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VORTEX MOTION FOR THE LANDAU-LIFSHITZ-GILBERT
EQUATION WITH SPIN TRANSFER TORQUE

MATTHIAS KURZKE, CHRISTOF MELCHER, AND ROGER MOSER

Abstract. We study the Landau-Lifshitz-Gilbert equation for the dynamics
of a magnetic vortex system. We include the spin-torque effects of an applied

spin current, and rigorously derive an equation of motion (“Thiele equation”)

for vortices if the current is not too large. Our method of proof strongly utilizes
the geometry of the problem in order to obtain the necessary energy estimates.

1. Introduction

1.1. Physical background. In the usual model of micromagnetics [23, 16], a fer-
romagnet is described by a domain Ω ⊂ R3 representing the ferromagnetic sample,
and its magnetization m : Ω→ S2, a unit vector field. The time evolution of such
a magnetization is described by the Landau-Lifshitz-Gilbert (LLG) equation [11]:

(1)
∂m

∂t
= m×

(
α
∂m

∂t
− heff

)
.

Here × denotes the cross product in R3 and heff the effective field, i.e., the negative
L2 gradient of the (free) energy of m, and α > 0 the Gilbert damping constant, a
(small) dimensionless parameter.

In the presence of a spin-polarized current, (1) has to be modified by taking into
account the so-called spin-transfer torque. This leads to the modified equation

(2)
∂m

∂t
+ (v · ∇)m = m×

(
α
∂m

∂t
− heff + β(v · ∇)m

)
,

where v is the direction of the current and β another dimensionless parameter of
size comparable to α. This form of the LLG equation has been derived by Zhang-Li
[43] and Thiaville et al. [37].

In certain thin-film regimes such as nanodots, the magnetization is mostly con-
tained in the film plane. An interesting feature of such systems is the emergence
of vortices, small regions where the magnetization turns out of plane and around
which the in-plane part has a nonzero winding number. Such vortices carry two
bits of information, the direction of winding and the polarity (i.e., the direction
of the out-of plane component). They have been proposed as a possible means
of magnetic data storage and have received much recent attention, especially as
the polarity can be easily switched using magnetic fields [41] or applied currents
[26]. As another field of possible applications for current-driven vortex motion, we
mention the engineering of nanoscale microwave oscillators [30].

The motion of concentration phenomena under (1) has been described by Thiele
[38] using a system of ODEs that was later adapted to vortex motion by Huber
[15]. A spin-transfer term as in (2) can be easily addeded to these ODEs [37]. The
resulting system for vortices with trajectories t 7→ aj(t) ∈ Ω (j = 1, . . . d) reads

Fj +Gj × (ȧj − v)− π(α0ȧj − β0v) = 0

with interaction forces Fj = Fj(a1, . . . , ad), gyro-vectors Gj = 4πqj ê3, depending
only on the topological index qj = ± 1

2 of the vortex (which is half of the product
1
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of winding number and polarity), and with effective constants α0, β0 > 0 (for
a ∈ R2 ≡ C, the notation ê3 × a means −ia). This system was analyzed in the
case of periodic forcing in [18]. For a review of various theoretical and experimental
approaches to vortex dynamics (the brief paragraphs above should not be seen as
an attempt to do the extensive physical literature on this topic justice), we refer to
[3].

In previous joint work with Spirn [21], we have rigorously derived a Thiele equa-
tion from (1) in the limit of small vortex size, for an exchange-dominated model
energy. The aim of the present paper is to generalize this result to the LLG equation
with spin transfer torque terms (2). Our results show that vortices can be manipu-
lated using spin currents. In particular, spin currents allow us to move the vortices
out of their equilibrium positions and to achieve nonequilibrium initial conditions
for the current-free problem as studied in [21].

1.2. Mathematical setting and results. As an approximation of the physical
micromagnetic (free) energy functional we will use the energy

(3) Eε(m) =
ˆ

Ω

eε(m) dx

under Dirichlet boundary conditions m = g on ∂Ω. Here Ω is a smooth and simply
connected bounded domain in R2 and the energy density eε(m) is given for a map
m = (m1,m2,m3) ∈ H1(Ω;S2) by

(4) eε(m) =
1
2
|∇m|2 +

1
2ε2

m2
3.

For the boundary condition, we assume that g ∈ C∞(∂Ω;S1 × {0}) is a fixed map
of degree d ≥ 1. For the physical meaning of the functional and a justification the
boundary condition, we refer to [21, Section 7].

We first sketch some static theory of this energy functional. As ε↘ 0, a sequence
of mε that satisfies the boundary condition mε = g will have divergent energy, since
for topological reasons no continuous map with m3 ≡ 0 can satisfy the boundary
conditions. The same is true for maps of bounded energy; more precisely, one can
show

Eε(mε) ≥ dπ log
1
ε
− C.

Given an upper bound matching this one up to a constant, for example for a
sequence of minimizers, one obtains convergence of the rescaled energy density:

1
log 1

ε

eε(mε)→ π

d∑
`=1

δa` as ε↘ 0

in the sense of distributions, for some points a = (a1, . . . , ad) ∈ Ωd.
Formally, one expects that mε will satisfy mε3 ≈ 0 outside a small region near

the concentration points of the energy, and will cover one hemisphere of S2 in such
a small region. Therefore, one expects that concentration points of the energy are
also concentration points of the magnetic vorticity ω0(m), which is defined as

ω0(m) =
〈

m,
∂m

∂x1
× ∂m

∂x2

〉
.

Here 〈 · , · 〉 denotes the scalar product in R3. As ω0(m) is the signed area element
of m as a map into S2, a cover of a hemisphere will contribute ±2π to the vorticity.
Additionally, m could cover the full sphere several times inside a small region in
Ω, each covering yielding a contribution of ±4π. Under certain conditions on the
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energy, the latter can be shown not to happen, though, and we will mostly deal
with mε such that

ω0(mε)→ 4π
d∑
`=1

q`δa`

in the sense of distributions, with weights q` ∈ {± 1
2}. The convention to use half-

integers here represents the idea that a hemisphere corresponds to half a covering
of S2 and thus to an S2 degree or skyrmion number of ± 1

2 .
Although the energy Eε(mε) diverges for any choice of mε, it is still possible

to obtain a dependence of the energy on a configuration of points a ∈ Ωd with
ak 6= a` for k 6= `. This is done by subtracting the core energy of the d vortices,
each of which carries a typical energy of π log 1

ε +γ, where γ is a universal constant
related to the core profile. The limit of the optimal energy after subtracting the
core energies is denoted as W (a); this is the renormalized energy discussed in [4].

Related to the renormalized energy is the notion of energy excess of a map m
relative to a vortex configuration a,

Dε(m; a) = Eε(m)− (πd log
1
ε

+ dγ +W (a)).

It can be shown that lim infε↘0Dε(mε; a) ≥ 0 if 1
log 1

ε

eε(mε) → π
∑d
`=1 δa` as

ε ↘ 0, which is essentially the lower bound part of a Γ-convergence result. A
matching upper bound also holds.

For a fully rigorous discussion of the results sketched above, we refer to [21,
Section 2].

We turn to dynamics. Our object of study is the equation

(5)
∂m

∂t
+∇vm = m×

(
αε
∂m

∂t
+ βε∇vm− f ε(m)

)
,

where f ε is the negative L2 gradient of Eε,

f ε(m) = ∆m + |∇m|2m− 1
ε2

(m3e3 −m2
3m),

and the coefficients αε and βε satisfy

αε log
1
ε
→ α0 > 0 and βε log

1
ε
→ β0 ∈ R as ε↘ 0.

The notation ∇v denotes the operator (v · ∇), and the vector field v is assumed to
satisfy v(t) = λ(t)w for some fixed w ∈ S1 and a bounded function λ ∈ C∞([0,∞)).

We also consider the system of ODEs

(6) 4πq`i (ȧ` − v) + π (α0ȧ` − β0v) +
∂W (a)
∂a`

= 0 (` = 1, . . . , d),

which has a global solution satisfying ak(t) 6= a`(t) for all k 6= ` and all t > 0 if this
is true for t = 0.

To study solutions of (5) as ε ↘ 0, we need initial data m0
ε . We assume that

m0
ε ∈ C∞(Ω;S2) with m0

ε = g on ∂Ω. Furthermore, we assume that there exists
an a0 ∈ Ωd with a0

k 6= a0
` for k 6= ` such that

αεeε(m0
ε)→ α0π

d∑
`=1

δa0
`

and ω0(m)→ 4π
d∑
`=1

q`δa0
`

in the sense of distributions, and such that

lim
ε↘0

Dε(m0
ε ; a

0) = 0.
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The latter condition means that the energy of the initial data is almost minimal
given the vortex positions. The existence of such initial data can be inferred simi-
larly as in [13, 17].

Now we can formulate our main result, which is that the motion of the concen-
tration points of energy density and vorticity can be described by the ODE, and
additionally, that the flow does not develop singularities.

Theorem 1. There exists a number L0 > 0 with the following property: For every
T∗ > 0, there exists an ε0 > 0 such that for every ε ∈ (0, ε0] and every λ ∈
C∞([0,∞)) with ‖λ‖L∞ < L0, there is a smooth solution mε ∈ C∞([0, T∗) ×
Ω;S2) of (5) with mε(0, · ) = m0

ε and mε(t, · )|∂Ω = g for every t ≥ 0. Let
a ∈ C∞([0,∞); Ωd) be the solution of (6) with a(0) = a0. Then for every t ∈ [0, T∗),

αεeε(mε(t, · ))→ πα0

d∑
`=1

δa`(t) and ω0(mε(t, · ))→ 4π
d∑
`=1

q`δa`(t)

as ε↘ 0, in the sense of distributions.

For the proof of this result, many of the arguments are the same as for the v = 0
case treated in a previous work [21]. We generally do not repeat these arguments;
some of the proofs in this paper are therefore not self-contained.

There are two new aspects, though. First, the spin current typically brings
energy into the system, which needs to be estimated. The magnitude of this con-
tribution is such that a simple estimate of the corresponding terms by their moduli
is not sufficient. We use geometric observations here to achieve a better control,
see Theorem 2. Second, we need additional information about the convergence of
the quantity αε

〈
∂mε

∂t ,∇mε

〉
as ε tends to 0. This was not available previously, and

is obtained by testing the natural energy identity associated to the LLG equation
with a time-dependent test function (see Theorem 3 below). Being able to control
this term also allows us to simplify the derivation of the vortex motion law some-
what compared to the approach in [21]. This is done in Section 5, were we first
show that the motion law holds locally in time, and then deduce the full statement
of Theorem 1.

1.3. Related mathematical work. The energy functional (3)–(4) is closely re-
lated to the Ginzburg-Landau functional

Egl(u) =
ˆ

Ω

(
1
2
|∇u|2 +

1
4ε2

(1− |u|2)2

)
dx

for u ∈ H1(Ω; C), which has been widely studied since Bethuel-Brezis-Hélein [4]. A
few works also concern our energy functional: Static results for minimizers under
certain condition have been obtained in [13], [2] and [33]. For dynamics, the un-
damped Schrödinger type problem was studied in [25]; the problem with damping
was examined in [21]. (The result in [21] is stated under the assumption that q` = 1

2
for ` = 1, . . . , d, but this assumption is never used).

In the context of the Ginzburg-Landau functional, an analogous vortex motion
law for hybrid Schrödinger and gradient flow type dynamics has been derived in-
dependently by Miot [28] for vortices in the whole space and by the authors and
Spirn [20] in the setting of a bounded domain. The latter result was generalized
to the gauged Ginzburg-Landau functional for superconductivity in small applied
fields by Kurzke-Spirn [22]; the analogous result in large applied fields is due to
Serfaty-Tice [35], who also add an applied current.

There are some similarities between our results here and those of Tice [39] and
Serfaty-Tice [35] in the context of applied currents in superconductors. There, the
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applied current enters the equation as a boundary condition, but using a clever
choice of gauge, it can be viewed instead as a term similar to the one studied here.

The crucial difference between the two problems lies in the properties of the
vorticity for maps into C and S2, respectively. In the classical Ginzburg-Landau
theory used for superconductors, it is described by the Jacobian J . This is an ideal
tool for encoding vortex degrees, and accordingly it has been studied in great detail
in this context. In particular there are good compactness results for the Jacobian
in space-time [34, 1].

For the S2-valued problem, the vorticity is described by ω0(m) in space-time.
This is primarily a tool for measuring S2-degrees, and even though it does give some
information about the degree of vortices as studied here, it is difficult to separate
the two. This fact is also reflected in the possibility of different skyrmion numbers
even for vortices of the same degree.

A corresponding space-time compactness result is not available for the vorticity
ω0(m), nor indeed can it be expected. The powerful “product estimate” of Sandier-
Serfaty [34], which is exploited to great effect in [39, 35], is not available, either.
We use more geometric tools instead to control the vorticity. This method does
not permit currents with arbitrary space dependence, and therefore we study only
currents that are constant in space.

Another consequence of the different target geometry is the possibility of sin-
gularities for the LLG equation. Under the conditions studied here, we can rule
out singularities by energy considerations, but this is only due to the well-prepared
initial data.

Finally, for other mathematical works studying the motion of singularities in
ferromagnets, we mention [6, 27] for the motion of Néel walls and [19, 29] for
boundary vortices.

2. Mathematical tools

In this section we explain some of the notions used in the introduction in more
detail and introduce other tools that are useful for the study of our problem.

2.1. Notation. We begin with some notation. We use the differential operators
∇ = ( ∂

∂x1
, ∂
∂x2

) and ∇⊥ = (− ∂
∂x2

, ∂
∂x1

). Recall that we have a fixed vector field
v = λw, where w ∈ S1 is constant and λ ∈ C∞([0,∞)). We also write ∇v =
v1

∂
∂x1

+ v2
∂
∂x2

. Let
L = sup

0≤t<∞
|λ(t)|.

We wish to prove results for small values of L only. Thus we can safely assume that
L ≤ 1 throughout the paper.

Suppose that we have d points a1, . . . , ad ∈ Ω and let a = (a1, . . . , ad). We define

ρ(a) = min
{

1
2

min
k 6=`
|ak − a`|, min

`=1,...,d
dist(a`, ∂Ω)

}
.

If x ∈ R2 and r > 0, then Br(x) denotes the open unit disk in R2 with center x
and radius r. Furthermore, we write

Ωr(a) = Ω\
d⋃
`=1

Br(a`) and Ω0(a) = Ω\{a1, . . . , ad}.

We use the notation δx for the Dirac measure centered at x, and

δa =
d∑
`=1

δa` .
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We frequently identify R2 with the complex plane C, because this allows more
convenient notation.

We work with scalar products in three different spaces, and we use different
symbols in order to distinguish them. In R2, regarded as a tangent space of Ω,
we use a dot. Tangent spaces of S2 inherit a scalar product from R3, and this is
denoted by 〈 · , · 〉. Finally, we often identify R2 with the subspace R2 × {0} of R3

and consider projections onto it. Then we write ( · , · ) for the scalar product.

2.2. Energy density and vorticity. Suppose that we have a map m : Ω → S2.
We now have a closer look at the energy density eε(m) and the vorticity ω0(m).
Note that ω0 is a Jacobian for S2-valued maps, and it replaces the Jacobian

J(u) =
∂u1

∂x1

∂u2

∂x2
− ∂u2

∂x1

∂u1

∂x2

for a function u : Ω → C that plays such an important role in the usual theory of
Ginzburg-Landau vortices. In some cases, it is convenient to consider the projec-
tion m of m onto R2, and then we also use J(m). Note also that J has another
representation involving the quantity

j(u) = (iu,∇u),

namely J(u) = 1
2 curl j(u).

When we have a map m : (0, T ) × Ω → S2 (where the variable t ∈ (0, T ) is
typically interpreted as time), then we also have a space-time vorticity, which is
most conveniently represented as a differential form. We define

ω1(m) =
〈

m× ∂m

∂x2
,
∂m

∂t

〉
and ω2(m) =

〈
m× ∂m

∂t
,
∂m

∂x1

〉
,

and then we set

ω(m) = ω0(m)dx1 ∧ dx2 + ω1(m)dx2 ∧ dt+ ω2(m)dt ∧ dx1.

It is readily checked that ω(m) has a vanishing exterior derivative if m has con-
tinuous second derivatives. That is, we have dω(m) = 0. Essentially the same
tool has been introduced previously by Brezis, Coron, and Lieb [5] in connection
with singular harmonic maps and minimal connections of defects in three spatial
dimensions.

It will be important for our arguments to keep track of how the energy density
and the (spatial) vorticity evolve in time. If m is sufficiently smooth, then we
compute

(7)
∂

∂t
eε(m) = div

〈
∂m

∂t
,∇m

〉
−
〈
∂m

∂t
, fε(m)

〉
.

The equation dω(m) = 0 can also be expressed as

(8)
∂

∂t
ω0(m) = curl

〈
m× ∂m

∂t
,∇m

〉
.

The right hand sides can of course be rewritten once we use the LLG equation to
substitute the appropriate expressions for ∂m

∂t .
The following formulas will also be useful.

Lemma 1. For m ∈ C2(Ω;S2),

ω0(m) = 3m3J(m) + curl(m2m3∇m1 −m1m3∇m2)

and
J(m) = m3ω0(m).
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Proof. The first identity is verified by a direct calculation. For the second, we
observe that

J(m) = (m2
1 +m2

2 +m2
3)J(m).

Furthermore,

m2
1J(m) =

1
2
m1

∂

∂x1
m2

1

∂m2

∂x2
− 1

2
m1

∂m2

∂x1

∂

∂x2
m2

1

= −1
2
m1

∂

∂x1
(m2

2 +m2
3)
∂m2

∂x2
+

1
2
m1

∂m2

∂x1

∂

∂x2
(m2

2 +m2
3)

= −m1m3
∂m3

∂x1

∂m2

∂x2
+m1m3

∂m2

∂x1

∂m3

∂x2
.

Similarly,

m2
2J(m) = −m2m3

∂m1

∂x1

∂m3

∂x2
+m2m3

∂m3

∂x1

∂m1

∂x2
.

Combining these formulas, the second identity follows as well. �

2.3. Renormalized energy. Next, we give a precise definition of the renormalized
energy W and the energy excess Dε. If we have an a ∈ Ωd comprising pairwise
distinct points and we consider a limiting configuration with vortices of degree 1 at
these points, then we can represent it as a map m : Ω0(a)→ S1 of the form

m(z) = eiθ(z)
d∏
`=1

z − a`
|z − a`|

.

The energetically most favorable limiting map satisfies the equation ∆θ = 0 in Ω.
This equation is complemented by Dirichlet boundary conditions for θ such that
(m, 0) = g on ∂Ω. We write m∗( · ; a) for the configuration with these properties,
and m∗( · ; a) = (m∗( · ; a), 0). When there is no danger of confusion, we often use
the shorthand notation m∗ = m∗( · ; a) and m∗ = m∗( · ; a). Note that m∗ can also
be characterized as the unique map Ω0(a)→ S1 satisfying the boundary conditions
and

div j(m∗) = 0,

curl j(m∗) = 2πδa

in Ω. The Dirichlet energy of m∗ is infinite, but since the asymptotic behavior
near the singularities is independent of the positions of these points, we can discard
the corresponding (infinite) energy contribution and thus calculate a renormalized
energy. This is

W (a) = lim
r↘0

(
1
2

ˆ
Ωr(a)

|∇m∗(x; a)|2 dx− dπ log
1
r

)
.

When we have a family of maps mε : Ω → S2, with mε = g on ∂Ω, converging
to m∗, then we can give an asymptotic lower bound for the energy Eε(mε). This
consists of the renormalized energy W (a) and an additional contribution for each
vortex of the amount

π log
1
ε

+ γ,

where γ is a constant and can be interpreted as the energy contained in each vortex
core. In order to calculate γ, we define

Iε = inf

{ˆ
B1(0)

eε(m) dx : m ∈ H1(B1(0);S2) with m(x) = (x, 0) on ∂B1(0)

}
.
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Then

γ = lim
ε↘0

(
Iε − π log

1
ε

)
.

For m ∈ H1(Ω;S2), we set

Wε(a) = W (a) + dπ log
1
ε

+ dγ

and
Dε(m; a) = Eε(m)−Wε(a).

It is shown in [21] that the development of vortices at the points a1, . . . , ad with
boundary data g is only possible if

lim inf
ε↘0

Dε(mε; a) ≥ 0.

With a standard construction going back to [4], it can also be shown that equality
is possible here. Thus Dε asymptotically measures the energy excess for a given set
of vortices.

Note that W coincides with the renormalized energy for the Ginzburg-Landau
theory (whereas Wε differs by a constant from the corresponding expression). Thus
we can use known results when we study this function. In particular, we have a
well-known expression for its gradient in terms of ∇m∗. If φ ∈ C∞0 (Ω) such that
∇⊥∇φ vanishes near the vortices, then we have [4, 8]

(9) π

d∑
`=1

∇⊥φ(a`) ·
∂

∂a`
W (a) = −

ˆ
Ω

∇⊥∇φ : (∇m∗ ⊗∇m∗) dx.

3. The Landau-Lifshitz-Gilbert equation

Recall that we study the LLG equation

(10)
∂m

∂t
+∇vm = m×

(
αε
∂m

∂t
+ βε∇vm− f ε(m)

)
.

This is equivalent to

(11) m× ∂m

∂t
+ m×∇vm + αε

∂m

∂t
+ βε∇vm = f ε(m).

In this section we study the equation for a fixed ε ∈ (0, 1
2 ]. As usual, we use Dirichlet

boundary data given by a smooth map g : ∂Ω→ S1×{0} with degree d and initial
data m0 ∈ H1(Ω;S2) with

(12) Eε(m0) ≤ dπ log
1
ε

+ C0.

3.1. Weak solutions and bubbling. The LLG equation is well understood, and
as long as we do not require estimates that are uniform in ε (which we eventually
will), we can use known results to describe the behavior of its solutions. Typically,
the equation is studied in a simplified form, and thus some of the arguments from
the literature need to be modified somewhat, but this is not difficult.

Consider first a smooth solution. Using the form (11) of the equation and taking
the scalar product with ∂m

∂t , we obtain

(13)
∂

∂t
eε(m) + αε

∣∣∣∣∂m∂t
∣∣∣∣2 − div

〈
∂m

∂t
,∇m

〉
+
〈

m×∇vm,
∂m

∂t

〉
+ βε

〈
∇vm,

∂m

∂t

〉
= 0.
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Integrating over Ω, we find

(14)
d

dt
Eε(m(t, · ))

= −
ˆ
{t}×Ω

(
αε

∣∣∣∣∂m

∂t

∣∣∣∣2 +
〈

m×∇vm,
∂m

∂t

〉
+ βε

〈
∇vm,

∂m

∂t

〉)
dx.

Using Young’s inequality, we derive an estimate of the form

d

dt
Eε(m(t, · )) +

αε
2

ˆ
{t}×Ω

∣∣∣∣∂m

∂t

∣∣∣∣2 dx dt ≤ cεEε(m(t, · ))

for a constant cε that depends on αε, βε, and L. Hence we obtain an estimate for
the growth of the energy, and in particular Eε(m(t, · )) cannot tend to infinity in
finite time as long as m remains smooth.

On the other hand, it must be expected that solutions blow up in finite time
in general. But with known arguments, we can construct weak solutions with
very good properties. These arguments were first used for the harmonic map heat
flow, which is the gradient flow for the Dirichlet functional and thus closely related
to the Landau-Lifshitz-Gilbert equation. In particular, Struwe [36] studied the
heat flow on surfaces without boundary and showed that there exist solutions with
only finitely many singularities. These results were generalized to domains with
boundary by Chang [7] and to a version of the Landau-Lifshitz-Gilbert equation by
Guo and Hong [12].

The essential observation in these papers is that the solutions remain smooth
as long as concentration of a certain amount of energy does not occur at a single
point in Ω. The proof uses above all two ingredients: a local version of the above
energy identity and estimates that imply regularity for solutions with small energy.
The latter is dependent on the fact that the nonlinearities in the equation are
critical with respect to the Sobolev space H1(Ω) (that is naturally associated to
the energy). For equation (10), the same arguments still work. We can obtain a
local energy identity from (13), and the additional nonlinearities are subcritical,
which is even better.

A consequence is that a certain amount of energy is lost at each singularity. Since
we have only a finite amount of energy available after a finite time, this means that
there can only be isolated singular points. That is, there exists a weak solution
m ∈ L∞loc([0,∞);H1(Ω;S2)) of (10) which is smooth away from isolated singular
points (ti, xi), i = 1, 2, . . ., in space-time.

The precise structure of the singularities has been examined in great detail by
a number of authors [9, 31, 42, 32, 24, 40] for the harmonic map heat flow; in par-
ticular, it has been shown by Qing [31] and by Ding and Tian [9] that all the lost
energy at a singularity goes into the development of so-called harmonic “bubbles”.
These are critical points of the Dirichlet energy (called harmonic maps) in R2, ob-
tained by rescaling a solution of the flow near a singularity and passing to the limit.
The relevant inequalities in this theory do not depend on the exact structure of the
equation, but mostly on L2-bounds for the L2-gradient of the corresponding energy.
Thus they can be used also in the case of equation (10). This gives very precise
information about the behavior of the energy density eε(m) and the vorticity ω(m)
near the singular points in terms of harmonic maps. Furthermore, harmonic maps
between R2 and S2 with finite energy are completely classified [10]. Combining
all this information, we can describe the behavior of our weak solution m at the
singularities as follows.



10 M. KURZKE, C. MELCHER, AND R. MOSER

For every i there exists an integer qi such that for every sufficiently small r > 0,

(15)
ˆ
{ti}×Br(xi)

eε(m) dx+ 4π|qi| ≤ lim inf
t↗ti

ˆ
{t}×Br(xi)

eε(m) dx

and

(16)
ˆ
{ti}×Br(xi)

ω0(m) dx+ 4πqi = lim
t↗ti

ˆ
{t}×Br(xi)

ω0(m) dx.

Here the number qi has a geometrical interpretation of the combined degree of all
bubbles at the given singularity. If there is no cancellation, then we even have
equality in the first formula.

When we study the solution in a time interval (t1, t2], then we only have to
consider the singularities with t1 < ti ≤ t2, of course. For this purpose, we use the
notation I(t1, t2) for the set of all these indices from now on.

Note that we do not have uniqueness of weak solutions of the LLG equation.
But among all weak solutions satisfying

lim sup
t↘t0

Eε(m(t, · )) ≤ E(m(t0, · ))

for every t0 ≥ 0, the weak solution examined above is unique [14]. Thus we call it
the energy decreasing solution (although, strictly speaking, this is a misnomer, as
energy may be brought into the system by the spin current).

3.2. A uniform energy estimate. The aim of this section is to prove the follow-
ing energy estimate.

Theorem 2. Let C1 > C0. Then there exist L0 > 0, ε0 > 0, and τ > 0 with
the following property. Suppose that m0 ∈ H1(Ω;S2) satisfies m0 = g on ∂Ω and
inequality (12). If L ≤ L0 and ε ≤ ε0, then the energy decreasing solution m of
(10) with initial data m0 and boundary data g satisfies

Eε(m(t0, · )) +
αε
2

ˆ t0

0

ˆ
Ω

∣∣∣∣∂m

∂t

∣∣∣∣2 dx dt ≤ dπ log
1
ε

+ C1

for every t0 ∈ [0, τ).

The proof of this result is based on an integration of (13) in space-time. The
subsequent estimate of one of the resulting expression requires the following formula.

Lemma 2. Consider the linear function φ(x) = w1x2 −w2x1 on R2. Suppose that
Ω ⊂

{
x ∈ R2 : a < φ(x) < b

}
. Then

ˆ t2

t1

ˆ
Ω

〈
m×∇vm,

∂m

∂t

〉
dx dt

=
ˆ

Ω

(b− φ) (λ(t2)ω0(m(t2, · ))− λ(t1)ω0(m(t1, · ))) dx

−
ˆ t2

t1

ˆ
Ω

(b− φ)λ̇ω0(m) dx dt+ 4π
∑

i∈I(t1,t2)

(b− φ(xi))λ(ti)qi.

Proof. For a < s < b, let

Ωs = {x ∈ Ω : φ(x) < s} , Ps = (t1, t2)× Ωs,

and
Qs = {(t, x) ∈ (t1, t2)× Ω : φ(x) = s} .

Furthermore, let Is be the set of all indices i ∈ I(t1, t2) such that xi ∈ Ωs. We set
σ(t, x) = λ(t)ω(m(t, x)) and we compute

dσ = λ̇ω0(m)dt ∧ dx1 ∧ dx2
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away from the singularities of m. Because of (16), we haveˆ
∂Ps

σ =
ˆ
Ps

λ̇ω0(m)dt ∧ dx1 ∧ dx2 − 4π
∑
i∈Is

λ(ti)qi.

Note that ω1(m) = ω2(m) = 0 on (t1, t2) × ∂Ω. Decomposing ∂Ps into several
parts, we therefore obtain
ˆ
Qs

〈
m×∇vm,

∂m

∂t

〉
dt ∧ (w1dx1 + w2dx2) = −

ˆ
Qs

σ

=
ˆ

Ωs

(λ(t2)ω0(m(t2, · ))− λ(t1)ω0(m(t1, · ))) dx

−
ˆ
Ps

λ̇ω0(m)dt ∧ dx1 ∧ dx2 + 4π
∑
i∈Is

λ(ti)qi.

Now we integrate over s. This yields the required identity. �

Proof of Theorem 2. We may assume that C1 ≤ C0 + 1. Let

T0 = sup
{
t0 > 0 : Eε(m(t, · )) ≤ dπ log

1
ε

+ C1 for all t ∈ [0, t0)
}
.

Consider the formula (14) away from the singular times. In the interval [0, T0),
using the inequality

ˆ t2

t1

ˆ
Ω

∣∣∣∣∂m

∂t

∣∣∣∣ |∇m| dx dt ≤ δ
ˆ t2

t1

ˆ
Ω

∣∣∣∣∂m

∂t

∣∣∣∣2 dx dt+
C

δ
(t2 − t1) log

1
ε
,

and taking the loss of energy (15) at possible singularities into account, we prove
the estimates

(17) Eε(m(t2, · )) +
αε
2

ˆ t2

t1

ˆ
Ω

∣∣∣∣∂m

∂t

∣∣∣∣2 dx dt+ 4π
∑

i∈I(t1,t2)

|qi|

≤ Eε(m(t1, · ))−
ˆ t2

t1

ˆ
Ω

〈
m×∇vm,

∂m

∂t

〉
dx dt+

Cβ2
ε

αε
(t2 − t1) log

1
ε

and

(18) Eε(m(t2, · )) +
αε
2

ˆ t2

t1

ˆ
Ω

∣∣∣∣∂m

∂t

∣∣∣∣2 dx dt
≤ Eε(m(t1, · )) +

C(1 + β2
ε )

αε
(t2 − t1) log

1
ε
.

(Here and subsequently C denotes various constants that depend only on g, C0,
α0, β0, and the geometry of Ω.)

We want to show that there exists a number τ > 0 such that T0 ≥ τ whenever L
and ε are sufficiently small. To this end, fix τ ∈ (0, 1] and suppose T0 < τ . Because
of (18), there exists a set Θ ⊂ (0, T0) with measure

|Θ| ≤ Cε

α2
ε

(1 + β2
ε ) log

1
ε
,

such that for every t ∈ (0, T0)\Θ,ˆ
{t}×Ω

|f ε(m)|2 dx ≤ 1
ε
,
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and Θ contains none of the singular times. It is shown in [21, Theorem 2.1] that
this inequality, together with the energy bound

Eε(m(t, · )) ≤ dπ log
1
ε

+ C1,

implies ˆ
{t}×Ω

m2
3|∇m|2 dx ≤ C

outside of Θ. Choose T1, T2 ∈ (0, T0)\Θ with

max{T1, T0 − T2} ≤
Cε

α2
ε

(1 + β2
ε ) log

1
ε
.

We apply Lemma 2 in the interval (T1, T2). According to Lemma 1, some of the
terms in the resulting identity can be estimated as follows (for a suitable choice of
a and b):

−
ˆ
{T2}×Ω

(b− φ)λω0(m) dx

= 3
ˆ
{T2}×Ω

(φ− b)λm2
3ω0(m) dx−

ˆ
{T2}×Ω

λm3(m2∇vm1 −m1∇vm2) dx

≤ 3L(b− a)
ˆ
{T2}×Ω

m2
3|∇m|2 dx+ CLε log

1
ε
≤ CL.

We have a similar estimate for the term involving T1 instead of T2. Furthermore,

−
ˆ

(T1,T2)\Θ

ˆ
Ω

(b− φ)λ̇ω0(m) dx dt ≤ Cτ‖λ̇‖L∞(0,T0).

We also have

−
ˆ

(T1,T2)∩Θ

ˆ
Ω

(b− φ)λ̇ω0(m) dx dt ≤ Cε

α2
ε

(1 + β2
ε )
(

log
1
ε

)2

‖λ̇‖L∞(0,T0)

≤ Cε
(

log
1
ε

)4

‖λ̇‖L∞(0,T0).

If (b− a)L ≤ 1, then we can combine Lemma 2 with (17) and we obtain

Eε(m(T2, · )) +
αε
2

ˆ T2

T1

ˆ
Ω

∣∣∣∣∂m

∂t

∣∣∣∣2 dx dt
≤ Eε(m(T1, · )) + CL+ Cτ + C

(
τ + ε

(
log

1
ε

)4
)
‖λ̇‖L∞(0,T0).

Furthermore, if we use (18) between the times 0 and T1 and between T2 and T0, we
obtain

Eε(m(T0, · )) +
αε
2

ˆ T0

0

ˆ
Ω

∣∣∣∣∂m

∂t

∣∣∣∣2 dx dt
≤ dπ log

1
ε

+ C0 + CL+ Cτ + Cε

(
log

1
ε

)5

+ C

(
τ + ε

(
log

1
ε

)4
)
‖λ̇‖L∞(0,T0).

If τ , L, and ε are sufficiently small, then this contradicts the definition of T0. Thus
T0 ≥ τ . The required estimate for ∂m

∂t then also follows from the last inequality. �
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4. A convergence result

Now we consider a sequence of initial data m0
ε ∈ H1(Ω;S2) with boundary values

g and with

αεeε(m0
ε)→ α0πδa0 and ω0(m0

ε)→ 4π
d∑
`=1

q`δa0
`
,

for a certain a = (a1, . . . , ad) ∈ Ωd and q1, . . . , qd = ± 1
2 , in the sense of distributions.

Furthermore, we assume that

lim
ε↘0

Dε(m0
ε ; a

0) = 0.

Let mε denote the energy decreasing solutions of (10) belonging to m0
ε . The last

inequality implies in particular that

Eε(m0
ε) ≤ dπ log

1
ε

+ C0

for a constant C0 that is independent of ε. Therefore, Theorem 2 gives an estimate
for the energy that is uniform in ε.

Theorem 3. There exist a number T > 0, a sequence εk ↘ 0, and a curve a ∈
H1(0, T ; Ωd) with a(0) = a0, such that for every t ∈ (0, T ),

αεkeεk(mεk(t, · ))→ α0πδa(t)

weakly* in (C0
0 (Ω))∗ and

J(mεk(t, · ))→ πδa(t), ω0(mεk(t, · ))→ 4π
d∑
`=1

q`δa`(t)

in W−1,1(Ω). Moreover,
inf

t∈(0,T )
ρ(a(t)) > 0.

For all t1, t2 ∈ (0, T ) with t1 ≤ t2 and for all η ∈ C1(Ω),

π

d∑
`=1

(η(a`(t1))− η(a`(t2))) = lim
k→∞

(
αεk
α0

ˆ t2

t1

ˆ
Ω

∇η ·
〈
∂mεk

∂t
,∇mεk

〉
dx dt

)
,

(19)

π

ˆ t2

t1

|ȧ|2 dt ≤ lim inf
k→∞

(
αεk
α0

ˆ t2

t1

ˆ
Ω

∣∣∣∣∂mεk

∂t

∣∣∣∣ dx dt) ,(20)

πid
d∑
`=1

ˆ t2

t1

η(a`(t)) dt = lim
k→∞

(
αεk
α0

ˆ t2

t1

ˆ
Ω

η∇mεk ⊗∇mεk dx dt

)
,(21)

4π
d∑
`=1

q`

ˆ t2

t1

v⊥ · ȧ` dt = − lim
k→∞

ˆ t2

t1

ˆ
Ω

〈
mεk ×∇vmεk ,

∂mεk

∂t

〉
dx dt.(22)

Proof. Most of these statements are proved in another paper [21, Theorem 4.1] for
v = 0 and q` = 1

2 (note that (21) corresponds to equation (31) in that work). It is
readily checked that most of the arguments in this proof make little use of the exact
structure of the equation, and therefore they still work in the situation studied here.
The main ingredients for the proof are the identities (7) and (8), both of which hold
for every smooth m, and the inequalities

Dε(mε(t, · ); a0) ≤ κ, 0 ≤ t < T,
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for some κ < 4π and ˆ T

0

ˆ
Ω

∣∣∣∣∂mε

∂t

∣∣∣∣2 dx dt ≤ C log
1
ε

for a constant C independent of ε. It is also used that (7) gives rise to a nice local
energy identity.

In the situation of this theorem, the inequalities follow from Theorem 2, provided
that T is chosen small enough. The local energy identity (given below) for equation
(10) has a few extra terms relative to the identity from [21], but they are quite easy
to handle and do not invalidate the arguments, except for the proof of (20).

It is also shown in this proof that mεk remains smooth in (0, T ) under the
conditions of the theorem.

Formulas (19) and (22), on the other hand, are not proved in [21], and (20)
needs another derivation for equation (10). Note, however, that we do obtain the
statement a ∈ H1(0, T ; Ωd) from the previous work.

We now use (13) again. Testing it with a function ξ ∈ C1([0, T ]×Ω), we obtain

αε

ˆ t2

t1

ˆ
Ω

ξ

∣∣∣∣∂mε

∂t

∣∣∣∣2 dx dt+
ˆ
{t2}×Ω

ξeε(mε) dx

=
ˆ
{t1}×Ω

ξeε(mε) dx−
ˆ t2

t1

ˆ
Ω

∇ξ ·
〈
∂mε

∂t
,∇mε

〉
dx dt

−
ˆ t2

t1

ˆ
Ω

ξ

(〈
mε ×∇vmε,

∂mε

∂t

〉
+ βεξ

〈
∇vmε,

∂mε

∂t

〉)
dx dt

+
ˆ t2

t1

ˆ
Ω

∂ξ

∂t
eε(mε) dx dt.

In fact, an approximation argument shows that the identity is true for every ξ ∈
L∞(0, T ;C1(Ω)) with ξ̇ ∈ L1(0, T ;C0(Ω)). Choose r > 0 such that r < 1

2ρ(a(t))
for all t ∈ [t1, t2]. Choose a cut-off function χ̃ ∈ C∞0 (Br(0); [0,∞)) with χ ≡ 1 in
Br/2(0) and a function b ∈ H1(0, T ; R2). Now define

χ(t, x) = χ̃(x− a1(t))

and consider the function

ξ(t, x) = χ(t, x)b(t) · (x− a1(t)).

This has the regularity required for the above identity. Now we multiply the result-
ing terms by αε, restrict our attention to the sequence εk, and use the convergence

αεkeεk(mεk(t, · ))→ α0πδa(t).

In the limit k →∞, we obtain

πα0

ˆ t2

t1

ˆ
Ω

b · ȧ1 dx dt = − lim
k→∞

(
αεk

ˆ t2

t1

ˆ
Ω

χb ·
〈
∂mεk

∂t
,∇mεk

〉
dx dt

)
.

Of course this is true for a2, . . . , ad as well. If we choose b(t) = ∇η(a1(t)), then
(19) follows.

Inequality (20) is a consequence of (19) and (21), because for χ and b as above,
it follows that

α0π

ˆ t2

t1

b · ȧ1 dt ≤ lim
k→∞

Ak

(
αεk

ˆ t2

t1

ˆ
Ω

χ

∣∣∣∣∂mεk

∂t

∣∣∣∣2 dx dt
)1/2

,

where

Ak =
(
αεk

ˆ t2

t1

ˆ
Ω

χ(b⊗ b) : (∇mεk ⊗∇mεk) dx dt
)1/2

→
(
α0π

ˆ t2

t1

|b|2 dt
)1/2

.
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By approximation, we obtain the same inequality for b ∈ L2(0, T ; R2). Inserting
b = ȧ1 and observing that the corresponding inequality holds for the other vortices
as well, we obtain (20).

Finally, we use the formula from Lemma 2 (without the contributions of the
bubbles, as we know that mεk is smooth). Letting k →∞, we first obtain

lim
k→∞

ˆ t2

t1

ˆ
Ω

〈
mεk ×∇vmεk ,

∂mεk

∂t

〉
dx dt

= 4πb
d∑
`=1

q`

(
λ(t2)− λ(t1)−

ˆ t2

t1

λ̇ dt

)

+ 4π
d∑
`=1

q`

(
v⊥(t1) · a`(t1)− v⊥(t2) · a`(t2) +

ˆ t2

t1

λ̇w⊥ · a` dt
)
.

An integration by parts then yields the desired formula. �

5. The motion law

In this section we prove Theorem 1. Let â ∈ C∞([0,∞); Ωd) be the unique solu-
tion of the initial value problem for the corresponding Thiele equation in complex
form

4πq`i (ȧ` − v) + π (α0ȧ` − β0v) +
∂W (a)
∂a`

= 0 (` = 1, . . . , d)

with initial values
â(0) = a0 ∈ Ωd.

We suppose v(t) = λ(t)w for some fixed w ∈ S1 and the constants α0 > 0 and
β0 ∈ R are given by the following limits

α0 = lim
ε↘0

αε log
1
ε

and β0 = lim
ε↘0

βε log
1
ε
.

We choose T > 0 and a sequence εk ↘ 0 that satisfy the conclusions of Theorem
3, and let a be the corresponding curve in Ωd. From the proof of Theorem 3 we
recall that solutions remain smooth in (0, T ) for small ε as shown in [21, Theorem
4.1], so we can concentrate on the verification of the motion law.

We fix a radius r ∈ (0, ρ(a0)/2] and choose T0 ∈ (0, T ) to be small enough
such that the trajectories of a` and â` do not exit Br/2(a0

`) before time T0 for all
` = 1, . . . , d. As in [21] we choose φ, ψ ∈ C∞0 (Ω) such that for every `, both φ and
ψ are affine with ∇ψ = ∇⊥φ in Br(a0

`). We define

ξk(t) =
ˆ
{t}×Ω

(αεkψ eεk(mεk) + φω0(mεk)) dx

−π
d∑
`=1

(α0ψ(â`(t)) + 4q`φ(â`(t))) ,

converging, for every t ∈ [0, T ), to

ξ(t) = π

d∑
`=1

(
α0

(
ψ(a`(t))− ψ(â`(t))

)
+ 4q`

(
φ(a`(t))− φ(â`(t))

))
.

In estimating ξ we follow the strategy from [21]. Thanks to our new convergence
result (20) for the kinetic term αε

〈
∇m, ∂m

∂t

〉
the argument can be slightly simplified

and relies at this point only on the dynamic identity for the vorticity. With the
notation

ẽε(m) =
1
2

(
|∇|m||2 + |∇m3|2 +

m2
3

ε2

)
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and the norm

‖ψ‖W−1,1(Ω) = sup
{
ψ(u) : u ∈W 1,∞(Ω) with ‖u‖W 1,∞(Ω) ≤ 1

}
,

the result carries over literally.

Lemma 3. There exist a constant C and a sequence λk → 0 such that for all
t1, t2 ∈ [0, T0] with t1 ≤ t2 and every k ∈ N,

ξk(t2)− ξk(t1) ≤ C
ˆ t2

t1

ˆ
Ωr(a0)

(
ẽε(mεk) +

∣∣∣∣j(mεk)
|mεk |

− j(m∗( · ; â(t)))
∣∣∣∣2
)
dx dt

+ C

ˆ t2

t1

‖J(mεk)− πδâ‖W−1,1(Ω) dt+ λk.

Proof. First we calculate from the differential equation for â` and

d

dt
ψ(â`(t)) = ∇ψ(â`(t)) · ˙̂a`(t) = ∇⊥φ(â`(t)) · ˙̂a`(t)

the identity

π

d∑
`=1

d

dt
(α0ψ(â`(t)) + 4q`φ(â`(t)))

=
d∑
`=1

4πq`∇vφ(â`(t)) + πβ0∇vψ(â`(t))−
∂W (â)
∂a`

· ∇ψ(â`(t))

(23)

and recall from (9) with m∗ = m∗( · ; â):

−
d∑
`=1

∇ψ(â`(t)) ·
∂W (â)
∂a`

=
ˆ
{t}×Ω

∇⊥∇φ : (∇m∗ ⊗∇m∗) dx.

Using conservation of vorticity(
∂

∂t
+∇v

)
ω0(m) = curl

(
div(∇m⊗∇m)−

〈(
αε

∂

∂t
+ βε∇v

)
m,∇m

〉)
(that can be found by multiplying the equation by ∇m and taking the curl there-
after) we find after integration by parts

d

dt

ˆ
{t}×Ω

φω0(mεk) dx =
ˆ
{t}×Ω

∇vφ ω0(mεk) dx

+ αεk

ˆ
{t}×Ω

∇ψ ·
〈
∂mεk

∂t
,∇mεk

〉
dx

+ βεk

ˆ
{t}×Ω

∇ψ · 〈∇vmεk ,∇mεk〉 dx

+
ˆ
{t}×Ω

∇⊥∇φ : (∇mεk ⊗∇mεk) dx.

Integrating this identity in time and passing to the limit εk ↘ 0, the terms stemming
from the current converge, in view of Theorem 3 and the fact that ∇φ and ∇ψ are
constant in Br(a0

`), to

4π
d∑
`=1

q`∇wφ(a0
`)
ˆ t2

t1

λ(t) dt and πβ0

d∑
`=1

∇wψ(a0
`)
ˆ t2

t1

λ(t) dt,
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respectively, and agree with the corresponding terms from (23). Moreover, by
Theorem 3, we know

αεk

ˆ t2

t1

ˆ
Ω

∇ψ ·
〈
∇mεk ,

∂mεk

∂t

〉
dx dt→ −πα0

d∑
`=1

(
ψ(a`(t2))− ψ(a`(t1))

)
.

Therefore, it suffices to estimate the integrals
ˆ t2

t1

ˆ
Ω

∇⊥∇φ : (∇mεk ⊗∇mεk −∇m∗ ⊗∇m∗) dx dt.

In view of the decomposition

∇m⊗∇m = ∇|m| ⊗ ∇|m|+∇m3 ⊗∇m3 +
j(m)
|m|

⊗ j(m)
|m|

valid for m = (m,m3) ∈ C∞(Ω;S2), we estimate the contributions to the tensor
∇mεk ⊗∇mεk including ∇|mεk | and ∇mεk3 in terms of ẽεk(mεk), and we proceed
with

j(mεk)
|mεk |

⊗ j(mεk)
|mεk |

− j(m∗)⊗ j(m∗)

=
(
j(mεk)
|mεk |

− j(m∗)
)
⊗
(
j(mεk)
|mεk |

− j(m∗)
)

+ (1− |mεk |)
(
j(mεk)
|mεk |

⊗ j(m∗) + j(m∗)⊗
j(mεk)
|mεk |

)
+ (j(mεk)− j(m∗))⊗ j(m∗) + j(m∗)⊗ (j(mεk)− j(m∗)).

As in [21] the integral coming from the second term can be estimated in terms of
the energy εkEεk(mεk), so we can concentrate on the estimation of

ˆ t2

t1

ˆ
Ω

∇⊥∇φ : ((j(mεk)− j(m∗))⊗ j(m∗)) dx dt

and ˆ t2

t1

ˆ
Ω

∇⊥∇φ : (j(m∗)⊗ (j(mεk)− j(m∗))) dx dt.

Taking into account that both integrands can be considered as products of the form

σ · (j(mεk)− j(m∗))

for smooth vector fields σ ∈ C∞([0, T0]×Ω; R2) independent of k, we argue by the
same Hodge decomposition argument used in [21, Lemma 6.1]. Writing

−σ = ∇u+∇⊥h,

where u, h ∈ C∞([0, T0]× Ω) with u = 0 on [0, T0]× ∂Ω we infer
ˆ t2

t1

ˆ
Ω

σ · (j(mεk)− j(m∗)) dx dt

=
ˆ t2

t1

ˆ
Ω

udiv j(mεk) dx dt+ 2
ˆ t2

t1

(ˆ
Ω

hJ(mεk) dx− π
d∑
`=1

h(â`)

)
dt.

We recall the following identity(
∂

∂t
+∇v

)
m3 + (∇− βεv) · j(m) = αε

(
im,

∂m

∂t

)
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which is nothing but the third component of the equation. Note that in view of
our energy bounds

αε

(
imεk ,

∂mεk

∂t

)
→ 0 and βεkj(mεk)→ 0

in L1([0, T0]× Ω), respectively, as εk ↘ 0. Moreover,
ˆ t2

t1

ˆ
Ω

u

(
∂

∂t
+∇v

)
mεk3 dx dt =

ˆ
Ω

umεk3 dx
∣∣∣t2
t=t1
−
ˆ t2

t1

ˆ
Ω

mεk3

(
∂

∂t
+∇v

)
u dx dt,

and we infer that ˆ t2

t1

ˆ
Ω

udivj(mεk) dx dt→ 0.

Thus we have a constant c, independent of k, such that

ˆ t2

t1

ˆ
Ω

∇⊥∇φ · (j(mεk)− j(m∗))⊗ j(m∗) dx dt

≤ c
ˆ t2

t1

‖J(mεk)− πδâ‖W−1,1(Ω) dt+ c
√
αεk .

The same conclusion can also be drawn for j(m∗)⊗ (j(mεk)− j(m∗)). �

We will also need the following complementary estimate which is idenpendent of
the dynamic equation and is proven in [21, Lemma 6.2].

Lemma 4. For t ∈ [0, T0], let

ĥk(t) =
ˆ
{t}×Ωr(a0)

(
ẽε(mεk) +

1
8

∣∣∣∣j(mεk)
|mεk |

− j(m∗( · ; â(t)))
∣∣∣∣2
)
dx

−Dεk(mεk(t, · ); â(t)).

Then there exists a constant C such that for almost all t1, t2 ∈ [0, T0] with t1 ≤ t2,

lim sup
k→∞

ˆ t2

t1

ĥk(t) dt ≤ C
ˆ t2

t1

|â(t)− a(t)| dt.

Proof of Theorem 1. The proof follows by the usual Gronwall argument. As in [21]
we consider, for t ∈ [0, T0], the functions

ζk(t) = Dεk(mεk(t, · ); â(t))

and

χk(t) =
∥∥J(mεk(t, · ))− πδâ(t)

∥∥
W−1,1(Ω)

.

From the corresponding energy identities we obtain

Eεk(mεk(t2, · ))− Eεk(mεk(t1, · ))

= −
ˆ t2

t1

ˆ
Ω

(
αεk

∣∣∣∣∂mεk

∂t

∣∣∣∣2 + βεk

〈
∇vmεk ,

∂mεk

∂t

〉
+
〈

mεk ×∇vmεk ,
∂mεk

∂t

〉)
dx dt

and

W (â(t1))−W (â(t2)) = π

ˆ t2

t1

(
α0| ˙̂a|2 −

d∑
`=1

(
β0v + 4q`v⊥

)
· ˙̂a`

)
dt
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for 0 ≤ t1 ≤ t2 ≤ T0. In view of Theorem 3 we can select a subsequence such that
ζk(t)→ ζ(t) almost everywhere for a bounded function ζ : [0, T0]→ R with

ζ(t2)− ζ(t1) ≤ π
ˆ t2

t1

α0

(
| ˙̂a|2 − |ȧ|2

)
+ (β0 + 2)|v|| ˙̂a− ȧ| dt

≤ C1

ˆ t2

t1

| ˙̂a− ȧ| dt

for almost all t1 ≤ t2 and some constant C1. We infer that ζ has bounded variation
in [0, T0] with a distributional estimate

ζ̇ ≤ C1| ˙̂a− ȧ|.
From this point the argument is the same as in the case v = 0. In fact,

χk(t)→ χ(t) =
d∑
`=1

|â`(t)− a`(t)| pointwise and in L1(0, T0).

Lemma 3 and Lemma 4 now imply

ξ(t2)− ξ(t1) ≤ C2

ˆ t2

t1

(ζ(t) + χ(t)) dt

for a constant C2, and with an appropriate choice of φ and ψ we obtain the desired
integral inequality

| ˙̂a(t)− ȧ(t)| ≤ C3

ˆ t

0

| ˙̂a(τ)− ȧ(τ)| dτ.

As â(0) = a(0), Gronwall’s lemma implies â = a in [0, T0]. Moreover,

lim sup
k→∞

Dεk(mεk(T0, · ); a(T0)) ≤ 0.

which enables us to iterate the argument for new initial times T0, and we eventually
obtain the motion law for all times before T .
To prove the full statement of Theorem 1, we note that Theorem 3 can be applied
(choosing further subsequences) with T as the new initial time. We can thus iterate
the argument again and obtain the statement until a chosen terminal time T∗. Note
that by uniqueness of energy decreasing solutions, solutions mε extend, for small ε,
smoothly to (0, T∗). Finally, thanks to the unique solvability of the limiting ODE,
the convergence result for energy density and vorticity can be seen to hold without
taking subsequences, as any subsequence of ε↘ 0 will have a further subsequence
converging to the same limit. �
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