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A LOWER BOUND FOR THE SPECTRUM OF THE LINEARIZED
ALLEN-CAHN OPERATOR NEAR A SINGULARITY

SÖREN BARTELS

Abstract. A lower bound for the principal eigenvalue of the linearized Allen-Cahn operator
near a generic singularity is derived. The estimate leads to robust stability estimates past
topological changes.

1. Introduction

Spectral estimates have recently been successfully employed to derive robust stability and
error estimates for phase field models, cf. [FP03, KNS04, Bar05, BMO09]. In particular, the
time-averaged principal eigenvalue of the linearized Allen-Cahn operator about the exact or
approximate solution enters such estimates exponentially and thus logarithmic bounds for
this quantity lead to useful estimates, cf. [BMO09]. For the smooth evolution of developed
interfaces it is known that the eigenvalue remains uniformly bounded [AF93, Che94, dMS95]
while for topological changes it attains the square of the inverse of the interface thickness.
Numerical experiments in [BMO09] indicate that the principal eigenvalue grows like 1/|t|,
t < 0, prior to a topological change at t = 0. Hence, an integration of it in time leads to a
logarithmic bound.

For the mean curvature flow

V = −H
with a sphere of radius

√
2 at t = −1 as initial data, the evolution is defined through

Ṙ = −1/R, i.e., R(t) =
√

2|t|1/2 for −1 ≤ t < 0. The linearization of H in the class of circles
is given by

H ′(t) = −1/R(t)2 = −(1/2)|t|−1.

Since the Allen-Cahn problem approximates the mean curvature flow as the interface thick-
ness tends to zero [Ilm93, BP95] we expect that a similar bound holds for the principal
eigenvalue of the linearized Allen-Cahn operator. We adopt the techniques of [Che94] to
give a proof of this statement under the following assumption.

Assumption A. The solution φε of the Allen-Cahn problem in (−T, 0) × B2 with B2 :=
B2(0) ⊂ R2, i.e., the function φε that satisfies

∂tφε −∆φε = −ε−2f(φε),

with f(u) := 2(u2 − 1)u and 0 < ε < 1, is for t ≤ −ε2 log(ε−1) given by

(1.1) φε(r, t) = tanh
(
(r −

√
2|t|1/2)/ε

)
+ ε2qε(r, t)
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with a function qε that satisfies

(1.2) |qε(r, t)| ≤ c0|t|−1.

This assumption is motivated by the expansion φε(x, t) = tanh(d/ε)+ε2H2ξ(d/ε)+O(ε3)
with d denoting the signed distance to the interface, cf. [PV92, BP95], is confirmed by numer-
ical experiments reported in Appendix A below, and is exptected to be justifiable rigorously
by an appropriate construction of super- and subsolutions. The assumption enables us to
prove the asserted result.

Theorem 1.1. Suppose that Assumption A holds. Then the estimate

λAC(t) := inf
06=ψ∈H1(B2)

∫
B2
|∇ψ|2 + ε−2f ′

(
φε(r, t)

)
ψ2dx

‖ψ‖2
L2(B2)

≥ −CAC |t|−1

holds for t ∈ [−T,−ε2 log(ε−1)] with an ε-independent constant CAC ≥ 0.

Remarks 1.1. (i) Terms of order ε can be included if one restricts to t ∈ [−T,−ε2 log(ε−1)2].
This however is not sufficient to prove robust stability estimates.
(ii) The arguments also apply to the linearized Cahn-Hilliard operator, cf. [Che94].
(iii) The same lower bound is expected to hold in three space dimensions.
(iv) Since interfaces become circular in two-dimensional Allen-Cahn evolutions, cf. [GH86],
the considered situation is generic.
(v) An equivalent statement is to say that λAC(t) ≥ −cH2

m(t), where Hm(t) is the maximal
curvature of the interface.

2. Allen-Cahn profile on a bounded interval

Given t ≤ −ε2 log(ε−1) we consider the operator

L0
ε,t := −d2/dz2 + f ′(θ0) in Iε,t := (−|t|1/2/(

√
2ε), 1/ε)

subject to homogeneous Neumann boundary conditions on ∂Iε,t and define

L0
ε,t(Φ,Ψ) :=

∫
Iε,t

Φ′Ψ′ + f ′(θ0)ΦΨdz

for Φ,Ψ ∈ H1(Iε,t). The function θ0(z) := tanh(z) = (ez − e−z)/(ez + e−z) solves

−θ′′ + f(θ) = 0, θ(0) = 0, lim
z→±∞

θ(z) = ±1.

Moreover, θ′0(z) = 1/cosh2(z) and θ′′0(z) = −2 sinh(z)/cosh3(z) satisfy

(2.1) 0 < θ′0(z) ≤ 4e−2|z| and |θ′′0(z)| ≤ 8e−2|z|.

Lemma 2.1. The principal eigenvalue λ0
1 of L0

ε,t satisfies

−c4e
−(1+2

√
2)|t|1/2/ε ≤ λ0

1 = inf
06=Ψ∈H1(Iε,t)

L0
ε,t(Ψ,Ψ)

‖Ψ‖2
L2(Iε,t)

≤ c1e
−2
√

2|t|1/2/ε,

where c1, c4 > 0 are ε-independent constants.
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Proof. The shifted operator L0
ε,t + maxIε,t |f ′(θ0)| is self-adjoint and positive definite so that

−maxIε,t |f ′(θ0)| ≤ λ0
1. Integration by parts, L0

ε,tθ
′
0 = (−θ′′0 + f(θ0))′ = 0, and (2.1) show

(2.2) λ0
1 ≤ β2L0

ε,t(θ
′
0, θ
′
0) = β2θ′0θ

′′
0 |

1/ε

−|t|1/2/(
√

2ε)
≤ β264e−4|t|1/2/(

√
2ε) =: c1e

−2
√

2|t|1/2/ε,

where we used that |t|1/2/(
√

2ε) ≤ 1/ε and defined β2 := ‖θ′0‖−2
L2(Iε,t)

≤ 1. Set m :=

max{f ′(−1), f ′(1)} = 4 and let a0 > 0 be such that f ′(θ0(z)) ≥ 3m/4 for all |z| ≥ a0.
Since a0 is independent of ε we may assume that ±(a0 + 1) ∈ Iε,t. Owing to (2.2) we may
assume that λ0

1 ≤ m/4. Then, the positive eigenfunction Ψ0
1 satisfies

−(Ψ0
1)′′ + (f ′(θ0)− λ0

1)Ψ0
1 = 0,

with f ′(θ0)−λ0
1 ≥ m/2 in Iε,t\[−a0, a0]. Since ‖Ψ0

1‖L2(Iε,t) = 1 we may choose a′0 ∈ [a0, a0 +1]
such that Ψ0

1(±a′0) ≤ 1. A comparison argument with the functions

Φ+(z) :=: Ψ(a′0)
cosh

(
c(1/ε− z)

)
cosh

(
c(1/ε− a′0)

) , Φ−(z) := Ψ(−a′0)
cosh

(
c(|t|1/2/(

√
2ε) + z)

)
cosh

(
c(|t|1/2/(

√
2ε)− a′0)

) ,
where c =

√
m/2, shows that Ψ0

1(z) ≤ Φ+(z) for z ≥ a′0 and Ψ0
1(z) ≤ Φ−(z) for z ≤ −a′0, cf.

Lemma B.1 for details. We thus deduce that for z ∈ Iε,t \ [−(a0 + 1), a0 + 1] we have

Ψ0
1(z) ≤ Φ±(z) ≤ 2e−c|z|eca

′
0 ≤ 2e−c|z|ec(a0+1) =: c2e

−
√

2|z|.

This, integration by parts, L0
ε,tθ
′
0 = 0, and (2.1) imply

λ0
1

∫
Iε,t

Ψ0
1θ
′
0dz =

∫
Iε,t

(L0
ε,tΨ

0
1)θ′0dz = θ′′0Ψ0

1|
1/ε

−|t|1/2/(
√

2ε)
≥ −16c2e

−(
√

2+4)|t|1/2/(
√

2ε).

It remains to prove a lower bound for
∫
Iε,t

Ψ0
1θ
′
0dz. Since θ′0 > 0 it suffices to show that Ψ0

1 is

uniformly bounded from below in (−a∗, a∗) for some a∗ independent of ε. Since ‖Ψ0
1‖L2(Iε,t) =

1 and Ψ0
1(z) ≤ c2e

−
√

2|z|, |z| ≥ a0 + 1, there exists an ε-independent number a∗ > 0 such that∫ a∗

−a∗
|Ψ0

1(z)|2dz ≥ 1/2.

The coefficients of L0
ε,t − λ0

1 are uniformly bounded so that an application of Harnack’s
inequality, cf. , e.g., [GT01], to the identity

(L0
ε,t − λ0

1)Ψ0
1 = 0 in (−a∗ − 1, a∗ + 1)

implies the existence of a constant c3 > 0 such that

inf
z∈(−a∗,a∗)

Ψ0
1(z) ≥ c3 sup

z∈(−a∗,a∗)
Ψ0

1(z) ≥ c3

( 1

2a∗

∫ a∗

−a∗
(Ψ0

1)2dz
)1/2

≥ c3
1

(4a∗)1/2
.

This proves λ0
1 ≥ −c4e

−(1+2
√

2)|t|1/2/ε and finishes the proof. �
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3. Reduction to the one-dimensional situation

Under the assumptions on φε stated in Assumption A, the estimation of λAC reduces to a
one-dimensional problem. For ψ ∈ C1(B2) we have∫

B2

ε|∇ψ|2 + ε−1f ′(φε)ψ
2dx ≥ 2π

∫ 1+
√

2|t|1/2

|t|1/2/
√

2

(
ε|ψr|2 + ε−1f ′(φε)ψ

2
)
rdr.

The transformation z = (r −
√

2|t|1/2)/ε and the rescaling Ψ(z) := ε1/2ψ(r) lead to∫
B2

ε|∇ψ|2 + ε−1f ′(φε)ψ
2dx

≥ 2π

ε

∫
Iε,t

(
|Ψz|2 + f ′(φ̃ε)Ψ

2
)
J̃(z)dz =:

2π

ε
Lε,t(Ψ,Ψ),

(3.1)

where Iε,t =
(
− |t|1/2/(

√
2ε), 1/ε

)
, J̃(z) = εz +

√
2|t|1/2, and φ̃ε(z, t) = φε(εz +

√
2|t|1/2) =

θ0(z) + ε2q̃ε(z, t) with q̃ε(z, t) = qε(εz +
√

2|t|1/2, t). Since

‖ψ‖2
L2(B2) ≥ 2π

∫ 1+
√

2|t|1/2

|t|1/2/
√

2

ψ2rdr = 2π

∫
Iε,t

Ψ2J̃(z)dz

Theorem 1.1 follows from the next lemma.

Lemma 3.1. For t ∈ [−T,−ε2 log(ε−1)] the principal eigenvalue λ1 of Lε,t defined in (3.1)
satisfies

−c8ε
2|t|−1 ≤ λ1 = inf

0 6=Ψ∈H1(Iε,t)

Lε,t(Ψ,Ψ)

‖ΨJ̃1/2‖2
L2(Iε,t)

≤ c6ε|t|−1,

where c6, c8 > 0 are ε-independent constants.

Proof. Let Ψ ∈ H1(Iε,t) and define Ψ̂ := J̃1/2Ψ. Noting ΨzJ̃
1/2 = Ψ̂z − εJ̃−1Ψ̂/2, where

J̃−1 := 1/J̃ , we deduce

Lε,t(Ψ,Ψ) =

∫
Iε,t

Ψ̂2
z + f ′(φ̃ε(z, t))Ψ̂

2dz +
ε2

4

∫
Iε,t

J̃−2Ψ̂2dz − ε
∫
Iε,t

J̃−1Ψ̂Ψ̂zdz

= L0
ε,t(Ψ̂, Ψ̂) +

∫
Iε,t

(
f ′(φ̃ε(z, t))− f ′(θ0(z))

)
Ψ̂2dz +

ε2

4

∫
Iε,t

J̃−2Ψ̂2dz − ε

2

∫
Iε,t

J̃−1(Ψ̂2)zdz.

A Taylor expansion of the quadratic function f ′ about θ0 shows

(3.2) f ′
(
φ̃ε(z, t)

)
− f ′

(
θ0(z)

)
= ε2f ′′(θ0)q̃ε + f ′′′(θ0)(ε2q̃ε)

2/2 =: ε2rε

with |rε| ≤ c5|t|−1 owing to (1.2). An integration by parts and (J̃−1)z = −J̃−2ε lead to

−
∫
Iε,t

J̃−1(Ψ̂2)zdz = −ε
∫
Iε,t

J̃−2Ψ̂2dz − J̃−1Ψ̂2|1/ε−|t|1/2/(
√

2ε)
.

This implies

Lε,t(Ψ,Ψ) = L0
ε,t(Ψ̂, Ψ̂) + ε2

∫
Iε,t

rεΨ̂
2dz − ε2

4

∫
Iε,t

J̃−2Ψ̂2dz − ε

2
J̃−1Ψ̂2|1/ε−|t|1/2/(

√
2ε)
.(3.3)
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We conclude with (2.1) and (2.2) that

λ1 = inf
‖ΨJ̃1/2‖L2(Iε,t)

=1
Lε,t(Ψ,Ψ) ≤ Lε,t(βJ̃

−1/2θ′0, βJ̃
−1/2θ′0)

≤ β2L0
ε,t(θ

′
0, θ
′
0) + c5ε

2|t|−1 + β2 ε

2

(
θ′0(−

√
2|t|1/2/(2ε))

)2 ≤ c6ε|t|−1,

where we used that e−2
√

2|t|1/2/ε ≤ 1 for ε sufficiently small. Let Ψ1 be the positive eigen-
function corresponding to λ1 with ‖Ψ1J̃

1/2‖L2(Iε,t) = 1 and note that Ψ1 satisfies

−J̃−1 d

dz

(
J̃
d

dz
Ψ1

)
+ f ′(φ̃ε(z, t))Ψ1 = λ1Ψ1

in Iε,t. We may assume that λ1 ≤ m/4, and f ′(φ̃ε(z, t)) ≥ 3m/4 for z ≥ a0 with an
ε-independent number a0 > 0 such that a0 + 1 ≤ 1/ε. Let a′0 ∈ [a0, a0 + 1] such that
Ψ1(a′0)J̃1/2(a′0) ≤ 1. Employing the comparison function

Φ(z) = Ψ1(a′0)
cosh

(
c(1/ε− z)

)
cosh(c(1/ε− a′0)

) ,
where c =

√
m/2, we deduce that, cf. Lemma B.2 for details,

Ψ1(z) ≤ c7e
−
√

2zJ̃−1/2(a′0).

With Ψ̂1 := J̃1/2Ψ1 we deduce from (3.3) and Lemma 2.1 that

λ1 = Lε,t(Ψ1,Ψ1) ≥ L0
ε,t(Ψ̂1, Ψ̂1)− c5ε

2|t|−1 − ε2

4
sup
z∈Iε,t

J̃−2(z)− ε

2

(
Ψ1(1/ε)

)2

≥ λ0
1 − c5ε

2|t|−1 − ε2|t|−1 − c7εe
−2
√

2/εJ̃−1(a′0) ≥ −c8ε
2|t|−1,

provided that ε is sufficiently small so that e−2
√

2/εJ̃−1(a′0) ≤ ε. �

Remark 3.1. For t ≤ −ε2 log(ε−1)2 the upper bound λ1 ≤ c6ε
2|t|−1.

Appendix A. Experimental verification of Assumption A

For a triangulation T of B2 with mesh-size h ∼ 2−8 we approximated the Allen-Cahn
problem with a semi-implicit time-stepping scheme with step-size τ = h/10 for the initial
data u0(r) = tanh

(
(r −

√
2|t0|1/2)/ε at t0 = −1/4. In Figure 1 we plotted for ε = 2−`,

` = 2, 3, 4, 5 the quantity

ηε(t) := ε−2 max
z∈N

∣∣uh(z, t)− tanh
(
(|z| −

√
2|t|1/2)/ε

)∣∣,
where N denotes the set of nodes in the triangulation T . The results show that ηε(t) ≤ c|t|−1

and thus justify Assumption A.
5
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Figure 1. Experimental bounds on the second order term in the asymptotic expansion.

Appendix B. Comparison principles

Lemma B.1. a) Let a < b, set I := (a, b) ⊆ R, let p, q ∈ C(I), and suppose p ≥ q ≥ 0.
Assume Ψ,Φ ∈ C2(R), satisfy Ψ ≥ 0, Ψ(a) = Φ(a), Ψ′(b) = Φ′(b) = 0, and

−Ψ′′ + pΨ = 0, −Φ′′ + qΦ = 0 in I.

Then Ψ ≤ Φ. The same conclusion holds if Ψ(b) = Φ(b) and Ψ′(a) = Φ′(a) = 0.
b) Let a < b set I+ := (a, b) and I− := (−b,−a). For ψ ∈ C(R) and c ≥ 0 the functions
Φ± : I± → R, defined by

Φ± : z 7→ Ψ(±a)
cosh(c(b∓ z))

cosh(c(b− a))

satisfy Φ±(±a) = Ψ(±a), Φ′±(±b) = 0, and −Φ′′± + c2Φ± = 0 in I±. For z ∈ I± we have

(B.1) |Φ±(z)| ≤ 2|Ψ(±a)|e−c|z|eca.

Proof. a) The function E := Ψ − Φ satisfies E(a) = 0, E ′(b) = 0, and −E ′′ + qE ≤ 0
in I. Suppose there exist a ≤ α < β ≤ b such that E|(α,β) > 0 and E(α) = E(β) = 0.
Then E ′(α) > 0 and E ′(β) ≤ 0 contradict E ′′ ≥ qE ≥ 0 in (α, β), i.e., the fact that E ′ is
monotonically increasing in (α, β). Hence, E ≤ 0, i.e., Ψ ≤ Φ. The second case is analogous.
b) The identities follow from cosh′′ = cosh and sinh(0) = 0. The estimates are consequences
of the bounds

(B.2)
cosh(c(b∓ z))

cosh(c(b− a))
=
ec(b∓z) + e−c(b∓z)

ec(b−a) + e−c(b−a)
=
e∓czecb

e−caecb

(1 + e−2c(b∓z)

1 + e−2c(b−a)

)
≤ 2e∓czeca,

where we used e−2c(b∓z) ≤ 1 for z < b and −b < z, respectively. �
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Lemma B.2. Let a < b such that I = (a, b) ⊆ Iε,t :=
(
− |t|1/2/(

√
2ε), 1/ε

)
, p ∈ C(I), and

c ≥ 0 such that p ≥ c2. Let Ψ ∈ C2(I) be non-negative with Ψ′(b) = 0 and

−J̃−1 d

dz

(
J̃
d

dz

)
Ψ + pΨ = 0

in I, where J̃−1 = 1/J̃ with J̃(z) = εz +
√

2|t|1/2. Then, Ψ(z) ≤ 2Ψ(a)e−czeca.

Proof. Defining

Φ : I → R, z 7→ Ψ(a)
cosh(c(b− z))

cosh(c(b− a))
.

we have −Φ′′ + c2Φ = 0, Φ(a) = Ψ(a), and Φ′(b) = 0. With J̃z = ε and Φ′ ≤ 0, J̃ > 0 in I
we deduce

−J̃−1 d

dz

(
J̃
d

dz

)
Φ + c2Φ = −εJ̃−1Φ′ − J̃−1J̃Φ′′ + c2Φ = −εJ̃−1Φ′ ≥ 0.

Since p ≥ c2 and Ψ ≥ 0 the function E := Ψ− Φ satisfies

−J̃−1 d

dz

(
J̃
d

dz

)
E + c2E = εJ̃−1Φ′ ≤ 0

and E(a) = 0, E ′(b) = 0. Suppose that (α, β) ⊆ I is maximal with E|(α,β) > 0. Then, since

J̃ > 0 we have J̃(α)E ′(α) > 0 and J̃(β)E ′(β) ≤ 0. This contradicts

d

dz
(J̃E ′) =

d

dz

(
J̃
d

dz

)
E ≥ J̃c2E ≥ 0

and shows that E ≤ 0, i.e., Ψ ≤ Φ. The proof of the estimate follows from (B.2). �
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