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Abstract

The invariant measure of a one-dimensional Allen-Cahn equation with an additive space-

time white noise is studied. This measure is absolutely continuous with respect to a Brownian

bridge with a density which can be interpreted as a potential energy term. We consider the

sharp interface limit in this setup. In the right scaling this corresponds to a Gibbs type

measure on a growing interval with decreasing temperature. Our main result is that in the

limit we still see exponential convergence towards a curve of minimizers of the energy if the

interval does not grow too fast. In the original scaling the limit measure is concentrated on

con�gurations with precisely one jump. This jump is distributed uniformly.

Keywords: Stochastic Reaction-di�usion equation, Invariant measure, Large deviations.

1 Introduction

Reaction-di�usion equations can be used to model phase separation and boundary evolutions in
various physical contexts. Typically behavior of boundaries or geometric evolution laws are studied
with the help of such equations. Often in such models one includes an extra noise term. This may
happen for various reasons � the noise may be a simpli�ed model for e�ect of additional degrees of
freedom that are not re�ected in the reaction-di�usion equation. From a numerical point of view
noise may improve stability in the simulations. In some systems there is even a justi�cation for
an extra noise term from a scaling limit of microscopic particle systems.

1. Setup and �rst main result

The system considered here is the case of a symmetric bistable potential with two wells of
equal depths. To be more precise, for a small parameter ε > 0 we are interested in the equation

∂tu(x, t) = ∆u(x, t)− ε−1−γF ′(u(x, t)) + ε(1−γ)/2∂x∂tW (x, t) (x, t) ∈ (−1, 1)×R+

u(−1, t) = −1 u(1, t) = 1 t ∈ R+.
(1.1)

Here F is supposed to be a smooth (at least C3) symmetric double-well potential i.e. we assume
that F satis�es the following properties:

(a) F (u) ≥ 0 and F (u) = 0 i� u = ±1,
(b) F ′ admits exactly three zeros {±1, 0} and F ′′(0) < 0, F ′′(±1) > 0,
(c) F is symmetric, ∀u ≥ 0 F (u) = F (−u).

(1.2)

A typical example is F (u) = 1
2 (u2 − 1)2. The expression ∂x∂tW (x, t) is a formal expression

denoting space-time white noise. Such equation can be given rigorous sense in various ways, for
example in the sense of mild solutions ([Iw87, dPZ92]) or using Dirichlet forms [AR90]. We are
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Figure 1: The function −1[−1,ξ[ + 1[ξ,1].

interested in the behavior of the system in the sharp interface limit ε ↓ 0. The parameter γ > 0
is a scaling factor. Our result will be valid for γ < 2

3 .

We study the behavior of the invariant measure of (1.1). This measure can be described quite
explicitly as follows ([dPZ96, RV05]): Let ν̃ε be the law of a rescaled Brownian bridge on [−1, 1]
with boundary points ±1. More precisely ν̃ε is the law of a Gaussian process (ũ(s), s ∈ [−1, 1])
with expectations E [ũ(s)] = s ∀s ∈ [−1, 1] and covariance Cov(ũ(s), ũ(s′)) = ε1−γ(s ∧ s′ + 1 −
(s+1)(s′+1)

2

)
. Another equivalent way to characterize ν̃ε is to say that it is a Gaussian measure on

L2[−1, 1] with expectation function s 7→ s and covariance operator ε1−γ(−∆)−1 where ∆ denotes
the one-dimensional Dirichlet Laplacian. Even another equivalent way is to say that ũ(s) is the
solution to the stochastic di�erential equation (SDE)

dũ(s) = ε
1−γ

2 dB(s) ũ(−1) = −1

with some Brownian motion B(s) conditionned on ũ(1) = 1. Then the invariant measure µ̃ε of
(1.1) is absolutely continuous with respect to ν̃ε and is given as

µ̃ε(dũ) =
1
Zε

exp
(
− 1
ε1+γ

∫ 1

−1

F (ũ(s)) ds
)
ν̃ε(dũ). (1.3)

Here Zε =
∫

exp
(
− 1
ε1+γ

∫ 1

−1
F (ũ(s)) ds

)
ν̃ε(dũ) is the appropriate normalization constant. The

�rst main result of this work is the following:

Theorem 1.1. Assume 0 < γ < 2
3 . Then the measures µ̃ε(du) converge weakly for ε ↓ 0 as

measures on L2[−1, 1] towards a limit measure µ̃. This measure µ̃ can be described as follows: If
ũ ∼ µ̃ is a random function distributed according to µ̃, then ũ can almost surely be written as

ũ(s) = −1[−1,ξ[ + 1[ξ,1],

where ξ is random, uniformly distributed in [−1, 1].

Note that by Schilder's theorem together with an exponential tilting argument (such as [dH00]
Theorem III.17 on page 34), in the case where γ = 0 the measures µε concentrate exponentially
fast around the unique minimizer of

u 7→
∫ 1

−1

[ |u′(s)|2
2

+ F
(
u(s)

)]
ds,
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under the appropriate boundary conditions. In particular the weak limit is a Dirac measure on
this minimizer. Furthermore the minimizer is not a step function.

One can remark that by an application of Girsanov's theorem also the measure µ̃ε can be
considered as distribution of the solution of a SDE which is conditioned on the right boundary
values (see [RY99] Chapter VIII �3 and also [HSV07, RV05]). It could be possible to obtain similar
results by studying this SDE with help of large deviation theory (see for example [S95]). We do
not follow such an approach but conclude from Theorem 1.2 which is obtained essentially by a
discretization argument.

The reader might consider it unusual to work with µ̃ε as measure on L2[−1, 1] instead of
C[−1, 1] or the space of càdlàg functions D[−1, 1]. But all the estimates are given in the Hilbert-
space setting. Also the class of continuous processes is closed under weak convergence of measures
on D[−1, 1]. So certainly no similar result can be expected on this space.

2. Feynman Heuristic and second main result

Often important intuition on a measure on path space can be gained from considering Feyn-
man's heuristic interpretation. In our context this heuristic interpretation states that ν̃ε(dũ) is
proportional to a measure

exp
(
− 1
ε1−γ

∫ 1

−1

|ũ′(s)|2
2

ds
)

dũ

where dũ is a �at reference measure on path space. Of course this picture is non-rigorous: Such a

measure dũ does not exist and the quantity
∫ 1

−1
ũ′(s)2

2 ds is almost surely not �nite under ν̃ε(dũ).
Nontheless it is rigorous on the level of �nite dimensional distributions, and various classical
statements about Brownian motion such as Schilder's theorem or Girsanov theorem have an in-
terpretation in terms of this heuristic picture. The measure µ̃ε(dũ) can then be interpreted as
proportional to

exp
(
− 1
ε1+γ

∫
F (ũ(s)) ds− 1

ε1−γ

∫ 1

−1

|ũ′(s)|2
2

ds
)

dũ.

As one wants to observe an e�ect which results from the interaction of the potential term
1

ε1+γ

∫
F
(
ũ(s)

)
ds and the kinetic energy type term 1

ε1−γ

∫ 1

−1
ũ′(s)2

2 ds it seems reasonable to trans-
form the system in a way that guarantees that these terms scale with the same power of ε. This
transformation is given by stretching the random functions onto a growing interval [−ε−γ , ε−γ ].
More precisely consider the operators

T ε : L2[−1, 1]→ L2[−ε−γ , ε−γ ] T εũ(s) = ũ(εγs).

Then consider the pushforward measures µε = T ε#µ̃
ε. These measures are again absolutely con-

tinuous with respect to Gaussian measures: νε is the Gaussian measure on L2[−ε−γ , ε−γ ] with
expectation function s 7→ εγs and covariance operator ε(−∆)−1. The other equivalent characteri-
zations for ν̃ε can be adapted with the right powers of ε. The measure µε is then given as

µε(du) =
1
Zε

exp
(
−ε−1

∫ 1

−1

F (u(s)) ds
)
νε(du).

Note that the normalization constant Zε is the same as above. In the Feynman picture this
suggests that µε(du) is proportional to

exp
(
−1
ε

∫ ε−γ

−ε−γ

[ |u′(s)|2
2

+ F
(
u(s)

)]
ds
)

du.
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Figure 2: The instanton shape mξ.

This motivates to study the energy functional appearing in the exponent: For functions u : R→
R de�ned on the whole line with boundary conditions u(±∞) = ±1 consider the energy functional

H(u) =
∫ ∞
−∞

[ |u′(s)|2
2

+ F (u(s))
]

ds− C∗.

Here C∗ is a constant chosen in a way to guarantee that the minimizers of H with the right
boundary conditions verify H(u) = 0. This is the one-dimensional version of the well known real
Ginzburg-Landau energy functional. There is a unique minimizer m of H subject to the condition
m(0) = 0 and all the other minimizers are obtains via translation of m. More details on the
energy functional and the minimizers can be found in Section 2. Denote by M the set of all these
minimizers and by m + L2(R) := {u : R → R, u − m ∈ L2(R)} and m + H1(R) := {u : R →
R, u − m ∈ H1(R)} the spaces of functions with the right boundary values. Note that every
random function distributed according to µε(du) can be considered as function in m+ L2(R) by
trivial extension with ±1 outside of [−ε−γ , ε−γ ]. In this way µε(du) can be interpreted as measure
on m+ L2(R). We can now state the second main result of this work:

Theorem 1.2. Assume 0 < γ < 2
3 . Then there exist positive constants c0 and δ0 such that for

every 0 < δ ≤ δ0 one has

lim sup
ε↓0

ε logµε
{
distL2(u,M) ≥ δ

}
≤ −c0δ2. (1.4)

In particular the measures µε concentrate around the set of minimizers exponentially fast.

The crucial step in the proof is to �nd a lower bound on the exponential decay of the normal-
ization constant Zε. This lower bound can be found in Section 4.

The same result also holds using the L∞-norm:

Theorem 1.3. Assume 0 < γ < 2
3 . Then there exist positive constants c̃0 and δ̃0 such that for

every 0 < δ ≤ δ̃0 one has

lim sup
ε↓0

ε logµε
{
distL∞(u,M) ≥ δ

}
≤ −c̃0δ2. (1.5)
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3. Motivation and related works

The Allen-Cahn equation without noise has been introduced in [AC79] to model the dynamics
of interfaces between di�erent domains of di�erent lattice structure in crystals and has been studied
since in various contexts. In the one-dimensional case the dynamics of the deterministic equation
are well-understood [Ch04, CP89, OR07] and can be described as follows: If one starts with
arbitrary initial data, solutions will quickly tend to con�gurations which are locally constant close
to±1 possibly with many transition layers that roughly look like the instanton shapesm introduced
above. Then these interfaces move extremely slowly until eventually some two transition layers
meet and annihilate each other. After that the dynamics continue very slowly with less interfaces.

In the higher dimensional case no such metastable behavior occurs. Also here solutions tend
very quickly towards con�gurations which are locally constant with interfaces of width ε. Then
on a slower scale these interfaces evolve according to motion by mean curvature (see [Il93] and the
references therein).

Stochastic systems which are very similar to (1.1) have been studied in the ninetees by Funaki
[Fu95] and Brasecco, de Masi, Presutti [BMP95]. They study the one-dimensional equation in the
case where the initial data is close to the instanton shape and show that in an appropriate scaling
the solution will stay close to such a shape. Then due to the random perturbation a dynamic along
the one-parameter family of such shapes can be observed on a much faster time scale than in the
deterministic case. Our result Theorem 1.1 says that one can also pass to the sharp interface limit
on the level of invariant measures.

If the process does not start in a con�guration with a single interface, it is believed that
these di�erent interfaces also follow a random induced dynamic which is much quicker than in the
deterministic case. Di�erent interfaces should annihilate when they meet [FV03]. More recently
there were also investigations of the same system on a much bigger space interval where due to
entropic e�ects noise induced nucleation should occur. This phenomenon has been studied on the
level of invariant measures [RV05]. The limiting process should be related to the Brownian web
which has recently been investigated e.g. in [FINR06].

From a point of view of statistical physics Theorem 1.2 can be interpreted as quite natural. In
fact the Feynman picture suggests to view µε as a Gibbs measure with energy H and decreasing
temperature ε. On a �xed interval the result of Theorem 1.2 would therefore simply state that
with decreasing temperature the Gibbs measure concentrates around the energy minimizers expo-
nentially fast. On a rigorous level such results follow from standard Large Deviation Theory (see
e.g. [dH00, DS89]). Our result states that the entropic e�ects which originate from considering
growing intervals do not change this picture. In fact also this is not very suprising - analysis of
similar spin systems suggests that even on intervals that grow exponentially in ε−1 one should
not observe more than one jump. But it is not clear if one can say anything about the shape of
the interface in this settings. Our approach is limited to intervals growing like ε−γ due to the
L2-Hilbert space structure employed.

4. Structure of the paper

In Section 2 results about the energy landscape of the Ginzburg-Landau energy functional are
summarized. In particular we discuss in some detail the minimizers of H and introduce tubular
coordinates close to the curve of minimizers. The energy landscape is studied in terms of these
tubular coordinates. In Section 3 some necessary Gaussian concentration inequalities are discussed.
In particular the discretization of the measure νε is given and some error bounds are proved. The
proof of Theorem 1.2 can then be found in Section 4. Finally the proof of Theorem 1.1 is �nished
in Section 5. We will follow the convention that C denotes a generic constant which may change
from line to line. Constants that appear several times will be numbered c1, c2, . . ..
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2 The Energy Functional

In this section we discuss properties of the Ginzburg-Landau energy functional. We introduce the
one parameter family of minimizers which we think of as a one-dimensional submanifold of the
in�nite-dimensional space of possible con�gurations. Then we discuss tubular coordinates of a
neighborhood of this curve as well as a Taylor expansion of the energy landscape in these tubular
coordinates. These ideas are mostly classical and go back to [CP89, Fu95, OR07]. Finally we give
a discretized version of the minimizers and proof some error bounds.

For a function u de�ned on the whole real line consider the following energy functional:

H(u) =
∫
R

[
1
2
|u′(s)|2 + F

(
u(s)

)]
ds− C∗,

where the constant C∗ is chosen in a way to guarantee that the minimum of H on the set of
functions with the right boundary conditions is 0. In fact let m be the standing wave solution of
the Allen-Cahn equation:

m′′(s)− F ′(m(s)) = 0 ∀s ∈ R, m(±s)→ ±1 for s→∞. (2.1)

As (2.1) is invariant under translations one can assume m(0) = 0. Then the solution can be found
by solving the system

m′(s)−
√

2F (m(s)) = 0 ∀s ∈ R, m(0) = 0 m(±∞) = ±1. (2.2)

Note that the assumptions (1.2) on F imply that
√
F is C1 such that the solution to (2.2) is

unique. The translations of m will be denoted by mξ(s) = m(s − ξ). Note that the mξ are not
the only solutions to (2.1) but that all the other solutions are either periodic or diverge such that
the mξ are the only nonconstant critical points of H with �nite energy. In fact the mξ are global
minimizers of H subject to its boundary conditions. One has simply by completing the squares:∫

R

[
1
2
|u′(s)|2 + F

(
u(s)

)]
ds =

∫ ∞
−∞

1
2

(
u′(s)−

√
2F (u(s))

)2

+
√

2F
(
u(s)

)
u′(s) ds

≥
∫ u(∞)

u(−∞)

√
2F (u) du.

(2.3)

The term in the bracket is nonnegative and it vanishes if and only if u solves (2.2). In the sequel
we will write

M = {mξ, ξ ∈ R} and C∗ =
∫
R

1
2
[|m′(s)|2 + F

(
m(s)

)]
ds.

For notational convenience we introduce the function G(u) =
∫ u

0

√
2F (u)du. Then equation (2.3)

states that
∫
R

1
2 |u′(s)|2 +F (u(s)) ds ≥ G(u(∞)

)−G(u(−∞)
)
. Note that the assumption (1.2) on

F imply that G is a strictly increasing C4 function with G(0) = 0. In the case of the standard
double-well potential F (u) = 1

2 (u2 − 1)2 a calculation yields

m(s) = tanh(s) and C∗ =
4
3
.

Equation (2.2) shows that in general m can be given implicitly as

s =
∫ m

0

1√
2F
(
m̃
) dm̃. (2.4)
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By expanding F around 1 one obtains exponential convergence to ±1 for s → ±1. To be more
precise there exist positive constants c1 and c2 such that

|1∓m(±s)| ≤ c1 exp(−c2s) s ≥ 0
|m′(±s)| ≤ c1c2 exp(−c2s) s ≥ 0
|m′′(±s)| ≤ c1c22 exp(−c2s) s ≥ 0.

(2.5)

Recall that m+ L2(R) = {u : u−m ∈ L2(R)}. Note that for all ξ due to (2.5) m−mξ ∈ L2(R)
such that it does not matter which ξ one takes for the de�nition of this space.

We now introduce the concept of Fermi coordinates which was �rst used in this context in
[CP89, Fu95]: Recall that for a function u ∈ m + L2(R) we write distL2(u,M) := infξ∈R ‖u −
mξ‖L2(R). If distL2(u,M) is small enough there exists a unique ξ ∈ R such that dist(u,M) =
‖u−mξ‖L2(R) and one has

〈u−mξ,m
′
ξ〉L2(R) = 0. (2.6)

In fact the last equality (2.6) can easily be seen by di�erentiating ξ 7→ ‖u−mξ‖2L2(R). This has a

simple geometric interpretation. The function m′ξ can be seen as tangent vector to the curve M
in mξ and the relation (2.6) can be interpreted as v := u−mξ being normal to the tangent space
in mξ. We will denote the space

Nξ := {v ∈ L2(R) : 〈v,m′ξ〉L2(R) = 0}
and interpret it as the normal space to M in mξ. For u = mξ + v with v ∈ Nξ we will call the
pair (ξ, v) Fermi or tubular coordinates of u.

One obtains information about the behavior of the energy functional close toM by considering
the linearized Schrödinger type operators

Aξ = −∆ + F ′′(mξ).

with domain of de�nitionH2(R) ⊂ L2(R). The operator Aξ is selfadjoint and nonnegative (see e.g.
[Fu95]) and the unique the eigenspace corresponding to the eigenvalue 0 is spanned by the function
m′ξ. This can be understood quite easily: The fact that the operator is nonnegative corresponds
to the functional H attaining its minimum at mξ and the fact that m′ξ is a eigenfunction to
the eigenvalue 0 corresponds to the translational invariance of H. The following more detailed
description of the spectral behavior of Aξ is taken from [OR07] Proposition 3.2 on page 391:

Lemma 2.1. There exists a constant c3 > 0 such that if u ∈ H1(R) satis�es

(i) u(ξ) = 0 or (ii)
∫
R

u(s)m′ξ(s) ds = 0,

then

c3‖u‖2L2(R) ≤
∫
R

[
u′(s)2 + F ′′

(
mξ(s)

)
u(s)2

]
ds. (2.7)

This can be used to obtain the following description of the energy landscape. Similar results
were already obtained in [Fu95] and [OR07]:

Proposition 2.2. (i) There exist non-negative constants c0, c4, δ1 such that for u with Fermi
coordinates u = mξ + v and ‖v‖H1(R) ≤ δ1 one has:

c0‖v‖2H1(R) ≤ H(u) ≤ c4‖v‖2H1(R). (2.8)

(ii) There exists a δ0 > 0 such that for δ ≤ δ0 the relation distH1(u,M) ≥ δ implies

H(u) ≥ c0δ2. (2.9)
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Here distH1(u,M) = infξ∈R ‖u −mξ‖H1(R). Statement (i) will be used as a local description
of the energy landscape close to the curve of minimizers whereas the statement (ii) will be useful
as a rough lower bound for the energy away from the curve. For the proof of Proposition 2.2 one
needs the following lemma:

Lemma 2.3. For every ε > 0 there exists δ > 0 such that if u ∈ m+L2 with H(u) ≤ δ then there
exists ξ ∈ R such that

‖u−mξ‖L∞(R) ≤ ε.
Furthermore ξ can be chosen in a such a way that u(ξ) = 0.

Proof. For a small δ > 0 assume H(u) ≤ δ. We want to �nd a ξ ∈ R such that by choosing δ
su�ciently small we can deduce that ‖u−mξ‖L∞(R) becomes arbitrarily small. As H(u) <∞ we
have u ∈ m+H1 and therefore in particular u ∈ C0(R)∩L∞(R). Note that a similar calculation
as (2.3) implies that H(u) ≥ (G( sups∈R u(s)

)−G( infs∈R u(s)
))− (G(1)−G(−1)). Therefore by

the properties of G by choosing δ su�ciently small, one can assume that ‖u‖L∞(R) ≤ 2. By the
assumptions (1.2) on F there exists a C such that for u ∈ [−2, 2] one has

F (u) ≥ C min (|u− 1|, |u+ 1|)2
,

and in particular we know that for every interval I the H1-norm of min (|u− 1|, |u+ 1|) can be
controlled by the energy. As u is continuous and converges to ±1 as s goes to ±∞, there exist a
ξ with u(ξ) = 0. Without loss of generality one can assume that ξ = 0. We will show that in this
case ‖u−m‖L∞(R) can be made arbitrarily small.

According to (2.5) for every ε > 0 there exists T such that for s ≥ T one has |u(s) − 1| ≤ ε
and for s ≥ T it holds that |u(s) + 1| ≤ ε. We will �rst give a bound on u −m in [−T, T ]. We
consider only the case s ≥ 0 the other one being similar. Note that as according to (2.3)

H(u) =
∫
R

1
2

(
u′(s)−

√
2F (u)

)2

ds,

one can write

u′(s) =
√
F
(
u(s)

)
+ r(s)

u(0) = 0
(2.10)

where
∫ T

0
r(s)2ds ≤ 2δ and therefore using Cauchy-Schwarz inequality∫ T

0

|r(s)|ds ≤
√

2Tδ.

Thus using (2.2) one obtains for v = u−m

v′(s) =
√
F
(
u(s)

)−√F (m(s)
)

+ r(s) ≤ Cv(s) + r(s)

v(0) = 0,
(2.11)

where the constant C is given by C = supu∈[−2,2]
d
du

(√
F (u)

)
. Thus Gronwall's Lemma implies

|v(s)| ≤
∫ s

0

r(t)eC(s−t) dt,

and therefore sups∈[0,T ] |v(s)| ≤ √2TδeCT . Thus by choosing δ small enough one can assure that
sups∈[0,T ] |v(s)| ≤ ε

2 .
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Now let us focus on the case s ∈ [−T, T ]c. We will again only focus on s ≥ T . Note that by
the above calculations and the choice of T one has u(−T ) ≤ 1 − ε and u(T ) ≥ 1 − ε. Therefore
using∫ −T
−∞

u′(s)2

2
+F (u(s))ds +

∫ T

−T

u′(s)2

2
+F (u(s))ds +

∫ ∞
T

u′(s)2

2
+F (u(s))ds ≤ G(1)−G(−1) + δ,

as well as ∫ T

−T

u′(s)2

2
+ F (u(s))ds ≥ G(T )−G(−T ),

we get ∫ ∞
T

u′(s)2

2
+ F (u(s))ds ≤ (G(1)−G(T ))− (G(−1)−G(−T )) + δ ≤ Cε+ δ,

where C = 2 supu∈[−2,2] F (u).Thus by using the fact that
∫∞
T

u′(s)2

2 + F (u(s)) controls the H1-
norm and therefore the L∞ of min (|u− 1|, |u+ 1|) on [T,∞), one can conclude, that possibly
by choosing a smaller δ one obtains sups∈[t,∞) v(s) ≤ Cε. Thus by rede�ning ε one obtains the
desired result.

Proof. (Of Proposition 2.2): (i) First of all remark that for v ∈ Nξ one has
c̃0‖v‖2H1(R) ≤ 〈v,Aξv〉L2(R) ≤ c̃4‖v‖2H1(R). (2.12)

In fact Lemma 2.1 (ii) implies that

c3‖v‖2L2(R) ≤ 〈v,Aξv〉L2(R). (2.13)

To get the lower bound in (2.12) write

〈Av, v〉L2(R) = ‖∇v‖2L2(R) +
∫
R

F ′′(m(y))v2(s)ds

≥ ‖v‖2H1(R) − (c5 + 1)‖v‖2L2(R),

(2.14)

where c5 = max|v|≤1 F
′′(v). Then (2.12) follows with c̃0 = µ∗

µ∗c0+1 . In fact if ‖v‖L2 ≤ ‖v‖H1
1

c3+c̃0

one can use (2.14) and one can use (2.13) else. The upper bound in (2.12) is immediate noting
that supu∈[−1,+1] |F ′′(u)| <∞.

In order to obtain (2.8) one writes:

H(u) =
1
2
〈Aξv, v〉+

∫
R

U(s, ξ, v)ds, (2.15)

where

U(s, ξ, v) = F (mξ(s) + v(s)) + F (mξ(s))− F ′(mξ(s))v(s)− 1
2
F ′′(mξ(s))v(s)2.

Here equation (2.1) is used. Using that by Sobolev embedding ‖v‖L∞(R) ≤ C‖v‖H1(R) one obtains
by Taylor formula∣∣∣∫

R

U
∣∣∣ ≤ 1

6
sup

|v|≤Cδ1+1

|F ′′′(v)|‖v‖3L3(R) ≤ C‖v‖L∞(R)‖v‖2L2(R) ≤ C‖v‖3H1(R). (2.16)

This implies the inequality (2.8).

(ii) To show the second statement, �rst note that there exists a δ̃0 > 0 such that if H(u) ≤ δ̃0
there exists a ξ such that

c0‖u−mξ‖2H1(R) ≤ H(u). (2.17)

9



ξ−ǫ−γ
ǫ−γ

ξ − ǫ−γ1 ξ + ǫ−γ1

ξ

−ǫ−γ
ǫ−γ

Figure 3: The approximated waveshapes function mε
ξ and m

N,ε
ξ .

In fact choosing ξ as in Lemma 2.3 and noting that if one uses the case (i) of Lemma 2.1 instead
(ii) one sees that inequalities (2.12) and (2.16) remain valid for v = u−mξ. Then by using the L∞

bound on v from Lemma 2.3 instead of Sobolev embedding in the last step of (2.16) one obtains

the above statement. In order to obtain (2.9) choose δ0 = δ̃0
c0

and assume distH1(u,M) ≥ δ for a

δ ≤ δ0. If H(u) ≥ δ̃0 the bound (2.9) holds automatically. Otherwhise (2.17) holds and gives the
desired estimate.

We now pass to some bounds on approximated wave shapes. To this end �x γ1 < γ. This
parameter will be �xed throughout the paper. Denote by mε the pro�le m cut o� outside of
[−ε−γ1 , ε−γ1 ]. More precisely assume that mε is a smooth monotone function that coincides with
m on [−ε−γ1 , ε−γ1 ] and that veri�es mε(s) = ±1 for ±s ≥ ε−γ1 + 1. Assume furthermore that
on the intervals [ε−γ1 , ε−γ1 + 1] (respectively [−ε−γ1 − 1,−ε−γ1 ]) one has u(s) ≤ uε(s) ≤ 1 (resp.

u(s) ≥ uε(s) ≥ −1). Due to (2.5) one can also assume that |(uε)′(s)| ≤ 2c1c2e−c2ε
−γ1

on both of
these intermediate intervals. Then de�ne mε

ξ(s) = mε(s− ξ).

Furthermore for N ∈ N and k ∈ {−N,−(N − 1), . . . , (N − 1), N} set sN,εk = kε−γ

N and de�ne

mN,ε
ξ (s) =

{
mε
ξ(s) if s = sN,εk for k = −(N − 1), . . . , (N − 1)

the linear interpolation between these points,
(2.18)

One then gets the following bound:

Lemma 2.4. For ε small enough and ξ ∈ [−ε−γ + ε−γ1 + 1, ε−γ − ε−γ1 − 1] one has

(i) ‖mξ −mε
ξ‖L2(R) ≤ C exp(−c2ε−γ1) and ‖(mξ)′ − (mε

ξ)
′‖L2(R) ≤ C exp(−c2ε−γ1).

(ii) ‖mξ −mN,ε
ξ ‖L2(R) ≤ Cε−γ1/2 ε

−2γ

N2 and ‖(mξ)′ − (mN,ε
ξ )′‖L2(R) ≤ Cε−γ1/2 ε

−γ

N .

Proof. To see (i) write

‖mξ −mε
ξ‖2L2(R) ≤

∫ ∞
ε−γ1

(
m(s)−mε(s)

)2

ds +
∫ −ε−γ1
−∞

(
m(s)−mε(s)

)2

ds

≤ 2
∫ ∞
ε−γ1

c21 exp(−2c2s)ds ≤ C exp(−2c2ε−γ1)
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and

‖m′ξ − (mε
ξ)
′‖2L2(R) ≤

∫ ∞
ε−γ1

(
m′(s)− (mε)′(s)

)2

ds +
∫ ε−γ1

−∞

(
m′(s)− (mε)′(s)

)2

ds

≤ C exp(−2c2ε−γ1).

Here one uses the inequalities (2.5) as well as the properties of mε.

To see (ii) write

‖m′ξ − (mN,ε
ξ )′‖L2(R) ≤ ‖m′ξ − (mε

ξ)
′‖L2(R) + ‖(mε

ξ)
′ − (mN,ε

ξ )′‖L2(R). (2.19)

To bound the second term assume without loss of generality that ξ = 0 and write

‖(mε)′ − (mN,ε)′‖2L2(R) =
N−1∑
k=−N

∫ sN,εk+1

sN,εk

(
(mε)′(s)− (mN,ε)′(s)

)2

ds

=
Nε−1∑
k=−Nε

∫ sN,εk+1

sN,εk

(
(mε)′(s)− (mN,ε)′(s)

)2

ds. (2.20)

In the second equality Nε = dε−γ1 N
ε−γ e. Here we use the fact that uε is constant outside of

[−ε−γ1 , ε−γ1 ] and therefore coincides with its piecewise linearization. The integrals can be bounded
using Poincaré inequality:∫ sN,εk+1

sN,εk

(
(mε)′(s)− (mN,ε

ξ )′(s)
)2

ds ≤ ε−2γ

N2π2

∫ sN,εk+1

sN,εk

(mε)′′(s)ds ≤ ε−3γ

N3π2
sup
s∈R
|(mε)′′(s)|2. (2.21)

Plugging this into (2.19) one gets:

‖(mε)′ − (mN,ε)′‖2L2 ≤ ε−γ1 ε
−2γ

N2π2
sup
s∈R
|(mε)′′(s)|2.

Due to (i) the term involving |m′ξ − (mε
ξ)
′| can be absorbed in the constant for ε small enough.

This yields the second estimate in (ii). For the bound on ‖m′ξ − (mε
ξ)
′‖L2(R) one proceeds in the

same manner with another use of Poincaré inequality. The details are left to the reader.

3 Gaussian estimates

In this section concentration properties of some discretized Gaussian measure are discussed and
the bounds which are needed in Section 4 are provided. To this end we recall a classical Gaussian
concentration inequality. Then we introduce the discretized version of the Gaussian reference
measure νε and give an error bound. We also study another discretized measure which can be
viewed as a discretized massive Gaussian free �eld.

Let E be a separable Banach space equipped with its Borel-σ-�eld F and norm ‖ · ‖. Recall
that a probability measure µ on (E,F) is called Gaussian if for every η in the dual space X∗ the
pushforward measure η#µ is Gaussian. For the moment all Gaussian measures are assumed to be
centered i.e. for all η ∈ X∗ it holds ∫ 〈η, x〉µ(dx) = 0. Denote by

σ = sup
η∈X∗,‖η‖X∗≤1

(∫
〈η, x〉2µ(dx)

)1/2

.

Note that σ is �nite [Le96]. Then one has the following classical concentration inequality (see
[Le96] page 203):

µ
(
y; ‖y‖ ≥

∫
‖x‖µ(dx) + r

)
≤ e−r

2/2σ2
.
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In fact there are several ways to prove this, among them the Gaussian isoperimetric inequality.

The di�culty in applying this inequality to concrete examples is to evaluate the quantities σ
and

∫ ‖x‖µ(dx). This is easier in the case where E is a Hilbert space. Then a centered Gaussian
measure µ is uniquely characterized by the covariance operator Σ which satis�es∫

〈η1, x〉〈η2, x〉µ(dx) = 〈η1,Ση2〉 ∀η1, η2 ∈ E.

It is known [dPZ92] that Σ must be a nonnegative symmetric trace class operator. Then σ2 is the
spectral radius of Σ and using Jensen's inequality one obtains∫

‖x‖µ(dx) ≤ (∫ ‖x‖2 µ(dx)
)1/2 =

(
TrΣ

)1/2
.

Therefore one can write

Lemma 3.1. Let µ be a centered Gaussian measure on a Hilbert space E with covariance operator
Σ. Then one has

µ
(
x; ‖x‖ ≥ (TrΣ

)1/2 + r
) ≤ e−r2/2σ2

. (3.1)

We now want to use this inequality to study the behavior or the measure νε under discretization.
To this end �x an integer N and consider piecewise a�ne functions u ∈ L2[−ε−γ ,−ε−γ ] of the
following type

u(x) =


±1 for x = ±ε−γ
arbitrary for x = sN,εk k = −(N − 1), . . . , (N − 1)

the linear interpolation between those points,

(3.2)

and denote by HN,ε the a�ne space of all such functions. Recall that sN,εk = kε−γ

N . The space
HN,ε can canonically be identi�ed with R2N−1. In particular typical �nite dimensional objects
such as Lebesgue- and Hausdor� measures make sense on HN,ε. On the other hand also the in�nite
dimensional observations from Section 2 can be applied to elements ofHN,ε. The interplay between
in�nite and �nite dimensional ideas is crucial in the proof of Theorem 1.2. Denote by LN,ε the
Lebesgue measure on HN,ε.

Recall that νε is the distribution of a Gaussian process (u(s), s ∈ [−ε−γ , ε−γ ]) with E[u(s)] =
εγs and Cov(u(s), u(s′)) = ε

(
s ∧ s′ + ε−γ − (s+ε−γ)(s′+ε−γ)

2ε−γ

)
. According to the Kolmogorov-

Chentsov Theorem we can assume that u has continuous paths. Consider now the piecewise
linearization of uN of u:

uN (s) =


±1 for s = ±ε−γ
u(s) for x = sN,εk k = −(N − 1), . . . , (N − 1)

the linear interpolation between those points.

Lemma 3.2. (i) The distribution of uN is absolutely continuous with respect to the Lebesgue
measure LN on HN,ε. The density is given by

1√
(2π)2N−1

( N

ε−γ
)N (

2ε−γ
)1/2 exp

(
εγ−1) exp

(
−1
ε

∫ ε−γ

−ε−γ
|∇u(s)|2ds

)
. (3.3)

(ii) The random function u − uN consists of 2N independent rescaled Brownian bridges. To be

more precise for each k ∈ {−N, . . . (N − 1)} the process (u(s)− uN (s) : s ∈ [sN,εk , sN,εk+1]) is a
centered Gaussian process with covariance

Cov(u(s)− uN (s), u(s′)− uN (s′)) = ε
(
s ∧ s′ − sN,εk − (s− sN,εk )(s′ − sN,εk )

ε−γ

N

)
. (3.4)
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These processes are mutually independent and independent of uN .

Proof. (i) The measure νε can be considered as the distribution of a rescaled Brownian u motion
on [−ε−γ , ε−γ ] starting at u(−ε−γ) = −1 and conditioned on u(ε−γ) = 1. Therefore the �nite
dimensional distributions can be obtained by �nite dimensional conditioning:

νε
(
u(sN,ε−(N−1)) ∈ dx−(N−1), . . . , u(sN,εN−1) ∈ dx(N−1)

)
=

(N−1)∏
i=−N

1√
(2π)δ

exp
(
− (xi+1 − xi)2

2εδ

)( 1√
(2π)2ε−γ

exp
( (1− (−1))2

4ε−γε

))−1

=
1√

(2π)2N−1
δ−N2ε−γ exp(εγ−1) exp

(
− 1

2ε

N−1∑
i=−N

δ
(xi+1 − xi)2

δ2

)
Here δ = ε−γ

N and x±N = ±1. By noting that the Riemann sum appearing in the last line is equal
to the integral of the squared derivative of the piecewise linearization one obtains the result.

(ii) Denote for i = −N, . . . , (N − 1) and s ∈ [0, δ] by ũi(s) = u(ti + s) − uN (ti + s) =
u(ti + s)−

(
1− s

δ

)
u(ti)− s

δu(ti+1). We want to show that the processes (ũi(s), s ∈ [0, δ]) posses

the right covariances and are mutually independent and independent of uN . To this end calculate
for s, s′ ∈ [0, δ] and i = −N, . . . , (N − 1):

Cov(ũi(s), ũi(s′)) =

Cov

[
u(ti + s)−

(
1− s

δ

)
u(ti)− s

δ
u(ti+1), u(ti + s′)−

(
1− s′

δ

)
u(ti)− s′

δ
u(ti+1)

]
.

By plugging in the explicit expression for the covariances of the u(s) and some tedious but ele-
mentary calculations one obtains the desired expression. In a similar way one can see that for
i 6= j one has

Cov(ũj(s), ũi(s′)) = 0 and Cov(ũj(s), uN (t)) = 0

for all s, s′ ∈ [0, δ] and t ∈ [−ε−γ , ε−γ ].

Denote the Gaussian normalization constant

ZN,ε1 : =
1√

(2π)2N−1

( N

ε−γ
)N

2ε−γ exp
(
εγ−1)

Note that by viewing νN,ε as �nite dimensional measure with covariance given by the inverse of
the negative Dirichlet Laplacian restricted to HN,ε which we denote by −∆N one sees that

ZN,ε1 =
1√

(2π)2N−1
exp
(
εγ−1)

(
det(−∆N )

)1/2
. (3.5)

We now want to apply the Gaussian concentration inequality to obtain a bound on the prob-
ability of large u− uN :
Lemma 3.3. The following bounds hold:

1. L2-bound on the whole line:

νε
(
u : ‖u− uN‖L2[−ε−γ ,ε−γ ] ≥

√
ε
ε−2γ

3N
+ r
)
≤ exp

(
−r

2π2N2

ε1−2γ

)
(3.6)

13



2. L2-bound on the short intervals:

νε

(
‖u(s)− uN (s)‖L2[sN,εk ,sN,εk+1] ≥

√
ε
ε−2γ

6N2
+ r

)
≤ exp

(
−r

2π2N2

ε1−2γ

)
. (3.7)

3. L∞-bound on the whole line:

νε
(‖u(s)− uN (s)‖L∞[−ε−γ ,ε−γ ] ≥ r

) ≤ 4N exp
(
− r2N

8ε1−γ

)
. (3.8)

Proof. Let us consider (3.6) �rst. Note that u − uN is a centered Gaussian process such that
Lemma 3.1 can be applied. The expected L2-norm can be calculated as follows:

νε
[
‖u− uN‖2L2[−ε−γ ,ε−γ ]

]
=

N−1∑
k=−N

νε‖ũk‖2L2 =
N−1∑
k=−N

∫ sN,εk+1

sN,εk

νε
(
ũ(s)2

)
ds

=
N−1∑
k=−N

∫ sN,εk+1

sN,εk

ε

s− sN,εk −
(
s− sN,εk

)2

ε−γ

N

 ds = 2Nε
1
6

(
ε−γ

N

)2

.

Here for the third equality equation (3.4) is used.

To get information about the spectral radius of the covariance operator Σ calculate for f, g ∈
L2[−ε−γ , ε−γ ]:

〈 f,Σg 〉 = νε
[〈 f, u− uN 〉〈 g, u− uN 〉]

=
N−1∑
k=−N

∫ sN,εk+1

sN,εk

ε

(
s ∧ s′ − (s− sN,εk )(s′ − sN,εk )

ε−γ

N

)
f(s)g(s′) ds.

Here in the last step the independence of the di�erent bridges is used as well as formula (3.3).
Note that the integral kernel in the last line is the Green function of the negative Dirichlet-Laplace
operator on the interval [sN,εk , sN,εk+1]. Denoting this operator by ε(−∆Tk)−1 one can therefore write

〈f,Σg〉 =
N−1∑
k=−N

〈f, ε(−∆Tk)−1g〉L2(Tk).

The spectral decomposition of the inverse Dirichlet-Laplace operator on intervals of length T is
well known. In fact on L2[0, T ] the smallest eigenvalue λ0 and the according eigenfunction e0(x)
are given as:

e0(s) = sin
(πs
T

)
and λ0 =

εT 2

π2
.

The spectral radius of ε
(−∆Tk

)−1
is thus given as

σ2
k = ε

ε−2γ

(Nπ)2
.

Therefore one can write

σ2 = sup
f,‖f‖=1

〈f,Σf〉 = sup
f,‖f‖=1

N−1∑
k=−N

〈f, ε(∆k)−1g〉L2(Tk)

≤ sup
f,‖f‖=1

N−1∑
k=−N

σ2
k〈f, f〉L2(Tk) = ε

(
ε−γ

πN

)2

sup
f,‖f‖=1

〈f, f〉.
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On the other hand by taking f as a linear combination of the eigenfunctions on the shorter intervals
one obtains

σ2 = ε

(
ε−γ

πN

)2

.

Thus equation (3.1) gives the desired result. The proof of (3.7) proceeds in the same manner.

To prove the third statement (3.8) note that by Lemma 3.2, the deviations of a the random

function u from the piecewise linearizations uN between the points sN,εk are independent Brownian

bridges. Therefore such a process
(
u(sN,εk + s)− uN (sN,εk + s), 0 ≤ s ≤ ε−γ

N

)
has the same distri-

bution as ε
1
2

(
Bs − sN

ε−γB ε−γ
N

)
for a Brownian motion B de�ned on a probability space (Ω,F ,P).

Therefore one can write

νε
(‖u(s)− uN (s)‖L∞[−ε−γ ,ε−γ ] ≥ r

) ≤ N−1∑
k=−N

νε

(
max

sN,εk ≤s≤sN,εk+1

|u(s)− uN (s)| ≥ r
)

≤ 2N P

(
max

0≤s≤ ε−γN

∣∣∣∣ε1/2

(
Bs − sN

ε−γ
B ε−γ

N

)∣∣∣∣ ≥ r
)

≤ 2N P

(
max

0≤s≤ ε−γN
|Bs| ≥ r

2ε1/2

)
.

Using the exponential version of the maximal inequality for martingales (see Proposition 1.8 in
Chapter II in [RY99]) one can see that

νε
(‖u(s)− uN (s)‖L∞[−ε−γ ,ε−γ ] ≥ r

) ≤ 4N exp
(
− r2N

8ε1−γ

)
.

We will denote the distribution on of uN as νN,ε. Note that the last statement can also be
interpreted as a statement on a coupling of νε and νN,ε. In fact let λN,ε be the joint distribution
of u and its discretization uN . Then Lemma 3.3 states that

λN,ε

{
(u, u′) : ‖u− u′‖L2(R) ≥

√
ε
ε−2γ

3N
+ r

}
≤ exp

(
−r

2π2N2

ε1−2γ

)
, (3.9)

and an analogous result for the L∞ norm.

We now want to study the properties of another discrete Gaussian measure. In fact denote by
HN,ε

0 the space of a�ne functions de�ned as in 3.2 with the only change that they are assumed
to possess zero boundary conditions. The Lebesgue measure on this space is de�ned in the same
manner. For a �xed constant κ consider the centered probability measure %N,ε whose density with
respect to LN,ε is proportional to

exp

−κ∫ ε−γ−ε−γ |u(s)|2 + |∇u(s)|2 ds
2ε

 .

In fact this measure is a variant of what is known in the literature as discrete massive free �eld,
discrete Ornstein-Uhlenbeck bridge or pinned ∇φ surface model [S07, HSV05]. Denote the nor-
malization constant

ZN,ε2 =
∫

exp

−κ∫ ε−γ−ε−γ |u(s)|2 + |∇u(s)|2 ds
2ε

LN,ε(du).
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Lemma 3.4. (i) ZN,ε2 is given as

1√
(2εκπ)2N−1

det(−∆N + Id). (3.10)

Recall that the operator ∆N denotes the discretized Laplace operator introduced above equa-
tion (3.5).

(ii) We have the following bound: For r ≥ 0

%

{
u : ‖u‖H1 ≥ (2N − 1)ε

κ
+ r

}
≤ exp

(−κr2/2ε
)
. (3.11)

Proof. (i) To see this one only has to note that ∆N + Id is the inverse covariance matrix of this
�nite dimensional Gaussian measure.

(ii) To see (3.11) write with a �nite dimensional change of variables:

% {u : ‖u‖H1 ≥ r} =
1

ZN,ε2

∫
{u : ‖u‖H1≥r}

exp
(
κ
‖u‖2H1

2ε

)
LN,ε(du)

=
1√

(2επ)2N−1

∫
{PN−1

k=−N x2
k≥r}

exp

(
κ

∑N−1
k=−N x

2
k

2ε

)
dx−N . . . dxN−1.

In fact here one uses the standart linear transformation that transforms a gaussian random variable
on a �nite dimensional space to a gaussian random variable with Id covariance matrix. We have
thus have to consider a vector of 2N−1 independent centered Gaussian random variables Xk with
variance ε

κ . The expectation

E

[
N−1∑
k=−N

X2
i

]
=

2Nε
κ

and the spectral radius

σ2 =
ε

κ

are calculated easily such that (3.1) gives the desired result.

4 Concentration around a curve in in�nite dimensional space

In this section we give the proof of Theorem 1.2. To this end we consider the �nite dimensional
measure

µN,ε(du) =
1

ZN,ε
exp

(
−1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νN,ε(du),

with the normalization constant ZN,ε =
∫

exp
(− 1

ε

∫
F (u(s))ds

)
νN,ε(du). Note that although

νN,ε is given by the �nite-dimensional marginals of νε, the measure µN,ε does not coincide with
the �nite dimensional distribution of µε. The strategy is now as follows: In Proposition 4.5 a
lower bound on the discrete normalization constant ZN,ε is given. This is achieved by calculating
the integral in a tubular neighborhood of the set of minimizers M . Then in Proposition 4.8 the
rough energy bound given in Proposition 2.9 is used to conclude concentration of the discretized
measure µN,ε around the curve of minimizers. Finally Lemma 4.12 gives a bound on the quotient
Zε

ZN,ε
which allows to �nish the proof of concentration around the curve of minimizers also in the

continuous case with the help of a coupling argument.

Recall the following version of the coarea formula:
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Lemma 4.1. Let f be a Lipschitz function f : A ⊆ E → I ⊆ R, where E is a n-dimensional
Euclidean space and A is an open subset and I some interval. Denote by λn, λ1 and Hn−1 the
Lebesgue measure on E, on R and the (n− 1)-dimensional Hausdor� measure on E respectively.
Suppose that the gradient (which exists λn-a.e.) Df does not vanish λn a.e. in A. Then for every
nonnegative measurable test function ϕ : A→ R one has the following formula:∫

A

ϕ(x)λ(dx) =
∫
I

λ1(dξ)
∫
f−1(ξ)

Hn−1(dx)
1

|Df(x)|E ϕ(x). (4.1)

In order to apply this formula 4.1 to µN,ε one needs the following:

Lemma 4.2. Consider the function f : A → I, where A1 := {x ∈ m + L2 : distL2(x,M) < β} is
the open set in which the Fermi coordinates are de�ned and I = [−ε−γ +ε−γ1 , ε−γ−ε−γ1 ], de�ned
by

f(x) = f(mξ + s) = ξ,

where x = mξ + s are the Fermi coordinates of x. Then f is Fréchet di�erentiable and one has

Df(x)[h] = Df(mξ + s)[h] =
−〈m′ξ, h〉

|m′ξ|2 − 〈s,m′′ξ 〉
. (4.2)

Proof. The di�erentiability follows from the implicit function theorem. To calculate the derivative
at x = mξ + s in direction h consider the function

Φ(v, w) = 〈mξ −mw + s+ vh,m′w〉,

de�ned in an environment of (0, ξ) ∈ R2. Noting that one has Φ(v, f(mξ + s + vh)) = 0 one can
write

0 = ∂vΦ(v, f(mξ + s+ vh)) + ∂wΦ(v, f(mξ + s+ vh))Df(mξ + s)[h].

Observing that
∂vΦ(v, f(mξ + s+ vh)) = 〈h,m′ξ〉

and
∂wΦ(v, f(mξ + s+ vh)) = −〈m′ξ,m′ξ〉+ 〈s,m′′ξ 〉

concludes the proof.

We want to apply the coarea formula to the function f just de�ned, restricted toHN,ε. There is
a slight inconvenience which originates from the fact that the norm of the gradient which appears
in 4.1 is the norm in the �nite dimensional space E whereas the gradient of the function f is a
function in L2(R). To resolve this is the content of the next lemma:

Lemma 4.3. Let g : m+L2(R)→ R be a Fréchet di�erentiable function and denote by ∇g(x) its
L2-gradient at point x. Consider then the function g̃ de�ned on R2N−1 obtained by composition
of the embedding R2N−1 → HN,ε and g. Denote by ∇̃g̃ its gradient. Then one has the following
inequality:

‖∇̃g̃‖R2N−1 ≤ 2

√
ε−γ

N
‖∇g‖L2 .

Proof. We calculate the derivative of g̃ in direction ẽk = (0, . . . , 0, 1, 0, . . . 0) with the 1 on k-th
position. Embedding ẽk into HN,ε gives the hat-function

ek(s) =


0 for s /∈ [sN,εk−1, s

N,ε
k+1]

s−sN,εk−1
ε−γ
N

for s ∈]sN,εk−1, s
N,ε
k ]

sN,εk+1−s
ε−γ
N

for s ∈]sN,εk−1, s
N,ε
k ].

(4.3)
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Therefore one obtains

(∇̃g̃)k =
∫
R

ek(s)∇g(s)ds =
∫ sN,εk+1

sN,εk−1

ek(s)∇g(s)ds.

Applying Cauchy-Schwarz inequality and using ‖ek‖∞ ≤ 1 one gets:

‖∇̃g̃‖2R2N−1 =
N−1∑

k=−(N−1)

(∫ sN,εk+1

sN,εk−1

ek(s)∇g(s)ds

)2

≤ 2
ε−γ

N

N−1∑
k=−(N−1)

∫ sN,εk+1

sN,εk−1

(∇g(s))2 ds

≤ 2
ε−γ

N
2‖∇g‖2L2(R).

(4.4)

Now we are ready to derive a lower bound on the normalization constant ZN,ε of the �nite

dimensional approximation of µε. Recall that µN,ε(du) = 1
ZN,ε

exp
(
− 1
ε

∫ ε−γ
−ε−γ F (u(s))ds

)
νN,ε(du)

where νN,ε is a discretized Brownian bridge. One gets the following bound:

Proposition 4.4. If one chooses N = N(ε) in a way that ε−γ

N ↓ 0 as ε ↓ 0, then the following
bound holds for ε small enough and a small but �xed δ:

ZN,ε ≥ exp
(
−C∗
ε

)
exp

(
C

1
δ
ε−γ

)
exp

(
−Cε−γ1

(
ε−γ

N

)1/2
)
ε−γ

N
exp

(
−2C

(
ε−γ−γ1/2

εN

))
c−N4 .

(4.5)
In particular if one chooses N = N(ε) growing like ε−γ2 and γ1 small enough such that

−γ1 − γ/2 + γ2 > 0 (4.6)

−γ − γ1/2 + γ2 > 0 (4.7)

γ2 < 1, (4.8)

one obtains
lim inf
ε↓0

ε logZN,ε ≥ −C∗. (4.9)

Proof. Using the de�nition of νN,ε one can write

ZN,ε =
∫
HN,ε

exp
(
−1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νN,ε(du)

=
1

ZN,ε1

exp
(
−C∗
ε

)∫
HN,ε

exp
(
−1
ε

∫ ε−γ

−ε−γ
F (u(s))ds− 1

ε

∫ ε−γ

−ε−γ
1
2
|u′(s)|2ds +

C∗
ε

)
LN,ε(du)

=
1

ZN,ε1

exp
(
−C∗
ε

)∫
HN,ε

exp
(
−1
ε
H(u)

)
LN,ε(du).

(4.10)

Recall that ZN,ε1 =
∫

exp
(
− 1
ε

∫ ε−γ
−ε−γ

1
2 |u′(s)|2ds

)
λN,ε(du) is the normalization constant of the dis-

cretized Brownian bridge and LN,ε is the Lebesgue measure on the �nite dimensional space HN,ε.
In order to �nd a lower bound on ZN,ε we can restrict the integration to a tubular neighborhood
of M . More precisely set Iε := [−ε−γ + ε−γ1 , ε−γ − ε−γ1 ] and

A2 :=
{
u ∈ HN,ε : u = mξ + v : 〈v,m′ξ〉L2(R) = 0 for some ξ ∈ Iε and ‖v‖H1(R) ≤ δ

}
,

for some δ to be determined later. For the moment we will only assume δ to be small enough in
order to be able to apply Funaki's estimate (2.8) on the energy landscape. Furthermore denote by

Aξ :=
{
u ∈ HN,ε : u = mξ + v : 〈v,m′ξ〉 = 0 and ‖v‖H1(R) ≤ δ

}
.
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Using Funaki's estimate (2.8) for u = mξ + v ∈ A2 one can write

exp
(
−1
ε
H(u)

)
≥ exp

(
−c4
ε
‖v‖2H1(R)

)
.

Note the v is not an element of the discretized space HN,ε but a general function in L2(R)
that needs not vanish outside of [−ε−γ , ε−γ ]. But v can be well approximated by a function

vN,ε = u−mN,ε
ξ ∈ HN,ε

0 . In fact using Lemma 2.4 one gets

‖vN,ε − v‖H1(R) = ‖mN,ε
ξ −mξ‖H1(R) ≤ C ε

−γ

N
ε
−γ1

2 .

Putting this together one gets:

ZN,εZN,ε1 exp
(C∗
ε

)
≥
∫
A

exp
(
−c4
ε
‖v‖2H1(R)

)
LN,ε(du)

≥ exp
(
−2C

(
ε−γ−γ1/2

εN

))∫
A

exp
(
−2c4

ε
‖vN,ε‖2H1(R)

)
LN,ε(du).

(4.11)

Let us concentrate on the integral term in equation 4.11. Using the coarea formula 4.1 one gets:∫
A

exp
(
−2c4

ε
‖vN,ε‖2H1

)
LN,ε(du) ≥

∫
Iε

dξ
∫
Aξ

1
|∇̃f̃ | exp

(
−c4
ε
‖v‖2H1

)
HN,ε(du). (4.12)

where HN,ε is the codimension one Hausdor� measure on HN,ε. Using Lemma 4.2 and the
observation from Lemma 4.3 one knows:

1
|∇̃f̃ | ≥

1
2

√
N

ε−γ
|m′ξ|2L2(R) + 〈v,m′′ξ 〉L2(R)

‖m′ξ‖L2(R)
.

By choosing a smaller δ if necessary this can be bounded uniformly from below on A by a C
√

N
ε−γ

such that one gets:∫
A

exp
(
−2c4

ε
‖vN,ε‖2H1(R)

)
LN,ε(du) ≥ C

√
N

ε−γ

∫
Iε

dξ
∫
Aξ

exp
(
−2c4

ε
‖vN,ε‖2H1(R)

)
HN,ε(du).

(4.13)
Let us focus on the last integral. By a linear change of coordinates one can write∫

Aξ

exp
(
−2c4

ε
‖vN,ε‖2H1(R)

)
HN,ε(du) =

∫
Bξ

exp
(
−2c4

ε
‖v‖2H1(R)

)
HN,ε(dv), (4.14)

where Bξ =
{
v ∈ HN,ε

0 : 〈v,m′ξ〉L2(R) = 〈mξ −mN,ε
ξ ,m′ξ〉L2(R) and ‖v‖H1(R) ≤ δ

}
. In order to

conclude, we need the following elementary lemma:

Lemma 4.5. Let E be a �nite dimensional Euclidean space with Lebesgue measure L and codi-
mension 1 Hausdor� measure H. Let a∗ = 〈a, ·〉 ∈ E∗ be a linear form and x 7→ 〈x,Σx〉 be a
symmetric, positive bilinear form. Furthermore write for b ∈ R

B̃b =
{
x ∈ E : ax = b and 〈x,Σx〉 ≤ δ2

}
.

Furthermore set d2 = infx∈B̃b〈x,Σx〉 and let n be a Σ-unit normal vector on B̃0, i.e. 〈n,Σx〉 = 0
for all x ∈ B̃0 and 〈n,Σn〉 = 1. Then one has for every b∫

〈x,Σx〉≤δ2
exp (−〈x,Σx〉)L(dx) ≤ 2δ

√
1
〈n, n〉 exp

(
d2
) ∫

B̃b

exp (−〈x,Σx〉)H(dx). (4.15)
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Furthermore d and 〈n, n〉 can be given as follows:

d2 =
b2

〈a,Σ−1a〉 and 〈a,Σ−1a〉 = sup
η : 〈η,Ση〉=1

〈a, η〉, (4.16)

and
(〈n, n〉)1/2 = sup

η : 〈η,Ση〉=1

〈n, η〉.

Proof. (Of Lemma 4.5): Using the Coarea formula one can write:∫
〈x,Σx〉≤2δ2−d2

exp (−〈x,Σx〉)L(dx) ≤
∫ δ

−δ

∫
B̃0

exp (−〈(y + λn),Σ(y + λn)〉)
√

1
〈n, n〉H(dy)dλ

≤
√

1
〈n, n〉

∫ δ

−δ

∫
B̃0

exp (−〈y,Σy〉)H(dy)dλ

= 2δ

√
1
〈n, n〉

∫
B̃0

exp (−〈y,Σy〉)H(dy)

= 2δ

√
1
〈n, n〉 exp

(
d2
) ∫

B̃0

exp (−〈(y + dn),Σ(y + dn)〉)H(dy)

= 2δ

√
1
〈n, n〉 exp

(
d2
) ∫

B̃b

exp (−〈y,Σy〉)H(dy).

(4.17)

The other assertions are elementary.

In order to apply this Lemma to the case E = HN,ε, a∗(v) = 〈v,m′ξ〉L2(R) b = 〈mξ −
mN,ε
ξ ,m′ξ〉L2(R) and 〈v,Σv〉 = ‖v‖2H1(R) one needs to evaluate the constants d and 〈n, n〉 in this

context. This is subject of the next Lemma:

Lemma 4.6. One has:

(i) 〈mξ −mN,ε
ξ ,m′ξ〉L2(R) ≤ Cε−γ1 ε

−2γ

N2 ,

(ii) d2 ≤ Cε−γ1
(
ε−γ

N

)1/2

,

(iii) 〈n, n〉 = 〈a,Σ−1a〉 ≥ C
√

ε−γ

N
ε−γ

N .

Proof. (Of Lemma 4.6) (i) Applying Cauchy-Schwarz inequality one gets

〈mξ −mN,ε
ξ ,m′ξ〉L2(R) ≤ ‖mξ −mN,ε

ξ ‖L2(R)‖m′ξ‖L2 ≤ Cε−γ1/2 ε
−2γ

N2
.

Here Lemma 2.4 was used. (ii) In order to evaluate d note �rst that the Euclidean coordinates
ak k = −(N − 1), . . . , (N − 1) of the vector associated to the linear form a∗ are given as

ak = 〈ek,m′ξ〉L2(R).

Here the hat functions ek are de�ned like in (4.3). In order to get a lower bound on 〈a,Σa〉 we
use the variational principle given in (4.16). Choose as a testfunction η = η̂ek. One has

‖ek‖2H1(R) =
2ε−γ

3N
+ 2

N

ε−γ
,
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such that one has to chose η̂ =
√

3 ε
−γ
N

2 ε
−2γ

N2 +3
in order to guarantee that ‖η‖H1(R) = 1. Note

that as ε−γ

N ↓ 0 for ε ↓ 0 one can bound ξ uniformly from below by C
√

ε−γ

N . Now set c7 =

infs∈[−2,2]m
′
ξ(s) > 0 and chose k such that [sN,εk−1, s

N,ε
k+1] ⊆ [ξ − 2, ξ + 2], which is always possible

for ε small enough. Then one gets

〈η, a〉 = ξ〈ek,m′ξ〉 ≥ c7ξ‖ek‖L1(R) ≥ C
√
ε−γ

N

ε−γ

N
.

Therefore using (i) one gets

d2 ≤ Cε−γ1
(
ε−γ

N

)1/2

.

The statement (iii) follows immediately.

End of proof of Proposition 4.4: Applying Lemma 4.5 and 4.6 to equation (4.14) one gets:∫
Bξ

exp
(
−2c2

ε
‖v‖2H1(R)

)
HN,ε(dv)

≥ 1
δ

∫
B

C

√
ε−γ

N

ε−γ

N
exp

(
−Cε−γ1

(
ε−γ

N

)1/2
)

exp
(
−2c2

ε
‖v‖2H1

)
L(dv)

=

√
ε−γ

N

ε−γ

N
exp

(
−Cε−γ1

(
ε−γ

N

)1/2
)
ZN,ε2 σ

(
‖v‖2H1(R) ≤ δ

)
.

(4.18)

where B =
{
v ∈ HN,ε

0 s. th. ‖v‖H1 ≤ δ
}
. Recall that σ is the Gaussian measure discussed in

Lemma 3.4. According to Lemma 3.4 for ε small enough σ
(‖v‖2H1‖ ≤ δ

) ≥ 1
2 . Therefore the

following lemma concludes the proof.

Lemma 4.7. The Gaussian normalization constants ZN,ε1 and ZN,ε2 satisfy the following:

c−N1

(
1 +

2ε−γ

π

)N
≤ ZN,ε2

ZN,ε1

≤ c−N1 . (4.19)

Proof. By de�nition
ZN,ε2 = (2π)NεNc−N4 det(1−∆N,ε)−1/2,

where ∆N,ε is the Dirichlet Laplacian on [−ε−γ , ε−γ ] restricted to HN,ε and

ZN,ε1 = (2π)NεN det(−∆N,ε)−1/2.

By Poincaré inequality one has

−∆N,ε ≤ (1−∆N,ε) ≤
(

1 +
2ε−γ

π

)
(−∆N,ε),

in the sense of selfadjoint operators. This implies

det(−∆N,ε) ≤ det(1−∆N,ε) ≤
(

1 +
2ε−γ

π

)2N

det(−∆N,ε),

and therefore

c−N4

(
1 +

2ε−γ

π

)N
≤ ZN,ε2

ZN,ε1

≤ c−N4 .
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As a next step an upper bound on µN,ε(Ac) is derived:

Proposition 4.8. Choosing γ1 and γ2 as in (4.6),(4.7) and (4.8) one has for δ ≤ δ0:

lim sup
ε↓0

ε log
(
ZN,εµN,ε (distH1(u,M) ≥ δ)

)
≤ −(C∗ + c0δ

2). (4.20)

Proof. Denote by Aδ := {u : distH1(u,M) ≥ δ}. Then one has

ZN,εµN,ε(Aδ) = exp
(
−C∗
ε

) 1

ZN,ε1

∫
Aδ

exp
(
−1
ε
H(u)

)
λN,ε(du)

≤ exp
(
−C∗ + c0δ

2

ε

) 1

ZN,ε1

∫
Aδ

exp
(
−1
ε

(H(u)− c0δ2
))
λN,ε(du).

(4.21)

Note that by Lemma 2.9 H(u)− c0δ2 ≥ 0 on Aδ. So on this set one gets

exp
(
−1
ε

(H(u)− c0δ2
)) ≤ exp

(
− (H(u)− c0δ2

))
.

Therefore one gets∫
Aδ

exp
(
−1
ε

(H(u)− c0δ2
))
λN,ε(du) ≤

∫
Aδ

exp
(
− (H(u)− c0δ2

))
λN,ε(du)

≤
∫
Aδ
ZN,ε3 exp

(∫ ε−γ

−ε−γ
−F (u(s)

)
ds + c0δ

2

)
ν1,N (du),

(4.22)

where ν1,N is the discretized Brownian Bridge without rescaling and

ZN,ε3 =
∫

exp
(
−
∫ ε−γ

−ε−γ
1
2
|u′(s)|2 ds

)
HN,ε(du)

is the appropriate normalization constant. Using the positivity of F the last term in (4.22) can
therefore be bounded by

ZN,ε3 exp
(
c0δ

2
)
.

Plugging this into (4.21) yields

ZN,εµN,ε(Aδ) ≤ exp
(
−C∗ + c0δ

2

ε

) 1

ZN,ε1

ZN,ε3 exp
(
c0δ

2
)
.

This �nishes the proof together with the following bound on the normalization constants ZN,ε1 and

ZN,ε3 .

Lemma 4.9. One has
ZN,ε3

ZN,ε1

= ε−N .

Proof. This is a direct consequence of the fact that for matrices A ∈ Rn×n and ξ ∈ R

det(ξA) = ξn det(A),

as well as the explicit formula for the Gaussian normalization constants.

One can now summarize the �nite dimensional calculation in the following:
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Corollary 4.10. Choosing the constants γ1 and γ2 as in (4.6),(4.7),(4.8) one obtains for δ ≤ δ0:
lim sup
ε↓0

ε log
(
µN,ε(distH1(u,M) ≥ δ)) ≤ −c0δ2.

Note that such a choice is possible for all γ < 1.

Proof. Dividing and using the estimates from above yields the result.

Using again the continuous embedding of H1 into L∞ one gets:

Corollary 4.11. Choosing the constants γ1 and γ2 as in (4.6),(4.7),(4.8) one obtains for δ ≤ δ0:
lim sup
ε↓0

ε log
(
µN,ε(distL∞(u,M) ≥ δ)) ≤ −c0δ2.

Such a choice is possible for all γ < 1.

As a last step in this section we need to control the deviations from the discretized measure
with the help of the Gaussian estimates derived in the last section. To this end one has to estimate
the deviations of the normalization constant Zε from ZN,ε. In order to proof the following Lemma
we will need an additional assumption on the double well potential F .

Assumption:

|F ′(u)| is bounded for u ∈ R . (4.23)

In fact one can simply modify the potential F by cutting it o� outside of some compact set,
such that it satis�es (4.23). We will proceed now by proving Theorem 1.2 under the additional
assumption (4.23). The general case will then follow as a Corollary.

Proposition 4.12. Assume that F satis�es (4.23). Furthermore suppose γ < 2
3 . Then one has

the following bound:
lim inf
ε↓0

ε logZε ≥ −C∗. (4.24)

Proof. Denote as above by uN the piecewise linearization of the function u. Note that we work
with the continuous version of u such that this is an a.s. well de�ned operation. Then one can
write:

Zε =
∫
Hε

exp

(
−1
ε

∫ ε−γ

−ε−γ
F (u(s))ds

)
νε(du)

=
∫
Hε

exp

(
−1
ε

∫ ε−γ

−ε−γ
F (uN (s))ds

)
exp

(
−1
ε

∫ ε−γ

−ε−γ

(
F (u(s))− F (uN (s))

)
ds

)
νε(du)

≥
∫
Hε

exp

(
−1
ε

∫ ε−γ

−ε−γ
F (uN (s))ds

)
exp

−1
ε
‖F ′‖∞

(N−1)∑
k=−N

∫ sN,εk+1

sN,εk

∣∣u(s)− uN (s)
∣∣ds

 νε(du)

≥
∫
Hε

exp

(
−1
ε

∫ ε−γ

−ε−γ
F (uN (s))ds

)

exp

−1
ε
‖F ′‖∞

(
ε−γ

N

)1/2 (N−1)∑
k=−N

(∫ sN,εk+1

sN,εk

∣∣u(s)− uN (s)
∣∣2 ds

)1/2
 νε(du).

Now one can use the independence of the discretized Brownian bridge and the intermediate bridges
to write the last term as:

ZN,ε
(N−1)∏
k=−N

∫
Hε

exp

−1
ε
‖F ′‖∞

(
ε−γ

N

)1/2
(∫ sN,εk+1

sN,εk

∣∣u(s)− uN (s)
∣∣2 ds

)1/2
 νε(du). (4.25)
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Let us calculate the integrals: Using the formula

E[e−βx] = 1− β
∫ ∞

0

e−βxP [X ≥ x] dx,

which holds for every non-negative random variable and every β > 0 one obtains:∫
Hε

exp

−1
ε
‖F ′‖∞

(
ε−γ

N

)1/2
(∫ sN,εk+1

sN,εk

∣∣u(s)− uN (s)
∣∣2 ds

)1/2
 νε(du) =

1− 1
ε
‖F ′‖∞

(
ε−γ

N

)1/2 ∫ ∞
0

exp

(
−1
ε
‖F ′‖∞

(
ε−γ

N

)1/2

x

)
×

× νε
(∫ sN,εk+1

sN,εk

∣∣u(s)− uN (s)
∣∣2 ds

)1/2

≥ x
 dx.

(4.26)

Using the inequality (3.7) one can bound the term in (4.26) from below by

1− 1
ε
‖F ′‖∞

(
ε−γ

N

)1/2 ∫ q
ε ε
−2γ

6N2

0

exp

(
−1
ε
‖F ′‖∞

(
ε−γ

N

)1/2

x

)
dx

− 1
ε
‖F ′‖∞

(
ε−γ

N

)1/2

exp

(
−1
ε
‖F ′‖∞

(
ε−γ

N

)1/2
√
ε
ε−2γ

6N2

)
×

×
∫ ∞

0

exp

(
−1
ε
‖F ′‖∞

(
ε−γ

N

)1/2

x

)
exp

(−x2π2N2

ε1−2γ

)
dx.

(4.27)

The second term in (4.27) yields:

1− exp

(
−1
ε
‖F ′‖∞

(
ε−γ

N

)1/2
√
ε
ε−2γ

6N2

)
.

Using the elementary inequality∫ ∞
0

e−αx
2−βxdx ≤ 1

β
exp

(
−β

4

(
β

α
+ 2
))

,

for α, β > 0 which can be obtained by completing the squares and applying the standard estimate∫∞
γ
e−

x2
2 dx ≤ 1

γ e
− γ22 one can bound the third term by:

exp

(
−1
ε
‖F ′‖∞

(
ε−γ

N

)1/2
√
ε
ε−2γ

6N2

)
×

× exp

(
− 1

4ε
‖F ′‖∞

(
ε−γ

N

)1/2
(

1
4ε
‖F ′‖∞

(
ε−γ

N

)1/2(
π2N2

ε1−2γ

)−1

+ 2

))
.

Noting that the last exponential converges to zero as ε ↓ 0 it can in particular be bounded by 1
2

such that in total the expression in (4.25) can be bounded from below by:

1
2
ZN,ε exp

(
−1
ε
‖F ′‖∞N

(
ε−γ

N

)1/2
√
ε
ε−2γ

6N2

)
.

In particular the exponent scales like

ε−1− 3γ
2 + 1

2N−
1
2 .

so by choosing γ1 such that −3γ+ 1 + γ1 > 0 one obtains the desired result together with Lemma
4.18. Note that such a choice is possible for every γ < 2

3 .

24



Now one can conclude

Proposition 4.13. The statement of Theorem 1.2 and Theorem 1.3 hold under the additional
assumption (4.23).

Proof. Let λε(du,dv) be the joint distribution of the rescaled Brownian bridge on [−ε−γ , ε−γ ] and
its discretization. In particular λε is a coupling of νε and νN,ε. We had seen above in Lemma 3.3,
that

λ
(
‖u− v‖L2(R) ≥ δ/2

)
≤ exp

(
−r

2π2N2

ε1−2γ

)
. (4.28)

De�ne a new measure λ1 on E × E by

λ1(du,dv) =
1

ZN,ε
1
Zε

exp
(
− 1
ε

∫
F
(
u(s)

)
ds
)

exp
(
− 1
ε

∫
F
(
v(s)

)
ds
)
λ(du,dv).

The measure λ1 is a coupling of µε and µN,ε. Then one can estimate

µε
(
distL2(u,M) ≥ δ

)
= λε1

(
distL2(u,M) ≥ δ

)
≤ λε1

(
distL2(u,M) ≥ δ; ‖v − u‖L2(R) ≥ δ

)
+ λε1

(
distL2(u,M) ≥ δ; ‖v − u‖L2(R) ≤ δ

)
= I1 + I2.

(4.29)

The second term I2 can be estimated

I2 ≤ νN,ε(distL2(u,m) ≥ 2δ),

which can be bounded using (4.10). The �rst term can be bounded by

I1 ≤ λε1
(
‖v − u‖L2(R) ≥ δ

)
≤ 1
ZN,ε

1
Zε
λε
(
‖v − u‖L2(R) ≥ δ

)
,

which converges to zero by (4.28) as well as Lemma 4.18 together with Lemma 4.24. Note that
for this one needs γ2 > γ. This �nishes the proof for the L2-norm. To the see analogue result for
the L∞-norm repeat the same reasoning with (4.10) replaced by (4.11) and the L2 bound (3.7)
replaced by the L∞-bound (3.8).

Proof. (Of Theorem 1.2 and 1.3 in the general case): Denote by dist either distL2 or distL∞ .
Assume that F only satis�es assumptions (1.2). By cutting F o� outside of [−2, 2] one can chose
a function F̄ that coincides with F on [−2, 2] that satis�es (1.2) and (4.23) as well as

F̄ (u) ≤ F (u) for u ∈ R.

Then one can write

µε (dist(u,M) ≥ δ) =

∫
{dist(u,M)≥δ} exp

(
−ε−1

∫ ε−γ
−ε−γ F (u(s))ds

)
νε(du)∫

exp
(
−ε−1

∫ ε−γ
−ε−γ F (u(s))ds

)
νε(du)

≤
∫
{dist(u,M)≥δ} exp

(
−ε−1

∫ ε−γ
−ε−γ F (u(s))ds

)
νε(du)∫

{‖u‖L∞≤2} exp
(
−ε−1

∫ ε−γ
−ε−γ F (u(s))ds

)
νε(du)

(4.30)

The denominator of this fraction coincides with∫
{‖u‖L∞(R)≤2}

exp
(
−ε−1

∫ ε−γ

−ε−γ
F̄ (u(s))ds

)
νε(du)
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and the nominator is bounded from above by∫
{dist(u,M)≥δ}

exp
(
−ε−1

∫ ε−γ

−ε−γ
F̄ (u(s))ds

)
νε(du),

such that one can write

µε (dist(u,M) ≥ δ) ≤
∫
{dist(u,M)≥δ}} exp

(
−ε−1

∫ ε−γ
−ε−γ F̄ (u(s))ds

)
νε(du)∫

exp
(
−ε−1

∫ ε−γ
−ε−γ F̄ (u(s))ds

)
νε(du)

×

×
∫

exp
(
−ε−1

∫ ε−γ
−ε−γ F̄ (u(s))ds

)
νε(du)∫

{‖u‖L∞≤2} exp
(
−ε−1

∫ ε−γ
−ε−γ F̄ (u(s))ds

)
νε(du)

.

(4.31)

Now applying Proposion 4.13 shows that the second factor can be bounded by 2 for ε small enough
and thus applying Proposion 4.13 to the �rst factor yields the desired result.

With a similar reasoning one can see that the statement of Proposition 4.12 holds also without
assumption (4.23):

Corollary 4.14. Suppose γ < 2
3 . Then one has the following bound:

lim inf
ε↓0

ε logZε ≥ −C∗. (4.32)

5 Conclusion

This last section is devoted to the proof of Theorem 1.1. First of all the tightness of the measures
µ̃ε is shown. Then a spatial homogeneity property of the measures µ̃ε is used to characterize the
limit measure µ.

Proposition 5.1. The family of measures µ̃ε is tight. All points of accumulation are concentrated
on functions of the type

m̃ξ(s) = −1[−1,ξ](s) + 1[ξ,1](s). (5.1)

Proof. Denote by M̃ = {m̃ξ : ξ ∈ [−1, 1]} and dist(ũ, M̃) = infξ∈[−1,1] ‖ũ − m̃ξ‖L2[−1,1]. Further-

more denote by mε
ξ(s) = m

(
s−ξ
ε

)
. Note that for all ξ ∈ [−1, 1] mε

ξ converges to m̃ξ in L
2. Now

choose δ > 0 and ε0 such that ‖mε
ξ − m̃ξ‖L2 ≤ δ

2 for all ε ≤ ε0. Then 1.2 implies that

µ̃
(
distL2(ũ, M̃) ≥ δ

)
≤ µ̃

(
inf
ξ
‖ũ−mε

ξ‖L2[−1,1] ≥ δ

2

)
≤ µε

(
distL2(T ε(ũ,M) ≥ δ

2ε

)
↓ 0. (5.2)

This is su�cient to show the tightness of the measures {µ̃ε}. In fact �x a small constant κ > 0.
Let us construct a precompact set K such that µ̃ε(KC) ≤ κ. For a �xed N ∈ N due to (5.2) there
exists εN such that for all ε ≤ εN

µ̃

(
dist(ũ, M̃) ≥ 1

2N

)
≤ κ

2N
.

In particular there exist �nitely many ξNi ∈ [−1, 1] i = 1, . . . , iN such that for all ε ≤ εN

µε
(
∪iB(m̃ξNi

,
1
N

)
≥ 1− κ

2N
.

Furthermore due to tightness of the measures (µε, ε ≥ εN ) there exist �nitely many balls B̃Ni of
radius 1

N such that for all ε ≥ εN one has

µε (∪iBi) ≥ 1− κ

2N
.
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Set KN =
(⋃

iBi

)
∪
(⋃

iB
(
m̃ξNi

, 1
N

))
and K = ∩NKN . Then K is precompact and for all ε

has measure ≥ 1− κ. This shows tightness. The concentration follows from (5.2).

Proof. (of Theorem 1.1) The �nite dimensional distributions of the random function ũ under the
measure µ̃ε are given explicitly as

µε(ũ(s1) ∈ dx1 . . . ũ(sn) ∈ dxn) =
Ps1+1(−1, x1)Ps2−s1(x1, x2) · · ·P1−sn(xn, 1)

P−1,1(−1, 1)
dx1 . . . dxn (5.3)

with a transition semigroup Pt that can be given explicitly. (See e.g. [RY99] Proposition 3.1 in
�VIII). Fix an integer N and subdivide [−1, 1] in N and set for k = 1, . . . , N −1 that sNk = 2k

N −1.
Fix furthermore a small constant δ > 0 and set ANk = {u : u(sN1 ) ∈ [−1 − δ,−1 + δ], . . . u(sNk ) ∈
[−1− δ,−1 + δ], u(sNk+1) ∈ [1− δ, 1 + δ] . . . u(sNN−1) ∈ [1− δ, 1 + δ]}. Applying the explicit shape

for these probabilities given in 5.3 one sees that for a �xed N all these sets ANk have the same
probability. But this property does not pass to the limit under weak convergence of measures on L2.
Therefore one has to smear out the random function ũ around the points sNk . To this end for a �xN

�x a δ̂ < 1
2N and consider the random vector whose entries are given as û(sNk ) = 1

2δ̂

∫ sNk +δ̂

sNk −δ̂
u(s)ds.

Again formula (5.2) implies that for �xed N and ε the quantities

µε
(
û(sN1 ) ∈ [−1− δ,−1 + δ], . . . , û(sNk ) ∈ [−1− δ,−1 + δ], û(sNk+1) ∈ [1− δ, 1 + δ], . . .

, û(sNN−1) ∈ [1− δ, 1 + δ]
)

coincide for di�erent k. This property passes to the limit under weak convergence of L2 valued
measures, giving the desired characterization of the distribution of the phase separation point
ξ.
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