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Finite element based second moment analysis for
elliptic problemsin stochastic domains

Helmut Harbrecht

Abstract We present a finite element method for the numerical solufagiliptic
boundary value problems on stochastic domains. The methogates, to leading
order in the amplitude of the stochastic boundary pertisbhatlative to an unper-
turbed, nominal domain, the mean and the variance of theorargblution. The
variance is computed as the trace of the solution’s twotpmirrelation which sat-
isfies a deterministic boundary value problem on the tensmtyzt of the nominal
domain. This problem is discretized in the sparse tensatymtospace by a multi-
level frame generated by standard finite elements. The ctatipoal complexity of
the resulting approach stays essentially proportionddgémtimber of finite elements
required for the discretization of the nominal domain.

1 Introduction

Many problems in physics and engineering sciences leaduodaoy value prob-
lems for an unknown function. In general, the numerical $ation is well under-
stood provided that the input parameters are given exa&itige, however, the input
parameters are often not known exactly it is of growing ies¢to model such pa-
rameters stochastically.

A principal approach to solve boundary value problems wititisastic input
parameters is the Monte Carlo Approach, see e.g. [16] ancetheences therein.
However, it is hard and extremely expensive to generatege lanmber of suitable
samples and to solve a deterministic boundary value probleeach sample. Thus,
we aim here at a direct, deterministic method to computettiehastic solution.

Deterministic approaches to solve stochastic partiabréffitial equations have
been proposed in e.g. [1, 7, 8, 9, 14, 15]. Therein, loadimgscmefficients have
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been considered as stochastic input parameter. Recenfy, 12, 17], also the un-
derlying domain has been modeled as stochastic input p&eaBi@v). For exam-
ple, this enables the consideration of tolerances in thpesbproducts fabricated
by line production. Other applications arise from blurretkifaces like cell mem-
branes or molecular surfaces.

The present paper is dedicated to elliptic boundary valablpms on stochastic
domains. We assume small stochastic perturbations aronncthaal domain with
known statistics. Then, we can linearize to derive deteistimequations for the
random solution’s expectation

Eu(X) = / u(x, w)dP(w), xeD,
Q
and the two-point correlation
Cor(x.y) = [ u(x,@)u(y,@)dP(w), xyeD.
Q

From these quantities the variance is derived by,War= Cor,(x,x) — E?(x). Thus,
we are able to compute with leading order in the amplitudéefrandom boundary
perturbation the solution’s statistics.

2 Elliptic boundary value problems on stochastic domains

Let (Q,X,P) be a suitable probability space. We consider the domaineasrtber-
tain input parameter of an elliptic boundary value problem,

—div[A(X)0u(x, w)] = f(x), x€D(w) } e o )
u(x,w) =9(x), xe€adb(w)

To model the stochastic doma{w) let D denote a smooth reference domain and

consider stochastic boundary variations in direction efabter normal(x, w) =

ek (x,w)n(x) : 9D — R" with k(w) € L3(Q,C>*(dD)) and ||k (w)]|cza(gp) < 1

almost surely. Then, the stochastic domBifw) is described via perturbation of

identity

ID(w) = { (I +eU(w))(x) = X+ ek (X, w)N(X) : x € ID}.

For what follows we assume that the expectatignaid the two-point correlation
Cor, of k are given. Without loss of generality (otherwise we redefineorre-
spondingly) we assume that the perturbation field centered, i.e., that{&= 0.

For small parameteis> 0 one can linearize (1) by means of shape optimization:

Theorem 1 ([11, 12]). Assume that the compact sete&D satisfies KC D(w) al-
most surely. Then, it holds that
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Eu(X) =T(X) + O(£2), Cow(x,y) = £2Corgy(x,y)+ O(£%), x,yeK.

Herein, o € HY(D) and Corg, € H31(D x D) satisfy the deterministic boundary
value problems

—div[A(x)0u(x)] = f(x), xeD, )
u(x) =g(x), xedDb, 2)
and
(divy @ divy) [ (A(X) @ A(y)) (Ox ® Oy) Corgu(x,y)] =0,  x,y € D,
divy [A(X)Ox Cory(x,y)] =0, xeD,yedD,
divy [A(y)Oy Cory(x,y)] = xedD,yeD, (3
Corgu(x,y) = Corg(X,y) d(uan 9 (X)® dg; 9 ()|, xyedD.

3 Finite element discretization

3.1 Parametric finite elements

Starting point of the definition of the sparse multilevelnfimis a nested sequence
of finite dimensional trial spaces

VoCViC---CVj---C HY(D). (4)

In general, due to our smoothness assumptions on the domaihave to deal
with non-polygonal domains. To realize the multiresolatamalysis (4) we will use
parametric finite elements.

Let A denote the reference simplex RI'. We assume that the domalh is
partitioned into a finite number of patches

C|OS(5) = UTOVK’ TO,k = KK(A), k= 1,2,...,M,
k

where each : A — 19 defines a diffeomorphism @k onto 7o k. The intersection
ToxNTow, K# K/, of the patchesg k andty v is either 0, or a lower dimensional face.
The parametric representation is supposed to be globatitimtmus which means
that the diffeomorphisms; andk;, coincide at common patch interfaces except for
orientation. A mesh of level on D is then induced by regular subdivisions of depth
j of A into 2I" simplices. This generates th&®1 curved element$; i }.

The ansatz function®; = {¢; « : k€ .} } are defined via parameterization, lift-
ing continuous piecewise linear Lagrangian finite eleménots A to the domairD
by using the mappings; and gluing across patch boundaries. Settipg: span®;
yields (4), where diri; ~ 2!".
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To treat the non-homogeneous Dirichlet data in (2) and (8)skall further dis-
tinguish between interior basis functiods® = {¢;x : k € .7} with ¢ k| ;5 =0
and boundary function®/® = {¢; . : ke 7P} with ¢; x| 5 # 0.

The solution of the mean field equation (2) by multigrid aecafed finite el-
ement methods is straightforward and along the lines ofdstahliterature, see
e.g. [2, 3]. Therefore we will skip all the details here.

3.2 Multilevel frames for sparse tensor product spaces

We will discretize (3) in thesparsetensor product spacé; = Yi+ir<aV @ V.
AbbreviatingN; := dimV; there hoIdsNJ = dim\73 ~ NjlogN; which is substan-
tially smaller than the dimensioNIJ2 of the full tensor product spacé @ V; =

Y i.i<aVj ®Vj. Nevertheless, the approximation powe%n’s essentially the same
as in the full tensor product space provided that there imargularity in terms of
the anisotropic Sobolev spadd$S(D x D), see [5, 15].

To discretize functions iN; one traditionally uses hierarchical bases like wavelet
or multilevel bases, see for example [5]. In the present papeuse instead multi-
level frames as proposed in [13], i.e., we represent funstlay the redundant but
stable collectior®; := {¢j k@ ¢j v - ke 7, K € Fj, j+ ] <J}. Thus, the struc-
tural and computational advantages of finite element metlaoe combined with
the efficiency of sparse grid approximations.

It has been shown in [13] that cdd;) ~ Ny ~ N;logN;, i.e., this frame has still
optimal cardinality. Notice that the fran{éj is the restriction t073 of the two-fold
tensor product of the frame that underlies the BPX-predmuér [4].

3.3 Galerkin discretization

We shall be concerned with Galerkin’s method for solvinglitbendary value prob-
lem (3) in the sparse tensor product space. We abbreviategha’s Neumann data
by o :=d(u—g)/dn and their approximate version oy := (0(TUy — g),n), with
0; € Vj being the finite element solution of (2). Instead of the Dilét data of (3),

f:= (0 ®0)Cor, € HY2Y2(9D x 9D), (5)

we have only access to the approximatign= (03 ® g;) Cork which lives on the
full tensor product grid. Thus, we follow [12] and insert th&orthoprojector/T;
onto the sparse tensor product spegegg, ;o5 according to

ﬂ = (0; ®GJ)ﬁJ Cory . (6)



FE based sparse second moment analysis for elliptic problems in stioati@mains 5

We shall fix notation. Define for all & j, j’ < J the univariate stiffness matrices,
and with respect to the traces of the ansatz functions, tes mmatrices and the
multiplication operators,

o ._ °) Dy . D D
AJ]/BD— (§§®J, 5 D(DJ )LZ(D)’ e S {0D5, 02%, (7)
GjJ’ = (CDJ, 7(Dj )L2(05)7 Mj,j’ = (GJ(Dj, ,(DJ )Lz(ﬂﬁ)'
Two-fold tensor products of these finite element matricad ® the necessary ma-
trices on the sparse tensor product space:
0,= € {D,0D},

ANO.= _ A0 =
Ay~ = [Alrlz®Aj’1,i'2]11+127i'1+i'2§~]’

G = [Ciniz@Gipig) yrjnigriperr Ma=[Mipjp @My ]
RO _ o . L
BY = [AS 1, ®Ciit) i iy D,0D
co_ G A9 O b.ob
§=[Gii,® j’rj’z]jﬁjz,J’ﬁi’zSJ’

j1ti2, i +i5<d

Finally, we need the data vectey = [(Corc, ®° © ®9P) 255, 45)] |/ ,- Notice

that (6) reads in the discrete formTas: MJCASleJ.
In what follows we abbreviate Carby v. To determine the approximate counter-
partV; € Vj we shall separate the degrees of freedom in order to solveotinedary

value problem (3) successively; = V?’ﬁ + V?’m + 0335‘5 + 0375"95, where

0.5 . =\GO,= - _ B A%
Gwo= Yy (#P @ @7)V);7, ©,= € {D,dD}.
j+)'<d
Then we proceed as follows (see [11] for the details).
1. Determineﬂ‘jﬁ"?6 as thel?-orthoprojection of the approximate Dirichlet ddta
(6) onto the discrete trace spa@ﬁ JD<gD according to

éjng,dD = M‘]é;le‘]. (8)

2. Computed??P such thatvJ>?° + ¢>9P) 5,55 € HY(D) @ HY?(9D) satisfies
the homogeneous boundary condition®r dD. In complete analogy determine
¥3PP which gives raise to

5DD,dD 50D0D,0D ~DdD,D ~9D0D,0D
B5V;7° = —BJPVS CoV§PP = —C3PusPoP. 9)

3. Compute the functioﬁ?’5 € Hy"(D x D) inside the tensor product domainx

D according to

I]_D,(?D B "&gD,vadD,D' (10)

ADDGD.D _  2dD.0D;dD,0D _ R D.9Dgl
Ay VT =AY —A7"V
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3.4 Error estimates

Lethy:=2"9 ~ max{diamt;} denote the mesh size associated with the subspace
Vj onD. Then, from standard finite element theory for elliptic aers (e.g. [2, 3]),
we derive the following facts with respect to the approxienatean.

Proposition 1. Equation(2) can be solved in linear complexity. The approximate
meant; satisfies the error estimatl — Uy, 2) < h§||UHH2(5) provided that the
given data are sufficiently smooth.

In the Galerkin scheme we have to employ the perturbed Daictata f; (6)
instead of the original Dirichlet dath (5) to compute the approximate solutign
of (3). Therefore, we obtain only a reduced rate of convergen

Theorem 2. Assume thati € W2® (D) and Cor, € H'(dD x dD). Then, the ap-
proximate solutiorvy € V; to (3) satisfies the error estimate

N 112
Iv=sll25x0) S Noll CO lluz2(5503) 32 5)-

Proof. The assertion follows immediately from [11] if we show thia tonsistency
error of the right hand side satisfies

I = f3llL2(9505) < Nl COMk [ly1.25) U205 (11)
To show this estimate we proceed as follows:
If = fallL2(9Bxam) = [|(0® 0) Cotic (03 ® 03) 13 COXic || 2., 45
< |[(c®0—0y® 0y) Cor HLZ(ﬂﬁxdﬁ) +[(3@ 03)(1 = Iy) Cor HLZ(ﬂﬁxdﬁ)
< |lo® 0 —03® 03| =(9px o)l COk [l 2(9Dx0D)

+ ||UJ||2°°(06)H(| — y) Core |l 2(o50m)- (12)

We now estimate the two terms on the right hand side of thiguakty sepa-
rately. TheL?-orthoprojection onto the sparse grid space satisfies§cl.])

| (1 — 1) Corg HLZ((;EX(yﬁ) S ol Cor [|y11(9D0D)- (13)
Pointwise error estimates for piecewise linear finite eleimiésee e.g. [3]) imply
10— 03| =(9p) = [{BU=Ts), M| =(9p) < |BU— DOl =) < hallTllw2ep)-
This induces by standard tensor product arguments
lo® 0 —03® 0yll=(95.9p) < M (1012 (a5) + [ 3llL=(9D)) [Tz (o). (14)

Inserting (13), (14) anfloy|| «gp) < [|0 — O3l =(ap) + |0 | = (ap) iNto the estimate
(12) yields the desired consistency result (11). O
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3.5 Fast second moment computation

The linear systems of equations arising from the sparsealewglt discretization can
be assembled and solved in essentially linear complexigmilsing the following
ingredients, developed in the papers [11, 12, 13].

(i) Due to the non-uniqueness of the representation of furetioframe coordi-
nates, all system matrices have a large kernel. Since tloeiag=d right hand side
vectors lie in the related images, Krylov subspace methodserge without fur-
ther modifications (see, e.g. [10, 13]). In practice, we ppipé conjugate gradient
method to solve (8)—(10).

(i) The diagonally scaled system matrices are essentiallyosetitioned in the
sense that all nonzero eigenvalues behave essentiallg liked constant. There-
fore, the conjugate gradient method converges with a raeishessentially inde-
pendent of the discretization lev&é(e.g. [10]).

(iii ) Iterative solvers involve only matrix-vector multiplidans. The fast matrix-
vector multiplication developed in [11, 13] is of esseryidinear complexity. Be-
sides standard prolongations and restrictions, it in®iwely system matrices (7)
with 0 < j = j/ < J, i.e., standard finite element matrices. By using proldingat
and restrictions, all coarse level matrices are succdgsivived from the finest
grid matrices in linear time.

(iv) Numerical quadrature in the sparse tensor product spaceriermed as
follows. We expand the two-point correlation into the hretacal basis% =
{9jx@ ¢y ke A\ Fj1, K e I\ Iy, j+] < I} C @ of the sparse ten-
sor product spac¥;. For Cok € H33(dD x dD) with 0 < s < 2 an approximation
Cory_; is obtained such thatCor, féo\rK,J||Lz(05X05> = h3|| Colk [[4ssapom)- IN
the cases = 2 there appears an additiongf logh;| factor, see [5] for the details.

Proposition 2. Combining the ingredientS§)—(iv) one arrives at an algorithm that
computes the solution’s second moment in a complexity thgs £ssentially pro-
portional to the number of unknowns used to discretize thenrfield equatior(2).

4 Numerical results

We consider the boundary value problem (1) witk: |, f = 1/4,g(x) = x-y, andD
being the unit circle (i.en = 2). If we prescribe Gaussian correlation £ot,y) =
e~ IYII* we get the solution’s approximate mean and variance showigire 1. It
turns out that the variance increases when approachingtiredary of the domain,
i.e., the solution’s sensitivity with respect to boundasytprbations is the larger
the nearer the boundary. This effect is stronger in regidmsrerithe modulus of the
Dirichlet datagis large. The non-symmetry is induced by the present inh@meigy

= 1/4. Notice that the variance scales linearly in the pertimbgiarametee and
thus decreases correspondinglyeas+ 0. Further numerical results, especially a
comparison with an MC simulation, can be found in [11].
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