
The Ostrogradsky-Pierce Expansion:  
Probability Theory, Dynamical Systems 

and Fractal Geometry Points of View 
 
 

Sergio Albeverio, Grygoriy Torbin 
 
 
 

no. 464 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Diese Arbeit ist mit Unterstützung des von der Deutschen Forschungs-

gemeinschaft getragenen Sonderforschungsbereichs 611 an der Universität 

Bonn entstanden und als Manuskript vervielfältigt worden. 

Bonn, März 2010 



THE OSTROGRADSKY-PIERCE EXPANSION:
PROBABILITY THEORY, DYNAMICAL SYSTEMS
AND FRACTAL GEOMETRY POINTS OF VIEW.

S.ALBEVERIO1,2,3,4,5, G.TORBIN6,7

Abstract. We establish several new probabilistic, dynamical and num-
ber theoretical phenomena connected with the Ostrogradsky-Pierce ex-
pansion.

First of all we prove the singularity of the random version of this
expansion.

Secondly we study properties of the symbolic dynamical system gen-
erated by the natural one-sided shift-transformation T on the difference-
version of the Ostrogradsky-Pierce expansion. We show, in particular,
that there are no probability measures which are simultaneously invari-
ant and ergodic (w.r.t. T ) and absolutely continuous (w.r.t. Lebesgue
measure). This plays against the application of a direct ergodic approach
to the development of a metric theory for the Ostrogradsky-Pierce ex-
pansion.

We develop instead the metric and dimensional theories for this ex-
pansion using probabilistic methods. In particular, it is shown that for
Lebesgue almost all real numbers any digit i from the alphabet A = N
appears only finitely many times in the difference-version of the Ostro-
gradsky-Pierce expansion, and the set of all reals with bounded digits
of this expansion is of zero Hausdorff dimension.
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1. Introduction

It is by now well known that any real number x ∈ (0, 1) can be represented
in the form ∑

k

(−1)k+1

q1q2 . . . qk
, where qk ∈ N, qk+1 > qk, k ∈ N. (1)

1
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If x is irrational, then this expansion is unique. In the opposite case there
are two different expansion of x into series of the above form ([21]).

In the western mathematical literature series of the above form are known
as Pierce series, and in the eastern literature they are known as Ostrogradsky
series of the first type. One can find notes on the history of the discovery
and the development of such series in the paper [18]. Here we would like
just to mention that such series can also be associated with the names of
Lambert ([16]), Lagrange ([15]), Sierpiński ([24]). In what follows we shall
use the notion "Ostrogradsky-Pierce expansion" for the above series. M.V.
Ostrogradsky was probably the first (1860) who developed a few numerical
properties of such an expansion (see, e.g., [21]), and T.A. Pierce was prob-
ably the first (1929) who used this expansion for a numerical estimation of
algebraic roots of polynomials ([19]).

The Ostrogradsky-Pierce series converges rather quickly, giving a good
approximation of irrational numbers by rationals, which are partial sums of
the above series.

Let us recall ([1]) that the expression (1) can be rewritten in the form

1

g1
− 1

g1(g1 + g2)
+ · · ·+ (−1)n−1

g1(g1 + g2) . . . (g1 + g2 + · · ·+ gn)
+ · · · , (2)

where
g1 = q1 i gn+1 = qn+1 − qn for all n ∈ N.

The expression (2) will be denoted by

Ō1(g1, g2, . . . , gn, . . . ).

and is said to be Ō1-expansion (or the Ostrogradsky-Pierce expansion with
independent symbols), and coefficients gn = gn(x) are called Ō1-symbols (co-
efficients) of a real number x ∈ (0, 1). There are several papers on the metric
theory of this expansion (see, e.g., [1, 4, 20, 23, 25] and references therein),
but they should be considered only as first steps in the development of the
general theory like the one existing for the continued fractions expansion.
There are a lot of common features between these two expansions, but the
Ostrogradsky-Pierce expansion generates essentially a more complicated "ge-
ometry of cylindrical intervals". It is known that the development of metric
and ergodic theories of some expansion for reals can be essentially simplified
if one can find a measure which is invariant and ergodic w.r.t. one-sided
shift transformation on the corresponding expansion and absolutely continu-
ous w.r.t. Lebesgue measure (see, e.g., [22]). For instance, having the Gauss
measure (i.e., the probability measure with density f(x) = 1

ln 2
1

1+x on the
unit interval) as invariant and ergodic measure w.r.t. the transformation
T (x) = 1

x(mod1), one can easily derive main metric and ergodic properties
of continued fraction expansions (see, e.g., [5, 13, 22]).

The main aims of the present paper are:
1) to develop ergodic, metric and dimensional theories for the Ō1 - expan-

sion for real numbers (in particular, to find normal properties of real num-
bers, depending on asymptotic frequencies νi(x, Ō

1) of Ō1-symbols (i ∈ N),
where νi(x, Ō

1) = lim
n→∞

Ni(x,n)
n , and Ni(x, n) is the number of terms "i"

among the first n Ō1-coefficients of x);
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2) to study properties of the symbolic dynamical system generated by the
one-sided shift transformation on the Ō1-expansion:

∀ x = Ō1(g1(x), g2(x), . . . , gn(x), . . . ) ∈ [0, 1],

T (x) = T (Ō1(g1(x), g2(x), . . . , gn(x), . . . )) = Ō1(g2(x), g3(x), . . . , gn(x), . . . );

3) to study distributions of random variables

η =

∞∑
k=1

(−1)k−1

η1(η1 + η2) . . . (η1 + η2 + · · ·+ ηk)
= Ō1(η1, η2, . . . , ηk, . . . ),

whose Ō1-symbols ηk are independent random variables taking the values 1,
2, . . . , m, . . . with probabilities p1k, p2k, . . . , pmk, . . . respectively, pmk ≥
0,

∞∑
m=1

pmk = 1, ∀k ∈ N.

2. Sets C[Ō1, {Vn}] and their metric and fractal properties.

Let {Vn} be a given sequence of non-empty subsets of positive inte-
gers. Let us consider the set C[Ō1, {Vn}], which is the closure of the set
C∗[Ō1, {Vn}] of all irrational numbers x = Ō1(g1(x), g2(x), . . . , gn(x), . . . )
such that gn(x) ∈ Vn for all n ∈ N.

It is clear that C[Ō1, {Vn}] is a nowhere dense set if and only if the con-
dition Vn ̸= N holds for an infinite number of n’s. The set of real numbers
whose continued fraction expansion does not contain a given symbol i ∈ N is
a Cantor-like set of zero Lebesgue measure. Indeed, almost all (in the sense
of Lebesgue measure) real numbers contain a given digit i with non-zero
asymptotic frequency νc.f.i = 1

ln 2 ln
(i+1)2

i(i+2) (see, e.g., [5]). So, all points which
can be written without using the symbol i belong to the exceptional zero-set.
For the Ostrogradsky-Pierce expansion the metric properties of C[Ō1, {Vn}]
depend essentially on the sequence of sets Vk of admissible digits.

In [1, 4] some sufficient conditions for the set C[Ō1, {Vn}] to be of zero
resp. positive Lebesgue measure are found. We collect here some of these
results without proof to be used later in the paper and to stress essential
differences in metric theories of continued fractions and the Ostrogradsky-
Pierce expansions.

Theorem 1. Let Vk = {1, 2, . . . ,mk}, mk ∈ N.

1) If
∞∑
k=1

m1+m2+···+mk
mk+1

< ∞, then λ(C[Ō1, {Vn}]) > 0, where λ denotes

Lebesgue measure .

2) If
∞∑
k=1

k
mk

= ∞, then λ(C[Ō1, {Vn}]) = 0.

Example.
1) If mk = 2k!, then λ(C[Ō1, {Vn}]) > 0.
2) If mk = k2, then λ(C[Ō1, {Vn}]) = 0.

Theorem 2. Let Vk = {vk + 1, vk + 2, . . . }, vk ∈ N.

If
∞∑
k=1

vk
2k

< +∞, then λ(C[Ō1, {Vn}]) > 0.
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Corollary 1. If Vk = V = {v + 1, v + 2, ...}, then λ(C[Ō1, {Vn}]) > 0.

In the case of sets C[Ō1, {Vn}] of zero Lebesgue measure, the next level of
their study is the determination of their Hausdorff dimension dimH(·) (see,
e.g., [8] for the definition and main properties of this main fractal dimension).

We shall study this problem for the case where Vn = {1, 2, ..., kn}. A
similar problem for the continued fraction expansion were studied by many
authors during the last 60 years. Set

E2 = {x : x = ∆c.f.
α1(x)...αk(x)...

, αk(x) ∈ {1, 2}}.

In 1941 Good [9] shows that

0, 5194 < dimH(E2) < 0, 5433.

In 1982 and 1985 Bumby [6, 7] improves these bounds:

0, 5312 < dimH(E2) < 0, 5314.

In 1989 Hensley [10] shows that

0, 53128049 < dimH(E2) < 0, 53128051.

In 1996 the same author ([11]) improves his estimate up to

0, 5312805062772051416.

A new approach to the determination of the Hausdorff dimension of the set
E2 with a desired precision was developed by Jenkinson and Policott in 2001
[12].

Our nearest aim is to study fractal properties of sets which are Ō1-
analogues of the above discussed set E2, i.e., the set

Ō1
2 = {x : x = Ō1(g1(x)g2(x)...gk(x)...), gk(x) ∈ {1, 2}}

and its associate sets

Ō1
n = {x : x = Ō1(g1(x)g2(x)...gk(x)...), gk(x) ∈ {1, 2, ..., n}}, n ∈ N.

Firstly, let us mention, that from Theorem 1 it follows that all these sets are
of zero Lebesgue measure, which is similar to the continued fractions case.
But the following theorem shows that from the fractal geometry point of
view the sets E2 and Ō1

2 (as well as their generalizations Ō1
n) are cardinally

different.

Theorem 3. For any n ∈ N the Hausdorff dimension of the set Ō1
n is equal

to zero.

Proof. Let Ō1
[c1c2...ck]

be the cylindrical interval of the Ō1-expansion, i.e.,
the closure of all real numbers x from the unit interval such that gi(x) =

ci, i = 1, 2, ..., k. It is known ([1]) that
∣∣∣Ō1

[c1c2...ck]

∣∣∣ = 1
σ1σ2...σk(σk+1) , where

σj = c1 + c2 + ...+ cj . Therefore,
∣∣∣Ō1

[c1c2...ck]

∣∣∣ ≤ ∣∣∣Ō1
[11...1]

∣∣∣ = 1
k!(k+1) .

Let us fix a positive real number α. It is clear that the set Ō1
n is contained

in the union of the following cylinders:

Ō1
n ⊂

n∪
i1=1

n∪
i2=1

...
n∪

ik=1

Ō1
[c1c2...ck]

, ∀k ∈ N,
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which forms its εk = 1
k!(k+1) -covering. The α-volume of this covering is equal

to nk ·
(

1
k!(k+1)

)α
. So, for the Hausdorff pre-measure Hα

εk
(Ō1

n) we have:

Hα
εk
(Ō1

n) := inf
|Ei|≤εk

∑
i

|Ei|α ≤ nk ·
(

1

k!(k + 1)

)α

→ 0(k → ∞), ∀α > 0.

Therefore, Hα
εk
(Ō1

n) = 0, ∀k ∈ N, ∀α > 0.
So, Hα(Ō1

n) = lim
k→∞

Hα
εk
(Ō1

n) = 0, ∀α > 0 and, hence,

dimH(Ō1
n) := inf{α : Hα(Ō1

n) = 0} = 0,

which proves the theorem. �

Let B(Ō1) be the set of all real numbers from the unit interval with
bounded Ō1-symbols (i.e., x ∈ B(Ō1) iff there exists a positive integer Kx

(depending on x) such that gk(x) ≤ Kx for all k ∈ N).
Corollary 1. The set B(Ō1) with bounded Ō1-symbols is an anomalously

fractal set, i.e.,
dimH(B(Ō1)) = 0.

Corollary 2. The sequences {gk(x)} of Ō1-symbols are unbounded for
all x ∈ [0, 1] except for a subset of zero Hausdorff dimension.

Remark. The set B(c.f.) of real numbers with bounded continued frac-
tion symbols is of full Hausdorff dimension (dimH(B(c.f.)) = 1), which
stresses essential differences also in dimensional theories of the Ostrogradsky-
Pierce and continued fraction expansions.

3. Properties of the symbolic dynamical system generated by
the Ostrogradsky-Pierce expansion

Let us consider a dynamical system which is generated by the one-sided
shift transformation T on the Ō1-expansion:

∀ x = Ō1(g1(x), g2(x), . . . , gn(x), . . . ) ∈ [0, 1],

T (x) = T (Ō1(g1(x), g2(x), . . . , gn(x), . . . )) = Ō1(g2(x), g3(x), . . . , gn(x), . . . ).

Recall that a set A is said to be invariant w.r.t. a measurable transfor-
mation T, if A = T−1A. A measure µ is said to be ergodic w.r.t. a transfor-
mation T, if any invariant set A ∈ B is either of full or of zero measure µ.
A measure µ is said to be invariant w.r.t. a transformation T, if for any set
E ∈ B one has µ(T−1E) = µ(E).

Let us remind that to develop metric and ergodic theories of any expansion
it would very desirable to have a measure which is T-invariant, T-ergodic and
absolutely continuous w.r.t. the Lebesgue measure (i.e., to find an analogue
of the Gauss measure for the c.f.-expansion). Unfortunately, the following
theorem shows that the above mentioned ergodic approach is not applicable
for the Ostrogradsky-Pierce expansion.

Theorem 4. There are no probability measures which are simultaneously
invariant and ergodic w.r.t. the one-sided shift transformation T on the Ō1-
expansion, and absolutely continuous w.r.t. the Lebesgue measure.
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Proof. Firstly we prove the lemma characterizing generic properties of as-
ymptotic frequencies of digits (from the alphabet) in the Ostrogradsky-Pierce
expansion of real numbers.

Lemma 1. Let νi(x, Ō
1) be the asymptotic frequency of a symbol i in the

Ō1-expansion of x (if the limit lim
k→∞

Ni(x,k)
k exists). Then for Lebesgue almost

all real numbers x ∈ [0, 1] and for any symbol i ∈ N the asymptotic frequency
νi(x, Ō

1) is equal to zero.

Proof. Let x be a random variable which is uniformly distributed on the unit
interval, i.e., the Lebesgue measure coincides with the probability measure
µx. Let i be a given positive integer, and let us consider the following
sequence of random variables:

ξk = ξk(x) = 0, if gk(x) ̸= i;

ξk = ξk(x) = 1, if gk(x) = i.

It is clear that Ni(x, k) = ξ1(x) + ξ2(x) + ...+ ξk(x). Let

Gi = {x : lim
k→∞

Ni(x, k)

k
= 0}.

The event x ∈ Gi does not depend on any finite number of Ō1-symbols of x.
Therefore, either µx(Gi) = 0 or µx(Gi) = 1.

Fix Vn = V = {i+1, i+2, ...}. If x ∈ C[Ō1, {Vn}], then Ni(x, k) = 0,∀k ∈
N. Therefore, C[Ō1, {Vn}] ⊂ Gi. From the corollary of Theorem 2 it follows
directly that λ(C[Ō1, {Vn}]) > 0. So, µx(G1) = λ(G1) = 1. �

To prove the theorem ad absurdum, let us assume that there exists an
absolutely continuous probability measure ν, which is invariant and ergodic
w.r.t. the above defined transformation T . Then, by Birkhoff ergodic the-
orem, for ν-almost all x ∈ [0, 1] and for any function φ ∈ L1([0, 1], ν) we
get:

lim
n→∞

1

n

n−1∑
j=0

φ(T j(x)) =

∫ 1

0
φ(x)d(ν(x)) =

∫ 1

0
φ(x)fν(x)dx,

where fν(x) is the density of ν.
Choose φi(x) = 1, if x ∈ Ō1

[i], and φi(x) = 0 otherwise. Then∫ 1

0
φi(x)fν(x)dx =

∫
Ō1

[i]

fν(x)dx > 0 for at least one i ∈ N.

Let the latter condition hold for the index i0.
On the other hand, from the above Lemma it follows that

lim
n→∞

1

n

n−1∑
j=0

φi0(T
j(x)) = lim

n→∞

Ni0(x, n)

n
= 0

for λ-almost all x ∈ [0, 1].
Hence,

lim
n→∞

Ni0(x, n)

n
= 0
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for λ-almost all x ∈ [0, 1], and simultaneously

lim
n→∞

Ni0(x, n)

n
> 0

for a set of positive Lebesgue measure. This contradiction proves the theo-
rem. �

Remark. From the proof given above it follows that there are no prob-
ability measures which are simultaneously invariant and ergodic w.r.t. the
one-sided shift transformation T acting on the Ō1-expansion, and which con-
tains an absolutely continuous component in its Lebesgue decomposition.

This result can be naturally applied to study the Lebesgue structure of
the random Ostrogradsky-Pierce expansion, i.e., the random variable

η =
∞∑
k=1

(−1)k−1

η1(η1 + η2) . . . (η1 + η2 + · · ·+ ηk)
= Ō1(η1, η2, . . . , ηk, . . . ), (3)

whose Ō1-symbols ηk are independent identically distributed random vari-
ables taking the values 1, 2, . . . , m, . . . with probabilities p1, p2, . . . , pm, . . .
respectively, i.e.,

P {ηk = m} = pm with pm ≥ 0,

∞∑
m=1

pm = 1 ∀k ∈ N.

Theorem 5. Let {ηk} be a sequence of independent identically distributed
random variables taking the values 1, 2, . . . , m, . . . with probabilities p1,
p2, . . . , pm, . . . respectively. Then the random variable η defined by (3) has
either:

1) degenerate distribution (if pi = 1 for some i ∈ N);
2) or pure singularly continuous distribution (in all other cases).

Proof. 1) The correctness of the first assertion follows directly from the nec-
essary and sufficient condition for discreteness of η in the general independent
case (see, e.g., [1]): the random variable η is purely discretely distributed if

and only if
∞∏
k=1

max
i

pik > 0.

2) Let us prove that in the case of continuity the distribution of η does
not contain any absolutely continuous component. To this end we need an
auxiliary lemma.

Lemma 2. If {ηk} are independent and identically distributed random vari-
ables, then the measure µη is invariant and ergodic w.r.t. the one-sided shift
transformation T .

Proof. 1) Let A be an invariant set w.r.t. T . Then T (T−1A) = T (A) and,
so, A = TA. Therefore A = T−1A = T−1(TA).

If x = Ō1(g1(x)g2(x)...gk(x)...) and x ∈ A, then

T−1(Tx) = {x : x = Ō1(c1g2(x)...gk(x)...), c1 ∈ N} ⊂ A.

Therefore the event {x ∈ A} does not depend on the first Ō1-symbol of
the point x. Similarly one can show that this event does not depend on the
initial n Ō1-symbols of x. Then, from Kolmogorov’s "zero and one" law it
follows that either µη(A) = 0 or µη(A) = 1. So, µη is ergodic w.r.t. T .
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2) Since the Borel σ-algebra B is generated by the family of Ō1-cylinders,
i.e., sets of the form Ō1

[c1c2...cn]
, it is sufficient to show that the measure

µη is invariant on these cylinders ([5]). It is clear that µη(Ō
1
[c1c2...cn]

) =

pc1 · pc2 · ... · pcn . Since T−1(Ō1
[c1c2...cn]

) = Ō1
[ic1c2...cn]

, i ∈ N, we have

µη(T
−1(Ō1

[c1c2...cn]
)) =

∞∑
i=1

µη(Ō
1
[ic1c2...cn]

) =

= pc1 · pc2 · ... · pcn
∞∑
i=1

pi = pc1 · pc2 · ... · pcn = µη(Ō
1
[c1c2...cn]

),

which proves the lemma. �

Let us choose a positive integer i0 such that pi0 > 0 and consider the
set Mi0 = {x : x ∈ [0, 1], νi(x, Ō

1) = pi0 > 0}. Since the symbols of Ō1-
expansion are independent w.r.t. the measure µη, from the strong law of
large number it follows that this set is of full µη-measure.

Let us now consider the set L∗
i0

= {x : x ∈ [0, 1], νi0(x, Ō
1) = 0}. From

Lemma 1 it follows directly that λ(L∗
i0
) = 1. The sets Mi0 and L∗

i0
have no

mutual intersection. The first one is a support of the probability measure
µη, and the second one is a support of the Lebesgue measure on the unit
interval. So, µη⊥λ, which completes the proof of the theorem. �

Corollary. The random variable η with independent identically dis-
tributed increments of the Ostrogradsky-Pierce expansion has a pure dis-
tribution, and it is can not be absolutely continuous.

Remark. Based on the latter theorem it is easy to construct all possible
types of singularly continuous measures (see, e.g., [2] for the classification).

If p2m−1 = 0, and p2m > 0, then the distribution of η is of GC-type, be-
cause the topological support of the measure µη is of zero Lebesgue measure.

If pm > 0,∀m ∈ N , then the distribution of η is of GS-type, because the
topological support of the measure µη coincides with the whole unit interval.

Usually the construction of the singularly continuous measures of the pure
GP-type is a more complicated problem, but the latter theorem and theo-
rem 2 show us a very easy way for such a construction: if p1 = 0 and
pm+1 > 0,∀m ∈ N , then the distribution of η is of GP-type, because the
topological support of the measure µη is a nowhere dense set of positive
Lebesgue measure.

4. On normal properties of reals in the Ō1 - expansion and
singularity of random Ostrogradsky-Pierce expansions in

the general independent case

A property "Υ" of real numbers is said to be normal if it holds for almost
all (in the sense of the Lebesgue measure) real numbers. Typical normal
properties are "to be irrational", "to be transcendental". These properties
do not depend on a chosen system of numeration (expansion). Having a
fixed expansion, it is convenient to formulate normal properties via prop-
erties of symbols (digits) of this expansion. For instance, for the classical
decimal expansion the following properties are normal: "to have infinitely
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many zeroes (in the expansion)", " does not contain any period", "to con-
tain any digit from the alphabet with the asymptotic frequency 1

10". For the
continued fractions expansion as an example of typical normal property one
may consider "to contain a symbol i from the alphabet with the asymptotic
frequency 1

ln 2 ln
(i+1)2

i(i+2) " (see, e.g., [5] for details and other examples). The
investigation of normal properties of real numbers written in some expansion
is an important part in the development of the metric theory of the corre-
sponding expansion, because to determinate the Lebesgue measure (or any
other equivalent measures) of a given subset, one may ignore real numbers
loosing normal properties. They are also extremely helpful for the study of
properties of the probability distributions connected to the corresponding
expansion.

In the initial sections of our paper we already derived two normal proper-
ties of real numbers written via Ō1 - expansion:

1) for Lebesgue almost all real numbers x ∈ [0, 1] the sequences {gk(x)}
of their Ō1-symbols are unbounded;

2) for Lebesgue almost all real numbers x ∈ [0, 1] and for any symbol i ∈ N
the asymptotic frequency νi(x, Ō

1) is equal to zero.
The following theorem gives us a rather unusual property of the Ō1-

expansion and it can be considered as an essential strengthening of the latter
property.

Theorem 6. For Lebesgue almost all real numbers x ∈ [0, 1] and for any
symbol i ∈ N one has:

lim sup
n→∞

Ni(x, n) < +∞,

i.e., in the Ō1- expansion of almost all real numbers any digit i from the
alphabet A = N appears only finitely many times!

Proof. Let Ω = [0, 1],F = B, and let P = λ be the Lebesgue measure on the
unit interval. For any i ∈ N and k ∈ N set

Ai
k := {x : x = Ō1(g1(x), g2(x), . . . , gn(x), . . . ); gk(x) = i} =

=

∞∪
c1=1

...

∞∪
ck−1=1

Ō1[c1c2...ck−1i],

where Ō1[c1c2...ck−1i] is the Ō1-cylinder. Since
∣∣∣Ō1

[c1c2...ck]

∣∣∣ = 1
σ1σ2...σk(σk+1) ,

where σj = c1+c2+...+cj , we have λ(Ō1[c1c2...ck−1i]) ≤ λ(Ō1[c1c2...ck−11]).
So,

λ(Ai
k) ≤ λ(A1

k) =

∞∑
c1=1

...

∞∑
ck−1=1

λ(Ō1[c1c2...ck−11]) =

=
∞∑

c1=1

...
∞∑

ck−1=1

1

σ1σ2...σk−1(σk−1 + 1)(σk−1 + 2)
=

1

2k
.

Let Ai
∞ = lim sup

k→∞
Ai

k. It is evident that
∞∑
k=1

λ(Ai
k) ≤

∞∑
k=1

1
2k

= 1, and,

therefore, applying the Borel-Cantelli lemma to the sequence of events {Ai
k}(k ∈

N), which are mutually depending w.r.t. the Lebesgue measure, we get
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λ(Ai) = 0. Thus, for any symbol i ∈ N and for λ-almost all x ∈ [0, 1] the
Ō1-expansion of x contains only finitely many symbols ”i”. �

In the previous section, based on the ergodic approach, we were studying
the structure of probability distributions of random variables with indepen-
dent identically distributed Ō1-symbols. In the present Section, we shall
study properties of the distribution of the random variable η in the general
independent case, i.e., in the case where ηk are independent but, generally
speaking, not identically distributed.

Theorem 7. Let {ηk} be a sequence of independent random variables taking

values 1, 2, 3, ... with probabilities p1k, p2k, p3k, ... correspondingly, (
∞∑
i=1

pik =

1, ∀k ∈ N).
If there exists a symbol "i0" such that

∞∑
k=1

pi0k = +∞, (4)

then the random variable

η =
∞∑
k=1

(−1)k−1

η1(η1 + η2) . . . (η1 + η2 + · · ·+ ηk)
= Ō1(η1, η2, . . . , ηk, . . . ),

is singularly distributed (w.r.t. λ).

Proof. Let

Ai0
k := {x : x = Ō1(g1(x), g2(x), . . . , gn(x), . . . ); gk(x) = i0},

and let

Ai
∞ =

∞∪
n=1

∞∩
k=n

Ai
k = lim sup

k→∞
Ai

k.

The events Ai0
k , k ∈ N are independent w.r.t. the probability measure µη

and µη(A
i0
k ) = pi0k. So, by the inverse Borel-Cantelli lemma for independent

events, the condition
∞∑
k=1

λ(Ai0
k ) =

∞∑
k=1

pi0k = +∞

implies the equality µη(A
i
∞) = 1. On the other hand, from Theorem 6 it

follows directly that λ(Ai
∞) = 0, which proves a mutual singularity of the

measure µη and the Lebesgue measure. �

Corollary. If there exists a symbol "i0" such that
∞∑
k=1

pi0k = +∞, then

the random variable η with independent increments of the Ostrogradsky-
Pierce expansion has:

1) a pure discrete distribution if and only if
∞∏
k=1

max
i

pik > 0;

2) a singularly continuous distribution in all other cases.
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Remark. Condition (4) plays an important role in our proof of the singu-
larity of µη, but we strongly believe that the distribution of η is orthogonal
with respect to the Lebesgue measure without any additional restrictions.

Conjecture. For any choice of the stochastic matrix ∥pik∥ the random
variable η with independent increments of the Ostrogradsky-Pierce expan-
sion is singular w.r.t. Lebesgue measure.
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