ ≤ (1 + ‖Ik‖) inf
ψ∈Ψk

‖f − ψ‖∞, (7)

where Ik : C(X) → C(X) defined as Ikf =
∑k

i=1 f(xi)ψi denotes the interpolation operator in Ψk

and ‖Ik‖ := sup{‖Ikf‖∞, f ∈ C(X), ‖f‖∞ = 1}. Estimate (7) is a consequence of

‖f − Ikf‖∞ ≤ ‖f − ψ‖∞ + ‖Ik(f − ψ)‖∞ ≤ (1 + ‖Ik‖∞)‖f − ψ‖∞

for all ψ ∈ Ψk.

2.1 Perturbation analysis

The next question we are going to investigate is how approximations ℓ̃k to the functions ℓk influence
the approximation error rk[f], i.e., we will compare the remainder rk[f] with r̃k[f] defined by r̃0[f] = f
and

r̃k[f] = r̃k−1[f] − r̃k−1[f](xk)

ℓ̃k(xk)
ℓ̃k, k = 1, 2, (8)

In (8) xk is chosen such that ℓ̃k(xk) 6= 0. Define Ũk, ξ̃
(k), and σ̃i,k by replacing ℓi in the respective

definition with ℓ̃i. Notice that we use the same points xk from the construction of r̃k[f] also for the
construction of rk[f]. Therefore, we have to make sure that Uk is invertible.

Lemma 6. Let εi := ‖ℓ̃i − ℓi‖∞ such that εi < |ℓ̃i(xi)|, i = 1, . . . , k. Then ℓi(xi) 6= 0 and

‖r̃k[f] − rk[f]‖∞ ≤
k
∑

i=1

|ri−1[f](xi)|
|ℓi(xi)|

(σ̃i,k + 1) εi.

Proof. From |ℓi(xi)| ≥ |ℓ̃i(xi)| − εi > 0 it follows that Uk is invertible. Setting

Ek = Uk − Ũk and δ(k) =

ℓ̃1 − ℓ1
...

ℓ̃k − ℓk

,

due to Lemma 1 and Lemma 2 we have that

r̃k − rk =

f(x1)
...

f(xk)

T

Ũ−1
k

ℓ̃1
...

ℓ̃k

− U−1

k

ℓ1
...
ℓk

=

f(x1)
...

f(xk)

T

U−1
k

(Ũk + Ek)Ũ

−1
k

ℓ̃1
...

ℓ̃k

−

ℓ1
...
ℓk

=

f(x1)
...

f(xk)

T

U−1
k

δ(k) + EkŨ

−1
k

ℓ̃1
...

ℓ̃k

=

r0(x1)
ℓ1(x1)

...
rk−1(xk)
ℓk(xk)

T

(

δ(k) + Ek ξ̃
(k)
)

.

The assertion follows from ‖δ(k)i ‖∞ ≤ εi, ‖(Ek)ij‖∞ ≤ εi, and (Ek)ij = 0 for i > j.

In addition to (8) one may also consider the following scheme, in which r̃k−1[f](xk) is replaced by
some value ak ∈ C:

˜̃rk[f] = ˜̃rk−1[f] − ak

ℓ̃k(xk)
ℓ̃k. (9)

7

Then ˜̃rk[f] will usually neither vanish in the points xj, 1 ≤ j < k, nor a representation (2) will hold.
However, the following lemma can be proved. We will make use of the recursive relation

ξ
(k)
i = ξ

(k−1)
i − ℓk

ℓk(xk)
ξ
(k−1)
i (xk), i = 1, . . . , k − 1, (10a)

ξ
(k)
k =

ℓk
ℓk(xk)

, (10b)

for the components of ξ(k), which follows from (3).

Lemma 7. Let εj := ˜̃rj−1[f](xj) − aj such that |εj | ≤ ε, 1 ≤ j ≤ k. Then

˜̃rk[f] = r̃k[f] +

ε1
...
εk

T

Ũ−1
k

ℓ̃1
...

ℓ̃k

.

Hence,

‖r̃k[f] − ˜̃rk[f]‖∞ ≤ sup
x∈X

k
∑

j=1

|ξ̃(k)j (x)| |εj | ≤ σ̃1,kε.

Proof. The assertion is proved by induction. It is obviously true for k = 1. Assume that it is valid
for k − 1. Then

˜̃rk = ˜̃rk−1 −
˜̃rk−1(xk)

ℓ̃k(xk)
ℓ̃k +

ℓ̃k

ℓ̃k(xk)
εk

= r̃k−1 +

ε1
...

εk−1

T

ξ̃(k−1) − ℓ̃k

ℓ̃k(xk)

r̃k−1(xk) +

ε1
...

εk−1

T

ξ̃(k−1)(xk)

+
ℓ̃k

ℓ̃k(xk)
εk

= r̃k +

ε1
...

εk−1

T

ξ̃(k−1) − ℓ̃k

ℓ̃k(xk)

ε1
...

εk−1

T

ξ̃(k−1)(xk) +
ℓ̃k

ℓ̃k(xk)
εk.

Equation (10) finishes the proof.

2.2 Estimating the amplification factors

As it can be seen from Lemma 6 and Lemma 7, for the perturbation analysis it is crucial to estimate
the size of the amplification factors ξ(k). The following lemma is an obvious consequence of (10).
Let vj : X → C, j = 1, . . . , k, be given functions and set

ξ̂(k) := U−1
k

v1
...
vk

.

Lemma 8. If there is µ ≥ 1 such that ‖vi‖∞ ≤ µ|ℓi(xi)| for i = 1, . . . , k, then

‖ξ̂(k)i ‖∞ ≤ µ

1 +

k−1
∑

j=i

‖ξ(j)i ‖∞

 .

Furthermore, ‖ξ(k)i ‖∞ ≤ ν(1 + ν)k−i provided that ‖ℓi‖∞ ≤ ν|ℓi(xi)| for some ν ∈ R.

8

Proof. It readily follows from (10) that ‖ξ(k)i ‖∞ ≤ ν(1+ν)k−i. Similar to (10) we obtain the following

recursion formula for the components of ξ̂(k):

ξ̂
(k)
i = ξ̂

(k−1)
i − vk

ℓk(xk)
ξ
(k−1)
i (xk), i = 1, . . . , k − 1,

ξ̂
(k)
k =

vk
ℓk(xk)

,

which shows ‖ξ̂(i)i ‖∞ ≤ µ and the recursive relation

‖ξ̂(j+1)
i ‖∞ ≤ ‖ξ̂(j)i ‖∞ + µ‖ξ(j)i ‖∞, j = k − 1, . . . , i.

Hence, we obtain that

‖ξ̂(k)i ‖∞ ≤ µ+ µ
k−1
∑

j=i

‖ξ(j)i ‖∞.

In particular the previous lemma shows that ‖ξ(k)i ‖∞ ≤ 2k−i provided that xi maximizes |ℓi|. In
this case we have

σi,k ≤
k
∑

ν=i

‖ξ(k)ν ‖∞ ≤
k
∑

ν=i

2k−ν = 2k−i+1 − 1.

If ℓi, i = 1, . . . , k, are smooth, i.e. if we may assume that

|Ek−i[ℓi+µ](x)| ≤ ε|ℓi+µ(xi+µ)|, µ = 0, . . . , k − i, (11)

with some ε > 0 and if ℓi(xj) = 0, i > j, then significantly better bounds for ‖ξ(k)i ‖∞ can be derived.

Due to (10) each ξ
(k)
i , 1 ≤ i ≤ k, can be regarded as a remainder function of an approximation of

type (1) with f ′ := ξ
(i)
i and ℓ′j := ξ

(i+j)
i+j , because it follows from (10) that

ξ
(i)
i (x) =

ℓi(x)

ℓi(xi)
,

ξ
(i+j)
i (x) = ξ

(i+j−1)
i (x) − ℓi+j(x)

ℓi+j(xi+j)
ξ
(i+j−1)
i (xi+j), j = 1, . . . , k − i.

Since span{ℓ′1, . . . , ℓ′k−i} = span{ℓi+1, . . . , ℓk}, Lemma 5 shows that

ξ
(k)
i (x) = Ek−i[ξ(i)i](x) −

ξ
(i)
i (xi+1)

...

ξ
(i)
i (xk)

T

(M ′
k−i)

−1

Ek−i[ℓi+1](x)
...

Ek−i[ℓk](x)

,

where (M ′
k−i)µν = ℓi+µ(xi+ν), µ, ν = 1, . . . , k − i. Hence, from (11) and Lemma 8 we obtain that

‖ξ(k)i ‖∞ ≤ ε+ ε

k−i
∑

ν=1

|ξ(i)i (xi+ν)|

1 +

k−i−1
∑

j=ν

2j−ν

 ≤ 2k−iε, (12)

because M ′
k−i = U ′

k−i and |ξ(i)i (xj)| ≤ 1, j = i+ 1, . . . , k, provided that xi maximizes |ℓi|.
We will, however, see in the numerical examples that typically ‖ξ(k)i ‖∞ is significantly smaller than

predicted by our worst-case estimates.

9

3 Adaptive Cross Approximation

The adaptive cross approximation (ACA) was introduced for Nyström matrices [3] and extended to
collocation matrices [6]. A version with refined pivoting strategy and a generalization of the method
to Galerkin matrices was presented in [5]. The following recursion is in the core of this method.
Given κ : X × Y → C, let R0(x, y) = κ(x, y) and

Rk(x, y) = Rk−1(x, y) −
Rk−1(x, yk)Rk−1(xk, y)

Rk−1(xk, yk)
, k = 1, 2, (13)

The points xk and yk are chosen such that Rk−1(xk, yk) 6= 0. The previous recursion corresponds to
the choice

f := κx, ℓi := Ri−1(xi, ·)
in (1) if x ∈ X is treated as a parameter. Then Rk(x, y) = rk[κx](y) holds, where κx is defined
by κx(y) = κ(x, y) for all x ∈ X, and ℓi(yj) = 0 for i > j can be seen from inductively applying
Lemma 3. Since

span{ℓ1, . . . , ℓk} = span{κ(x1, ·), . . . , κ(xk, ·)},
we see that ℓ̂i := κ(xi, ·) is a possible choice in Lemma 4. Hence, the degenerate approximation
Sk := κ−Rk of κ has the representation

Sk(x, y) =

κ(x, y1)
...

κ(x, yk)

T

M̂−1
k

κ(x1, y)
...

κ(xk, y)

=

k
∑

i,j=1

(M̂−1
k)ijκ(x, yi)κ(xj , y)

with (M̂k)ij = κ(xi, yj), i, j = 1, . . . , k.
In Lemma 5 we showed how the remainder Rk of the approximation can be estimated by relating

the approximation to linear approximation in any system {ψ1, . . . , ψk}. In particular we obtain from
the second part of Lemma 5 that

Rk(x, y) = Ek[κx](y) −

Ek[κx1](y)
...

Ek[κxk
](y)

T

ξ(k)(x),

where

ξ(k)(x) := M̂−T
k

κ(x, y1)
...

κ(x, yk)

∈ C

k

can be regarded as an amplification factor with respect to x. Therefore, we obtain

|Rk(x, y)| ≤ (σ1,k + 1) max
z∈{x,x1,...,xk}

|Ek[κz](y)|. (14)

Similar to Remark 1 we denote by M̂
(i)
k (x) the matrix which arises from M̂k by replacing the i-th

row with the vector [κ(x, y1), . . . , κ(x, yk)]. Then due to Cramer’s rule we have that

ξ
(k)
i (x) =

det M̂
(i)
k (x)

det M̂k

.

Hence, if the pivoting points xi, i = 1, . . . , k, are chosen such that

|det M̂
(i)
k (x)| ≤ |det M̂k| for all x ∈ X and i = 1, . . . , k,

10

then ‖ξ(k)i ‖∞ = 1, and we obtain

|Rk(x, y)| ≤ (k + 1) max
z∈{x,x1,...,xk}

|Ek[κz](y)|.

In this case of so-called matrices of maximum volume we also refer to the error estimates in [24]
which are based on the technique of exact anhilators; see [2, 1]. In practice it is, however, difficult
to find matrices of maximum volume. In Lemma 8 we observed that

‖ξ(k)i ‖∞ ≤ 2k−i, i = 1, . . . , k,

under the realistic condition

|Rk−1(x, yk)| ≤ |Rk−1(xk, yk)| for all x ∈ X. (15)

In this case (14) becomes
|Rk(x, y)| ≤ 2k max

z∈{x,x1,...,xk}
|Ek[κz](y)|.

If κ is sufficiently smooth with respect to y and if the system Ψk is appropriately chosen, then it can
be expected that for all x ∈ X

‖Ek[κx]‖∞ ∼ γk (16)

with some 0 < γ < 1, which results in an approximation error of the order (2γ)k. Hence, ACA
convergences if γ < 1/2. Notice that the choice of yk does not improve our estimates on the
amplification factors ξ(k). However, it is important for obtaining a reasonable decay of the error
Ek[κx]; for details see [5].

Up to now we have exploited that κ is smooth only with respect to the second variable y. If κ
is smooth also with respect to x, then the arguments from the end of Sect. 2.2 can be applied to
improve the error estimate. Condition (11) is satisfied, because according to assumption (16) for
µ = 0, . . . , k − i we have that

|Ek−i[Ri+µ−1(·, yi+µ)](x)| ≤ ε|Ri+µ−1(xi+µ, yi+µ)|, ε ∼ γk−i.

Hence, if κ is smooth also with respect to x, then according to (12) we obtain ‖ξ(k)i ‖∞ ≤ 2k−iε and

|Rk(x, y)| ∼ γk
k
∑

i=1

2k−iγk−i ≤ 2kγ2k
k
∑

i=1

√
2
−i
γ−i ≤ 2kγ2k

1 −
√

2γ
,

which converges for γ < 1/
√

2.
Although the estimate has improved, the dependence of σ1,k on k is still exponential. The actual

growth with respect to k seems to be significantly slower; see the following numerical examples.

3.1 Matrix approximation

The previous estimates can be applied when approximating function generated matrices

aij = κ(pi, qj), i = 1, . . . ,m, j = 1, . . . , n,

with pi ∈ X and qj ∈ Y . In this case (13) becomes the following matrix iteration. Starting from
R0 := A, find a nonzero pivot (ik, jk) in Rk and subtract a scaled outer product of the ik-th row and
the jk-th column:

Rk+1 := Rk − [(Rk)ikjk]
−1(Rk)1:m,jk(Rk)ik ,1:n,

where we use the notations vk := (Rk−1)ik,1:n and uk := (Rk−1)1:m,jk for the ik-th row and the jk-th
column of Rk−1, respectively. We use (15) to select ik. The choice of jk is detailed in [5].

11

Since we are able to control the remainder Rk of the approximation by our estimates, it is sufficient
to construct Sk = A−Rk, which requires the computation of only

uk = (Rk−1)1:m,jk = a1:m,jk −
k−1
∑

ℓ=1

(Rℓ−1)iℓjk
(Rℓ−1)iℓjℓ

(Rℓ−1)1:m,jℓ = a1:m,jk −
k−1
∑

ℓ=1

(vℓ)jk
(uℓ)iℓ

uℓ (17)

and

vk = (Rk−1)ik,1:n = aik,1:n −
k−1
∑

ℓ=1

(Rℓ−1)ikjℓ
(Rℓ−1)iℓjℓ

(Rℓ−1)iℓ,1:n = aik,1:n −
k−1
∑

ℓ=1

(uℓ)ik
(uℓ)iℓ

vℓ. (18)

In particular this means that only k(m + n) of the original entries of A have to be computed. The
number of operations required for constructing Sk =

∑k
ℓ=1 uℓv

T
ℓ is of the order k2(m+ n), while the

storage required for the approximation Sk is of the order k(m+ n). For further details see [4].
In the following example we consider the smooth function

κ(x, y) :=
(

1 + x2 + y2
)−1/2

, x, y ∈ R,

and the points pi = qi = 1
n(i− 1

2), i = 1, . . . , n = m. Table 1 shows the rank k required to satisfy

‖A− Sk‖F ≤ ε‖A‖F (19)

and the CPU time in seconds on a single core of an Intel Core2 X5482 processor at 3.2 GHz. The

ε = 10−5 ε = 10−6 ε = 10−7

ACA SVD ACA SVD ACA SVD
n k time [s] k time [s] k time [s] k time [s] k time [s] k time [s]

1 250 4 0.00 3 4.2 4 0.00 4 4.2 5 0.00 4 4.2
2 500 4 0.00 3 43.1 4 0.00 4 43.1 5 0.00 4 43.1
5 000 4 0.00 3 381.7 4 0.00 4 381.7 5 0.00 4 381.7

10 000 4 0.00 – – 4 0.00 – – 5 0.00 – –
20 000 4 0.00 4 0.01 5 0.01
40 000 4 0.01 4 0.01 5 0.01
80 000 4 0.02 4 0.03 5 0.03

160 000 4 0.06 4 0.06 6 0.09
320 000 4 0.13 4 0.13 6 0.21
640 000 4 0.29 5 0.37 6 0.48

1 280 000 4 0.61 5 0.81 6 1.01

Table 1: Comparison of ACA and SVD.

approximation via SVD gives the best approximation but requires O(n3) complexity. Notice that the
CPU time for both methods includes the computation of the required matrix entries. For problem
sizes larger than 5000 the SVD could not be computed within 30 minutes. ACA shows a linear
complexity, and the approximation rank is insignificantly larger than the optimal one, which does
not seem to depend on the problem size. Note that in order to guarantee linear complexity we
replaced (19) with

‖uk+1‖2‖vk+1‖F ≤ ε‖Sk+1‖F , (20)

because ‖A‖F ≈ ‖Sk+1‖F and ‖Sk+1 − Sk‖F ≈ ‖A− Sk‖F .
Table 2 shows the expression

σ1,k = max
j=1,...,n

k
∑

i=1

|ξ(k)i (qj)|.

The amplification factors do not seem to grow exponentially with k.

12

n\k 1 2 3 4 5 6

320 000 1.00 1.04 1.25 2.63 4.70 3.61
640 000 1.00 1.04 1.26 2.61 3.76 3.70

1 280 000 1.00 1.05 1.27 2.54 3.01 3.08

Table 2: Amplification factors σ1,k for the case ε = 10−7.

3.2 Application to singular functions

In previous publications the adaptive cross approximation was applied to functions κ on domains
X × Y which are well-separated from singular points of κ. The following lemma shows the rate
of convergence in the case that X × Y approaches singular points. As an important prototype we
consider

κ(x, y) := (|x|q + |y|q)−1/q (21)

with arbitrary q ∈ N.

Theorem 1. Let δ1, δ2 > 0 and X ⊂ {x ∈ R
d : ‖x‖2 > δ1}, Y ⊂ {y ∈ R

d : ‖y‖2 > δ2}. Then for Rk
applied to κ from (21) there is a constant ck > 0 such that

|Rk(x, y)| ≤ ck
8 · 21/q

(δq1 + δq2)
1/q

e−π
√
k/q, x ∈ X, y ∈ Y.

Proof. In [9] it is proved that for the approximation of the function f(t) := t−1/q by exponential
sums

sk(t) :=

k
∑

i=1

ωie
−αit, ωi, αi ∈ R,

it holds that

‖f − ŝk‖[ε,∞) = min
ωi,αi

‖f − sk‖[ε,∞) ≤
8 · 21/q

ε1/q
e−π

√
k/q.

Without loss of generality we may assume that the coefficients αi are pairwise distinct.
Setting ψi(y) := e−αi|y|

q

, for x ∈ X it holds that ŝk(|x|q+ | · |q) ∈ Ψk. Hence, for the approximation
of κ on X × Y we obtain that

sup
x∈X

inf
ψ∈Ψk

‖κ(x, ·) − ψ‖∞,Y ≤ sup
x∈X

‖f(|x|q + | · |q) − ŝk(|x|q + | · |q)‖∞,Y

≤ ‖f − ŝk‖[δq
1+δq

2 ,∞) ≤
8 · 21/q

(δq1 + δq2)
1/q

e−π
√
k/q.

The assertion follows from (14) and Remark 2 with ck := (1 + ‖Ik‖)(σ1,k + 1).

As a consequence, the rank k required to guarantee an error of order ε > 0 depends logarithmically
on both ε and the maximum δ := max{δ1, δ2} of the distances to the singularity provided that

ck . e
π
2

√
k/q:

δ−18 · 21/qe−
π
2

√
k/q < ε ⇐⇒ k >

4q

π2
[| log ε| + | log δ| + (3 + 1/q) log 2]2 . (22)

We will now construct matrix approximations for matrices A ∈ R
n×n generated by (21) for q = 2, 5

and ε = 10−5. Table 3 shows that in contrast to Table 1 the rank increases with the problem size
due to the singularity of κ. As predicted in (22) the dependence is logarithmic. The column labeled
“factor” shows the compression ratio 2k/m, i.e. the ratio of the number of units of memory required

13

q = 2 q = 5
ACA SVD ACA SVD

n k factor time [s] k time [s] k factor time [s] k time [s]

1 250 18 3 · 10−2 0.00 16 4.2 31 5 · 10−2 0.00 29 4.2
2 500 19 2 · 10−2 0.00 18 43.1 35 3 · 10−2 0.01 32 43.1
5 000 21 8 · 10−3 0.00 19 381.7 38 2 · 10−2 0.03 35 381.7

10 000 22 4 · 10−3 0.02 – – 41 8 · 10−3 0.06 – –
20 000 24 2 · 10−3 0.06 44 4 · 10−3 0.25
40 000 25 1 · 10−3 0.16 46 2 · 10−3 0.59
80 000 27 7 · 10−4 0.41 49 1 · 10−3 1.36

160 000 28 4 · 10−4 0.96 52 7 · 10−4 3.21
320 000 28 2 · 10−4 2.41 55 3 · 10−4 8.93
640 000 30 9 · 10−5 6.57 58 2 · 10−4 23.85

1 280 000 31 5 · 10−5 14.12 61 1 · 10−4 52.91

Table 3: Comparison of ACA and SVD for ε = 10−5.

for the approximation and for the original matrix. Additionally, it is visible that q increases the
approximation rank. However, the difference of the optimal rank and the one computed by ACA is
still small.

Table 4 shows the corresponding amplification factors σ1,k.

n\k 1 2 3 4 5 6 7 8 9 10 15 20 25 30 31

320 000 1.0 1.0 1.2 2.6 2.5 1.9 2.5 3.3 2.7 2.8 3.0 3.3 8.3
640 000 1.0 1.0 1.2 2.6 2.5 1.9 2.5 3.3 2.7 2.8 3.0 3.3 4.8 14.4

1 280 000 1.0 1.0 1.2 2.6 2.5 1.9 2.5 3.3 2.7 2.8 3.0 3.3 4.2 11.0 10.1

Table 4: Amplification factors σ1,k for the case q = 2, ε = 10−5.

4 Adaptive cross approximation of trivariate functions

In this section functions κ : X × Y × Z → C in three variables will be considered. An obvious
generalization of the bivariate method to such functions is the following recursion

Rk(x, y, z) = Rk−1(x, y, z) −
Rk−1(x, yk, zk)

Rk−1(xk, yk, zk)
Rk−1(xk, y, z)

for k = 1, 2, . . . and R0(x, y, z) = κ(x, y, z). The previous recursion still contains a function in two
variables, which can be approximated using ACA. Instead of Rk we will therefore use the following
recursion

R̃k(x, y, z) = R̃k−1(x, y, z) −
R̃k−1(x, yk, zk)

R̃k−1(xk, yk, zk)
Ayz[R̃k−1|xk

](y, z) (23)

for k = 1, 2, . . . and R̃0(x, y, z) = κ(x, y, z). Here, Ayz[f] denotes the approximation of the bivariate
function f(y, z) as presented in Sect. 3. The number of ACA steps for the construction of Ayz[f]
will be denoted by k′. The points xk, yk, and zk are chosen such that R̃k−1(xk, yk, zk) 6= 0.

Before we analyze the decay of |R̃k| with k in the setting of incremental approximations, we show
how the approximation S̃k := κ− R̃k can be represented in terms of κ and R̃ℓ, ℓ = 1, . . . , k − 1.

14

Lemma 9. The function S̃k is of the form

S̃k(x, y, z) =

k
∑

ℓ=1

R̃ℓ−1(x, yℓ, zℓ)

R̃ℓ−1(xℓ, yℓ, zℓ)

k′
∑

µ,ν=1

α(ℓ)
µν R̃ℓ−1(xℓ, y, z

(ℓ)
µ)R̃ℓ−1(xℓ, y

(ℓ)
ν , z) (24a)

=

k
∑

ℓ=1

κ(x, yℓ, zℓ)

k
∑

i,j=1

k′
∑

µ,ν=1

β(ijℓ)
µν κ(xi, y, z

(i)
µ)κ(xj , y

(j)
ν , z). (24b)

with points y
(j)
ν , z

(i)
µ and suitable coefficients α

(ℓ)
µν , β

(ijℓ)
µν .

Proof. We have seen in Sect. 3 that

Ayz[f](y, z) =
k′
∑

µ,ν=1

αµνf(y, z′µ)f(y′ν, z)

with coefficients βµν and points y′ν, z
′
µ depending on f . Hence, it is easy to see that

S̃1(x, y, z) = κ(x, y1, z1)
k′
∑

µ,ν=1

αµν
κ(x1, y1, z1)

κ(x1, y, z
(1)
µ)κ(x1, y

(1)
ν , z).

Assume that the assertion is valid for k − 1. Since

S̃k−1(xk, y
(k)
ν , z) =

k′
∑

ν′=1

k−1
∑

j=1

γ
(ν)
ν′jκ(xj , y

(j)
ν′ , z) and S̃k−1(xk, y, z

(k)
µ) =

k′
∑

µ′=1

k−1
∑

i=1

γ̃
(µ)
µ′i κ(xi, y, z

(i)
µ′),

where

γ
(ν)
ν′j =

k−1
∑

i,ℓ=1

κ(xk, yℓ, zℓ)

k′
∑

µ′=1

β
(ijℓ)
µ′ν′ κ(xi, y

(k)
ν , z

(i)
µ′)

and

γ̃
(µ)
µ′i =

k−1
∑

j,ℓ=1

κ(xk, yℓ, zℓ)
k′
∑

ν′=1

β
(ijℓ)
µ′ν′ κ(xj , y

(j)
ν′ , z

(k)
µ),

it follows that

R̃k−1(xk, y
(k)
ν , z) = κ(xk, y

(k)
ν , z) − S̃k−1(xk, y

(k)
ν , z) =

k′
∑

ν′=1

k
∑

j=1

ζ
(ν)
ν′jκ(xj , y

(j)
ν′ , z)

and similarly

R̃k−1(xk, y, z
(k)
µ) =

k′
∑

µ′=1

k
∑

i=1

ζ̃
(µ)
µ′i κ(xi, y, z

(i)
µ′).

Hence

Ayz[R̃k−1|xk
](y, z) =

k′
∑

µ,ν=1

α(k)
µν R̃k−1(xk, y, z

(k)
µ)R̃k−1(xk, y

(k)
ν , z)

=

k
∑

i,j=1

k′
∑

µ′,ν′=1

β̂
(ij)
µ′ν′ κ(xi, y, z

(i)
µ′)κ(xj , y

(j)
ν′ , z),

15

where β̂
(ij)
µ′ν′ :=

∑k′

µ,ν=1 α
(k)
µν ζ̃

(µ)
µ′i ζ

(ν)
ν′j . Together with

R̃k−1(x, yk, zk)

R̃k−1(xk, yk, zk)
=

k
∑

ℓ=1

γ
(k)
ℓ κ(x, yℓ, zℓ)

we obtain the assertion.

Whereas in the bivariate case only the amplification factors σ1,k entered the error estimates, the
perturbation introduced by Ayz[R̃k−1|xk

] is also amplified by the expression

c
(k)
piv := max

y∈Y, z∈Z

|Ayz[R̃k−1|xk
](y, z)|

|R̃k−1(xk, yk, zk)|

as we shall see in the following theorem. Notice that the factor c
(k)
piv can be evaluated easily in each

step of the iteration to check its size.

Theorem 2. Let ε > 0 be sufficiently small, and for j = 1, . . . , k assume that

sup
y∈Y, z∈Z

|R̃j−1(xj , y, z) −Ayz[R̃j−1|xj
](y, z)| ≤ ε.

Then for x ∈ X, y ∈ Y , and z ∈ Z

|R̃k(x, y, z)| ≤ (σ1,k + 1) max
τ∈{x,x1,...,xk}

‖Ek[κτ]‖∞,Y×Z + ckε,

where ck := σ̃1,k + 2
∑k

j=1 σ̃1,j−1
∏k
i=j(c

(i)
piv + 1)(σ̃i,k + 1).

Proof. Notice that |Rk(x, y, z)| was estimated in the last section if (y, z) is treated as a single variable;
see (14). Hence,

|Rk(x, y, z)| ≤ (σ1,k + 1) max
τ∈{x,x1,...,xk}

‖Ek[κτ]‖∞,Y×Z .

Furthermore, for fixed y, z we have that Rk = rk[κy,z] is of type (1) if we choose ℓk := rk−1[κyk ,zk
],

while the recursion for R̃k is of type (9), i.e. R̃k(x, y, z) = ˜̃rk[κy,z](x) for the choice

ℓ̃k := ˜̃rk−1[κyk,zk
] = R̃k−1(·, yk, zk), ak := Ayz[R̃k−1|xk

](y, z).

We obtain from Lemma 7 that

‖˜̃rk[κy,z] − r̃k[κy,z]‖∞ ≤
k
∑

j=1

‖ξ̃(k)j ‖∞|˜̃rj−1[κy,z](xj) − aj | ≤ σ̃1,kε,

because
|˜̃rj−1[κy,z](xj) − aj | = |R̃j−1(xj , y, z) −Ayz[R̃j−1|xj

](y, z)| ≤ ε.

Let Fk := supy,z ‖rk−1[κy,z] − r̃k−1[κy,z]‖∞. Then it follows that

‖ℓk − ℓ̃k‖∞ = ‖rk−1[κyk,zk
] − ˜̃rk−1[κyk ,zk

]‖∞
≤ ‖rk−1[κyk,zk

] − r̃k−1[κyk ,zk
]‖∞ + ‖r̃k−1[κyk ,zk

] − ˜̃rk−1[κyk ,zk
]‖∞

≤ Fk + σ̃1,k−1ε.

For sufficiently small ε we may assume that

Fk + (σ̃1,k−1 + 1)ε ≤ 1

2
|ℓ̃k(xk)|. (25)

16

Then Lemma 6 proves the estimate

Fk+1 ≤
k
∑

i=1

ρi(Fi + σ̃1,i−1ε) (26)

with

ρi :=
supy,z |ri−1[κy,z](xi)|

|ℓi(xi)|
(σ̃i,k + 1).

From |ri−1[κy,z](xi) −Ayz[R̃i−1|xi
](y, z)| ≤ Fi + (σ̃1,i−1 + 1)ε we obtain that

supy,z |ri−1[κy,z](xi)|
|ℓi(xi)|

≤
supy,z |Ayz[R̃i−1|xi

](y, z)| + Fi + (σ̃1,i−1 + 1)ε

|ℓ̃i(xi)| − Fi − σ̃1,i−1ε
≤ 2c

(i)
piv + 1

due to (25).
Define F ′

1 = 0 and F ′
k+1 =

∑k
i=1 ρi(F

′
i + σ̃1,i−1ε). We see that

F ′
k+1 = F ′

k + ρk(F
′
k + σ̃1,k−1ε) = (ρk + 1)F ′

k + ρkσ̃1,k−1ε

and thus

F ′
k = ε

k−1
∑

j=1

σ̃1,j−1ρj

k−1
∏

i=j+1

(ρi + 1).

From F1 = 0 and (26) we see that

Fk ≤ F ′
k = ε

k−1
∑

j=1

σ̃1,j−1ρj

k−1
∏

i=j+1

(ρi + 1) ≤ ε

k−1
∑

j=1

σ̃1,j−1

k−1
∏

i=j

(ρi + 1).

It follows that

‖˜̃rk‖∞ ≤ ‖˜̃rk − r̃k‖∞ + Fk+1 + ‖rk‖∞

≤ ‖rk‖∞ + σ̃1,kε+ 2ε

k
∑

j=1

σ̃1,j−1

k
∏

i=j

(c
(i)
piv + 1)(σ̃i,k + 1).

4.1 Matrix approximation

We apply the approximation (23) to the matrix A ∈ R
n×n×n with entries ai1i2i3 = κ(pi1 , pi2 , pi3) and

pi = 1
n(i− 1

2), i = 1, . . . , n, generated by evaluating the smooth function

κ(x, y, z) = (1 + x2 + y2 + z2)−1/2.

From (24a) we obtain the representation

(Sk)i1i2i3 =

k
∑

ℓ=1

(wℓ)i1

kℓ
∑

ν=1

(uℓν)i2(vℓν)i3

with appropriate vectors uℓν , vℓν , and wℓ, ν = 1, . . . , kℓ, ℓ = 1, . . . , k. Here, kℓ denotes the rank of
the ℓ-th two-dimensinal approximation. Hence,

‖Sk‖2
F =

n
∑

i1,i2,i3=1

(Sk)
2
i1i2i3 =

k
∑

ℓ,ℓ′=1

(wℓ, wℓ′)αℓℓ′ ,

17

where

αℓℓ′ :=

kℓ
∑

ν=1

kℓ′
∑

ν′=1

(uℓν , uℓ′ν′)(vℓν , vℓ′ν′),

can be exploited to evaluate ‖Sk‖F with linear complexity. Furthermore, we have that ‖Sk+1−Sk‖2
F =

‖wk+1‖2
2αk+1,k+1, and condition (20) becomes

‖wr+1‖2
√
αr+1,r+1 ≤ ε‖Sk+1‖F

in the case of third order tensors. Notice that the computation of Rk can be avoided by tracing back
the error as in (17) and (18).

The pivoting indices (i
(k)
1 , i

(k)
2 , i

(k)
3) can be obtained in many ways. The aim of this choice is to

reduce the amplification factors σ̃1,k and c
(k)
piv. In the following numerical examples we have chosen

i
(ℓ)
1 as the index of the maximum entry of the vector A

1:n,i
(ℓ)
2 ,i

(ℓ)
3

, where (i
(ℓ+1)
2 , i

(ℓ+1)
3) is the index

of the maximum entry in modulus of the rank-kℓ matrix UℓV
H
ℓ , Uℓ ∈ C

n×kℓ and Vℓ ∈ C
n×kℓ. The

maximum can be found with complexity O(k2
ℓn) via the following procedure. Let uj and vj denote

the columns of Uℓ and Vℓ, respectively. In [13] it is pointed out that the n2 × n2 matrix

C :=

k
∑

j=1

diag(uj) ⊗ diag(vj)

has the eigenvalues (UℓV
H
ℓ)ij for the eigenvectors ei⊗ ej , i, j = 1, . . . , n. Hence, the maximum entry

can be computed, for instance, by vector iteration. Here, the problem arises that

C(x⊗ y) =

kℓ
∑

j=1

(diag(uj)x) ⊗ (diag(vj)y),

i.e. the rank increases from step to step. In order to avoid this, C(x ⊗ y) ∈ C
n×n is truncated to

rank-1 via the singular value decomposition. The latter can be computed with O(k2
ℓn) operations;

see [4].
Hence, the complexity of the matrix approximation algorithm is O(n

∑k
ℓ=1 k

2
ℓ), while the storage

requirement is O(nkS), where kS :=
∑k

ℓ=1 kℓ. Table 5 shows the number of steps k, the Kronecker
rank kS , and the CPU time required for constructing the approximation. The column labeled “factor”
contains the compression ratio (2kS + 1)/n2.

ε = 10−3 ε = 10−4 ε = 10−5

n k kS factor time [s] k kS factor time [s] k kS factor time [s]

160 000 3 9 7 · 10−10 0.6 3 11 9 · 10−10 0.7 4 18 1 · 10−09 1.5
320 000 3 9 2 · 10−10 1.5 3 11 2 · 10−10 1.8 4 19 4 · 10−10 4.0
640 000 3 9 5 · 10−11 3.8 3 10 5 · 10−11 4.5 4 20 1 · 10−10 10.6

1 280 000 3 9 1 · 10−11 6.9 3 10 1 · 10−11 9.0 4 20 3 · 10−11 21.3

Table 5: ACA for third order tensors.

Table 6 shows the results obtained for the functions

κ(x, y, z) = (xq + yq + zq)−1/q

with q = 1, 2, which are singular for x = y = z = 0. The ranks increase compared with Table 5, but
the complexity is still linear with respect to n.

18

q = 1 q = 2
n k kS factor time [s] k kS factor time [s]

160 000 21 308 2 · 10−08 127.1 32 706 6 · 10−08 597.7
320 000 17 214 4 · 10−09 190.8 30 660 1 · 10−08 1416.3
640 000 26 405 2 · 10−09 1426.2 31 667 3 · 10−09 3653.2

1 280 000 24 421 5 · 10−10 3102.5 28 574 7 · 10−10 5756.9

Table 6: ACA for third order tensors and ε = 10−3.

5 Adaptive cross approximation of functions of four variables

The construction of approximations to functions

κ : W ×X × Y × Z → C

of four variables w, x, y, z can be done by applying ACA to the pairs (w, x) and (y, z):

Rk(w, x, y, z) = Rk−1(w, x, y, z) −
Rk−1(w, x, yk, zk)Rk−1(wk, xk, y, z)

Rk−1(wk, xk, yk, zk)
.

Since this leads to bivariate functions, we approximate them using ACA again. Hence, in this section
we will investigate the recursion

R̃k(w, x, y, z) = R̃k−1(w, x, y, z) −
Awx[R̃k−1|yk,zk

](w, x)Ayz [R̃k−1|wk,xk
](y, z)

Awx[R̃k−1|yk,zk
](wk, xk)

(27)

for k = 1, 2, . . . and R̃0 = κ. The choice of (wk, xk, yk, zk) guarantees Awx[R̃k−1|yk,zk
](wk, xk) 6= 0.

Here, Awx[f] and Ayz[g] denote ACA approximations of the bivariate functions f and g with rank
k′.

Lemma 10. The approximating function S̃k := κ− R̃k is of the form

S̃k(w, x, y, z) =

k
∑

ℓ=1

uℓ(w, x)vℓ(y, z) =

k
∑

|µ|=1

k′
∑

|i|=1

αµifµi(w, x, y, z), (28)

where µ, i ∈ N
4, |µ| := maxj=1,...,4 µj,

uℓ(w, x) :=

k′
∑

i,j=1

β
(ℓ)
ij R̃ℓ−1(w, x

(ℓ)
i , yℓ, zℓ)R̃ℓ−1(w

(ℓ)
j , x, yℓ, zℓ),

vℓ(y, z) :=
k′
∑

i,j=1

γ
(ℓ)
ij R̃ℓ−1(wℓ, xℓ, y, z

(ℓ)
i)R̃ℓ−1(wℓ, xℓ, y

(ℓ)
j , z),

and

fµi(w, x, y, z) := κ(w, x
(µ1)
i1

, yµ1 , zµ1)κ(w
(µ2)
i2

, x, yµ2 , zµ2)κ(wµ3 , xµ3 , y, z
(µ3)
i3

)κ(wµ4 , xµ4 , y
(µ4)
i4

, z)

with points x
(µ1)
i1

, y
(µ2)
i2

, z
(µ3)
i3

, y
(µ4)
i4

and coefficients αµi, β
(ℓ)
ij , and γ

(ℓ)
ij .

19

Proof. We already know that

Awx[f](w, x) =

k′
∑

i,j=1

βijf(w, x′i)f(w′
j , x)

with suitable coefficients βij and points x′i, w
′
j depending on f . Hence, it is easy to see that S̃1 is of

the desired form. Assuming that the assertion is true for k − 1, we obtain from

S̃k−1(wk, xk, y
(k)
j , z) =

k−1
∑

µ4=1

k′
∑

i4=1

γjµ4i4κ(wµ4 , xµ4 , y
(µ4)
i4

, z),

where

γjµ4i4 :=

k−1
∑

µ1,µ2,µ3=1

k′
∑

i1,i2,i3=1

αµiκ(wk, x
(µ1)
i1

, yµ1 , zµ1)κ(w
(µ2)
i2

, xk, yµ2 , zµ2)κ(wµ3 , xµ3 , y
(k)
j , z

(µ3)
i3

),

that

R̃k−1(wk, xk, y
(k)
j , z) = κ(wk, xk, y

(k)
j , z) − S̃k−1(wk, xk, y

(k)
j , z) =

k
∑

µ4=1

k′
∑

i4=1

ζjµ4i4κ(wµ4 , xµ4 , y
(µ4)
i4

, z)

and similarly

R̃k−1(wk, xk, y, z
(k)
i) =

k
∑

µ3=1

k′
∑

i3=1

ζ̂iµ3i3κ(wµ3 , xµ3 , y, z
(µ3)
i3

).

Hence

Ayz[R̃k−1|wk,xk
](y, z) =

k′
∑

i,j=1

γ
(k)
ij R̃k−1(wk, xk, y, z

(k)
i)R̃k−1(wk, xk, y

(k)
j , z)

=
k
∑

µ3,µ4=1

k′
∑

i3,i4=1

ζ̃µ3µ4i3i4κ(wµ3 , xµ3 , y, z
(µ3)
i3

)κ(wµ4 , xµ4 , y
(µ4)
i4

, z),

where ζ̃µ3µ4i3i4 :=
∑k′

i,j=1 β
(k)
ij ζ̂iµ3i3ζjµ4i4. Similarly

Awx[R̃k−1|yk,zk
](w, x) =

k
∑

µ1,µ2=1

k′
∑

i1,i2=1

ζ̃ ′µ1µ2i1i2κ(w, x
(µ1)
i1

, yµ1 , zµ1)κ(w
(µ2)
i2

, x, yµ2 , zµ2),

where ζ̃ ′µ1µ2i1i2
:=
∑k′

i,j=1 β̂
(k)
ij ζ̂

′
iµ1i1

ζ ′jµ2i2
, from which the assertion follows.

For four variables we obtain a similar result as Theorem 2 in the trivariate case. Here, in addition
to the amplification factor σ̃1,k the expression

c
(k)
piv := max

y∈Y, z∈Z

|Ayz[R̃k−1|wk,xk
](y, z)|

|Awx[R̃k−1|yk,zk
](wk, xk)|

will enter the estimates.

20

Theorem 3. Let ε > 0 be sufficiently small, and for j = 1, . . . , k let

sup
y∈Y, z∈Z

|R̃j−1(wj , xj , y, z) −Ayz[R̃j−1|wj ,xj
](y, z)| ≤ ε, (29a)

sup
w∈W,x∈X

|R̃j−1(w, x, yj , zj) −Awx[R̃j−1|yj ,zj
](w, x)| ≤ ε. (29b)

Then for w ∈W , x ∈ X, y ∈ Y , and z ∈ Z

|R̃k(w, x, y, z)| ≤ (1 + σ1,k) max
(σ,τ)∈{(w,x), (wi,xi), i=1,...,k}

‖Ek[κσ,τ]‖∞,Y×Z + ckε,

where

ck := σ̃1,k + 2

k
∑

j=1

(σ̃1,j−1 + 1)

k
∏

i=j

(c
(i)
piv + 1)(σ̃i,k + 1).

Proof. For fixed parameters y, z the recursion for R̃k is of type (9), i.e. R̃k(w, x, y, z) = ˜̃rk[κy,z](w, x),
if we choose

ℓ̃k(w, x) := Awx[˜̃rk−1[κyk,zk
]](w, x) = Awx[R̃k−1|yk ,zk

](w, x), ak := Ayz[R̃k−1|wk,xk
](y, z).

Let rk be defined as in (1) with ℓk(w, x) = rk−1[κyk ,zk
](w, x). From Lemma 7 we obtain

‖˜̃rk[κy,z] − r̃k[κy,z]‖∞,W×X ≤
k
∑

j=1

‖ξ̃(k)j ‖∞|˜̃rj−1[κy,z](wj , xj) − aj | ≤ σ̃1,kε,

because
|˜̃rj−1[κy,z](wj , xj) − aj | = |R̃j−1(wj , xj , y, z) −Ayz[R̃j−1|wj ,xj

](y, z)| ≤ ε.

Let Fk := supy,z ‖rk−1[κy,z] − r̃k−1[κy,z]‖∞,W×X . Then from assumption (29b) we have that

‖ℓk − ℓ̃k‖∞,W×X = ‖rk−1[κyk ,zk
] −Awx[˜̃rk−1[κyk,zk

]]‖∞,W×X

≤ ‖rk−1[κyk ,zk
] − r̃k−1[κyk,zk

]‖∞ + ‖r̃k−1[κyk,zk
] − ˜̃rk−1[κyk ,zk

]‖∞ + ε

≤ Fk + δk,

where δk := ε(σ̃1,k−1 + 1). For small enough ε we may assume that

Fk + δk ≤ 1

2
|ℓ̃k(wk, xk)|. (30)

Then Lemma 6 proves the estimate

Fk+1 ≤
k
∑

i=1

ρi(Fi + δi) (31)

with

ρi :=
supy,z |ri−1[κy,z](wi, xi)|

|ℓi(wi, xi)|
(σ̃i,k + 1).

From |ri−1[κy,z](wi, xi) −Ayz[R̃i−1|wi,xi
](y, z)| ≤ Fi + δi we obtain that

supy,z |ri−1[κy,z](wi, xi)|
|ℓi(wi, xi)|

≤
supy,z |Ayz[R̃i−1|wi,xi

](y, z)| + Fi + δi

|ℓ̃i(wi, xi)| − Fi − δi
≤ 2c

(i)
piv + 1

21

due to (30). Similar to the proof of Theorem 2 from F1 = 0 and (31) we see that

Fk ≤
k−1
∑

j=1

δjρj

k−1
∏

i=j+1

(ρi + 1) ≤
k−1
∑

j=1

δj

k−1
∏

i=j

(ρi + 1).

It follows that

‖˜̃rk‖∞,W×X ≤ ‖˜̃rk − r̃k‖∞,W×X + Fk+1 + ‖rk‖∞,W×X

≤ ‖rk‖∞,W×X + σ̃1,kε+ 2

k
∑

j=1

δj

k
∏

i=j

(c
(i)
piv + 1)(σ̃i,k + 1).

Notice that that ‖rk‖∞ was estimated in Sect. 3.

5.1 Matrix approximation

We apply the algorithm (27) to a matrix A ∈ R
n×n×n×n with entries ai1i2i3i4 = κ(pi1 , pi2 , pi3 , pi4)

and pi = 1
n(i− 1

2), i = 1, . . . , n, generated by evaluating the smooth function

κ(w, x, y, z) = (1 + w + x+ y + z)−1.

The stopping criterion (see (20))

‖Sk+1 − Sk‖F ≤ ε‖Sk+1‖F

can be evaluated with linear complexity, because from (28) we obtain the matrix representation

(Sk)i1i2i3i4 =

k
∑

ℓ=1

(

kℓ
∑

ν=1

(uℓν)i1(vℓν)i2

)

k′
ℓ
∑

µ=1

(u′ℓµ)i3(v
′
ℓµ)i4

with suitable vectors uℓν , vℓν , u
′
ℓµ, and v′ℓµ, which shows that

‖Sk‖2
F =

k
∑

ℓ,ℓ′=1

αℓℓ′βℓℓ′ ,

where

αℓℓ′ :=

kℓ
∑

ν=1

kℓ′
∑

µ=1

(uℓν , uℓ′µ)(vℓν , vℓ′µ) and βℓℓ′ :=

k′
ℓ
∑

ν=1

k′
ℓ′
∑

µ=1

(u′ℓν , u
′
ℓ′µ)(v

′
ℓν , v

′
ℓ′µ).

Furthermore, ‖Sk+1 − Sk‖2
F = αk+1,k+1 βk+1,k+1. Also in the case of four dimensional arrays the

computation of Rk can be avoided by tracing back the error as in (17) and (18).

The pivots (i
(ℓ)
1 , i

(ℓ)
2) are chosen as the indices of the entry of maximum modulus in the rank-kℓ

matrix UℓV
T
ℓ , while (i

(ℓ+1)
3 , i

(ℓ+1)
4) corresponds to the maximum entry in the rank-k′ℓ matrix U ′

ℓ(V
′
ℓ)
T ,

where Uℓ, Vℓ, U
′
ℓ, and V ′

ℓ consist of the columns uℓν , vℓν , u
′
ℓν , and v′ℓν , respectively. Both maxima

can be found with linear complexity using the technique from Sect. 4.1.
Hence, the complexity of the matrix approximation algorithm is O(n

∑k
ℓ=1 k

2
ℓ + (k′ℓ)

2) and the

storage required by the approximation is O(n(kS + k′S)), where kS :=
∑k

ℓ=1 kℓ and k′S :=
∑k

ℓ=1 k
′
ℓ.

Table 7 shows the number of steps k, the ranks kS and k′S , and the CPU time required for
constructing the approximation. The column labeled “factor” contains the compression ratio 2(kS +
k′S)/n3.

22

ε = 10−3 ε = 10−4 ε = 10−5

n k kS k′S factor time [s] k kS k′S time [s] k kS k′S time [s]

160 000 4 19 13 2 · 10−14 2.5 5 27 18 4.0 7 53 35 10.6
320 000 4 19 13 2 · 10−15 6.2 5 27 19 10.5 7 59 35 31.9
640 000 4 19 13 2 · 10−16 15.8 5 26 19 26.1 7 57 34 69.8

1 280 000 4 19 13 3 · 10−17 31.5 5 28 19 55.6 7 55 35 142.3

Table 7: ACA for fourth order tensors.

References

[1] M.-B. A. Babaev. Best approximation by bilinear forms. Mat. Zametki, 46(2):21–33, 158, 1989.

[2] M.-B. A. Babaev. Exact annihilators and their applications in approximation theory. Trans.
Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 20(1, Math. Mech.):17–24, 233, 2000.

[3] M. Bebendorf. Approximation of boundary element matrices. Numer. Math., 86(4):565–589,
2000.

[4] M. Bebendorf. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value
Problems, volume 63 of Lecture Notes in Computational Science and Engineering (LNCSE).
Springer, 2008. ISBN 978-3-540-77146-3.

[5] M. Bebendorf and R. Grzhibovskis. Accelerating Galerkin BEM for Linear Elasticity using
Adaptive Cross Approximation. Mathematical Methods in the Applied Sciences, 29:1721–1747,
2006.

[6] M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation matrices.
Computing, 70(1):1–24, 2003.

[7] Gregory Beylkin and Lucas Monzón. On approximation of functions by exponential sums. Appl.
Comput. Harmon. Anal., 19(1):17–48, 2005.

[8] D. Braess and W. Hackbusch. Approximation of 1/x by exponential sums in [1,∞). IMA J.
Numer. Anal., 25(4):685–697, 2005.

[9] D. Braess and W. Hackbusch. On the efficient compuation of high-dimensional integrals and
the approximation by exponential sums. Technical Report 3, Max-Planck-Institute MiS, 2009.

[10] Hans-Joachim Bungartz and Michael Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.

[11] J. Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multidimensional scal-
ing via an n-way generalization of “Eckart-Young” decomposition. Psychometrika, 35(3):283–
319, 1970.

[12] G. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psycho-
metrica, 1:211–218, 1936.

[13] Mike Espig. Effiziente Bestapproximation mittels Summen von Elementartensoren in hohen
Dimensionen. PhD thesis, University of Leipzig, 2007.

[14] W. Hackbusch and S. Kühn. A new scheme for the tensor representation. Technical Report 2,
Max-Planck-Institute MiS, 2009.

23

[15] Wassily Hoeffding. A class of statistics with asymptotically normal distribution. Ann. Math.
Statistics, 19:293–325, 1948.

[16] Ilghiz Ibraghimov. Application of the three-way decomposition for matrix compression. Numer.
Linear Algebra Appl., 9(6-7):551–565, 2002. Preconditioned robust iterative solution methods,
PRISM ’01 (Nijmegen).

[17] B. N. Khoromskij. Structured rank-(r1, . . . , rd) decomposition of function-related tensors in R
d.

Comput. Methods Appl. Math., 6(2):194–220 (electronic), 2006.

[18] Tamara G. Kolda. A counterexample to the possibility of an extension of the Eckart-Young low-
rank approximation theorem for the orthogonal rank tensor decomposition. SIAM J. Matrix
Anal. Appl., 24(3):762–767 (electronic), 2003.

[19] Pieter M. Kroonenberg and Jan de Leeuw. Principal component analysis of three-mode data by
means of alternating least squares algorithms. Psychometrika, 45(1):69–97, 1980.

[20] I. V. Oseledets, D. V. Savostianov, and E. E. Tyrtyshnikov. Tucker dimensionality reduction of
three-dimensional arrays in linear time. SIAM J. Matrix Anal. Appl., 30(3):939–956, 2008.

[21] V. V. Pospelov. Approximation of functions of several variables by products of functions of a
single variable. Akad. Nauk SSSR Inst. Prikl. Mat. Preprint, (32):75, 1978.

[22] Themistocles M. Rassias and Jaromı́r Šimša. Finite sums decompositions in mathematical anal-
ysis. Pure and Applied Mathematics (New York). John Wiley & Sons Ltd., Chichester, 1995.
A Wiley-Interscience Publication.

[23] Erhard Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen. Math. Ann.,
63(4):433–476, 1907.

[24] J. Schneider. Error estimates for two-dimensional Cross Approximation. Technical Report 5,
Max-Planck-Institute MiS, 2009.

[25] Jaromı́r Šimša. The best L2-approximation by finite sums of functions with separable variables.
Aequationes Math., 43(2-3):248–263, 1992.

[26] Jos M. F. ten Berge, Jan de Leeuw, and Pieter M. Kroonenberg. Some additional results
on principal components analysis of three-mode data by means of alternating least squares
algorithms. Psychometrika, 52(2):183–191, 1987.

[27] Ledyard R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,
31:279–311, 1966.

[28] Ch. Zenger. Sparse grids. In W. Hackbusch, editor, Parallel Algorithms for Partial Differential
Equations, volume 31 of Notes on Numerical Fluid Mechanics, pages 241–251. Vieweg, 1991.

[29] Tong Zhang and Gene H. Golub. Rank-one approximation to high order tensors. SIAM J.
Matrix Anal. Appl., 23(2):534–550 (electronic), 2001.

24

Bestellungen nimmt entgegen:

Sonderforschungsbereich 611
der Universität Bonn
Poppelsdorfer Allee 82
D - 53115 Bonn

Telefon: 0228/73 4882
Telefax: 0228/73 7864
E-Mail: astrid.link@ins.uni-bonn.de http://www.sfb611.iam.uni-bonn.de/

Verzeichnis der erschienenen Preprints ab No. 430

430. Frehse, Jens; Málek, Josef; Ružička, Michael: Large Data Existence Result for Unsteady
 Flows of Inhomogeneous Heat-Conducting Incompressible Fluids

431. Croce, Roberto; Griebel, Michael; Schweitzer, Marc Alexander: Numerical Simulation of
 Bubble and Droplet Deformation by a Level Set Approach with Surface Tension in
 Three Dimensions

432. Frehse, Jens; Löbach, Dominique: Regularity Results for Three Dimensional Isotropic and
 Kinematic Hardening Including Boundary Differentiability

433. Arguin, Louis-Pierre; Kistler, Nicola: Small Perturbations of a Spin Glass System

434. Bolthausen, Erwin; Kistler, Nicola: On a Nonhierarchical Version of the Generalized
 Random Energy Model. II. Ultrametricity

435. Blum, Heribert; Frehse, Jens: Boundary Differentiability for the Solution to Hencky's Law
 of Elastic Plastic Plane Stress

436. Albeverio, Sergio; Ayupov, Shavkat A.; Kudaybergenov, Karim K.; Nurjanov, Berdach O.:
 Local Derivations on Algebras of Measurable Operators

437. Bartels, Sören; Dolzmann, Georg; Nochetto, Ricardo H.: A Finite Element Scheme for the
 Evolution of Orientational Order in Fluid Membranes

438. Bartels, Sören: Numerical Analysis of a Finite Element Scheme for the Approximation of
 Harmonic Maps into Surfaces

439. Bartels, Sören; Müller, Rüdiger: Error Controlled Local Resolution of Evolving Interfaces
 for Generalized Cahn-Hilliard Equations

440. Bock, Martin; Tyagi, Amit Kumar; Kreft, Jan-Ulrich; Alt, Wolfgang: Generalized Voronoi
 Tessellation as a Model of Two-dimensional Cell Tissue Dynamics

441. Frehse, Jens; Specovius-Neugebauer, Maria: Existence of Hölder Continuous Young
 Measure Solutions to Coercive Non-Monotone Parabolic Systems in Two Space
 Dimensions

442. Kurzke, Matthias; Spirn, Daniel: Quantitative Equipartition of the Ginzburg-Landau Energy
 with Applications

443. Bulíček, Miroslav; Frehse, Jens; Málek, Josef: On Boundary Regularity for the Stress in
 Problems of Linearized Elasto-Plasticity

444. Otto, Felix; Ramos, Fabio: Universal Bounds for the Littlewood-Paley First-Order
 Moments of the 3D Navier-Stokes Equations

445. Frehse, Jens; Specovius-Neugebauer, Maria: Existence of Regular Solutions to a Class
 of Parabolic Systems in Two Space Dimensions with Critical Growth Behaviour

446. Bartels, Sören; Müller, Rüdiger: Optimal and Robust A Posteriori Error Estimates in

 L
∞

(L
2
) for the Approximation of Allen-Cahn Equations Past Singularities

447. Bartels, Sören; Müller, Rüdiger; Ortner, Christoph: Robust A Priori and A Posteriori Error
 Analysis for the Approximation of Allen-Cahn and Ginzburg-Landau Equations
 Past Topological Changes

448. Gloria, Antoine; Otto, Felix: An Optimal Variance Estimate in Stochastic Homogenization
 of Discrete Elliptic Equations

449. Kurzke, Matthias; Melcher, Christof; Moser, Roger; Spirn, Daniel: Ginzburg-Landau
 Vortices Driven by the Landau-Lifshitz-Gilbert Equation

450. Kurzke, Matthias; Spirn, Daniel: Gamma-Stability and Vortex Motion in Type II
 Superconductors

451. Conti, Sergio; Dolzmann, Georg; Müller, Stefan: The Div–Curl Lemma for Sequences
 whose Divergence and Curl are Compact in W

−1,1

452. Barret, Florent; Bovier, Anton; Méléard, Sylvie: Uniform Estimates for Metastable
 Transition Times in a Coupled Bistable System

453. Bebendorf, Mario: Adaptive Cross Approximation of Multivariate Functions

