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Abstract

We consider the demixing process of a binary mixture of two liquids after a

temperature quench. Thermodynamics favors two domains of the two different

equilibrium volume fractions with a characteristic interfacial layer. After an

initial stage, the dynamics are thus driven by the reduction of the interfacial

area. Therefore in large systems, one observes an increase in the typical

length scale ` of the domains as a function of time t, a phenomenon called

coarsening. In an intermediate stage, coarsening is mediated by cross-diffusion

of the two species (“evaporation-recondensation process”). Siggia [21] argued

that at a later stage, coarsening should be mediated by viscous flow of the

mixture. Simple scaling arguments based on the assumption of statistical self-

similarity of the domain morphology in time show that this hypothesis leads

to a crossover in the coarsening rate: from ` ∼ t
1/3 for diffusion-mediated to

` ∼ t for flow-mediated.

We consider a simple sharp-interface model which just allows for flow-

mediated coarsening. For this model, we prove rigorously that coarsening

cannot proceed faster than ` ∼ t — without assumption of statistical self-

similarity. The analysis follows closely a method proposed in [15], which is

based on the gradient flow structure of the evolution. This method translates

bounds on the energy landscape into bounds on the dynamics. The bounds on

the energy landscape relate the energy functional (given by the driving ther-

modynamics — here interfacial energy) to the intrinsic distance in configura-

tion space (determined by the limiting dissipation mechanism — here viscous

dissipation). As opposed to the diffusion-mediated case, the intrinsic distance

is not known explicitly; instead, we use a Monge-Kantorowicz-Rubinstein

transportation distance with logarithmic cost functional as a proxy.

∗CNRS, Université de Nice (FR 2800 W. Döblin), Institut Universitaire de France
†Institute of Applied Mathematics, University of Bonn, 53115 Bonn, Germany
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1 Introduction

1.1 Background from physics

A view in the physicists’ literature reveals a remarkable experimental and theoretical
activity in the field of demixing processes of binary fluid mixtures. When a single
phase system is suddenly placed into thermodynamically unstable two-phase state,
e. g. by quenching from a high to a sufficiently low temperature, the phases separate
by forming domains of the two different equilibrium volume fractions. The domain
morphology coarsens with time: larger domains grow at the expense of smaller ones.
The dynamics are driven by the free energy of the system. We refer to the review
article [3] or the monograph [20].

The demixing proceeds in several stages. The initial stage, i. e., the formation of
the domains with characteristic interfacial layers, is from the practical point of view
negligible. With the exception of some very slowly diffusing systems, like polymer
blends, the initial stage appears to be a short-time phenomenon — sometimes even
to short to be easily observed.

The main focus of research is on the interfacial dynamics. When the domains are
formed, the free energy of the system is concentrated on the interfaces. Since the
system tries to minimize the energy, the amount of interfacial area decreases with
time. This is realized by coarsening of the domain distribution. The characteristic
length scale of the system, which describes the typical size of the domains, increases.
In the interfacial dynamics two interesting features are numerically and experimen-
tally observed: the morphology behaves statistically self-similar in time, and the
growth rate of the characteristic length scale obeys a temporal power law.

The power-law exponent is determined by the growth mechanism within the demix-
ing process. It can be heuristically derived by dimensional analysis based on the
assumption of statistical self-similarity, cf. Subsection 1.5.

Siggia [21] studied the demixing process of binary viscous liquids at the critical
concentration where both phases occupy the equal volume fraction. The physical
growth mechanism is material transport from domains with high curvature to do-
mains with low curvature. It originates from chemical potential differences. In the
beginning of the interfacial dynamics, the material transport is mediated by cross-
diffusion of the two phases (“evaporation-recondensation”). The coarsening rate is
`(t) ∼ t1/3, when ` and t denote typical domain-size and time, respectively.

In viscous liquids mass is transported by convection as well as diffusion. Trans-
port by convection can be much faster than transport by diffusion and it becomes
dominant in later stages of coarsening. Based on simple scaling arguments on the
relevant physical quantities Siggia predicted a crossover from `(t) ∼ t1/3 to `(t) ∼ t
when the typical domain has achieved a certain size. Siggia‘s linear growth law has
been confirmed by experiments, e. g. [27, 28, 5], and by numerical simulations, e. g.
[19, 24, 14, 1].

2



Furthermore, there are two phenomena which may play a role in the very late stages
of coarsening: gravity and inertia. Siggia remarked that for very large domains the
growth rate undergoes a second crossover due to gravity and the density difference of
the two coexisting phases [21, see e.g. p. 603]. The growth rate in this situation does
not follow a power law and diverges in a finite time. On the other hand, Furukawa
pointed out that the convective coarsening regime is limited by inertial effects. He
predicted a inertial regime in which the typical domain size increases as `(t) ∼ t2/3,
cf. [3, p. 375]. However, both effects does not seem to be of experimental relevance.
We neglect these effects in our theoretical work.

In this paper we turn to Siggia’s growth law for late stages of coarsening in binary
viscous liquids. We derive a rigorous time-averaged upper bound on the coarsening
rate `(t) ∼ t. This bound is independent of the assumption of statistical self-
similarity.

1.2 Background from mathematics

Mathematically, we follow closely a method proposed in [15], which relies on the
gradient flow structure of the dynamics. Within the gradient flow structure, the
functional encodes the driving energetics and the metric tensor the limiting dissipa-
tion mechanisms.

This point of view allows to translate

• bounds on the energy landscape, i. e., information on how fast the energy
decreases as a function of (induced) distance to some reference configuration
into

• bounds on the dynamics, i. e., bounds on how fast the energy decreases as a
function of time.

Since a suitably renormalized Ginzburg-Landau-type free energy density has di-
mensions 1/length (it is proportional to the interfacial area per system volume)
heuristically at least, lower bounds on the energy of some configuration translate
into upper bounds on some average length scale of this configuration. If as expected,
there is only one characteristic length scale present in the domain distribution, this
is the relevant average length.

Note that upper bounds on coarsening rates are quite different from lower bounds.
Upper bounds are universal, while lower bounds depend strongly on the geometry
of the initial data. In fact, there exist configurations that do not coarsen at all (e.
g. parallel planar layers).

The method in [15] is based on three ingredients:

• a statement on the energy density, more precisely, a lower bound of the energy
in terms to the intrinsic distance (i. e., the distance induced by the metric
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tensor coming from the dissipation mechanism) to some suitable reference
configuration. Mathematically this typically amounts to an interpolation in-
equality.

• In certain cases, the intrinsic distance is not explicitly known (as in our case).
In these situations, one has to identify a suitable explicit proxy to the intrinsic
distance — and prove that it is bounded by the intrinsic distance.

• an ODE-argument.

It is crucial that all involved estimates are independent of the system size (for large
system sizes).

The method proposed in [15] is quite robust. In the following, we try to give a short
report on its applications.

• In the original paper [15], this approach was applied to the Cahn-Hilliard
equation with constant and with degenerate mobility. Both equations model
demixing of a binary mixture mediated by diffusion. In the constant mobil-
ity case, diffusion takes place in the bulk (i. e. the interior of the domains);
whereas in the degenerate mobility case, diffusion only takes place along the
interfacial layer. Physically, the constant mobility case corresponds to a shal-
low quench (i. e. temperature slightly below the critical temperature) whereas
the degenerate mobility case corresponds to a deep quench (i. e. temperature
much below the critical temperature). The Cahn-Hilliard equation with con-
stant mobility is the gradient flow of a Ginzburg-Landau-type energy w. r. t.
to the H−1-inner product (i. e. a Euclidean situation), so that the induced
distance is given by the H−1-norm. The Cahn-Hilliard equation with degen-
erate mobility is the gradient flow of a Ginzburg-Landau-type energy w. r.
t. to a weighted H−1-inner product, which penalizes everything outside the
interfacial layer (and thus is genuinely Riemannian). In order to treat both
equations simultaneously, the Monge-Kantorowicz distance (i. e., the Monge-
Kantorowicz-Rubinstein (MKR) distance with cost functional given by the
Euclidean distance) was used as a proxy. In case of constant mobility, the
authors of [15] obtain E & t−1/3; in case of degenerate mobility, they obtain
E & t−1/4 — both exponents agree with the heuristics.

• The case of more than two components, both in the constant and degenerate
mobility case, was treated in [17], with the same results.

• In [22], a generalized Cahn-Hilliard equation is investigated. The modifications
are twofold: 1) The square gradient term in the Ginzburg-Landau energy func-
tional is replaced by a non-local approximation (in fact, in the derivation of
the Cahn-Hilliard equation as a mean-field model for Kawasaki dynamics in an
Ising model with long-range interactions, this non-local attractive term arises
in an intermediate step). 2) The constant mobility is replaced by a possibly
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degenerate mobility. Under these modifications, the author establishes the
same lower bound E & t−1/3 as for constant-mobility Cahn-Hilliard. Depend-
ing on the mobility, he uses two different proxies for the induced metric: The
H−1-norm and the Wasserstein distance (i. e., the MKR-distance with cost
functional given by the square of the Euclidean distance).

• In [6], the case of an off-critical mixture in the constant mobility Cahn-Hilliard
equation was treated. This means that the volume fraction Φ of one of the
two phases is very small, and the corresponding domains come in form of
small, distant, nearly immobile and nearly spherical particles. The configura-
tion coarsens by “Ostwald ripening”, which denotes the growth of the large
particles at the expense of the small ones, which eventually vanish. Based
on Φ � 1, one can derive a reduced model that predicts the evolution of the
distribution function f(R) dR of particle radii, the celebrated Lifshitz-Slyozov-
Wagner (LSW) theory. LSW theory heuristically predicts not just the scaling
of the energy E in t, but also in the volume fraction Φ � 1. It is given by
E ∼ Φt−1/3 in the case of dimensions d > 2 and by E ∼ Φ(ln−1/3 1

Φ
)t−1/3 in

the case d = 2. In this paper, these scalings are recovered as a lower bound.
Here, the H−1-inner product is used. Starting point is not Cahn-Hilliard,
but its sharp interface version, known as Mullins-Sekerka in the mathematical
literature.

• In [8], the starting point is now the LSW theory (see above), which mathemat-
ically speaking, is an evolution equation for the distribution function f(R) dR
of particle radii. Not surprisingly, it inherits the gradient flow structure of
the original Cahn-Hilliard-type or phase-field model respectively their sharp-
interface counterparts (i. e. variants of the Mullins-Sekerka or Stefan prob-
lems). The authors investigate the LSW theory of a Mullins-Sekerka model
with kinetic undercooling (i. e. a convex combination of Mullins-Sekerka and
mean-curvature flow). In case of dominant kinetic undercooling, they obtain
the bound to be expected for mean curvature flow, i. e. E & t−1/2; in all other
cases, they obtain E & t−1/3.

• In [9], the authors start not from the Cahn-Hilliard model with constant mo-
bility but from a phase-field model. Heuristically, both models should have
the same late stage behavior, as both give rise to the Mullins-Sekerka sharp
interface motion. Indeed, the authors rigorously establish E & t−1/3. How-
ever, their analysis requires the domain size to be not too small compared to
the system size.

• In [16], the authors treat a model from epitaxial growth; it models the evo-
lution of the height h(t, x) of a crystalline film on top of a substrate. The
evolution is driven by an energy which favors slopes ∇h with |∇h|2 = 1 but
penalizes curvature |D2h|2; it is limited by attachment kinetics. Mathemat-
ically speaking, this amounts to the L2-gradient flow of a Ginzburg-Landau
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energy in the vector-valued order parameter ∇h. Therefore, loosely speaking,
it leads to a Cahn-Hilliard-type equation on the level of ∇h and thus one
expects E ∼ t−1/3. This is proved as a lower bound. In view of the above
discussion, the induced distance the authors use is the L2-distance

(∫

|h|2dx
)

to the flat surface. As opposed to the regular Cahn-Hilliard model, the set
of favored order parameter values is not discrete. Therefore, the interpolation
inequality is more subtle; the authors establish it via an indirect argument.

• In [18], the authors consider a model for viscous thin films. The evolution of the
film height h(t, x) is driven by the surface energy between liquid and vapor and
a short-range attractive force between liquid and substrate; the latter leads to a
precursor film of height normalized to unity. A typical configuration consists of
equilibrium droplets with a contact angle normalized to π

4
sitting on top of the

precursor film. Such a configuration coarsens by Ostwald ripening (see above).
Asymptotic analysis [13] predicts the coarsening rate on a one-dimensional

substrate (d = 1). In [18], the lower bound for the energy E ≥ t−
d

3d+2 is
proved. This lower bound coincides with the asymptotic analysis for d = 1
and is also conjectured to be optimal (up to a logarithm) for d = 2. However,
this bound obtained by the [15]-method gives a suboptimal exponent for d > 2.
This suboptimality is due to the same reason for which E & t1/3 is suboptimal
for Cahn-Hilliard in d = 1: The [15]-method relies on a very coarse property
of the energy landscape, which is too coarse for the plateau and step structure
of the energy landscape of the Cahn-Hilliard equation in d = 1.

Mathematically speaking, the model in [18] is similar to the Cahn-Hilliard
equation with two modifications: 1) In the Ginzburg-Landau model, the usual
symmetric double well potential W (h) is replaced by a nonlinearity W (h) with
one well at h = 1 and the other well at h = +∞. 2) The constant mobility in
the Cahn-Hilliard equation is replaced by a linear mobility h. In this situation,
the induced distance is no longer the H−1-norm but the Wasserstein distance.
The reason for the dimension-dependent coarsening exponent lies in the fact
that energetically, the model is d + 1-dimensional (droplets in form of d + 1-
dimensional parabola caps), whereas from the point of view of dissipation, the
model is d-dimensional (diffusion through the d-dimensional precursor layer).

• In [10], the authors consider a discrete version of the Cahn-Hilliard equation,
where the discrete nature replaces the regularizing effect of the fourth-order
term. In one space dimension, this model relates to the Perona-Malik model
in image denoising. This model is the gradient flow of a non-convex functional
(convex at m = 0 but non-convex for m ↑ ∞, favoring m = 0 and spikes
m = ∞) with respect to a discrete version of the H−1-inner product. The
authors obtain the same lower bound on the energy as in the continuum case.
In [11], the authors consider a more general class of non-convex functionals
classified by an exponent α for large m-values. They find optimal lower bounds
on the energy with an exponent which depends on α.
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In our analysis, we adopt the method from [15] to a simple sharp-interface model
for flow-mediated coarsening. This means that the driving energy functional is
the surface energy of the configuration m ∈ {−1, 1} and the limiting dissipation
mechanism is the viscous dissipation of the incompressible velocity u which convects
m. For this dissipation mechanism, the genuinely Riemannian distance is not known
explicitly. We use a Monge-Kantorowicz-Rubinstein (MKR) distance as a proxy
for this induced distance to the “microscopically mixed state” m ≡ 0. This MKR-
distance has to be chosen in such a way that it is dominated by this induced distance
given by the viscous dissipation mechanism, i. e.

∫

|Du|2 dx. Since the dissipation
mechanism only controls the gradient of the convecting velocity, it is not surprising
that the cost functional in the MRK-distance can only grow logarithmically. The
fact that the MRK-distance indeed is dominated is connected to a conjecture of
Bressan [4, p. 4], see also [7, p. 25]. In the Lp-setting (p > 1) instead of the
L1-setting considered in [4], this conjecture was solved in [7], which in turn can
be understood as a quantification of the DiPerna-Lions theory of renormalizable
solutions to convection equations. In a certain sense, in this paper we reformulate
the result in [7] in terms of our MRK-distance.

The paper is organized as follows. In Subsection 1.3 we describe the full model for
demixing processes in binary viscous liquids involving the Ginzburg-Landau energy
from which our simple sharp-interface model can be derived. In Subsection 1.4
we provide a gradient flow interpretation of the full model. We argue heuristically
in favor of the predicted scaling law in Subsection 1.5. Subsection 1.6 presents
our numerical simulations. Section 2 provides our analytic results in the sharp-
interface model. Finally, Section 3 contains the proofs. We attach two appendices
for technical convenience.

1.3 The full model

We are interested in the late-stage coarsening phenomenon which occurs when a
thermodynamically unstable two-phase system, in our case a binary viscous liquid
quenched slightly below a critical temperature, demixes, i. e., the two phases sepa-
rate into two domains of the two different equilibrium volume fractions. As order
parameter, which locally describes the composition of the mixture at any one time,
we consider a scalar field

m(t, x) ∈
�

.

The free energy is given by the Ginzburg-Landau functional

E(m) =

∫

−
1

2
|∇m|2 +

1

2
(1 − m2)2 dx, (1)

which favors locally the separation of the system into its two phases, encoded by the
values −1 and 1, and penalizes transitions between domains occupied by different
phases. Hence length, energy, and order parameter have been nondimensionalized
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such that the equilibrium values, the width of the interfacial layers, and the en-
ergy per area of the interfacial layers are all of order one. Furthermore, we have
normalized the free energy by the volume of the system, denoting the average by
∫

− dx.

The evolution must conserve the volume fraction of each phase separately. We are
interested in the case of a “critical mixture”, where both phases occupy the same
volume fraction, i. e.,

∫

−m dx = 0. (2)

This leads to a conservation law for m:

∂t m + ∇·J = 0,

for some flux J . The flux takes account of the two parallel transport mechanisms:
diffusion and convection. Diffusion is the relative motion of the unlike particles. In
liquids, it originates from chemical potential differences. The diffusive flux Jdiff is
therefore given by Jdiff = −λ∇µ, where λ is the diffusion coefficient and µ is the
chemical potential, which is defined by

µ =
∂E

∂m
= −∆m − 2(1 − m2)m.

Convection is the flow of the bulk with a velocity field u. The convective flux Jconv

is therefore given by Jconv = m u.

We may recapitulate the evolution equation:

∂t m − λ∆µ + ∇·(m u) = 0. (3)

We want to relate the velocity u of the bulk flow to the thermodynamic driving
forces: the velocity obeys a Stokes equation

− η∆u + ∇p = −m∇µ, (4)

∇·u = 0, (5)

where η is the viscosity coefficient and p is the pressure. The liquid is incompressible,
equation (5). The r. h. s. of (4) arises from the energy change that accompanies the
liquid transport (“principle of virtual work”): the gradient of the chemical potential
acts as a driving force on the liquid. Note that m∇µ equals to ∇·(∇m ⊗ ∇m) up
to terms that can be absorbed in the pressure gradient.

We use the Stokes approximation of the Navier-Stokes equation by neglecting the
inertial terms. This amounts to the assumption that the flow velocity responds
nearly instantaneously to changes of the order parameter. The velocity is then
“slaved to the order parameter”. In fact, this approximation fails for very large
domains. We will neglect these inertia influences in our setting. See also [3, p.
374-376] for a precise determination of the different scaling regimes.

We may absorb one of the dimension free parameters in the time scale: for conve-
nience we set η = 1.
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1.4 The gradient flow structure

We like to embed our model into an abstract framework, at least heuristically. We
interpret the system (3, 4, 5) as a gradient flow, i. e., the evolution follows the steep-
est descent in an energy landscape. Mathematically, this requires a differentiable
manifold M, together with a metric tensor g, and an energy functional E on M.
The dynamical system in M given by the differential equation

∂t m + grad E|m = 0 (6)

is called the gradient flow of E on (M, g). The energy gradient gradE is related to
the differential diff E of E by the Riesz representation theorem:

gm(gradE, δm) = diff E. δm for all tangent vectors δm at m.

This allows for the gradient free reformulation of (6):

gm(∂t m, δm) + diffE|m. δm = 0 for all tangent vectors δm at m, (7)

or equivalently, coming from the variational point of view,

∂t m = argmin
δm

{

1
2
gm(δm, δm) + diff E|m. δm

∣

∣ δm tangent vector at m
}

. (8)

For the gradient flow interpretation of the dynamic system (3, 4, 5) we still have
to identify the ingredients M and g. The energy functional reflects the driving
energetics. It is given by the initially introduced Ginzburg-Landau functional (1).

The evolution must conserve the order parameter. For simplicity we consider the
case of equal volume fraction, (2). Accordingly, the manifold is given by

M =

{

m with

∫

−m dx = 0

}

. (9)

The metric tensor g encodes the limiting dissipation mechanisms. Choosing the
admissible tangent vector ∂t m in the gradient flow notion (7), we find:

d

dt
E(m) = diff E|m. ∂t m = −gm(∂t m, ∂t m).

Two different dissipation mechanisms due to diffusion and convection occur in the
demixing of binary liquids: dissipation by friction as a result of collisions of particles
(“outer friction”) and dissipation by friction because of viscosity (Stokes friction or
“inner friction”). This suggests to choose the metric tensor as

gm(δm, δm)

= inf
(u, j)

{
∫

−λ|j|2 + 1
2
|(Du + (Du)t)|2 dx

∣

∣

∣
δm + λ∇·j + ∇·(mu) = 0, ∇·u = 0

}

= inf
(u, j)

{
∫

−λ|j|2 + |Du|2 dx
∣

∣

∣
δm + λ∇·j + ∇·(mu) = 0, ∇·u = 0

}

. (10)
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Thus the minimization problem (8) can be written, using Lagrange multipliers:

inf
(δm,u,j)

sup
(φ,p)

{
∫

−
λ|j|2 + |Du|2

2
− (λj + mu) · ∇φ + φ δm + ∇p · u +

∂E

∂m
δm dx

}

,

which easily leads to the optimality conditions. We immediately recover:

φ = −
∂E

∂m
, j = ∇φ, −∆u + ∇p = m∇φ.

1.5 Heuristics

Physical experiments and numerical simulations suggest that the coarsening rate of
the domain pattern shows a simple behavior (cf. Section 1.6). In sufficiently large
systems and it can be described by a power law:

`(t) ∼ tγ,

for t � 1. We are interested in understanding the mechanisms which determine
the dynamic exponent γ. In this section, we derive γ by heuristical considerations,
which are based on the (unproven) statistical self-similarity.

In binary liquids, demixing mediates by diffusion and convection. To determine the
contribution of each transport mechanism to the growth of the characteristic length
scale, we consider both mechanisms separately.

We study the mesoscopic version of the model. Inside of the domains, the order
parameter is nearly uniform, m ≈ ±1. It varies with a characteristic interfacial layer
along the interface between the domains. For this reason, the energy contribution
in the bulk is negligible. The energy is concentrated on the interface between the
domains. Therefore, we approximate

energy ≈ energy of 1-d interfacial layer

× area of sharp interface per system volume.

A simple calculation shows that the energy of the one-dimensional layer is 4/3. The
above approximation motivates the mesoscopic version of the model. Assuming the
interface to be sharp, m = ±1, an appropriate energy is given by

E(m) =
4

3
×

1

2

∫

− |∇m| dx =
2

3

∫

− |∇m| dx.

Here we have used the convenient geometric measure theory notation. Moreover,
we write Ω = {m = ±1} for the bulk, and Γ = ∂Ω for the interface.

We assume the validity of the gradient flow structure for the sharp-interface model.
In order to derive the classical equations for the evolution, we consider the variational
formulation of the gradient flow (8). Variations of the order parameter correspond to
variations of the interface. We measure such variations infinitesimally by a normal
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velocity 2V along Γ. (Notice that ∂tm = 2V |∇m|.) An infinitesimal variation of
the energy is given by 4

3

∫

−HV dHd−1xΓ, where H denotes the mean curvature of Γ.

In the purely diffusive regime, the only dissipative mechanism is outer friction.
According to (8) we thus have to identify

argmin
V

{

1
2
min

j

{
∫

−λ|j|2 dx
∣

∣

∣
∇·j = 0 in Ω, λ[ν ·j] = 2V on Γ

}

+ 4
3

∫

−HV dHd−1xΓ

}

,

where where ν denotes a normal on Γ, and [.] denotes the jump across Γ. On the
level of j:

argmin
j

{

1
2

∫

−λ|j|2 dx + 2
3

∫

−Hλ[ν ·j] dHd−1xΓ
∣

∣

∣
∇·j = 0 in Ω

}

.

A computation of the Euler-Lagrange equation gives the well-known Mullins-Sekerka
evolution equations:

−∆µ = 0,

in the bulk Ω, and

µ = 2
3
H,

2V = −λ[ν ·∇µ],

on the interface Γ. This amounts to a third order free boundary value problem.
Hence the solution space is invariant under rescaling

x −→ σ x, t −→ σ3 t.

Consequently, if we assume the solution behaves statistically self-similar, the scaling
exponent must be 1/3. Indeed, m being statistically self-similar means

|Fm(t, · )(k)|2 ≈ f(tγk),

for some structure function f and every wave number k. As usual, Fm denotes the
Fourier transform of m. By scaling invariance of the solution space, this turns into

f(tγk) ≈ |Fm(σ3t, σ· )(k)|2 = |Fm(σ3t, · )(σ−1k)|2.

Hence
f(tγk) ≈ f((σ3t)γ(σ−1k)),

which yields γ = 1/3, since σ is arbitrary. Thus

`(t) ∼ (λt)1/3.
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Notice that in this reduced model, λ can be absorbed in the time scale. Therefore
λ must have the same exponent as t in the coarsening rate.

In the purely convective regime, the dissipative mechanism is Stokes friction. There-
fore we have to identify

argmin
V

{

1
2
min

u

{
∫

− |Du|2 dx
∣

∣

∣
∇·u = 0, ν ·u = V on Γ

}

+ 4
3

∫

−HV dHd−1xΓ

}

,

respectively

argmin
u

{

1
2

∫

− |Du|2 dx + 4
3

∫

−Hν ·u dHd−1xΓ
∣

∣

∣
∇·u = 0

}

,

A computation of the Euler-Lagrange equations yields

∇·u = 0,

−∇·S = 0,

in the bulk Ω, and

V = ν ·u,

τ ·[S]ν = 0,

ν ·[S]ν = −4
3
H,

on the interface Γ. Here S = Du + (Du)t − p id denotes the stress tensor. The
boundary value problem is of order one. Hence if the growth of the characteristic
length scale behaves statistically self-similar, a similar calculation as above shows
that the dynamic exponent must be one:

`(t) ∼ t.

Comparing both scaling laws, diffusion-mediated coarsening proceeds much faster
for t � λ1/2, and flow-mediated coarsening proceeds much faster for t � λ1/2. The
coarsening rate is determined by the faster transport mechanism. Consequently, we
expect a crossover at

t ∼ λ1/2

from a first, diffusion dominated regime to a second, convection dominated regime.

1.6 Numerical simulations

We present our numerical simulations for the demixing process in binary liquids in
two space dimensions.

For our numerical simulations we use the full smooth-interface model (3, 4, 5) in
two space dimensions with periodic boundary conditions. The system size is Λ. We
treat the case λ = 1.

12



t = 100 t = 1000 t = 2500

Figure 1: Plots of a numerically computed coarsening process in a binary viscous
mixture.

We use a semi-implicit time discretization of the evolution equation (3), which is
explicit in the nonlinear and in the convective term:

(

1

Mt
+ ∆2 + 2∆

)

mk+1 = 2∆(mk)3 −∇·(mkuk) +
1

Mt
mk. (11)

Exploiting the incompressibility condition (5), the velocity uk is determined by two
Poisson equations. If we denote the velocity components by vk and wk, these read

−∆vk = f k − ∂x∆
−1(∂xf

k + ∂yg
k),

−∆wk = gk − ∂y∆
−1(∂xf

k + ∂yg
k),

where the forces f k, gk are given by

fk = ∂x(∂xm
k∂xm

k) + ∂y(∂xm
k∂ym

k),

gk = ∂x(∂xm
k∂ym

k) + ∂y(∂ym
k∂ym

k).

We compute f k, gk, and the nonlinear term in (11) with the help of a finite difference
scheme. For the convective term we apply the upwind method. Subsequently, the
equations for vk, wk, and mk+1 are solved with FFT. As initial data we impose a
white noise with amplitude 10−2 and mean value zero.

In this paper we present our numerical simulations for the system size Λ = 50 π.
Figure 1 shows three stages of a computed coarsening process for a binary viscous
mixture. It turns out that Λ = 50 π is a system size for which the expected coars-
ening rate can be observed — at least in the very late stages and for a very short
time (see below). On the other hand, using our simple implementation, Λ = 50 π
appears to be near the upper limit of system sizes for which computations on a
desktop computer can be realized within a reasonable running time.

Some experiences suggest that initially, the time step size should be chosen of order
10−4. If the phases were separated and the domain morphology had become suffi-
ciently coarse, we increased the time step size up to 10−3. An optimal or even an
adaptive choice of the time step size have not been worked out.
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In Figure 2 we have plotted the energy evolution with a logarithmic axes scaling.
In the very late stages it approaches “asymptotically” the slope −1. As motivated
in the previous section, a crossover from −1/3 to −1 is expected at t ∼ λ1/2, and
can therefore not be observed (since λ = 1 is too small). Instead, we find a contin-
uously accelerating decrease of the energy density after an initial stage (t / 100) of
demixing.
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Figure 2: Energy density vs. time.
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Figure 3: H−1-norm vs. time.

In order to observe the predicted crossover, one has to choose a significant larger
diffusion coefficient, such as a larger system size. However, as mentioned above, this
cannot be realized within a reasonable running time.

Figure 3 shows the logarithmic plot of the “length” L(t) vs. time. Here L(t) is
defined as the H−1-norm of the order parameter:

L(t) =

(
∫

− ||∇|−1m|2 dx

)1/2

.

Because the H−1-norm is the induced distance to the fully mixed configuration
(m ≡ 0) in the gradient flow interpretation for diffusion-mediated coarsening, it
can be considered as a natural length scale in our experiment. Since the intrinsic
distance (i. e., the induced distance from the gradient flow interpretation) for the
flow-mediated coarsening is not known explicitly, it is convenient to consider only
this quantity as any measure of length. We observe that in the interfacial regime,
the growth of L(t) proceeds slightly slower than t. Furthermore, it seems to converge
in the very late stages “asymptotically” to t.

2 Main results

Our analysis follows closely the method proposed in [15], which relies on the gradient
flow structure of the dynamics. See Subsection 1.2 for discussion and references.

The procedure is the following. Since in our case the intrinsic distance is not known
explicitly, we have to identify a suitable explicit proxy, which is bounded by the

14



intrinsic distance to some reference configuration. We derive an interpolation esti-
mate involving proxy and energy, and use an ODE-argument to establish the upper
bound on the coarsening rate.

We have motivated an appropriate mathematical formulation for the demixing pro-
cess in binary viscous liquids in Subsection 1.3. However, for the sake of simplicity,
we prefer to work on a mesoscopic level, as in Subsection 1.5. This means, we ap-
proximate the full model by its sharp-interface version. Furthermore, our model
presented here only allows for flow-mediated coarsening. This corresponds to the
case λ = 0. Anyhow, we believe that the results presented here are valid even in the
full model, which we plan to address in a future paper.

On the mesoscopic level, the order parameter m takes the values ±1. We restrict or
attention to the case of a critical mixture, i. e.,

∫

−m dx = 0,

equation (2). The energy contribution of the Ginzburg-Landau energy (1) concen-
trates on the interfacial layers between the domains. The energy assigned to the
sharp-interface model is

E(m) =

∫

− |∇m| dx. (12)

The metric tensor (10) reduces to

gm(δm, δm) = inf
u

{
∫

−
1

2
|Du|2 dx

∣

∣

∣

∣

δm + ∇·(mu) = 0, ∇·u = 0

}

. (13)

For the PDEs we impose periodic boundary conditions. All averages are taken over
the period cell. The size Λ of the period cell is effectively the system size. Since we
are always working with averages, the system size does not enter in our analysis. In
particular, our results are independent of Λ.

For two configurations m0, m1, the distance induced by the metric tensor is given
by

dist(m0, m1) = inf
m̃

{
∫ 1

0

gm̃(∂tm̃, ∂tm̃) dt
∣

∣

∣
m̃(0) = m0, m̃(1) = m1

}

.

For g defined by (13) this distance is not known explicitly. We have to identify an
appropriate proxy D(m). The [15]-method is illustrated in the following proposition.

Proposition 1. Let there be a function D(m) such that

|gradD|m|
2 . 1 for any m, (14)

and

ln E(m) & −D(m) for any m such that E(m) ≤ 1. (15)
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Then for any solution of

∂t m + gradE|m = 0 (16)

with E(0) � 1 we have

∫ T

0

E(m(t)) dt & ln T for any T such that ln T � D(m(0)).

Since the energy density has dimensions 1/length, it can be considered as an inverse
length scale. Assuming that there is only one length scale is present in the domain
distribution, we can measure it by the inverse energy density. Consequently, a
dynamic lower bound on the energy can be interpreted as an upper bound on the
coarsening rate.

Notice that Proposition 1 treats the particular case α = ∞, where α denotes the
geometric exponent in the notation from [18, Prop. 1].

We do not claim the existence of a gradient flow structure

∂t m + grad E(m) = 0,

equation (16), in any particular sense. Our diction is just symbolic but our treatment
is fully rigorous in the end. Anyhow, in this paper, we assume that a solution exists.
It can be a weak solution in the sense that we only need

• the transport equation ∂t m + ∇ · (mu) = 0 in a distributional sense,

• the incompressibility ∇ · u = 0,

• the energy dissipation inequality d
dt

∫

− |∇m|dx ≤ −
∫

− |Du|2dx.

To our knowledge, it is open whether such a solution exists for all (suitable) initial
data for all times. Since we plan to address the full model in a future paper, for
which well-posedness is obvious, with similar methods, we believe that this lack of
existence theory is acceptable.

The gradient notion in (14) is also only symbolic. What we mean is provided in
Proposition 2 below. Finally, (15) is established in Proposition 3.

Now we want to specify our choice of D(m). For any given order parameter m ∈
[−1, 1] with (2), we define

D(m)

= inf

{
∫

−

∫

− c(|x1 − x0|) dπ(x0, x1)
∣

∣

∣

∫

dπ( . , x1) = 1,

∫

dπ(x0, . ) = m + 1

}

,(17)

where we continue writing
∫

−
∫

− dπ = 1
Λd

∫∫

dπ. Such Monge-Kantorowicz-Rubinstein
distances are naturally domiciled in the field of optimal transportation. Informally,
the cost function c(z) measures the cost of mass transportation over a distance z,
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and the transfer plan π encodes the way of transportation. Good references to this
topic are Villani’s books [25] and [26]. See also Appendix A.

To our aim, we use a logarithmic cost function c(z) = ln(z + 1). With that choice
we have the desired Lipschitz-property (14):

Proposition 2. Let c(z) = ln(z + 1). Let m ∈ [−1, 1] with
∫

m dx = 0 and u be
related by

∂t m + ∇·(mu) = 0, (18)

∇·u = 0. (19)

Then we have for a. e. t > 0:

d+

dt
D(m(t)) .

(
∫

− |Du(t, x)|2 dx

)1/2

. (20)

The transport equation (18) has to be read in the sense of distributions.

Assumption (15) in Proposition 1 can be established for a much larger class of
Monge-Kantorowicz-Rubinstein distances. In fact, for arbitrary monotone increas-
ing cost functions we have the following kind of interpolation inequality:

Proposition 3. Let c(z) be monotone increasing with c(0) = 0. Let m ∈ {−1, 1}
with

∫

m dx = 0.
Then there is an only d-dependent constant c0 such that

D(m) & c

(

1

c0

∫

− |∇m| dx

)

. (21)

As a corollary from the above propositions, we may state our main result.

Theorem 1. Assume that ∂t m + gradE|m = 0 and E(0) � 1. Then we have

∫ T

0

E(m(t)) dt & ln T for any T such that ln T � D(m(0)).

The method in [15] only provides time-averaged upper bounds on coarsening rates.
However, within this framework the pointwise statement,

E−1 . t,

cannot be derived. Counter-examples in this flavor are given in [15, Remark 4] or
[18, Remark 2].
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3 Proofs

We start with the proof of Proposition 2. The first part provides an estimate on the
rate of change of D(m) against a Lipschitz norm of u. It follows from Lemma 1 by
an approximation argument.

The second part, the estimate of the Lipschitz norm of the convecting velocity field
against a gradient norm, was inspired by the proof of [7, Theorem 2.1 resp. Theorem
3.3].

Proof of Proposition 2 As a first step, we derive an estimate on the rate of change
of D(m(t)), more precisely,

d+

dt
D(m(t)) ≤

∫

−

∫

−
|u(t, x1) − u(t, x0)|

|x1 − x0|
dπopt(t)(x0, x1). (22)

To this aim, we consider a regularization of u: Let uε denote the convolution with
a standard mollifier, such that ∇·uε = 0 and uε approximates u in L1(W 1,2

per) (this is
the natural class for the transporting velocity field in our gradient flow formulation).
We denote by mε the solution of the regularized transport equation

∂t mε + ∇·(uεmε) = 0, (23)

in some time interval [t, t + h], with initial data mε(t, · ) = m(t, · ). Then mε ∈
C([t, t + h]; L2

per(0, Λ)d)) is of the form mε(t + s, φε(s, x)) = m(t, x), for s ∈ [0, h],
when φε denotes the flow of uε(t + · , · ), i. e. ∂sφε(s, x) = uε(t + s, φε(s, x)) and
φε(0, x) = x. In particular,

1

h

∫ t+h

t

∫

−mε(s, x)2 dxds =

∫

−m(t, x)2 dx. (24)

We are now in a position to apply Lemma 1 in Appendix A with ρ0 = mε + 1 and
ρ1 = 1. We find the inequality:

d+

dt
D(mε(t)) ≤

∫

−

∫

− c′(|x1 − x0|)
x1 − x0

|x1 − x0|
· (uε(t, x1) − uε(t, x0)) dπε,opt(t)(x0, x1),

where πε,opt denotes the optimal transfer plan. By the choice of c we get

d

dt
D(mε(t)) ≤

∫

−

∫

−
|uε(t, x1) − uε(t, x0)|

|x1 − x0|
dπε,opt(t)(x0, x1)

≤

∫

−

∫

−
|u(t, x1) − u(t, x0)|

|x1 − x0|
dπε,opt(t)(x0, x1).

We need a compactness argument to deduce (22). From (24), we infer that mε

converges weakly to some m̃ in L2 in time-space (up to a subsequence). Notice that
by the uniqueness result of the DiPerna-Lions theory for renormalized solutions, cf.
[2, Theorem 4.2], m = m̃, so that we recover the solution (m, u) of the original
problem (18) by passing to the limit in the distributional formulation of (23).
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Integrating the above inequality over the time interval [t, t + h] yields a convenient
expression for the limit ε ↓ 0:

D(mε(t + h)) − D(mε(t)) ≤

∫ t+h

t

∫

−

∫

−
|u(s, x1) − u(s, x0)|

|x1 − x0|
dπε,opt(s)(x0, x1)ds.

We get by the lower semicontinuity of D(m) with respect to weak L2-convergence:

D(m(t + h)) − D(m(t)) ≤

∫ t+h

t

∫

−

∫

−
|u(s, x1) − u(s, x0)|

|x1 − x0|
dπopt(s)(x0, x1)ds.

Recall that mε(t) = m(t). The convergence of the r.h.s. follows from the stability of
the optimal transfer plans, cf. [26, Theorem 5.20], and the uniqueness of πopt. We
divide by h and find (22) in the limit h ↓ 0.

Now we turn to (20). This part of the proof uses the notion of maximal functions,
(M f)(x0) = supr>0

1
|Br |

∫

Br(x0)
f dx. We report that (see Lemma 2 in Appendix B)

|u(x1) − u(x0)| . |x1 − x0| ((M |Du|)(x1) + (M |Du|)(x0)) ,

so that (22) turns to

d+

dt
D(m(t)) .

∫

−

∫

− ((M |Du|)(t, x1) + (M |Du|)(t, x0)) dπopt(t)(x0, x1)

=

∫

− (M |Du|)(t, x1)(m + 1)(t, x1) dx1 +

∫

− (M |Du|)(t, x0) dx0

.

(
∫

− ((M |Du|)(t, x))2 dx

)1/2

.

Now we need the following property of the maximal function: For any p ∈ (1,∞)
we have

(
∫

|M f |p dx

)1/p

.

(
∫

|f |p dx

)1/p

,

see Lemma 3 in Appendix B. This yields

d+

dt
D(m(t)) .

(
∫

− |Du(t, x)|2 dx

)1/2

. (25)

�

We now turn to the proof of Proposition 3.

Proof of Proposition 3 Let π be an admissible transfer plan for D(m), i. e.,
∫

dπ(x0, . ) = m + 1 and
∫

dπ( . , x1) = 1. We set

Dπ =

∫

−

∫

− c(|x1 − x0|) dπ(x0, x1).
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As a first step, we claim that for all ϕ smooth and r > 0 we can estimate
∣

∣

∣

∣

∫

−ϕ m dx

∣

∣

∣

∣

≤ r sup |∇ϕ| +
2Dπ

c(r)
sup |ϕ|. (26)

Indeed, since π is an admissible transfer plan we may write
∫

−ϕ m dx =

∫

−ϕ ((m + 1) − 1) dx =

∫

−

∫

− (ϕ(x1) − ϕ(x0)) dπ(x0, x1),

and furthermore,
∫

−ϕ m dx =

∫

−

∫

−χ{|x1−x0|≤r}(ϕ(x1) − ϕ(x0)) dπ(x0, x1) (27)

+

∫

−

∫

−χ{|x1−x0|>r}(ϕ(x1) − ϕ(x0)) dπ(x0, x1), (28)

The r. h. s. in (27) is estimated as follows

∣

∣

∣

∣

∫

−

∫

−χ{|x1−x0|≤r}(ϕ(x1) − ϕ(x0)) dπ(x0, x1)

∣

∣

∣

∣

≤ sup |∇ϕ| r

∫

−

∫

−χ{|x1−x0|≤r}dπ(x0, x1)

≤ sup |∇ϕ| r.

For (28), we have

∣

∣

∣

∣

∫

−

∫

−χ{|x1−x0|>r}(ϕ(x1) − ϕ(x0)) dπ(x0, x1)

∣

∣

∣

∣

≤ 2 sup |ϕ|

∫

−

∫

−χ{|x1−x0|>r}dπ(x0, x1)

≤ 2 sup |ϕ|
1

c(r)

∫

−

∫

−χ{|x1−x0|>r}c(|x1 − x0|) dπ(x0, x1)

≤ 2 sup |ϕ|
1

c(r)
Dπ.

For the second inequality, we have used the monotonicity of c. This proves (26).

In the following, C denotes a generic constant only depending on the space dimension
d, whose value may change from line to line.

From (26) we infer that for all r, R > 0 we have

∫

−m2 dx ≤

(

C
r

R
+

2Dπ

c(r)
+ CR

∫

− |∇m| dx

)

sup |m|. (29)

For this purpose we select a smooth function ζ :
� d → [ 0,∞) with supp ζ ⊂ B1(0)

and
∫

ζ dx = 1. We set ζR(x) = 1
Rd ζ( x

R
). We denote by mR the convolution of m

with ζR.
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We use the convolution to split m, and accordingly the r. h. s. of (29):

∫

−m2 dx =

∫

−mR m dx +

∫

− (m − mR)m dx.

We estimate the first term with the help of (26):

∣

∣

∣

∣

∫

−mR m dx

∣

∣

∣

∣

≤ r sup |∇mR| +
2Dπ

c(r)
sup |mR|

≤ r
C

R
sup |m| +

2Dπ

c(r)
sup |m|.

For the second term we have
∣

∣

∣

∣

∫

− (m − mR)m dx

∣

∣

∣

∣

≤

∫

− |m − mR| dx sup |m|

≤ CR

∫

− |∇m| dx sup |m|.

This proves (29).

Finally, we address the assertion, (21). Since m ∈ {−1, 1} by assumption in Propo-
sition 3, (29) turns into

1 ≤ C
r

R
+

2Dπ

c(r)
+ CR

∫

− |∇m| dx.

We optimize in R by choosing R = r1/2
(∫

− |∇m| dx
)−1/2

, which yields

1

2
≤ Cr1/2

(
∫

− |∇m| dx

)1/2

+
Dπ

c(r)
.

We now choose r such that

Cr1/2

(
∫

− |∇m| dx

)1/2

=
1

4
.

Then

c

(

1

16C2

(
∫

− |∇m| dx

)−1
)

≤ 4Dπ.

Minimizing in π yields (21).

�

The proof of Proposition 1 imitates closely the one of [15, Lemma 3].

Proof of Proposition 1 We introduce the notation E(t) = E(m(t)) and D(t) =
D(m(t)). We treat the cases D(T ) ≥ 2D(0) and D(T ) < 2D(0) separately. We first
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turn to the “≥”-case, and estimate with the help of the dissipation inequality (14)
resp. (20):

D(T ) − D(0) ≤

∫ T

0

d+

dt
D dt

.

∫ T

0

(

−
dE

dt

)1/2

dt

≤

(
∫ T

0

(

−
dE

dt

)

1

E
dt

)1/2 (∫ T

0

E dt

)1/2

=

(

ln
1

E(T )
− ln

1

E(0)

)1/2 (∫ T

0

E dt

)1/2

.

Using D(T ) ≥ 2D(0) and E(0) ≤ 1 this becomes

∫ T

0

E dt &
D(T )2

ln 1
E(T )

. (30)

Thanks to the interpolation inequality (15) the r.h.s. in (30) is controlled by the
energy:

∫ T

0

E dt & ln
1

E(T )
.

Setting h(T ) =
∫ T

0
E dt this reads h(T ) & ln 1

h′(T )
, so we have shown that

d

dT

(

1

c0

exp(c0 h(T ))

)

≥ 1 provided D(T ) ≥ 2D(0), (31)

for some constant c0 > 0.

Now we assume D(T ) < 2D(0). Then (15) implies

D(0) & ln
1

E(T )
,

or in terms of h:

exp(c1 D(0)) h′(T ) ≥ 1 provided D(T ) < 2D(0), (32)

for some constant c1 > 0. Combining (31) and (32) we conclude that

d

dT

(

1

c0
exp(c0 h(T )) + exp(c1 D(0)) h(T )

)

≥ 1.

Integration in time yields

1

c0

exp(c0 h(T )) + exp(c1 D(0)) h(T ) ≥ T,
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and thus
2

c0
exp(c1 D(0) + c0 h(T )) ≥ T.

Finally, using ln T � D(0) & 1, this becomes

h(T ) & ln T,

which is the assertion of Proposition 1.

�

Appendix A

In this appendix, we derive a useful formula for the rate of change of the Monge-
Kantorowicz-Rubinstein distance in a situation, where the mass densities are trans-
ported by a smooth velocity field. We consider

D(ρ0, ρ1)

= inf

{
∫

−

∫

− c(|x1 − x0|) dπ(x0, x1)
∣

∣

∣

∫

dπ( . , x1) = ρ0,

∫

dπ(x0, . ) = ρ1

}

,

where ρ0, ρ1 are nonnegative densities such that
∫

− ρi dx = 1 for i = 0, 1, and c is a
strictly concave, C1 cost function. The condition on the transfer plan π means that
π has marginals Ldxρ0 and Ldxρ1: π[U × [0, Λ]d] = Ldxρ0[U ] and π[[0, Λ]d × U ] =
Ldxρ1[U ] for each Borel set U ⊂ [0, Λ]d.

The existence of an optimal transfer plan πopt follows by a standard continuity-
compactness argument. For strictly concave cost functions c(z), πopt is unique [12].

Lemma 1. Let u be a smooth velocity field and ρ0, ρ1 two densities in
C([0, T ]; L2

per(0, Λ)d) for some T > 0. Assume that

∂t ρi + ∇·(ρiu) = 0, (33)

for i = 0, 1. Then we have

d+

dt
D(ρ0(t), ρ1(t)) ≤

∫

−

∫

− c′(|x1 − x0|)
x1 − x0

|x1 − x0|
· (u(t, x1) − u(t, x0)) dπopt(t)(x0, x1).

Proof of Lemma 1 We consider the flow φδ which is generated by u(t + · , · ), this
means,

∂δ φδ(x) = u(t + δ, φδ(x)) and φ0(x) = x.

Then ρi(t + δ, · ) is the push-forward of ρi(t, · ) under the flow φδ:

∫

ζ(x)ρi(t + δ, x) dx =

∫

ζ(φδ(x))ρi(t, x) dx, for any periodic ζ.
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This fact follows easily from (33). Consequently, the forward-pushed transfer plan
πδ(t) = φδ # πopt(t) defined by

∫

−

∫

− ζ(x0, x1) dπδ(t)(x0, x1) =

∫

−

∫

− ζ(φδ(x0), φδ(x1)) dπopt(t)(x0, x1),

for any periodic ζ, is admissible as transfer plan π(t+δ). Therefore we may estimate

(D(ρ0(t + δ), ρ1(t + δ)) − D(ρ0(t), ρ1(t)))

≤

(
∫

−

∫

− c(|x1 − x0|) dπδ(t)(x0, x1) −

∫

−

∫

− c(|x1 − x0|) dπopt(t)(x0, x1)

)

=

∫

−

∫

− (c(|φδ(x1) − φδ(x0)|) − c(|x1 − x0|)) dπopt(t)(x0, x1),

which holds true for any δ > 0. Thus

d+

dt
D(ρ0(t), ρ1(t)) ≤

∫

−

∫

− ∂δ |δ=0 c(|φδ(x1) − φδ(x0)|) dπopt(t)(x0, x1).

Finally, we compute

∂δ |δ=0 c(|φδ(x1) − φδ(x0)|) = c′(|x1 − x0|)
x1 − x0

|x1 − x0|
· (u(x1) − u(x0)),

which yields the assertion in Lemma 1.

�

Appendix B

In the proof of Proposition 2 we have used the notion of maximal functions. For a
given locally integrable function f , its maximal function M f is defined by

(M f)(x0) = sup
r>0

1

|Br|

∫

Br(x0)

f dx.

The following two lemmas can be found in [23]. For the convenience of the reader
we present the proof of the first one.

Lemma 2. The following estimate holds for a. e. x, y:

|f(x) − f(y)| . |x − y|((M |∇f |)(x) + (M |∇f |)(y)).

Lemma 3. For 1 < p < ∞ we have:

∫

|M f |p dx .

∫

|f |p dx.
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Proof of Lemma 2 For x 6= y we let R = 1
2
|x − y|. Then we have

|f(x) − f(y)|

|x − y|
.

1

Rd+1

∫

BR(x)

|f(x) − f(z)| dz +
1

Rd+1

∫

BR(y)

|f(y)− f(z)| dz.

It remains to show that

1

Rd+1

∫

BR(x)

|f(x) − f(z)| dz . (M |∇f |)(x).

W. l. o. g. we may assume that x = 0. Indeed, we see easily:

1

Rd+1

∫

BR(0)

|f(0) − f(z)| dz ≤
1

Rd+1

∫

BR(0)

∫ 1

0

|∇f(sz)||z| dsdz

≤

∫ 1

0

1

Rd

∫

BR(0)

|∇f(sz)| dzds

≤ (M |∇f |)(0).

In the last inequality we have used that

sup
R

1

Rd

∫

BR(0)

|∇f(sz)| dz = sup
R

1

Rd

∫

BR(0)

|∇f(z)| dz.

�
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