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SCATTERING THEORY FOR SCHRÖDINGER
OPERATORS WITH BESSEL-TYPE POTENTIALS

S. ALBEVERIO, R. HRYNIV, AND YA. MYKYTYUK

Abstract. We show that for the Schrödinger operators on the
half-axis with Bessel-type potentials κ(κ+1)/x2, κ ∈ [− 1

2 ,
1
2 ), there

exists a meaningful direct and inverse scattering theory. Several
new phenomena not observed in the “classical case” of Faddeev–
Marchenko potentials arise here; in particular, for κ 6= 0 the scat-
tering function S takes two different values on the positive and
negative semi-axes and is thus discontinuous both at the origin
and at infinity.

1. Introduction

The main goal of this paper is to show that there exists a meaningful
direct and inverse scattering theory for the Schrödinger operators Hκ

generated by the differential expressions

`κ(y) := −y′′ + κ(κ+ 1)

x2
y

with Bessel-type potentials κ(κ + 1)/x2, where κ ∈ [−1
2
, 1

2
). For non-

negative integer values of κ such operators arise in the decomposition in
spherical harmonics of the three-dimensional Laplacian −∆, and then
κ is the angular momentum, or partial wave. Operators of the form Hκ

with non-integer values of κ arise in the study of scattering of waves
and particles in conical domains (see, e.g., [8]), as well as in the study
of the Aharonov–Bohm effect [2].

The scattering theory for the one-dimensional Schrödinger operators

H = − d2

dx2
+ q(x)

on the semi-axis relates the asymptotic behaviour of solutions eitHψ(0)
of the corresponding Schrödinger equation iψ′(t) = Hψ(t) and the free
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evolution eitH0φ(0) via the scattering operator S (also called the scat-
tering matrix or the scattering function in our context). Some partial
results in the inverse scattering problem of reconstruction of the poten-
tial q from the scattering function S appeared already in the late 1940-
ies, but a systematic and successful theory was only developed in the
works of Gelfand and Levitan [18], Krein [25, 26], and Marchenko [29,
30], see also the reviews [13, 16] and the books [7, 28, 31, 33]. This
“classical theory” works for the set of real-valued potentials q in the
space L1

1(R+), i.e., for potentials satisfying the condition

(1.1)

∫ ∞
0

x|q(x)| dx <∞

and often called the Faddeev–Marchenko or Bargman–Jost–Kohn po-
tentials [34, Ch. 2.2.1]. The Bessel potential κ(κ + 1)/x2 considered
here does not belong to this class as the integral (1.1) diverges both at
the origin and at infinity.

The direct and inverse scattering theory on the line has also success-
fully been developed for potentials in L1

1(R) [13, 16, 28, 31]. Recently
it has been extended to a larger class of Schrödinger operators with
Miura distributional potentials in H−1

loc [17, 23, 24]. The Miura poten-
tials that were considered in these works are of the form q = u′ + u2,
with u ∈ L2,loc(R)∩L1(R). We notice that the function u is related to
the modified Korteweg–de Vries (mKdV) equation in the same manner
as q is related to the Korteweg–de Vries (KdV) equation, see [32]. The
corresponding differential expression giving the Hamiltonian can then
be factorized as

− d2

dx2
+ q = −

( d
dx

+ u
)( d

dx
− u
)
,

and the class of Miura potentials treated in these works include the
Faddeev–Marchenko class and allow potentials with, e.g., local sin-
gularities of Coulomb 1/x-type or Dirac delta-functions. The formal
identity

`κ = −
( d
dx
− κ

x

)( d
dx

+
κ

x

)
might suggest that the Bessel potential could be viewed as a Miura
potential; however, since the function κ/x is neither integrable at in-
finity nor at the origin, the approach based on Miura potentials is not
applicable.

We observe that the inverse scattering problem for Schrödinger
operators Hκ + q with κ ∈ N and q belonging to the Faddeev–
Marchenko class was also considered in the context of the corresponding
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three-dimensional problem for the operator −∆ + Q with spherically-
symmetric potential Q(x) := q(|x|), cf. [7, 33]. The essential difference
is, however, that the unperturbed (or reference) Hamiltonian is then Hκ

and not H0. Moreover, in this problem there exists an efficient “double
commutation” (or multiple Darboux) procedure that reduces the in-
verse scattering problem to the case κ = 0, albeit with some modified
potential qκ that can explicitly be calculated from q and κ, see [16]. In
fact, the same double commutation can be applied to Hκ + q for the
general case κ ∈ R, reducing it to the basic case κ ∈ [−1

2
, 1

2
), which

thus explains the importance of studying operators of the form Hκ with
κ ∈ [−1

2
, 1

2
).

Scattering with some other singular reference potentials was also
discussed in the literature. For instance, scattering on Coulombic po-
tentials was treated in e.g., [9,10] and singular potentials that describe
“point” interactions were thoroughly investigated in the books [4, 5],
where additional references might be found. Inverse scattering for long-
range oscillating potentials leading to scattering functions with finite
phase shifts was considered in [27]. The methods developed for such
potentials do not apply, however, to the case of Bessel potentials.

In this paper, we show that despite the fact that the Bessel potential
κ(κ + 1)/x2 is too singular for applying the methods of the classical
scattering theory, a meaningful stationary scattering theory between
H0 and Hκ exists when κ ∈ [−1

2
, 1

2
). We remark that `κ is invariant

under the change κ 7→ −1 − κ, so that only κ ≥ −1
2

needs be con-
sidered. On the other hand, the minimal operator generated by `κ is
essentially self-adjoint on C∞0 (R+) when κ ≥ 1

2
, so that no scattering

is possible between H0 and Hκ in that case. Thus κ ∈ [−1
2
, 1

2
) is a

natural limitation for a scattering theory between Hκ and H0 to exist
at all. And indeed the effect of “scattering ambiguities”, where dif-
ferent potentials generate the same scattering data, has been observed
for potentials exhibiting a c/x2-type behaviour at infinity with c ≥ 2,
see [3, 12].

Let us remark that a non-stationary scattering theory between H0

and Hκ can also be developed, and the scattering operator is the oper-
ator of multiplication by the scattering function S constructed in the
present paper, just as it is the case in the above-mentioned “classical
scattering theory”. This will be discussed elsewhere.

We show that all the classical objects of the potential scattering
theory have their counterparts in our setting, albeit with a special in-
terpretation. For instance, the scattering function S turns out to take
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the values e−πiκ and eπiκ on the positive and negative semi-axes respec-
tively. Thus S is discontinuous at the origin and at infinity, and the
function 1− S does not vanish at infinity, in contrast to all situations
treated so far (see [31, Ch. 3.3] for the classical setting and [3, 12, 27]
for some cases of singular potentials). We then derive the Marchenko
equation and show that the kernel f of the corresponding integral oper-
ator F is the Fourier transform of S taken in the sense of distributions.
The operator F is not compact but rather a multiple of the classical
Carleman (also called Stieltjes) operator [6]. Thus one cannot follow
the standard arguments in solving the Marchenko equation for the ker-
nel k of the transformation operators. We show, however, that the
Marchenko equation when interpreted as a relation between operators
in some operator algebra is indeed soluble and the solution gives the
transformation operator sending eiωx into the special solutions of the
equation `κy = ω2y. Finally, the kernel of the transformation operator
reconstructs the potential we have started with via the same formula
as in the case of regular potentials.

Although we consider here a concrete operator problem which allows
for explicit calculation of all quantities of interest, our treatment is
not confined to this special case. In fact, it can also be extended to
Schrödinger operators

(1.2) Hκ(v) = −
( d
dx
− κ

x
+ v
)( d

dx
+
κ

x
− v
)

with v ∈ L1(R+). For smooth enough v this operator might be written
as Hκ + q with q = v′ + v2 − 2κv/x. The objects we constructed here
give the first approximation, or the “leading singularity”, of their coun-
terparts for operators (1.2); thus the precise knowledge of these objects
is important for a subsequent analysis of operators of the form (1.2).

The paper is organized as follows. In the next section we define
rigorously the operator Hκ as the Friedrichs extension of the minimal
operator generated by `κ. The transformation operator I + K and its
inverse I + L are constructed in Section 3. The Jost solutions and
the scattering function are constructed in Section 4 first using the ex-
plicit formulae and then by means of the transformation operators.
The Marchenko equation relating the scattering function S and the
transformation operator I +K is derived in Section 5 and its solution
in the special operator algebra and the reconstruction of the potential
are discussed in Section 6. The final Section 7 discusses two examples
demonstrating that discontinuity of S at the origin is caused by the sin-
gularity of the potential at infinity and, conversely, that the behaviour
of S at infinity is determined by the singularity of the potential at the
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origin. Finally, in two appendices we collect some information about
Bessel special functions and the Hankel and Mellin transforms which
we extensively use in the present work.

Notation. Throughout the paper, we shall write C+ for the open
complex upper-half plane, B for the algebra of all bounded linear op-
erators acting in the Hilbert space L2(R+), and L. i.m. for the limit in
the topology of the space L2(R+). As usual, Γ(·) stands for the Euler
Gamma-function.

2. Differential operators

2.1. Minimal and maximal operators. For κ ∈ [−1
2
, 1

2
), we con-

sider the differential expression `κ on its natural domain

dom `κ = {y, y′ ∈ ACloc(R+)}
and denote by Tκ the symmetric operator in L2(R+) acting on the set
C∞0 (R+) of test functions on R+ by Tκy := `κy. By definition, the mini-
mal operator Tκ,min is the closure of Tκ and the maximal operator Tκ,max

is the adjoint of the latter, i.e., Tκ,max = (Tκ)
∗ = (Tκ,min)∗.

Lemma 2.1. The maximal operator Tκ,max is given by Tκ,maxf = `κf
on the set of functions

domTκ,max = {y ∈ L2(R+) ∩ dom `κ | `κy ∈ L2(R+)}.

Proof. In order that g ∈ L2(R+) belongs to the domain of the maximal
operator, it is necessary and sufficient that the functional

G(φ) :=

∫ ∞
0

(`κφ)(x)g(x) dx

defined on C∞0 (R+) should be continuous in L2(R+).
Assume that g ∈ domTκ,max and fix an arbitrary ε > 0. Then the

functional

φ 7→ −
∫ ∞
ε

φ′′(x)g(x) dx, φ ∈ C∞0 (ε,∞),

is continuous in L2(ε,∞). It follows that the distribution g′′ is
in L2(ε,∞) and thus g belongs to W 2

2 (ε,∞). Since ε was arbitrary,
we see that g ∈ dom `κ and that for every φ ∈ C∞0 (R+) we can inte-
grate by parts in the expression for G(φ) to get

(2.1) G(φ) =

∫ ∞
0

φ(x)(`κg)(x) dx.

Since G is continuous in L2(R+), it follows that `κg ∈ L2(R+).
Conversely, if g ∈ L2(R+) ∩ dom `κ is such that the function `κg

belongs to L2(R+), then, for every ε > 0, the function g′′ is in L2(ε,∞)
5



and thus g ∈ W 2
2 (ε,∞). It follows that equality (2.1) holds for every

φ ∈ C∞0 (R+) and thus the functional G is continuous in L2(R+). This
shows that g belongs to the domain of the maximal operator Tκ,max. �

Remark 2.2. It follows from the above proof that every function y ∈
domTκ,max belongs to W 2

2 (ε,∞), for every ε > 0.

Remark 2.3. In the paper [14] the operator Tκ,max was defined as acting
by Tκ,maxy = `κy on the set domTκ,max of the above lemma.

2.2. The operator Hκ. The differential expression `κ for the κ con-
sidered is in the limit circle case at the origin and in the limit point case
at infinity in the Weyl classification. Indeed, two linearly independent
solutions of the equation

(2.2) −y′′ + κ(κ+ 1)

x2
y = ω2y

are, e.g., φκ(x, ω) :=
√
ωxJκ+1/2(ωx) and ψκ(x, ω) :=

√
ωxJ−κ−1/2(ωx)

with Jν being the Bessel function of first kind and order ν (for κ = −1
2
,

we take ψ−1/2(x, ω) :=
√
ωxY0(ωx), with Y0 being the Bessel function

of second kind and order 0). Thus the Weyl limit circle/limit point
classification of `κ follows from the asymptotic behaviour of the Bessel
functions at the origin and at infinity, see Appendix A.

Therefore the minimal operator Tκ,min is symmetric but not self-
adjoint. Since∫ ∞

0

(`κf)(x)f(x) dx =

∫ ∞
0

∣∣f ′(x) + κ
x
f(x)

∣∣2 dx ≥ 0

for all f ∈ C∞0 (R+), the operator Tκ,min is nonnegative. It follows
from the results of [14] that the Friedrichs extension Hκ of Tκ,min is the
restriction of Tκ,max by the boundary condition at the origin

(2.3) lim
x→+0

xκy(x) = 0

for κ ∈ (−1
2
, 1

2
) and by the boundary condition

y(x) = O(
√
x), x→ +0,

for κ = −1
2
. Clearly, the operator Hκ is nonnegative; moreover, it has

no eigenvalues and its continuous spectrum coincides with the positive
half-line R+ and is absolutely continuous there (see [14]). Some other
spectral properties of operators of the form Hκ (in particular, definition
and properties of the related m-function) were investigated in [19].
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3. Transformation operators

Both direct and inverse scattering theories for Schrödinger operators
heavily rely on the existence of the Jost solutions e(·, ω). These are
solutions of the equations `κy = ω2y of the form eiωx(1 + o(1)) as
x → ∞. For our model case, the Jost solutions can explicitly be
constructed as linear combinations of the special solutions φκ(·, ω) and
ψκ(·, ω) (see Section 4); the latter, in turn, are expressed via the Bessel
functions Jκ+1/2 and J−κ−1/2 (or Y0 for κ = −1

2
, see Subsection A.2).

However, if one adds to Hκ a nontrivial potential q belonging to the
Faddeev–Marchenko class, then no explicit formulae for solutions are
available and one could try to follow the classical approach via the
transformation operators. In this section we show that in the unper-
turbed case q = 0 the transformation operators indeed exist and study
some of their properties. In Sections 5 and 6 below, these transforma-
tion operators will be related to the scattering data via the Marchenko
equation and will be used to reconstruct the potential of Hκ.

3.1. Direct construction of the transformation operators. We
look for the transformation operator I+K with K an integral operator
of the form

(Ky)(x) =

∫ ∞
x

k(x, t)y(t) dt

that satisfies the relation

Tκ,max(I +K) = (I +K)T0,max.

Assume that there exists such a K with kernel k that is bounded in
the domain c ≤ x < t < ∞ for every c > 0. Then for every ω in the
open upper half-plane C+ the function y(·, ω) := (I + K)eiωx solves
the equation `κy = ω2y and is of the form eiωx(1 + o(1)) as x → +∞.
Therefore y(·, ω) gives then the Jost solution e(·, ω), i.e., the following
integral representation holds:

e(x, ω) = (I +K)eiωx = eiωx +

∫ ∞
x

k(x, t)eiωt dt.

Along with I + K we consider its (formally) inverse operator I + L
satisfying

(3.1) (I + L)Tκ,max = T0,max(I + L).

As in the classical situation of Schrödinger operators with potentials
belonging to the Faddeev–Marchenko class, we expect that L is also an
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integral operator with an upper-triangular kernel, i.e., that

(3.2) (Ly)(x) =

∫ ∞
x

l(x, t)y(t) dt.

It turns out that transformation operators I + K and I + L of the
above form indeed exist, are bounded and boundedly invertible, and
(I + K)−1 = I + L. Both operators can be constructed explicitly; we
start with I + L since its kernel has a simpler form. By analogy with
the classical theory (see [31, Sec. 3.1], [28, Sec. 1.1.3]), we expect that
the kernel l should satisfy the wave equation

(3.3) − ∂
2l

∂x2
= −∂

2l

∂t2
+
κ(κ+ 1)

t2
l

and the boundary conditions

(3.4)

d

dx
l(x, x) =

1

2

κ(κ+ 1)

x2
,

lim
x+t→∞

∂

∂x
l(x, t) = lim

x+t→∞

∂

∂t
l(x, t) = 0.

The crucial observation is that the system (3.3)–(3.4) is homogeneous
in the sense that, for every λ > 0, the function λl(λx, λt) is a solution
of (3.3)–(3.4) along with l(x, t). This suggests that we can look for
homogeneous solutions of that system satisfying the relation

l(x, t) =
1

t
l
(x
t
, 1
)
.

Set u(ξ) := l(ξ, 1); then the function u must satisfy the ordinary dif-
ferential equation (

(1− ξ2)u
)′′

+ κ(κ+ 1)u = 0

and the boundary condition

u(1) = −κ(κ+ 1)

2
.

Recalling that a solution of the Legendre equation

(3.5)
(
(1− ξ2)y′

)′
+ κ(κ+ 1)y = 0

satisfying the terminal conditions

y(1) = 1, y′(1) =
κ(κ+ 1)

2

is given by the Legendre function Pκ of first kind and order κ (see [35,
Ch. 15], [1, Ch. 8]), one immediately recognizes that u = −P ′κ.
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Set therefore

l(x, t) := −1

t
P ′κ

(x
t

)
, x < t,

and denote by L the integral operator of (3.2). Since Pκ is an analytic
function in a complex neighbourhood of [0, 1], P ′κ is bounded on [0, 1]
by some constant c. Hence |l(x, t)| ≤ c/t for all t > 0, and the Hardy
inequality [22, Sect. 9.9] shows that L is a bounded operator in L2(R+).
By Corollary 3.3 below, the operator I + L is boundedly invertible in
L2(R+).

Theorem 3.1. The operator I+L is the transformation operator, i.e.,
it performs similarity of the operators T0,max and Tκ,max via (3.1).

Proof. Take an arbitrary y ∈ domTκ,max, set f := `κy and g := (I+L)y,
and fix an ε > 0. By Remark 2.2, the function y belongs to W 2

2 (ε,∞),
so that y′′ ∈ L2(ε,∞). Integrating by parts twice in the integral∫∞
x
l(x, t)y′′(t) dt for x > ε and using the relations (3.3)–(3.4), we arrive

at the equality

(3.6) f(x) +

∫ ∞
x

l(x, t)f(t) dt = −g′′(x)

in the sense of distributions over (ε,∞).
Observe that the function f belongs to L2(R+) by the definition

of domTκ,max and that g = (I + L)y and (I + L)f are in L2(R+).
Since ε > 0 was arbitrary, we conclude that the distribution g′′ belongs
to L2(R+). Therefore g ∈ domT0,max and (I + L)f = `0g, which
establishes the inclusion (I + L)Tκ,max ⊂ T0,max(I + L).

To prove the reverse inclusion, we take an arbitrary y ∈ L2(R+) for
which the function g := (I + L)y belongs to the domain of T0,max, i.e.,
to W 2

2 (R+). We fix an arbitrary ε > 0 and observe that Ly is absolutely
continuous on the interval (ε,∞) and that the derivative

(Ly)′(x) = P ′κ(1)
y(x)

x
−
∫ ∞
x

P ′′κ

(x
t

) 1

t2
f(t) dt

belongs to L2(ε,∞); in particular, Ly ∈ W 1
2 (ε,∞). Since g ∈ W 2

2 (R+),
we conclude that y = g − Ly ∈ W 1

2 (ε,∞) and then, by replicating the
arguments, that y ∈ W 2

2 (ε,∞).
As a result, the distribution f := `κy is in L2(ε,∞), and integration

by parts again leads to the equality (3.6) for x > ε. As ε > 0 was arbi-
trary and −g′′ ∈ L2(R+), we see that (I + L)f belongs to L2(R+) and
equals −g′′. By Corollary 3.3 below, the operator I + L is boundedly
invertible in L2(R+), so that f ∈ L2(R+). It follows that y belongs

9



to domTκ,max and that (I +L)Tκ,max ⊃ T0,max(I +L), thus completing
the proof. �

3.2. Some symbol calculus. The operator I+L has an upper trian-
gular kernel, which suggests that it might belong to the subalgebra A +

introduced in Subsection 6.2 below. To verify this, we have to calcu-
late the symbol ζκ of I + L and to show that it belongs to the Hardy
space H∞.

By definition, we have

(3.7) ζκ(z) := 1−M(P ′κχ[0,1])(z) = 1−
∫ 1

0

t−iz−1/2P ′κ(t) dt,

where M denotes the Mellin transform (see Appendix B), Pκ is the
Legendre function of first kind and order κ, see [1, Ch. 8], [35, Ch. 15],
and χ[0,1] is the indicator function of the interval [0, 1].

Lemma 3.2. For z ∈ C+, the following identity holds:

(3.8) ζκ(z) =
Γ(1

4
− i

2
z)Γ(3

4
− i

2
z)

Γ(1
4
− i

2
z − κ

2
)Γ(3

4
− i

2
z + κ

2
)
.

Proof. We multiply the Legendre equation (3.5) by t and then take its
Mellin transform to get the relation∫ 1

0

(
(1− t2)P ′κ(t)

)′
t−iz+

1
2 dt+ κ(κ+ 1)

∫ 1

0

Pκ(t)t
−iz+1

2 dt = 0.

Integrating by parts yields

ζκ(z + 2i) = 1−
∫ 1

0

P ′κ(t)t
−iz+3

2 dt = (−iz + 3
2
)

∫ 1

0

Pκ(t)t
−iz+1

2 dt

and ∫ 1

0

(
(1− t2)P ′κ(t)

)′
t−iz+

1
2 dt = (−iz + 1

2
)
(
ζκ(z)− ζκ(z + 2i)

)
;

therefore the above relation takes the form

(−iz + 1
2
)
(
ζκ(z)− ζκ(z + 2i)

)
+
κ(κ+ 1)

−iz + 3
2

ζκ(z + 2i) = 0.

Setting a(z) := (z2 + 1
4
)−1, we get

ζκ(z)

ζκ(z + 2i)
= 1 + κ(κ+ 1)a(z + i),

or, by iteration,

(3.9) ζκ(z) = ζκ(z + 2ni)
n−1∏
k=0

(
1 + κ(κ+ 1)a(z + i+ 2ki)

)
.
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The Riemann–Lebesgue lemma applied to the integral in (3.7) yields
the equality

lim
y→+∞

ζκ(z + iy) = 1

for every z ∈ C+. Passing to the limit in (3.9), we derive the relation

(3.10) ζκ(z) =
∞∏
k=0

(
1 + κ(κ+ 1)a(z + i+ 2ki)

)
.

Observing that

1 + κ(κ+ 1)a(z) = 1 +
κ(κ+ 1)

z2 + 1/4
=
(

1 +
iκ

z + i/2

)(
1− iκ

z − i/2

)
,

we can recast (3.10) as

(3.11) ζκ(z) =
∞∏
k=0

(
1 +

κ/2

k + 3/4− iz/2

)(
1− κ/2

k + 1/4− iz/2

)
,

which gives (3.8) by [21, Eq. 8.325(1)]. �

Corollary 3.3. The operator I+L belongs to the algebra A +, is bound-
edly invertible in A +, and the inverse I +K has symbol 1/ζκ(z).

Proof. We have to show that the symbols ζκ and 1/ζκ belong to the
Hardy class H∞ in the upper complex half-plane. Regrouping the
factors in (3.11), we see that

ζκ(z) =
∞∏
n=0

(
1− κ(κ+ 1)

(2n+ 1− iz)2 − 1/4

)
.

Since for z ∈ C+ the estimate∣∣∣ κ(κ+ 1)

(2n+ 1− iz)2 − 1/4

∣∣∣ ≤ |κ(κ+ 1)|
4n2 + 3/4

holds, the above product converges uniformly in C+ to a bounded an-
alytic function. The claim about 1/ζκ is justified in the same manner
by using the representation

1/ζκ(z) =
∞∏
n=0

(
1− κ(κ+ 1)

(2n+ 1− iz)2 − (κ+ 1/2)2

)
,

and the proof is complete. �
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3.3. The transformation operator I + K. According to Corol-
lary 3.3, the transformation operator I + K is bounded in L2(R+)
and belongs to the algebra A +; namely,

(I +K)y(x) = y(x) +

∫ ∞
x

v
(x
t

)1

t
y(t) dt

with a function v that is related to the symbol ηκ := 1/ζκ via the Mellin
transform M, viz.

(3.12) ηκ = 1 +M(vχ[0,1]),

see Subsection 6.2 and Appendix B. Here we shall use the explicit
formula for ηκ in order to derive some properties of v and I + K that
will be useful for studying the scattering function in Subsection 4.2.

By virtue of (3.8), the symbol ηκ has the form

(3.13) ηκ(z) =
Γ(1

4
− i

2
z − κ

2
)Γ(3

4
− i

2
z + κ

2
)

Γ(1
4
− i

2
z)Γ(3

4
− i

2
z)

and is a meromorphic function with simple poles at the points

zn := −(n+ 1
2

+ (−1)n+1κ)i, n ∈ Z+.

Denote by an the residue of ηκ at the pole zn; then we have the following
result.

Lemma 3.4. As n→∞, the residues an admit the representation

an = i(−1)n
tanπκ

π

(
1− κ(κ+ 1)

4n

)
+O(n−2).

Proof. We only treat the poles z2n since the formulae for z2n+1 are
obtained from those for z2n by replacing κ by −1− κ.

We recall that the Gamma function Γ has simple poles at all non-
positive integers and that its residue at the point −n is equal to
(−1)n/n!. Therefore,

lim
z→z2n

(1
4
− κ

2
− i

2
z + n)Γ(1

4
− κ

2
− i

2
z) =

(−1)n

n!
,

which yields

a2n = 2i
(−1)n

n!

Γ(1
2

+ κ− n)

Γ(κ
2
− n)Γ(1

2
+ κ

2
− n)

.

12



Using the relation Γ(z)Γ(1− z) = π/ sin πz, we find that

a2n = 2i
sin(π κ

2
) sinπ(1

2
+ κ

2
)

n! π sin π(1
2
− κ)

Γ(n+ 1− κ
2
)Γ(n+ 1

2
− κ

2
)

Γ(n+ 1
2
− κ)

= i
tanπκ

π

Γ(n+ 1− κ
2
)Γ(n+ 1

2
− κ

2
)

Γ(n+ 1)Γ(n+ 1
2
− κ)

.

By virtue of [21, Eq. 8.325(1)], we get

Γ(n+ 1− κ
2
)Γ(n+ 1

2
− κ

2
)

Γ(n+ 1)Γ(n+ 1
2
− κ)

=
∞∏
k=0

(
1 +

κ/2

n+ k + 1− κ/2

)(
1− κ/2

n+ k + 1
2
− κ/2

)
Since(

1 +
κ/2

n+ k + 1− κ/2

)(
1− κ/2

n+ k + 1
2
− κ/2

)
= 1− κ(κ+ 1)

4

1

(n+ k)2
+O

(
(n+ k)−3

)
and

∞∑
k=0

1

(n+ k)2
=

1

n
+O(n−2),

the required representation of an follows. �

Lemma 3.5. The symbol ηκ has the form

(3.14) ηκ(z) = 1 +
∞∑
n=0

( a2n

z − z2n

+
a2n+1

z − z2n+1

)
,

where the series converges uniformly on every compact subset of C not
containing the poles.

Proof. We denote by ξ the function given by the right-hand side
of (3.14). By virtue of Lemma 3.4 the series for ξ converges uniformly
on every compact subset of C not containing the numbers zn, n ∈ Z+,
whence ξ is a meromorphic function with simple poles at zn. It follows
that the function ηκ − ξ is entire.

Fix ε > 0 and denote by Dε the complement of the ε-neighbourhood
of the set {zn}n∈Z+ . Then the function ηκ is uniformly bounded on Dε

due to the product representation (3.10). By Lemma 3.4, the function ξ
13



is also uniformly bounded on Dε. Hence ηκ−ξ is a constant function by
the Liouville theorem, and this constant is zero in view of the relations

lim
x→+∞

ηκ(x) = lim
x→+∞

ξ(x) = 1.

The lemma is proved. �

Corollary 3.6. The function v has the representation

v(s) = −ia0s
−κ − ia1s

1+κ − i
∞∑
n=1

(a2ns
2n−κ + a2n+1s

2n+1+κ),

in which the series converges uniformly on [0, 1].

Indeed, the above formula follows from (3.12), (3.14), and the re-
lation M(xαχ[0,1]) = i[z + i(α + 1

2
)]−1. The uniform convergence of

the series is guaranteed by the asymptotics of the an established in
Lemma 3.4.

Corollary 3.6 implies that v(s) = −ia0s
−κ + s1+κṽ(s) with a func-

tion ṽ that is continuous on [0, 1], which yields the following represen-
tation of the transformation operator I +K.

Corollary 3.7. The transformation operator I +K has the form

I +K = I − ia0B−κ + K̃,

where B−κ is the Hardy operator of Example 6.2(i) and K̃ acts via

(K̃y)(x) =

∫ ∞
x

(x
t

)1+κ

ṽ
(x
t

)1

t
y(t) dt

with some function ṽ that is continuous on [0, 1].

4. The scattering function

4.1. Direct construction. By definition, the scattering function S is
the coefficient in the linear combination e(x,−ω) − S(ω)e(x, ω) that
produces a solution of (2.2) satisfying the initial condition (2.3) at the
origin.

Recall that the Jost solution e(·, ω) is a solution of equation (2.2)
that for ω in the open upper half-plane has the asymptotics

e(x, ω) = eiωx(1 + o(1))

as x→ +∞. For κ ∈ (−1
2
, 1

2
) the asymptotic behaviour of the solutions

φκ and ψκ at infinity (see Subsection A.2) yields

(4.1) e(x, ω) =

√
π

2

1

cosπκ

[
ie−i

π
2
κφκ(x, ω) + ei

π
2
κψκ(x, ω)

]
.

14



Using the relation Γ(1
2
− κ)Γ(1

2
+ κ) = π/ cosπκ and the asymptotics

of the φκ and ψκ at the origin, we find that

(4.2)

e(x, ω) =

√
πei

π
2
κ

cos πκ

2κ

Γ(1
2
− κ)

(ωx)−κ
(
1 + o(1)

)
=
ei
π
2
κ

√
π

2κΓ(1
2

+ κ)(ωx)−κ
(
1 + o(1)

)
as x→ +0. For positive ω we thus find that

S(ω) = lim
x→+0

e(x,−ω)

e(x, ω)
=
e−κ(logω+πi)

e−κ logω
= e−πiκ.

Since we only consider ω in the upper half-plane, for negative ω we
should interpret (−ω)−κ as e−κ log(−ω) and thus similarly get

S(ω) = lim
x→+0

e(x,−ω)

e(x, ω)
=

e−κ log(−ω)

e−κ(log(−ω)+πi)
= eπiκ.

For κ = −1
2

the asymptotics (4.2) of e(x, ω) as x → +0 gets an
extra factor log(ωx), which, however, does not influence the value
of S(ω). Therefore the scattering function is piecewise constant for
all κ ∈ [−1

2
, 1

2
) and equals

(4.3) S(ω) =

{
e−πiκ, ω > 0,

eπiκ, ω < 0.

We observe that in the case of Schrödinger operators with Faddeev–
Marchenko potentials the scattering function S is continuous and is
close to 1 in the sense that the difference 1 − S belongs to L2(R),
see [31, Ch. 3.3]. Here this is not the case; nevertheless one can use S
to uniquely reconstruct the operator Hκ, see Section 6 below.

4.2. Construction via the transformation operators. Here we
show that the same result can be derived without knowing the explicit
formulae expressing the Jost solution e(·, ω) via the Bessel functions
but rather using the representation of e(·, ω) via the transformation
operators.

Consider first the case κ > 0. By Corollary 3.7, for all ω in the open
upper half-plane we get

(4.4) e(x, ω) = eiωx − ia0x
−κ
∫ ∞
x

eiωt

t1−κ
dt+

∫ ∞
x

(x
t

)1+κ

ṽ
(x
t

)eiωt
t
dt

with a function ṽ that is continuous over [0, 1]. Observe that for every
fixed x > 0 the function e(x, ·) is analytic in the whole complex plane.

15



Since the integrals above converge uniformly in the domain

{ω ∈ C | Imω ≥ 0, |ω| ≥ ε}
for every ε > 0 (the first one by the Abel–Dirichlet test and the second
one by the dominated convergence test), we conclude that the repre-
sentation (4.4) holds also for all real nonzero ω.

Further, the last integral remains bounded as x→ +0, so that
(4.5)

lim
x→+0

xκe(x, ω) = −ia0

∫ ∞
0

eiωt

t1−κ
dt = −ia0Γ(κ)ei

π
2
κω−κ

= 2ei
π
2
κ Γ(κ)Γ(1

2
+ κ)

Γ(κ
2
)Γ(1

2
+ κ

2
)
ω−κ =

ei
π
2
κ

√
π

2κΓ(1
2

+ κ)ω−κ,

which should be compared with (4.2). In the last equality above, we
have used the double argument formula [21, Formula 8.335]

Γ(x)Γ(x+ 1
2
) =
√
π21−2xΓ(2x)

for the Gamma functions. Therefore,

S(ω) = lim
x→+0

e(x,−ω)

e(x, ω)
= lim

x→+0

xκe(x,−ω)

xκe(x, ω)
=

(−ω)−κ

ω−κ
,

which results in (4.3).
The study of the behaviour of the Jost solution e(·, ω) at the origin for

negative κ will be based on a different integral representation. Firstly,
by Corollary 3.6 the function v is then continuous on [0, 1] and

(4.6) lim
s→+0

sκv(s) = −ia0.

Therefore the formula

e(x, ω) = eiωx +

∫ ∞
x

v
(x
t

)1

t
eiωt dt

established in Section 3 for x > 0 and ω ∈ C+ remains true for real ω,
due to the uniform convergence of the integral for ω ∈ C+.

We set V (s) :=
∫ s

0
v(ξ)/ξ dξ and notice that, by l’Hôpital’s rule,

(4.7) lim
s→+0

sκV (s) = −1

κ
lim
s→+0

sκv(s) =
ia0

κ
.

Now for x ∈ (0, 1] the integration by parts gives

e(x, ω) = eiωx
(
1 + V (1)

)
− eiωV (x) + iω

∫ 1

x

V
(x
t

)
eiωt dt

+

∫ ∞
1

v
(x
t

)1

t
eiωt dt.
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Next we show that 1 + V (1) = 0. Indeed, both the symbol ηκ and the
Mellin transform of vχ[0,1] can be continued analytically into the half-
plane Im z > κ − 1

2
. Since z = −i/2 is a zero of ηκ in view of (3.13),

we derive from (3.12) that

0 = ηκ(i/2) = 1 +

∫ 1

0

t−1v(t) dt = 1 + V (1)

as required. It follows that

lim
x→+0

xκe(x, ω) = −eiω lim
x→+0

xκV (x) + iω lim
x→+0

∫ 1

x

(x
t

)κ
V
(x
t

)
tκeiωt dt

+ lim
x→+0

∫ ∞
1

(x
t

)κ
v
(x
t

) 1

t1−κ
eiωt dt.

Using (4.6), (4.7), and applying the Lebesgue dominated convergence
theorem to the above integrals, we get

lim
x→+0

xκe(x, ω) = −ia0

[eiω
κ
− iω

κ

∫ 1

0

tκeiωt dt+

∫ ∞
1

tκ−1eiωt dt
]

= −a0ω

κ

∫ ∞
0

tκeiωt dt

Formula 3.381.5 of [21] finally yields the relation

lim
x→+0

xκe(x, ω) = −a0ω
−κ

κ
Γ(1 + κ)ei

π
2

(1+κ) = −ia0Γ(κ)ei
π
2
κω−κ

as for the case κ > 0, cf. (4.5), which results in the expression (4.3) for
the scattering function S.

5. Derivation of the Marchenko equation

In Section 3, we constructed the transformation operator I+K that
maps solutions of the unperturbed equation −y′′ = ω2y into the solu-
tions of the equation `κy = ωy and preserves their behaviour at infinity.
In particular, the asymptotics of the solution φκ as x→ +∞ yields the
relation

φκ(x, ω) =
iei

π
2
κ

√
2π

[e(x,−ω)− S(ω)e(x, ω)]

=
iei

π
2
κ

√
2π

(I +K)[e−iωt − S(ω)eiωt](x).
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We recall (see Subsection A.3) that Jκ denotes the Hankel transform
in L2(R+) given by

(Jκf)(ω) :=

∫ ∞
0

φκ(x, ω)f(x) dx,

which is a unitary operator in L2(R+). We shall write F± for the
truncated Fourier transforms, viz.

(F±f)(ω) :=

∫ ∞
0

e±iωxf(x) dx.

These are bounded operators in L2(R+) defined by

(F±f)(ω) := L. i.m.
N→∞

∫ N

0

e±iωxf(x) dx.

Denoting the operator of multiplication by the scattering function S
by the same letter S and substituting for φκ in the transform Jκ, we
find that

Jκ =
iei

π
2
κ

√
2π

(
F− − SF+

)
(I +K)∗,

which yields the relation

I = J ∗κJκ =
1

2π
(I +K)

(
F− − SF+

)∗(F− − SF+

)
(I +K)∗.

Recalling that |S(ω)| = 1 and S(−ω) = S(ω) for all real ω and observ-
ing that (F±)∗ = F∓, we find that

(I +K)−1(I +K∗)−1

=
1

2π

[
F+F− + F−F+ −F+SF+ −F−SF−

]
.

For every function φ ∈ L2(R+) of compact support we find that

(F+F−φ)(x) + (F−F+φ)(x) = L. i.m.
n→∞

∫ ∞
0

f(t)
sinn(x− t)

x− t
dt.

Since sinnx/x is the Fourier transform of the characteristic func-
tion χ[−n,n] of the interval [−n, n], the operator of convolution with
sinnx/x converges as n → ∞ to 2πI in the strong operator topology
of L2(R+). Therefore F+F− + F−F+ = 2πI. Further, straightforward
calculations give(

F+SF+φ
)
(x) +

(
F−SF−φ

)
(x)

= −2π sin(πκ)(Cφ)(x)

+ 2 L. i.m.
n→∞

∫ ∞
0

φ(t)
sin[n(x+ t)− πκ]

x+ t
dt,
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where C is the Carleman (or Stieltjes) transform defined by

(Cφ)(x) :=
1

π

∫ ∞
0

φ(t)

x+ t
dt.

The Carleman operator C belongs to the operator algebra A intro-
duced in Section 6 below; in particular, it is bounded in L2(R+) (see
Example 6.2(b)). Therefore the integral operators In given by

(Inφ)(x) :=

∫ ∞
0

φ(t)
sin[n(x+ t)− πκ]

x+ t
dt

are uniformly bounded in L2(R+). If φ belongs to C∞0 (R+), so that
ε := inf suppφ > 0, then integration by parts gives the pointwise
estimate

|(Inφ)(x)| ≤ C

n

1

ε+ x

for some constant C depending only on φ. It follows that Inφ → 0
in L2(R+) for every such φ, which implies that In converge to zero in
the strong operator topology of L2(R+).

Combining the above formulae, we finally arrive at the relation

(5.1) (I +K)−1(I +K∗)−1 = I − sin(πκ)C,

which states that the operator I−sin(πκ)C is factorized in the operator
algebra A (see Section 6 below) by means of the operator I + L =
(I +K)−1 and its adjoint.

Applying the operator I + K to both sides of (5.1) and rewriting
the resulting equation in terms of kernels, we derive the Marchenko
equation,

(5.2) k(x, t) + f(x+ t) +

∫ ∞
x

k(x, s)f(s+ t) ds = 0, x < t,

with f(s) := − sin(πκ)/s. Conversely, it is known that if some func-
tions k and f are related by the Marchenko equation, then the corre-
sponding integral operators K and F ,

(Fy)(x) :=

∫ ∞
0

f(x+ t)y(t) dt

are related via the factorization relation (5.1) with I − sin(πκ)C there
replaced by I + F .

Remark 5.1. In the classical situation of Schrödinger operators with
potentials in the Faddeev–Marchenko class the function S satisfies the
relation S(−ω) = S(ω) and the inclusion 1 − S ∈ L2(R). Observing
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that F2
+ + F2

− = 0, we find that, for every φ ∈ L2(R+) of compact
support,(

F+S(ω)F+φ
)
(x) +

(
F−S(−ω)F−φ

)
(x)

=
(
F+[S(ω)− 1]F+φ

)
(x) +

(
F−[S(−ω)− 1]F−φ

)
(x)

=

∫ ∞
0

φ(t) L. i.m.
n→∞

∫ n

−n
eiω(x+t)[S(ω)− 1] dω

= 2π

∫ ∞
0

f(x+ t)φ(t) dt,

with f being the Fourier transform of S−1. It is known that the func-
tion f is also integrable and thus the integral operator F is compact.

In our situation with Bessel potentials the scattering function S is
given by (4.3). Its distributional Fourier transform equals the dis-
tribution − sin(πκ)/x taken in the principal value sense, which is in
complete agreement with the above. The integral operator F under
the Mellin transform becomes the operator of multiplication by the
symbol − sin(πκ)/ cosh(πz) in the space L2(R) (cf. Example 6.2(b))
and thus it is no longer compact.

6. Solution of the Marchenko equation and factorization
of the operator I + F

As explained at the end of the previous section, the problem of solv-
ing the Marchenko equation (5.2) is equivalent to that of factorizing
the operator I +F . For the operator Hκ, it is easier to solve the latter
one, and we treat it in this section.

6.1. Canonical factorization of operators. For every t ∈ [0,∞),
we denote by χt the characteristic function of the interval [0, t] and
introduce the orthoprojector Pt in L2(R+) by

(Ptf)(x) = χt(x)f(x).

An operator A ∈ B is called upper triangular (resp. lower triangular)
if

(I − Pt)AP (t) = 0 (resp. PtA(I − Pt) = 0 )

for every t ∈ R+. The subset B+ (resp. B−) of all upper triangular
(resp. lower triangular) operators in B forms a closed subalgebra of B.

Definition 6.1. Assume that B0 is a subalgebra of B and set B±0 :=
B± ∩B0. We say that an operator A ∈ B0 admits a canonical factor-
ization in B0 if there are operators A+ ∈ B+

0 and A− ∈ B−0 that are
invertible respectively in B+

0 and B−0 and such that A = A+A−.
20



We refer to [20, Ch. IV] for general results on factorization in oper-
ator algebras.

6.2. The algebra A . Now we introduce a special commutative sub-
algebra A of B. Given an arbitrary function θ ∈ L∞(R), we denote
by Mθ the operator of multiplication by θ, Mθf = θf , and set

M̂θ :=M−1MθM,

withM denoting the Mellin transform, see Appendix B. We call θ the

symbol of the operator M̂θ. The family

A := {M̂θ | θ ∈ L∞(R)}
forms a closed self-adjoint commutative subalgebra of the Banach al-
gebra B with unity. The mapping

L∞(R) 3 θ 7→ M̂θ ∈ A

is an algebra isomorphism and (M̂θ)
∗ = M̂θ.

Let φ ∈ L2(0,∞) be such that θ := Mφ ∈ L∞(R); then the opera-

tor M̂θ is an integral operator Kφ in L2(R+) given by

(Kφf)(x) :=

∫ ∞
0

φ
(x
t

)1

t
f(t) dt.

Indeed, using the property (B.2), we find that

M̂θf =M−1
[
(Mφ) · (Mf)

]
=M−1M(φ ? f) = φ ? f

for all f ∈ C∞0 (R+), and the result follows.
The above construction gives many classical integral operators in the

algebra A .

Example 6.2. The algebra A contains the following operators:

(a) the Hardy operator Bα, Reα > −1
2
, given by

(Bαf)(x) :=

∫ ∞
x

(x
t

)α1

t
f(t) dt;

the corresponding symbol is θ :=M(xαχ[0,1]) = (−iz+α+ 1
2
)−1.

(b) the Carleman operator C given by

(Cf)(x) :=
1

π

∫ ∞
0

f(t)

x+ t
dt;

the corresponding symbol is θ := π−1M(1/(1 + x)). Recalling
the formula [21, Eq. 3.241(2)]

1

π

∫ ∞
0

xµ−1

1 + x
dx =

1

sinπµ
, 0 < Re < 1,
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we get θ(z) = 1/ cosh(πz).

6.3. Factorization in the algebra A . We set A + := A ∩B+ and
A − := A ∩B−. The operators in A ± are characterized by the follow-
ing property.

Lemma 6.3. For θ ∈ L∞(R), the operator M̂θ is in A + if and only
if θ belongs to the Hardy space H∞ of functions that are bounded and

analytic in the upper complex half-plane C+. Analogously, M̂θ ∈ A −

if and only if θ belongs to the Hardy space H−,∞ of functions that are
bounded and analytic in the lower complex half-plane C−.

Proof. We only give the proof for A +. Assume that M̂θ ∈ A +.
Since the Hardy operator B0 of Example 6.2(a) belongs to A +, we

get B0M̂θ ∈ A +. Clearly, B0M̂θ = M̂θ1 with

θ1(z) =
iθ(z)

z + i/2
∈ L2(R);

therefore the function φ := M−1θ1 is in L2(R+). Fix an arbitrary
a > 0 and take f ∈ L2(R+) with support in the interval (0, a). By the
definition of A +, we get∫ a

0

φ
(x
t

)1

t
f(t) dt = 0

for all x > a. This implies that φ(ξ) = 0 for a. e. ξ > 1, whence
θ1 := Mφ belongs to the space H2. As a result, the function θ is
analytic in the upper half-plane C+, whence θ ∈ H∞.

Assume now that θ ∈ H∞. If in addition θ ∈ L2(R), then the
function φ := M−1θ belongs to L2(R+) and has its support in the
interval [0, 1]. Therefore

(M̂θf)(x) = (Kφf)(x) =

∫ ∞
x

φ
(x
t

)1

t
f(t) dt

for all f ∈ L2(R+), so that M̂θ ∈ A +. A generic θ ∈ H∞ is the limit
in H∞ of the sequence (θn) ∈ H∞ ∩ L2(R) with

θn(z) =
inθ(z)

z + in
.

Since M̂θn belong to A + for all n ∈ N and converge in A to M̂θ

as n → ∞, the closedness of A + yields that M̂θ belongs to A + as
claimed. �
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Assume that θ ∈ L∞ is such that 1/θ also belongs to L∞. Assume
also that the Riemann–Hilbert factorization problem for θ is soluble,
i.e., that

(6.1) θ = θ1θ2

for some functions θ1 and θ2 in H∞. Since θ1 and θ2 must be essentially
bounded away from zero on the real line, we conclude that 1/θ1 and
1/θ2 also belong to H∞. Therefore

(6.2) M̂θ = M̂θ1

(
M̂θ2

)∗
,

and the operators M̂θ1 and
(
M̂θ2

)∗
belong respectively to A +

2 and A −

and are boundedly invertible there. Conversely, equation (6.2) clearly
implies (6.1). Thus the two problems, the Riemann–Hilbert factoriza-
tion problem for the function θ and the canonical factorization problem

in A for the operator M̂θ, are equivalent.

6.4. Factorization of the operator I+F . Consider now the problem
of canonical factorization in the algebra A of the operator Aκ := I+F ,
i.e.,

Aκ = I − sin(πκ)C,
where C is the Carleman operator of Example 6.2(b). By the above,

Aκ = M̂θκ , where

θκ(z) = 1− sin πκ

coshπz
.

Set

η+
κ (z) :=

Γ
(

1
4
− i

2
z
)
Γ
(

3
4
− i

2
z
)

Γ
(

1
4
− i

2
z − κ

2

)
Γ
(

3
4
− i

2
z + κ

2

)
and η−κ (z) = η+

κ (−z) = η+
κ (z). By Corollary 3.3, the function η+

κ

belongs to the Hardy space H∞ in the upper half-plane and thus η−κ ∈
H∞. Moreover, using the identity

Γ
(

1
2

+ z
)
Γ
(

1
2
− z
)

=
π

cos πz
,

we find that

η+
κ (z)η−κ (z) =

cos π( i
2
z + 1

4
+ κ

2
) cosπ( i

2
z − 1

4
− κ

2
)

cosπ( i
2
z + 1

4
) cosπ( i

2
z − 1

4
)

=
cosh πz − sinπκ

cosh πz
= θκ(z).

As a result, we arrive at the canonical factorization of Aκ in the form

Aκ = M̂η+
κ
M̂η−κ

= M̂η+
κ

(
M̂η+

κ

)∗
.
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Recalling (3.8), we see that η+
κ is the symbol of the transformation

operator I + L; whence M̂η+
κ

= I + L, and we have the equality

I + Fκ = (I + L)(I + L∗),

which is equivalent to the Marchenko equation

k(x, t) + f(x+ t) +

∫ ∞
x

k(x, s)f(s+ t) ds = 0, x < t,

for the kernel k of the transformation operator I +K = (I + L)−1.

6.5. Reconstruction of the potential. At the final stage of the re-
construction algorithm, we set

q(x) := 2
d

dx
l(x, x),

where l is the kernel of the integral operator L constructed via the
solution of the factorization problem for I +F . By the above, we have

l(x, x) = −P ′κ(1)
1

x
;

recalling the normalization of the Legendre function Pκ, we see that

q(x) = 2
κ(κ+ 1)

2

1

x2
=
κ(κ+ 1)

x2

as it should be. This completes the solution of the inverse scattering
problem.

7. Approximations by half-regular potentials

In the scattering theory for Schrödinger operators with potentials in
the Faddeev–Marchenko class the corresponding scattering functions S
are continuous on the whole line and 1−S are square integrable. Both
these properties do not hold for the operator Hκ. Indeed, as we have
seen in Section 4, the scattering function S of Hκ is piecewise constant;
in particular, it has a jump discontinuity at ω = 0 and 1 − S takes
nonzero constant values for positive and negative ω.

The Bessel potential κ(κ+1)/x2 is singular both at the origin and at
infinity (in the sense that it does not decay sufficiently fast there). The
purpose of this section is to demonstrate that the discontinuity of the
scattering function S at the origin is caused by the behaviour of the
potential at infinity and, conversely, the behaviour of S at infinity is
influenced mainly by the singularity of the potential at the origin. To
do this, we consider two model examples of Schrödinger operatorsHκ,0,n

and Hκ,1,n with potentials

q0,n(x) := χ[1/n,∞)(x)κ(κ+ 1)/x2
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and

q1,n(x) := χ(0,n](x)κ(κ+ 1)/x2,

which are regular respectively at the origin and at infinity. We shall
show that the scattering functions S0,n and S1,n of Hκ,0,n and Hκ,1,n

have the following properties:

(a) S0,n has the limit values S0,n(±0) = e∓iπκ and 1− S0,n belongs
to L2(R);

(b) S1,n is continuous on the whole line and the limits at ±∞ exist
and are equal to e∓iπκ.

We remark that the standard scaling arguments will also enable us to
show that, as n→∞, the scattering functions Sj,n, j = 0, 1, converge
pointwise to S. Indeed, if y is a solution of the equation

−y′′ + q0,ny = ω2y,

then y1(x) := y(xn) solves the equation

−y′′ + q0,1y = (ω/n)2y.

Therefore S0,n(ω) = S0,1(ω/n) and

S0,n(ω)→

{
S0,1(+0) = e−iπκ, ω > 0,

S0,1(−0) = eiπκ, ω < 0

pointwise as n→∞. Similarly, the pointwise convergence of S1,n to S
follows from the relation S1,n(ω) = S1,1(nω) and the behaviour of S1,1

at infinity.

7.1. Approximation by potentials regular at the origin. By the
above scaling arguments, it only suffices to study the operator Hκ,0,1.
The Jost solution e0,1(x, ω) coincides with the Jost solution e(x, ω) of
the operator Hκ for x > 1 and equals

A(ω) sinω(x− 1) +B(ω) cosω(x− 1)

for x ∈ [0, 1]. Equating the limit values at 1 from both sides for the
function e0,1 and its derivative, we conclude that

e0,1(x, ω) =

e′(1, ω)
sinω(x− 1)

ω
+ e(1, ω) cosω(x− 1), x ∈ [0, 1],

e(x, ω), x > 1.

Thus

e0,1(0, ω) = −e′(1, ω) sinω/ω + e(1, ω) cosω

is a continuous function outside the origin. Since the functions e0,1(0, ω)
and e0,1(0,−ω) are linearly independent if ω 6= 0 and e0,1(0,−ω) =
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e0,1(0, ω), the function e0,1(0, ω) never vanishes for real nonzero ω.
Therefore the scattering function

S0,1(ω) = e0,1(0,−ω)/e0,1(0, ω)

is continuous for ω 6= 0.
Using the asymptotics of the Bessel functions and their derivatives

at the origin and recalling formulae (A.3) and (4.1), we conclude that
e0,1(0, ω) = Cω−κ(1 + o(1)) as ω → +0 for a constant C independent
of ω. Therefore we find that S0,1(ω)→ e−iπκ as ω → +0 and S0,1(ω)→
eiπκ as ω → −0, cf. Section 4.

To derive the behaviour of S0,1 at infinity, we use the representation

e(x, ω) = eiωx +

∫ ∞
x

v
(x
t

)eiωt
t
dt

= eiωx − ia0

∫ ∞
x

(x
t

)−κ eiωt
t
dt+

∫ ∞
x

(x
t

)1+κ

ṽ
(x
t

)eiωt
t
dt

of the Jost function of the operator H via the transformation opera-
tor I + K, see Section 3. Since the function v belongs to L2(0, 1), the
above integral exists as a Fourier transform of the L2-function v(x/t)/t
of the variable t and thus e(1, ω) = eiω + g1(ω) for some g1 ∈ L2(R).
Moreover, since ṽ is continuous over [0, 1], we see that g1 is a continuous
function that tends to zero as ω →∞.

Next, differentiation and integration by parts yields

e′(1, ω) = iωeiω − v(1)eiω +

∫ ∞
1

v′
(1

t

)eiωt
t2

dt

= iωeiω −
∫ ∞

1

v
(1

t

)[
iω − 2

t

]eiωt
t2

dt;

since the function t−2v(1/t) belongs to L1(1,∞), we find that

e′(1, ω) = iω[eiω + g2(ω) + o(ω−1)]

as ω → ±∞ for some g2 ∈ L2(R) that is continuous and vanishes at
infinity by the Riemann–Lebesgue lemma. Therefore,

e0,1(0, ω) = 1 + g(ω) + o
(
ω−1

)
for g(ω) := cosωg1(ω) + i sinωg2(ω) ∈ L2(R), that vanishes at infinity,
and it follows that 1− S0,1 belongs to L2(R).

The above considerations are summarized in the following proposi-
tion.

Proposition 7.1. The scattering function S0,1 is continuous outside
the origin, assumes the limit values limω→±0 S0,1(ω) = e∓iπκ, and 1 −
S0,1 belongs to L2(R).
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7.2. Approximation by potentials regular at infinity. As ex-
plained earlier, it suffices to consider the potential q1,1 only. Since
it vanishes for x > 1, the Jost solution e1,1(x, ω) coincides there with
eiωx. For x ∈ (0, 1), e1,1(·, ω) is a linear combination A(ω)φ(x, ω) +
B(ω)ψ(·, ω) of the special solutions φ and ψ of the Bessel equa-
tion (A.2). Equating the values of the two expressions for e1,1 and
its derivative at x = 1, we find that

A(ω) =
π

cosπκ

eiω

2ω

[
iωψ(1, ω)− ψ′(1, ω)

]
,

B(ω) =
π

cosπκ

eiω

2ω

[
φ′(1, ω)− iωφ(1, ω)

]
.

By definition, the scattering function S1,1(ω) is defined by the re-
quirement that the linear combination e1,1(x,−ω) + S1,1(ω)e1,1(x, ω)
should satisfy the boundary condition at x = 0. We thus find that

S1,1(ω) = lim
x→+0

xκe1,1(x,−ω)

xκe1,1(x, ω)

=
B(−ω)

B(ω)
lim
x→+0

xκψ(x,−ω)

xκψ(x, ω)
=
B(−ω)

B(ω)
S(ω).

Recalling the asymptotics of the special solutions φ and ψ of the Bessel
equation (A.2) at the origin and at infinity (see Appendix A.2), we
arrive at the following conclusion.

Proposition 7.2. The scattering function S1,1 is continuous on the
whole line, assumes the value −1 at the origin, and tends to e∓iπκ

at ±∞.

8. Conclusions

We showed that the classical direct and inverse scattering theory for
Schrödinger operators on the semi-axis can be successfully extended
to operators Hκ, κ ∈ [−1

2
, 1

2
), with Bessel-type potentials κ(κ+ 1)/x2.

In particular, we constructed transformation operators, Jost solutions,
scattering function S, derived the Marchenko equation and demon-
strated that its solution reconstructs the potential we have started
with. Here we have come across a new phenomenon that the scattering
function S is no longer continuous but rather has two jump discontinu-
ities, one at the origin and the other at infinity. The jump at the origin
is in some sense caused by the behaviour of the potential at infinity,
while the behaviour of S at infinity is determined by the singularity of
the potential at the origin.
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In the problem considered here all the objects have an explicit form
in terms of special functions and “classical” operators of analysis. It
gives, however, an insight into more general situations; in particular, it
suggests that both the direct and inverse scattering theory can be fur-
ther developed for perturbations of the Bessel-type potentials we have
considered, e.g., for operators generated by the differential expressions

−
( d
dx
− κ

x
+ v
)( d

dx
+
κ

x
− v
)

with suitable v. Our model gives a hint of what should be expected in
such a more general case, which will be discussed elsewhere.
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Appendix A. Bessel functions and Hankel transform

A.1. Asymptotics of Bessel functions. The Bessel function Jν of
the first kind and order ν is a particular solution of the Bessel equation

(A.1) x2 d
2y

dx2
+ x

dy

dx
+ (x2 − ν2)y = 0

and is given by the convergent series

Jν(z) =
∞∑
n=0

(−1)n

n!Γ(n+ ν + 1)

(z
2

)2n+ν

,

where Γ is the Euler Gamma-function. It is an entire function of z and
obeys the following asymptotics:

Jν(x) �
√

2

πx
cos
(
x− π

2
ν − π

4

)
, x→ +∞,

�
(x

2

)ν 1

Γ(ν + 1)
, x→ 0.

For non-integer ν, J−ν is a solution of (A.1) that is linearly indepen-
dent of Jν .

A.2. Special solutions of (2.2). If y is a solution of (A.1), then
u(x) :=

√
ωxy(ωx) solves the equation

(A.2) −u′′ +
ν2 − 1

4

x2
u = ω2u.
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Therefore for κ ∈ (−1
2
, 1

2
) the functions

(A.3) φκ(x, ω) :=
√
ωxJκ+1/2(ωx), ψκ(x, ω) :=

√
ωxJ−κ−1/2(ωx)

form a basis of solutions for the equation (2.2). They obey the following
asymptotics

φκ(x, ω) �
√

2

π
sin
(
ωx− π

2
κ
)
, x→ +∞,

� (ωx)κ+1 1

2κ+
1
2 Γ(κ+ 3

2
)
, x→ +0;

ψκ(x, ω) �
√

2

π
cos
(
ωx+

π

2
κ
)
, x→ +∞,

� (ωx)−κ
2κ+

1
2

Γ(−κ+ 1
2
)
, x→ +0.

For κ = −1
2
, the singular solution ψ−1/2 is given by ψ−1/2(x, ω) =√

ωxY0(ωx); the asymptotics at infinity remains the same, while at the
origin we get

ψ−1/2(x, ω) �
√
ωx log(ωx/2), x→ +0.

A.3. The Hankel transform. For positive ω, φκ(·, ω) are generalized
eigenfunctions of the operator Hκ corresponding to the point ω2 in
the continuous spectrum. They generate the integral transform Jκ in
L2(R+) called the Hankel transform, given by

(Jκf)(ω) :=

∫ ∞
0

φκ(x, ω)f(x) dx,

where the integral here is understood as

L. i.m.
N→∞

∫ N

0

φκ(x, ω)f(x) dx.

It is well known [11,14] that Jκ is a unitary operator in L2(R+). This
follows from the so-called distributional “closure relation”:∫ ∞

0

φκ(x, ω1)φκ(x, ω2) = δ(ω1 − ω2),

where δ denotes the Dirac delta function and ω1 and ω2 are arbitrary
positive numbers.

We also notice that Jκ diagonalizes the operator Hκ, i.e., that

(JκHκf)(ω) = ω2(Jκf)(ω),

see [14].
29



Appendix B. The Mellin transform

The Mellin transformM is a linear mapping from L2(R+) into L2(R)
given by the formula

(B.1) (Mf)(z) =

∫ ∞
0

t−iz−1/2f(t) dt.

The operator (2π)−1/2M is unitary and the inverse Mellin transform is
given by

(M−1g)(t) =
1

2π

∫
R
tiz−1/2g(z) dz.

Clearly, we have (Mf ′)(z) = −(iz + 1
2
)(Mf)(z − i). If we set

(f ? g)(x) :=

∫ ∞
0

f
(x
t

)1

t
g(t) dt

for f, g ∈ C∞0 (R+), then one can verify directly that

(B.2) M(f ? g) = (Mf) · (Mg),

so that the operation ? plays the same role for the Mellin transform as
the usual convolution does for the Fourier transform.
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