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Finite element based second moment analysis for
elliptic problems in stochastic domains

Helmut Harbrecht

Abstract We present a finite element method for the numerical solutionof elliptic
boundary value problems on stochastic domains. The method computes, to leading
order in the amplitude of the stochastic boundary perturbation relative to an unper-
turbed, nominal domain, the mean and the variance of the random solution. The
variance is computed as the trace of the solution’s two-point correlation which sat-
isfies a deterministic boundary value problem on the tensor product of the nominal
domain. This problem is discretized in the sparse tensor product space by a multi-
level frame generated by standard finite elements. The computational complexity of
the resulting approach stays essentially proportional to the number of finite elements
required for the discretization of the nominal domain.

1 Introduction

Many problems in physics and engineering sciences lead to boundary value prob-
lems for an unknown function. In general, the numerical simulation is well under-
stood provided that the input parameters are given exactly.Since, however, the input
parameters are often not known exactly it is of growing interest to model such pa-
rameters stochastically.

A principal approach to solve boundary value problems with stochastic input
parameters is the Monte Carlo Approach, see e.g. [16] and thereferences therein.
However, it is hard and extremely expensive to generate a large number of suitable
samples and to solve a deterministic boundary value problemon each sample. Thus,
we aim here at a direct, deterministic method to compute the stochastic solution.

Deterministic approaches to solve stochastic partial differential equations have
been proposed in e.g. [1, 7, 8, 9, 14, 15]. Therein, loadings and coefficients have
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2 Helmut Harbrecht

been considered as stochastic input parameter. Recently, in [6, 12, 17], also the un-
derlying domain has been modeled as stochastic input parameter D(ω). For exam-
ple, this enables the consideration of tolerances in the shape of products fabricated
by line production. Other applications arise from blurred interfaces like cell mem-
branes or molecular surfaces.

The present paper is dedicated to elliptic boundary value problems on stochastic
domains. We assume small stochastic perturbations around anominal domain with
known statistics. Then, we can linearize to derive deterministic equations for the
random solution’s expectation

Eu(x) =
∫

Ω
u(x,ω)dP(ω), x ∈ D,

and the two-point correlation

Coru(x,y) =

∫

Ω
u(x,ω)u(y,ω)dP(ω), x,y ∈ D.

From these quantities the variance is derived by Varu(x) = Coru(x,x)−E2
u(x). Thus,

we are able to compute with leading order in the amplitude of the random boundary
perturbation the solution’s statistics.

2 Elliptic boundary value problems on stochastic domains

Let (Ω ,Σ ,P) be a suitable probability space. We consider the domain as the uncer-
tain input parameter of an elliptic boundary value problem,i.e.,

−div
[
A(x)∇u(x,ω)

]
= f (x), x ∈ D(ω)

u(x,ω) = g(x), x ∈ ∂D(ω)

}
ω ∈ Ω . (1)

To model the stochastic domainD(ω) let D denote a smooth reference domain and
consider stochastic boundary variations in direction of the outer normalU(x,ω) =
εκ(x,ω)n(x) : ∂D → R

n with κ(ω) ∈ L2
P(Ω ,C2,1(∂D)) and‖κ(ω)‖C2,α (∂D) ≤ 1

almost surely. Then, the stochastic domainD(ω) is described via perturbation of
identity

∂D(ω) =
{(

I+ εU(ω)
)
(x) = x+ εκ(x,ω)n(x) : x ∈ ∂D

}
.

For what follows we assume that the expectation Eκ and the two-point correlation
Corκ of κ are given. Without loss of generality (otherwise we redefineD corre-
spondingly) we assume that the perturbation fieldκ is centered, i.e., that Eκ ≡ 0.

For small parametersε > 0 one can linearize (1) by means of shape optimization:

Theorem 1 ([11, 12]). Assume that the compact set K⋐ D satisfies K⊂ D(ω) al-
most surely. Then, it holds that
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Eu(x) = u(x)+O(ε2), Covu(x,y) = ε2Cordu(x,y)+O(ε3), x,y ∈ K.

Herein, u ∈ H1(D) and Cordu ∈ H1,1(D×D) satisfy the deterministic boundary
value problems

−div
[
A(x)∇u(x)

]
= f (x), x ∈ D,

u(x) = g(x), x ∈ ∂D,
(2)

and

(divx⊗divy)
[(

A(x)⊗A(y)
)
(∇x ⊗∇y)Cordu(x,y)

]
= 0, x,y ∈ D,

divx
[
A(x)∇x Coru(x,y)

]
= 0, x ∈ D, y ∈ ∂D,

divy
[
A(y)∇y Coru(x,y)

]
= 0, x ∈ ∂D, y ∈ D,

Cordu(x,y) = Corκ(x,y)

[
∂ (u−g)

∂n
(x)⊗

∂ (u−g)

∂n
(y)

]
, x,y ∈ ∂D.

(3)

3 Finite element discretization

3.1 Parametric finite elements

Starting point of the definition of the sparse multilevel frame is a nested sequence
of finite dimensional trial spaces

V0 ⊂V1 ⊂ ·· · ⊂Vj · · · ⊂ H1(D). (4)

In general, due to our smoothness assumptions on the domain,we have to deal
with non-polygonal domains. To realize the multiresolution analysis (4) we will use
parametric finite elements.

Let △ denote the reference simplex inRn. We assume that the domainD is
partitioned into a finite number of patches

clos(D) =
⋃

k

τ0,k, τ0,k = κk(△), k = 1,2, . . . ,M,

where eachκk : △→ τ0,k defines a diffeomorphism of△ ontoτ0,k. The intersection
τ0,k∩τ0,k′ , k 6= k′, of the patchesτ0,k andτ0,k′ is either /0, or a lower dimensional face.
The parametric representation is supposed to be globally continuous which means
that the diffeomorphismsκ i andκ i′ coincide at common patch interfaces except for
orientation. A mesh of levelj onD is then induced by regular subdivisions of depth
j of △ into 2jn simplices. This generates the 2jnM curved elements{τ j,k}.

The ansatz functionsΦ j = {ϕ j,k : k∈ I j} are defined via parameterization, lift-
ing continuous piecewise linear Lagrangian finite elementsfrom△ to the domainD
by using the mappingsκ i and gluing across patch boundaries. SettingVj = spanΦ j

yields (4), where dimVj ∼ 2 jn.
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To treat the non-homogeneous Dirichlet data in (2) and (3), we shall further dis-
tinguish between interior basis functionsΦD

j = {ϕ j,k : k ∈ I D
j } with ϕ j,k

∣∣
∂D ≡ 0

and boundary functionsΦ∂D
j = {ϕ j,k : k∈ I ∂D

j } with ϕ j,k
∣∣
∂D 6≡ 0.

The solution of the mean field equation (2) by multigrid accelerated finite el-
ement methods is straightforward and along the lines of standard literature, see
e.g. [2, 3]. Therefore we will skip all the details here.

3.2 Multilevel frames for sparse tensor product spaces

We will discretize (3) in thesparsetensor product spacêVJ = ∑ j+ j ′≤JVj ⊗Vj ′ .

AbbreviatingNJ := dimVJ there holdŝNJ := dimV̂J ∼ NJ logNJ which is substan-
tially smaller than the dimensionN2

J of the full tensor product spaceVJ ⊗VJ =

∑ j, j ′≤JVj ⊗Vj ′ . Nevertheless, the approximation power inV̂J is essentially the same
as in the full tensor product space provided that there is extra regularity in terms of
the anisotropic Sobolev spacesHs,s(D×D), see [5, 15].

To discretize functions in̂VJ one traditionally uses hierarchical bases like wavelet
or multilevel bases, see for example [5]. In the present paper we use instead multi-
level frames as proposed in [13], i.e., we represent functions by the redundant but
stable collection̂ΦJ := {ϕ j,k⊗ϕ j ′,k′ : k∈I j , k′ ∈I j ′ , j + j ′ ≤ J}. Thus, the struc-
tural and computational advantages of finite element methods are combined with
the efficiency of sparse grid approximations.

It has been shown in [13] that card(Φ̂J)∼ N̂J ∼ NJ logNJ, i.e., this frame has still
optimal cardinality. Notice that the framêΦJ is the restriction tôVJ of the two-fold
tensor product of the frame that underlies the BPX-preconditioner [4].

3.3 Galerkin discretization

We shall be concerned with Galerkin’s method for solving theboundary value prob-
lem (3) in the sparse tensor product space. We abbreviate themean’s Neumann data
by σ := ∂ (u−g)/∂n and their approximate version byσJ := 〈∇(uJ −g),n〉, with
uJ ∈VJ being the finite element solution of (2). Instead of the Dirichlet data of (3),

f := (σ ⊗σ)Corκ ∈ H1/2,1/2(∂D×∂D), (5)

we have only access to the approximationfJ := (σJ ⊗σJ)Corκ which lives on the
full tensor product grid. Thus, we follow [12] and insert theL2-orthoprojectorΠ̂J

onto the sparse tensor product spaceV̂J|∂D×∂D according to

f̂J := (σJ ⊗σJ)Π̂J Corκ . (6)
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We shall fix notation. Define for all 0≤ j, j ′ ≤ J the univariate stiffness matrices,
and with respect to the traces of the ansatz functions, the mass matrices and the
multiplication operators,

AΘ
j, j ′ := (A∇ΦΘ

j ′ ,∇ΦD
j )L2(D), Θ ∈ {D,∂D},

G j, j ′ := (Φ∂D
j ′ ,Φ∂D

j )L2(∂D), M j, j ′ := (σJΦ∂D
j ′ ,Φ∂D

j )L2(∂D).
(7)

Two-fold tensor products of these finite element matrices lead to the necessary ma-
trices on the sparse tensor product space:

ÂΘ ,Ξ
J =

[
AΘ

j1, j2 ⊗AΞ
j ′1, j

′
2

]
j1+ j2, j ′1+ j ′2≤J, Θ ,Ξ ∈ {D,∂D},

ĜJ =
[
G j1, j2 ⊗G j ′1, j

′
2

]
j1+ j2, j ′1+ j ′2≤J, M̂J =

[
M j1, j2 ⊗M j ′1, j

′
2

]
j1+ j2, j ′1+ j ′2≤J,

B̂Θ
J =

[
AΘ

j1, j2
⊗G j ′1, j

′
2

]
j1+ j2, j ′1+ j ′2≤J,

ĈΘ
J =

[
G j1, j2 ⊗AΘ

j ′1, j
′
2

]
j1+ j2, j ′1+ j ′2≤J,

}
Θ ∈ {D,∂D}.

Finally, we need the data vectorĉJ =
[
(Corκ ,Φ∂D

j ⊗Φ∂D
j ′ )L2(∂D×∂D)

]
j+ j ′≤J. Notice

that (6) reads in the discrete form asf̂J = M̂JĜ−1
J ĉJ.

In what follows we abbreviate Cordu by v. To determine the approximate counter-
partv̂J ∈ V̂J we shall separate the degrees of freedom in order to solve theboundary

value problem (3) successively:v̂J = v̂D,D
J + v̂D,∂D

J + v̂∂D,D
J + v̂∂D,∂D

J , where

v̂Θ ,Ξ
J := ∑

j+ j ′≤J

(ΦΘ
j ⊗ΦΞ

j ′ )v̂
Θ ,Ξ
j, j ′ , Θ ,Ξ ∈ {D,∂D}.

Then we proceed as follows (see [11] for the details).

1. Determinêu∂D,∂D
J as theL2-orthoprojection of the approximate Dirichlet dataf̂J

(6) onto the discrete trace spaceV̂J
∣∣
∂D×∂D according to

ĜJv̂∂D,∂D
J = M̂JĜ−1

J ĉJ. (8)

2. ComputêvD,∂D
J such that(v̂∂D,∂D

J + v̂D,∂D
J )

∣∣
D×∂D ∈ H1(D)⊗H1/2(∂D) satisfies

the homogeneous boundary condition onD×∂D. In complete analogy determine

v̂∂D,D
J , which gives raise to

B̂D
J v̂D,∂D

J = −B̂∂D
J v̂∂D,∂D

J , ĈD
J v̂∂D,D

J = −Ĉ∂D
J v̂∂D,∂D

J . (9)

3. Compute the function̂vD,D
J ∈ H1,1

0 (D×D) inside the tensor product domainD×
D according to

ÂD,D
J v̂D,D

J = −Â∂D,∂D
J v̂∂D,∂D

j − ÂD,∂D
J v̂D,∂D

j − Â∂D,D
J v̂∂D,D

j . (10)
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3.4 Error estimates

Let hJ := 2−J ∼ maxk{diamτJ,k} denote the mesh size associated with the subspace
VJ onD. Then, from standard finite element theory for elliptic operators (e.g. [2, 3]),
we derive the following facts with respect to the approximate mean.

Proposition 1. Equation(2) can be solved in linear complexity. The approximate
meanuJ satisfies the error estimate‖u−uJ‖L2(D) . h2

J‖u‖H2(D) provided that the
given data are sufficiently smooth.

In the Galerkin scheme we have to employ the perturbed Dirichlet data f̂J (6)
instead of the original Dirichlet dataf (5) to compute the approximate solutionv̂J

of (3). Therefore, we obtain only a reduced rate of convergence.

Theorem 2. Assume thatu ∈ W2,∞(D) and Corκ ∈ H1,1(∂D× ∂D). Then, the ap-
proximate solution̂vJ ∈ V̂J to (3) satisfies the error estimate

‖v− v̂J‖L2(D×D) . hJ‖Corκ ‖H1,1(∂D×∂D)‖u‖2
W2,∞(D)

.

Proof. The assertion follows immediately from [11] if we show that the consistency
error of the right hand side satisfies

‖ f − fJ‖L2(∂D×∂D) . hJ‖Corκ ‖H1,1(D×D)‖u‖2
W2,∞(D)

. (11)

To show this estimate we proceed as follows:

‖ f − fJ‖L2(∂D×∂D) =
∥∥(σ ⊗σ)Corκ −(σJ ⊗σJ)Π̂J Corκ

∥∥
L2(∂D×∂D)

≤
∥∥(σ ⊗σ −σJ ⊗σJ)Corκ

∥∥
L2(∂D×∂D)

+
∥∥(σJ ⊗σJ)(I − Π̂J)Corκ

∥∥
L2(∂D×∂D)

≤ ‖σ ⊗σ −σJ ⊗σJ‖L∞(∂D×∂D)‖Corκ ‖L2(∂D×∂D)

+‖σJ‖
2
L∞(∂D)

∥∥(I − Π̂J)Corκ
∥∥

L2(∂D×∂D)
. (12)

We now estimate the two terms on the right hand side of this inequality sepa-
rately. TheL2-orthoprojection onto the sparse grid space satisfies (cf. [5, 15])

∥∥(I − Π̂J)Corκ
∥∥

L2(∂D×∂D)
. hJ‖Corκ ‖H1,1(∂D×∂D). (13)

Pointwise error estimates for piecewise linear finite elements (see e.g. [3]) imply

‖σ −σJ‖L∞(∂D) = ‖〈∇(u−uJ),n〉‖L∞(∂D) ≤ ‖∇u−∇uJ‖L∞(D) . hJ‖u‖W2,∞(D).

This induces by standard tensor product arguments

‖σ ⊗σ −σJ ⊗σJ‖L∞(∂D×∂D) . hJ
(
‖σ‖L∞(∂D) +‖σJ‖L∞(∂D)

)
‖u‖W2,∞(D). (14)

Inserting (13), (14) and‖σJ‖L∞(∂D) ≤‖σ −σJ‖L∞(∂D) +‖σ‖L∞(∂D) into the estimate
(12) yields the desired consistency result (11). �
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3.5 Fast second moment computation

The linear systems of equations arising from the sparse multilevel discretization can
be assembled and solved in essentially linear complexity when using the following
ingredients, developed in the papers [11, 12, 13].

(i) Due to the non-uniqueness of the representation of functions in frame coordi-
nates, all system matrices have a large kernel. Since the associated right hand side
vectors lie in the related images, Krylov subspace methods converge without fur-
ther modifications (see, e.g. [10, 13]). In practice, we apply the conjugate gradient
method to solve (8)–(10).

(ii) The diagonally scaled system matrices are essentially wellconditioned in the
sense that all nonzero eigenvalues behave essentially likea fixed constant. There-
fore, the conjugate gradient method converges with a rate that is essentially inde-
pendent of the discretization levelJ (e.g. [10]).

(iii ) Iterative solvers involve only matrix-vector multiplications. The fast matrix-
vector multiplication developed in [11, 13] is of essentially linear complexity. Be-
sides standard prolongations and restrictions, it involves only system matrices (7)
with 0 ≤ j = j ′ ≤ J, i.e., standard finite element matrices. By using prolongations
and restrictions, all coarse level matrices are successively derived from the finest
grid matrices in linear time.

(iv) Numerical quadrature in the sparse tensor product space is performed as
follows. We expand the two-point correlation into the hierarchical basisΨ̂J :=
{ϕ j,k⊗ϕ j ′,k′ : k∈ I j \I j−1, k′ ∈ I j ′ \I j ′−1, j + j ′ ≤ J} ⊂ Φ̂J of the sparse ten-
sor product spacêVJ. For Corκ ∈ Hs,s(∂D× ∂D) with 0≤ s< 2 an approximation
Ĉorκ,J is obtained such that‖Corκ −Ĉorκ,J‖L2(∂D×∂D) = hs

J‖Corκ ‖Hs,s(∂D×∂D). In

the cases= 2 there appears an additional
√

| loghJ| factor, see [5] for the details.

Proposition 2. Combining the ingredients(i)–(iv) one arrives at an algorithm that
computes the solution’s second moment in a complexity that stays essentially pro-
portional to the number of unknowns used to discretize the mean field equation(2).

4 Numerical results

We consider the boundary value problem (1) withA≡ I, f ≡ 1/4,g(x) = x·y, andD
being the unit circle (i.e.n = 2). If we prescribe Gaussian correlation Corκ(x,y) =

e−‖x−y‖2
we get the solution’s approximate mean and variance shown inFigure 1. It

turns out that the variance increases when approaching the boundary of the domain,
i.e., the solution’s sensitivity with respect to boundary perturbations is the larger
the nearer the boundary. This effect is stronger in regions where the modulus of the
Dirichlet datag is large. The non-symmetry is induced by the present inhomogeneity
f ≡ 1/4. Notice that the variance scales linearly in the perturbation parameterε and
thus decreases correspondingly asε → 0. Further numerical results, especially a
comparison with an MC simulation, can be found in [11].
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Fig. 1 Approximate mean and two-point correlation ofu.
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1. I. Babǔska, F. Nobile, and R. Tempone. Worst case scenario analysis for elliptic problems
with uncertainty.Numer. Math.101 (2005), 185–219.

2. D. Braess.Finite elements. Theory, fast solvers, and applications in solid mechanics. Second
edition. Cambridge University Press, Cambridge, 2001.

3. S.C. Brenner and L.R. Scott.The mathematical theory of finite element methods. Texts in
Applied Mathematics, 15. Springer-Verlag, New York, 1994.

4. J. Bramble, J. Pasciak, and J. Xu. Parallel multilevel preconditioners. Math. Comput.55
(1990) 1–22.

5. H.J. Bungartz and M. Griebel. Sparse Grids.Acta Numerica13 (2004) 147–269.
6. C. Canuto and T. Kozubek. A fictitious domain approach to thenumerical solution of PDEs

in stochastic domains.Numer. Math.107 (2007), 257–293.
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