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CONVERGENCE OF CLOCK PROCESSES IN RANDOM ENVIRONMENTS
AND AGEING IN THE p-SPIN SK MODEL

ANTON BOVIER AND VÉRONIQUE GAYRARD

ABSTRACT. We derive a general criterion for the convergence of clock processes in ran-
dom dynamics in random environments that is applicable in cases when correlations are
not negligible, extending recent results by Gayrard [15, 16], based on general criterion for
convergence of sums of dependent random variables due to Durrett and Resnick [13]. We
demonstrate the power of this criterion by applying it to the case of random hopping time
dynamics of the p-spin SK model. We prove that on a wide range of time scales, the clock
process converges to a stable subordinator almost surely with respect to the environment.
We also show that a time-time correlation function converges to the arcsine law for this
subordinator, almost surely. This improves recent results of Ben Arous et al. [1] that
obtained similar convergence result in law with respect to the random environment.

1. INTRODUCTION AND MAIN RESULTS

Over the last decades, random motion in random environments have been one of the
main foci of research in applied probability theory and mathematical physics. This is due
to the wide range of real life systems that can be modeled in this way, but also to the excit-
ing, unforeseen and often counter-intuitive effects they exhibit. In fact, the early works of
Solomon [24] and Sinai [23] on random walks in one-dimensional random environment
were already striking examples of this feature.

While the most straightforward model class, the random walk in random environments
on the lattice Zd, received the bulk of attention in the probability community, over the last
decade the study of the dynamics of spin glass models has attracted considerable attention
in connection with the concept of ageing. See e.g. [6] for a review. The dynamics of
these models is expected to show very slow convergence to equilibrium, measurable in the
anomalous behaviour of certain time-time correlation functions.

Interesting models of the dynamics of spin glasses are Glauber dynamics on state spaces
Σn = {−1, 1}n reversible with respect to Gibbs measures associated to random Hamil-
tonians given by correlated Gaussian processes indexed by the hypercube Σn. Even on
the non-rigorous level, predictions on their behaviour were mostly based on the basis of
drastically simplified trap models [10, 12, 20, 21, 11], based in turn on the ideas of Gold-
stein [19] to describe dynamics on long times scales in terms of thermally activated barrier
crossings.
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A rigorous analysis of many variants of such models was carried out over the last years
[5, 9, 8, 7]. A striking feature that emerged in these works was the universal recurrence
of the α-stable Lévy subordinators as basic random mechanisms in the description of the
asymptotic properties of their dynamics. Another line of research tried to give a rigorous
justification of the connection between spin glass dynamics and trap models. This was
successful for the Random Energy Model (REM) of Derrida under a particular variant
of the Glauber dynamics (the random hopping time dynamics, see below), first on times
scales close to equilibrium [2, 3, 4] and later also on shorter time scales [8]. These results
were partially extended to spin glasses with non-trivial correlations, the so-called p-spin
SK models, by Ben Arous, Bovier, and Černý [1]. Their results cover a limited range of
times scales (in fact one expects a change of behaviour at longer scales), and only in law
with respect to the random environment, which in this case appears unnatural.

The recurrent appearance of stable subordinators in such a large variety of model sys-
tems asks for a simple and robust explanation. Such an explanation was given in a limited
context of trap models by Ben Arous and Černý [7].

A more direct and general view on this problem was presented in a recent paper by one
of us [15] and applied to more complicated situations in [16] and [17]. It emerges that the
entire problem links up directly to a classical and well studied field of probability theory,
the convergence of sums of random variables to Lévy processes. The case of independent
random variables is well known since the work of Gnedenko and Kolmogorov [18], but
a lot of work was done for the case of dependent random variables as well. In particular,
there is a very amenable and useful criterion due to Durrett and Resnick [13], that we will
rely on here.

Before entering in more details, let us briefly describe the general setting of Markov
jump processes in random environments that we consider here. Our arena is a sequence of
loop-free graphs, Gn(Vn,Ln) with set of vertices, Vn, and set of edges, Ln.

A random environment is a family of positive random variable, τn(x), x ∈ Vn, defined
on some abstract probability space, (Ω,F ,P). Note that we do not assume independence.

Next we define discrete time Markov processes, Jn, with state space Vn and non-zero
transition probabilities along the edges, Ln. We denote by µn its initial distribution and by
pn(x, y) the elements of its transition matrix. Note that the pn may be random variables
on the space (Ω,F ,P). We assume that the process Jn admits a unique invariant measure
πn.

We construct our process of interest, Xn, as a time change of Jn. To this end we set

λn(x) ≡ πn(x)/τn(x), (1.1)

and define the clock process

S̃n(k) =
k−1∑
i=0

λ−1
n (Jn(i))en,i , k ∈ N , (1.2)

where (en,i , n ∈ N, i ∈ N) is a family of independent mean one exponential1 random
variables, independent of Jn.

We now define our continuous time process of interest, Xn, as

Xn(t) = Jn(i), if S̃n(i) ≤ t < S̃n(i+ 1) for some i. (1.3)

1One can consider more general situations when en,i have different distributions as well, leaving the
setting of Markov processes.



CONVERGENCE OF CLOCK PROCESSES 3

One can readily verify that Xn is a continuous time Markov process with infinitesimal
generator λn, whose elements are

λn(x, y) = λn(x)pn(x, y), (1.4)

and whose unique invariant measure is given by

πn(x)λ−1
n (x) = τn(x). (1.5)

Note that the numbers λ−1
n (x) play the rôle of the mean holding time of the process Xn in

a site x.
For future reference, we refer to the σ-algebra generated by the variables Jn and Xn as
FJ and FX , respectively. We write Pµn for the law of the process Jn, conditional on the
σ-algebra F , i.e. for fixed realisations of the random environment. Likewise we call Pµn
the law of Xn conditional on F .

This construction brings out the crucial rôle played by the clock process. If the chain
Jn is rather fast mixing, convergence to equilibrium can only be slowed through an erratic
behaviour of the clock process. This process, on the other hand, is a sum of positive
random variables, albeit in general dependent ones. The approach of [15] (and already
[1]) is to abstract from all other issues and to focus on the analysis of the asymptotic
behaviour of the clock process. From that point onward, it is not surprising that stable
subordinators will emerge as a standard class of limit processes; the universality appearing
here is simply linked to the universal appearance of stable processes in the theory of sums
of random variables.

In this paper we are mainly concerned with establishing criteria for the convergence
of processes like (1.2) under suitable scaling, i.e. we will ask when there are constants,
an, cn, such that the process

Sn(t) ≡ c−1
n S̃n(bantc) = c−1

bantc∑
i=1

λ−1
n (Jn(i))en,i , t > 0, (1.6)

converges in some sense to a limit process. Note that in physical terms, the constants cn
correspond to the time scale on which we observe our continuous time Markov process
Xn, while an corresponds to the number of steps the underlying process Jn makes during
that time.

Due to the doubly stochastic nature of our processes, convergence can be considered in
various modes, that is under various laws. The physically most desirable one is refereed to
as quenched, that is to say P-almost sure convergence (to a deterministic or random pro-
cess) under the law Pµn . In [1] another point of view was taken, namely Pµn-almost sure
convergence under the law of the random medium and the exponential random variables
en,i. Both imply the weakest form of convergence in law under the joint law of all ran-
dom variables involved, often misleadingly referred to as annealed. The method used in
[1] was based on the analysis of the Laplace transform of the clock process and the use of
Gaussian comparison theorems. This left no way to deal with a fixed random environment.
We will see, however, that we are to use heavily the computations from that paper.

1.1. Key tools and strategy. This approach is based on a powerful and illuminating
method developed by Durrett and Resnick [13] to prove functional limit theorems for
dependent variables. We state their theorem in a specialised form suitable for our applica-
tions, which is taken from [15] (see Theorem 2.1).
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Theorem 1.1. Let Zn
i be a triangular array of random variables with support in R+ de-

fined on some probability space (Ω,F ,P). Let ν be a sigma-finite measure on (R+,B(R+)),
such that

∫∞
0

(x ∧ 1)ν(dx) <∞. Assume that there exists a sequence an, such that for all
continuity points, t <∞, of the distribution function of ν, in P-probability,

lim
n↑∞

bantc∑
i=1

P (Zn
i > x|Fn,i−1) = tν(x,∞), (1.7)

and

lim
n↑∞

bantc∑
i=1

[P (Zn
i > x|Fn,i−1)]2 = 0, (1.8)

where Fn,i denotes the σ-algebra generated by the random variables Zn,j, j ≤ i. If,
moreover,

lim
ε↓0

lim sup
n↑∞

c−1
n

btanc∑
i=1

Eµn1Zni ≤cnεZ
n
i = 0, (1.9)

then
bantc∑
i=1

Zn,i → Sν , (1.10)

where Sν is the Lévy subordinator with Lévy measure ν and zero drift. Convergence holds
in law on the space D([0,∞)) equipped with the Skorokhod J1-topology.

Remark. The condition (1.9) ensures that “small” terms in the sum do not contribute to the
limit. It is almost a consequence of Assumption (1.7) and the hypothesis on the limiting
measure ν. However, in the general context of triangular arrays, one can easily construct
counterexamples if (1.9) is not imposed.

Remark. We emphasize that the result holds in the (usual) J1-topology, since this is crucial
for applications to correlation functions. See [25] for an extensive discussion of topologies
on càdlàg spaces.

The straightforward idea is to apply this theorem with Zn,i ≡ c−1
n λ−1

n (Jn(i))en,i. This
was done in [15] (see Theorem 1.3.) and applied to the case of Bouchaud’s trap models
[15] and in the random energy model [16, 17] where it allowed to extend all previously
know results in a very elegant way.

In models with strong local correlations, such as the p-spin SK model, one cannot,
however, expect that with this choice the conditions of the theorem will be satisfied. In
fact, one easily convinces oneself that contributions to the sum in (1.10) cannot only come
from singly widely separated points i, but that such contributing terms form clusters due
to the correlations.

In this paper we show that a good way to proceed in such a situation is to use a suitable
blocking. Introduce a new scale, θn, and use Theorem 1.1 with the random variables

Zn,i ≡
(i+1)θn∑
j=θni+1

c−1
n λ−1

n (Jn(i))en,i. (1.11)

The purpose of this procedure is that if Jn is rapidly mixing, we can hope to choose
θn � an such that the random variables Jn(θni), i ∈ N are close to independent and
distributed according to the invariant distribution πn. But then, under the law Pµn , also the
random variables Zn,i are close to independent and uniformly distributed (although with a
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complicated distribution that is a random variable depending on the random environment).
That should put us in a position to verify the conditions of Theorem 1.1.

Let us now look at this in more detail.
For y ∈ Vn and u > 0, let

Qu
n(y) ≡ Py

(
θn∑
j=1

λ−1
n (Jn(j − 1))en,j−1 > cnu

)
(1.12)

be the tail distribution of the aggregated jumps when Xn starts in y. Note that Qu
n(y),

y ∈ Vn, is a random function on the probability space (Ω,F ,P), and so is the function
F u
n (y), y ∈ Vn defined through

F u
n (y) ≡

∑
x∈Vn

pn(y, x)Qu
n(x) . (1.13)

Writing kn(t) ≡ bbantc/θnc, we further define

νJ,tn (u,∞) ≡
kn(t)∑
i=1

F u
n

(
Jn(θn(i− 1))

)
, (1.14)

(σJ,tn )2(u,∞) ≡
kn(t)∑
i=1

[
F u
n

(
Jn(θn(i− 1))

)]2
. (1.15)

Finally, we set

S̄n(k) ≡
k∑
i=1

 θni∑
j=θn(i−1)+1

c−1
n λ−1

n (Jn(j))en,j

+ c−1
n λ−1

n (Jn(0))en,0. (1.16)

and

Sbn(t) ≡
kn(t)∑
i=1

 θni∑
j=θn(i−1)+1

c−1
n λ−1

n (Jn(j))en,j

+ c−1
n λ−1

n (Jn(0))en,0. (1.17)

We now formulate four conditions for the sequence Sn to converge to a subordinator.
Note that these conditions refer to given sequences of numbers an, cn, and θn as well as a
given realisation of the random environment.
Condition (A1). There exists a σ-finite measure ν on (0,∞) satisfying the hypothesis
stated in Theorem 1.1, and such that, for all t > 0 and all u > 0,

Pµn

(∣∣νJ,tn (u,∞)− tν(u,∞)
∣∣ < ε

)
= 1− o(1) , ∀ε > 0 . (1.18)

Condition (A2). For all u > 0 and all t > 0,

Pµn

(
(σJ,tn )2(u,∞) < ε

)
= 1− o(1) , ∀ε > 0 . (1.19)

Condition (A3). For all u > 0 and all t > 0,

lim
ε↓0

lim sup
n↑∞

Eµn
[ant]∑
i=1

1{λ−1
n (Jn(i))ei≤cnε}c

−1
n λ−1

n (Jn(i))ei = 0. (1.20)

Condition (A0’). ∑
x∈Vn

µn(x)e−vcnλn(x) = o(1) . (1.21)
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Theorem 1.2. For all sequences of initial distributions µn and all sequences an, cn, and
1 ≤ θn � an for which Conditions (A0’), (A1), (A2), and (A3) are verified, either P-
almost surely or in P-probability, the following holds w.r.t. the same convergence mode:
Let {(tk, ξk)} be the points of a Poisson random measure of intensity measure dt× dν. We
have,

Sbn(·)⇒ Sν(·) =
∑
tk≤·

ξk . (1.22)

in the sense of weak convergence in the space D([0,∞)) of càdlàg functions on [0,∞)
equipped with the Skorokhod J1-topology.

Remark. Note that (Condition (A0’)) is there to ensure that that last term in (1.17) con-
verges to zero in the limit n ↑ ∞.

Remark. The result of this theorem is stated for the blocked process Sbn(t). It implies
immediately that under the same hypothesis, the original process Sn(t) (defined in (1.6))
converges to Sν in the weaker M1-topology (see [25] for a detailed discussion of Sko-
rokhod topologies). However, the statement of the theorem is strictly stronger than just
convergence in M1, and it is this form that is useful in applications.

Remark. To extract detailed information on the process Xn, e.g. the behaviour of cor-
relation functions, from the convergence of the blocked clock process, one needs further
information on the typical behaviour of the process during the θn steps of a single block.
This is a model dependent issue and we will examplify how this can be done in the context
of the p-psin SK model.

We now come to the key step in our argument. This consists in reducing Conditions
(A1) and (A2) of Theorem 1.2 to (i) a mixing condition for the chain Jn, and (ii) a law of
large numbers for the random variables Qn.

Again we formulate three conditions for given sequences an, cn and a given realisation
of the random environment.
Condition (A1-1). Let Jn is a periodic Markov chain with period q. There exists an integer
sequence `n ∈ N, and a positive decreasing sequence ρn, satisfying ρn ↓ 0 as n ↑ ∞, such
that, for all pairs x, y ∈ Vn, and all i ≥ 0,

q−1∑
k=0

Pπn (Jn(i+ `n + k) = y, Jn(0) = x) ≤ (1 + ρn)πn(x)πn(y) . (1.23)

Condition (A2-1) There exists a measure ν as in Condition (A1) such that

νtn(u,∞) ≡ kn(t)
∑
x∈Vn

πn(x)Qu
n(x)→ ν(u,∞) , (1.24)

and
(σtn)2(u,∞) ≡ kn(t)

∑
x∈Vn

∑
x′∈Vn

πn(x)p2
n(x, x′)Qu

n(x)Qu
n(x′)→ 0 . (1.25)

Condition (A3-1) For all u > 0 and all t > 0,

lim
ε↓0

lim sup
n↑∞

kn(t)Eπn1{λ−1
n (Jn(1))e1≤cnε}c

−1
n λ−1

n (Jn(1))e1 = 0. (1.26)

Remark. The limiting measure ν may be deterministic or random.

Remark. The second condition in Condition (A2-1) is in most cases a direct consequence
of the first one, together with some condition on the chain Jn. For instance, if
supx∈Vn

∑
x′∈Vn pn(x, x′)2 → 0, then (1.25) follows from (1.24).
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Theorem 1.3. Assume that for a given initial distribution, µn, and constants an, cn, θn,
Conditions (A2-1), (A2-1), (A3-1) and (A0’) hold P-a.s., resp. in P-probability. Then
the sequence of random stochastic process Sbn converges to the process Sν , weakly on
the Skorokhod space D[0,∞) equipped with the J1-topology, P-almost surely, resp. in
P-probability.

1.2. Application to the p-spin SK model. Theorem 1.3 is the central result of this paper.
It provides a very nice tool to prove convergence results of clock processes almost surely
with respect to the random environment, i.e. the physically desirable mode. It is capable
of dealing with correlations that have an effect, such as are present in the p-spin SK model.
In this model, the underlying graphs Vn are the hypercubes Σn = {−1, 1}n. The random
environment is given by a Gaussian , Hn, indexed by Σn, with zero mean and covariance

EHn(x)Hn(x′) = nRn(x, x′)p, (1.27)

where Rn(x, x′) ≡ 1
n

∑n
i=1 xix

′
i. The mean holding times, τ(x), are given in terms of Hn

by
τn(x) ≡ exp(βHn(x)), (1.28)

with β ∈ R+ the inverse temperature. The Markov chain, Jn, is chosen as the simple
random walk on Σn, i.e.

pn(x, x′) =

{
1
n
, if ‖x− x′‖2 = 2,

0, else,
(1.29)

Theorem 1.4. For any p ≥ 3, there exist a constant Kp > 0 and ζ(p) such that for all γ
satisfying

0 < γ < min
(
β2, ζ(p)β

)
, (1.30)

the law of the stochastic process

Sbn(t) ≡ e−γNSn

(
btn1/2enγ

2/2β2

θ−1
n c
)
, t ≥ 0, (1.31)

with θn = 3 ln 2
2
n2, defined on the space of càdlàg functions equipped with the Skorokhod

J1-topology, converges to the law of γ/β2-stable subordinator Vγ/β2(Kpt), t ≥ 0. Conver-
gence holds P-a.s. if p > 4, and in P-probability, if p = 3, 4.

The function ζ(p) is increasing and it satisfies

ζ(3) ' 1.0291 and lim
p→∞

ζ(p) =
√

2 log 2. (1.32)

Remark. This result implies the weaker statement that

Sn(t) ≡ e−γNSn

(
btn1/2enγ

2/2β2c
)
, t ≥ 0, (1.33)

converges in the same way in the M1-topology.

In [1] an analogous result is proven, with the same constants ζ(p) and Kp, but conver-
gence there is law with respect to the random environment (and almost sure with respect
to the trajectories Jn). Being able to obtain convergence under the law of the trajectories
for fixed environments, as we do here, is a considerable conceptual improvement.

Finally, one must ask whether the convergence of the clock process in the form obtained
here is useful for deriving ageing information in the sense that we can control the behaviour
of certain correlation functions. One may be worried that a jump in limit of the coarse-
grained clock process refers to a period of time during which the process still may make
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n2 steps, and our limit result tells us nothing about how the process moves during that
time. We will, however, show that essentially all this time is spent in a a single visit to a
quite small “trap”, within which the process does not make more than o(n) steps.

In this way we prove the almost-sure version of Theorem 1.2 of [1].

Theorem 1.5. Let Aεn(t, s) be the event defined by

Aεn(t, s) = {Rn

(
Xn

(
teγn

)
, Xn

(
(t+ s)eγn

))
≥ 1− ε

}
. (1.34)

Then, under the hypothesis of Theorem 1.4, for all ε ∈ (0, 1), t > 0 and s > 0,

lim
N→∞

Pπn (Aεn(t, s)] =
sinαπ

π

∫ t/(t+s)

0

uα−1(1− u)−α du,P− a.s.. (1.35)

The remainder of the paper is organised as follows. In the next section we prove The-
orems 1.2 and 1.3. In Section 3 we apply our main theorem to the p-spin SK model and
prove Theorem 1.5.

2. PROOF OF THE MAIN THEOREMS

We now prove our main theorem. The first step is the proof of Theorem 1.2.

2.1. Proof of Theorem 1.2.

Proof. The proof of Theorem 1.2 closely follows the proof of Theorem 1.4 of [15]. We set

Ŝbn(t) ≡ Sbn(t)− c−1
n λ−1

n (Jn(0))en,0. (2.1)

Condition (A0’) ensures that Sbn − Ŝbn converges to zero, uniformly. Thus we must show
that under Conditions (A1) and (A2),

Ŝn(·)⇒ S(·) . (2.2)

This is a simple corollary of Theorem 1.1: set

kn(t) ≡ bbantc/θnc (2.3)

and, for i ≥ 1, define

Zn,i ≡
θni∑

j=θn(i−1)+1

c−1
n λ−1

n (Jn(j))en,j . (2.4)

Finally, set

Z̃n(t) ≡
bantc∑

j=θn(kn(t)−1)+1

c−1
n λ−1

n (Jn(j))en,j , (2.5)

Then Ŝn(0) = 0 and, for t > 0,

Ŝn(t) =

kn(t)−1∑
i=1

Zn,i + Z̃n(t) . (2.6)

Let us now assume that ω ∈ Ω is fixed. We want to apply Theorem 1.1 first to the partial
sum process, Ŝ ′n, where Ŝ ′n(0) = 0 and Ŝ ′n(t) =

∑kn(t)
i=1 Zn,i, t > 0.

Let {Fn,i, n ≥ 1, i ≥ 0} be the array of sub-sigma fields of FX defined by (with obvious
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notations) Fn,i = σ (∪j≤θni {Jn(j), en,j}), for i ≥ 0. Clearly, for each n and i ≥ 1, Zn,i is
Fn,i measurable and Fn,i−1 ⊂ Fn,i. Next observe that

Pµn
(
Zn,i > z

∣∣Fn,i−1

)
=
∑
x∈Vn

Pµn
(
Jn
(
θn(i− 1) + 1

)
= x, Zn,i > z

∣∣Fn,i−1

)
, (2.7)

and that

Pµn
(
Jn
(
θn(i− 1) + 1

)
= x, Zn,i > z

∣∣Fn,i−1

)
(2.8)

= Pµn
(
Jn
(
θn(i− 1) + 1

)
= x, Zn,i > z

∣∣ Jn(θn(i− 1)
))

= pn
(
Jn(θn(i− 1)), x

)
Pµn

(
θn∑
j=1

c−1
n λ−1

n (Jn(j − 1))en,j−1 > z
∣∣∣ Jn(0) = x

)
.

In view of (1.12), (1.13), (1.14), and (1.15), it follows from (2.7) and (2.9) that

kn(t)∑
i=1

Pµn (Zn,i > z | Fn,i−1) =

kn(t)∑
i=1

∑
x∈Vn

pn
(
Jn(θn(i− 1)), x

)
Qu
n(x)

=

kn(t)∑
i=1

F u
n

(
Jn(θn(i− 1))

)
= νJ,tn (u,∞) . (2.9)

Similarly we get

kn(t)∑
i=1

[Pµn (Zn,i > ε | Fn,i−1)]2 =

kn(t)∑
i=1

[
F u
n

(
Jn(θn(i− 1))

)]2
= (σJ,tn )2(u,∞) . (2.10)

From (2.9) and (2.10) it follows that Conditions (A2) and (A1) of Theorem 1.2 are exactly
the conditions from Theorem 1.1. Condition (A3) is Condition 1.9. Therefore the condi-
tions of Theorem 1.1 are verified, and so Ŝ ′n ⇒ Sν in D([0,∞)) with S is given by 1.22.
To arrive at the same conclusion for the process S̃bn, note that these differ only in the last
term. In particular the conditions for the process Ŝbn differ only in the last term, and this
satisfies

0 ≤ Pµn
(
Z̃n > z

∣∣Fn,kn(t)−1

)
≤ Pµn

(
Zn,kn(t) > z

∣∣Fn,kn(t)−1

)
. (2.11)

But Condition (A2) implies that each single term in the sum tends to zero, and hence in
particular that the right-hand side in (2.11) tends to zero. Thus our conditions also hold
for the process Ŝbn. Therefore Ŝn ⇒ S in D([0,∞)), and from what we already explained,
the same holds for Sbn. This result holds true for each fixed ω ∈ Ω. The probabilistic
convergence statements then follow readily, as explained in the proof of Theorem 1.3 of
[15].

Note that Condition (A0’) of Theorem 1.2 is Condition (A0) of Theorem 1.4 of [15]
specialized to the case where F (v) = 1, v ≥ 0. The random variable with this distribution
simply is the constant σ = 0. Now the proof of Theorem 1.2 follows from the claim (2.2)
and Condition (A0’) exactly as Theorem 1.4 of [15] follows from Theorem 1.3 of [15] and
Condition (A0’). �
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2.2. Proof of Theorem 1.3. The proof of Theorem 1.3 comes in two steps. In the first we
use the ergodic properties of the chain Jn to pass from sums along a chain Jn to averages
with respect to the invariant measure of Jn.

We assume from now on that the initial distribution µn is the invariant measure πn of
the jump chain Jn.

Proposition 2.1. Let µn = πn. Assume that Condition (A1-1) is satisfied. Then, choosing
θn ≥ `n, the following holds: for all t > 0 and all u > 0 we have that, for all ε > 0,

Pπn
(∣∣νJ,tn (u,∞)− νtn(u,∞)

∣∣ ≥ ε
)
≤ ε−2

[
ρn
(
νtn(u,∞)

)2
+ (σtn)2(u,∞)

]
, (2.12)

and

Pπn
(
(σJ,tn )2(u,∞) ≥ ε

)
≤ ε−1(σtn)2(u,∞) . (2.13)

Proof. To simplify notation, we only give the proof for the case when the chain Jn is
aperiodic, i.e. q = 1. Details of how to deal with the general periodic case can be found
in the proof of Proposition 4.1. of [15].

Let us first establish that

Eπn
[
νJ,tn (y)

]
= νtn(u,∞) , (2.14)

Eπn
[
(σJ,tn )2(u,∞)

]
= (σtn)2(u,∞) . (2.15)

To this end set

πJ,tn (x) = k−1
n (t)

kn(t)∑
j=1

1{Jn(θn(j−1))=x} , x ∈ Vn . (2.16)

Then, Eqs. (1.14) and (1.15) may be rewritten as

νJ,tn (u,∞) = kn(t)
∑
y∈Vn

πJ,tn (y)F u
n (y) , (2.17)

(σJ,tn )2(u,∞) = kn(t)
∑
y∈Vn

πJ,tn (y) (F u
n (y))2 . (2.18)

Since by assumption the initial distribution is the invariant measure πn of Jn, the chain
variables (Jn(j), j ≥ 1) satisfy Pπn(Jn(j) = x) = πn(x) for all x ∈ Vn, and all j ≥ 1.
Hence

Eπn
[
πJ,tn (y)

]
= πn(y) , (2.19)

Eπn
[
νJ,tn (u,∞)

]
= kn(t)

∑
x∈Vn

πn(x)F u
n (x) , (2.20)

Eπn
[
(σJ,tn )2(u,∞)

]
= kn(t)

∑
x∈Vn

πn(x) (F u
n (x))2 , (2.21)

Using (1.13) and reversibility, Eqs. (2.14) and (2.15) follow readily from these identities.
We are now ready to prove the proposition. In view of (2.15), (2.13) is nothing but a

first order Chebychev inequality. To establish (2.12) set

Dij(x, y) = Pπn (Jn(θn(i− 1)) = x, Jn(θn(j − 1)) = y)− πn(x)πn(y) . (2.22)
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A second order Chebychev inequality together with the expressions (2.21) of
Eπn

[
νJ,tn (u,∞)

]
yields

Pπn
(∣∣νJ,tn (u,∞)− Eπn

[
νJ,tn (u,∞)

]∣∣ ≥ ε
)

(2.23)

≤ ε−2Eπn

[
kn(t)

∑
y∈Vn

(
πJ,tn (y)− πn(y)

)
F u
n (y)

]2

= ε−2
∑
x∈Vn

∑
y∈Vn

F u
n (x)F u

n (y)

kn(t)∑
i=1

kn(t)∑
j=1

Dij(x, y) .

Now
∑kn(t)

i=1

∑kn(t)
j=1 Dij(x, y) = (I) + (II) where

(I) ≡
kn(t)∑
i=1

kn(t)∑
j=1

Dij(x, y)1{j 6=i} ≤ ρnk
2
n(t)πn(x)πn(y) , (2.24)

as follows from Assumption (A1-1), choosing θn ≥ `n, and

(II) ≡
∑

1≤i≤kn(t)

Dii(x, x)1{x=y} (2.25)

= kn(t)
[
Pπn (Jn(θn(i− 1)) = x)− π2

n(x)
]
1{x=y}

= kn(t)πn(x)(1− πn(x))1{x=y} .

Inserting (2.25) and (2.24) in (2.23) we obtain, using again (2.15) and (2.21), that

Pπn
(∣∣νJ,tn (u,∞)− Eπn

[
νJ,tn (u,∞)

]∣∣ ≥ ε
)
≤ ε−2

[
ρnν

t
n(u,∞) + (σtn)2(u,∞)

]
.

(2.26)
Proposition 2.1 is proven. �

Proof. (of Theorem 1.3) The proof of Theorem 1.3 is now immediate: combine the con-
clusions of Proposition 2.1 with Condition (A2-1) to get both conditions (A1) and (A2).
Finally, Condition (A3) is Condition (A3-1), since we are starting from the invariant mea-
sure. �

3. APPLICATION TO THE p-SPIN SK MODEL

In this section we show how the Conditions (A1-1) and (A2-1) can be verified the case
of the random hopping time dynamics of the p-spin SK model.

The proof contains four steps, two of which are quite immediate.
Conditions (A1-1) for simple random walk has been established, e.g., in [1] and [16].

The following lemma is taken from Proposition 3.12 of [16].

Lemma 3.1. Let Pπn be the law of the simple random walk on the hypercube Σn started
in the uniform distribution. Let θn = 3 ln 2

2
n2. Then, for any x, y ∈ Σn and any i ≥ 0,∣∣∣∣∣

1∑
k=0

Pπn (Jn(θn + i+ k) = y, Jn(0) = x)− 2πn(x)πn(y)

∣∣∣∣∣ ≤ 2−3n+1. (3.1)

Clearly this implies that Condition (A1-1) holds.
Next, the second part of Condition (A2-1) will follow immediately once we have proven

the first, as follows from the remark after the statement of Condition (A2-1).
Thus, all what is left to do is to show that

νtn(u,∞)→ νt(u,∞) = Kpu
−γ/β2

, (3.2)



CONVERGENCE OF CLOCK PROCESSES 12

almost surely, resp. in probability, as n ↑ ∞.

3.1. Laplace transforms. Instead of proving the convergence of the distribution func-
tions νtn directly, we pass to their Laplace transforms, prove their convergence and then
use Feller’s continuity lemma to deduce convergence of the original objects.

For v > 0, consider the Laplace transforms

ν̂tn(v) =

∫ ∞
0

due−uvνtn(u,∞) (3.3)

ν̂t(v) =

∫ ∞
0

due−uvνt(u,∞).

With Zn ≡
∑θn−1

j=0 c−1
n λ−1

n (Jn(j))en,j , we have, by definition of νtn(u,∞),

νtn(u,∞) = kn(t)
∑
x∈Vn

πn(x)Qu
n(x) = kn(t)Pπn (Zn > u) .

Hence

ν̂tn(v) =

∫ ∞
0

due−uvνtn(u,∞) (3.4)

= kn(t)

∫ ∞
0

due−uvPπn (Zn > u)

= kn(t)
1− Eπn

(
e−vZn

)
v

,

where the last equality follows by integration by parts.

3.2. Convergence of Eν̂tn(v). The following Lemma is an easy consequence of the results
of [1]:

Lemma 3.2. Let cn = eγn, an = n1/2enγ
2/2β2

. For any p ≥ 3, and β, γ > 0 such that
γ/β2 ∈ (0, 1), there exists a finite positive constant, Kp, such that, for any v > 0,

lim
n↑∞

kn(t)E
[
1− Eπn

(
e−vZn

)]
= Kptv

γ/β2

. (3.5)

Proof. We rely essentially on the results of [1]. In that paper the Laplace transforms
Ee−vZn were computed even for θn = ant. We just recall the key ideas and the main steps.

The point in [1] is to first fix a realisation of the chain Jn, and to define, for a given
realisation, the one-dimensional normal Gaussian process

U0(i) ≡ n−1/2Hn(Jn(i)), (3.6)

with covariance

Λ0
ij = n−1EHn(Jn(i))Hn(Jn(j)) = n−1Rn(Jn(i), Jn(j))p. (3.7)

Moreover, they define a comparison process, U1, as follows. Let ν be an integer of order
Nρ, with ρ ∈ (1/2, 1). Then U1 has covariance matrix

Λ1
ij =

{
1− 2pN−1|i− j|, if bi/νc = bj/νc
0, else.

(3.8)

Finally they define the interpolating family of processes, for h ∈ [0, 1],

Uh(i) ≡
√
hU1(i) +

√
1− hU0(i). (3.9)
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For any normal Gaussian process, U , indexed by N, define the function

Eπn
(
F (U, v, k) | FJ

)
≡ G(U, v, k) = exp

(
−

k−1∑
i=0

g
(
vc−1

n eβ
√
nUi
))

, (3.10)

with g(x) = ln(1 + x).
Then the Laplace transforms we are after can be written as

EEπne−vZn = EEπn
(
Eπn
(
e−vZn | FJ

))
(3.11)

= EπnEG(U0, v, θn).

Here we used that the conditional expectation, given FJ , is just the expectation with re-
spect to the variables en,i which can be computed explicitly and gives rise to the function
G.

The idea is now that U1 is a good enough approximation to U0, for most realisation of
the chain J , to allow us to replace U0 by U1 in the last line above.

More precisely, we have the following estimate.

Lemma 3.3. With the notation above we have that, for all p ≥ 3

kn(t)Eπn
∣∣EG(U0, v, θn)− EG(U1, v, θn)

∣∣ ≤ tCN1/2/ν. (3.12)

Remark. In [1] (see Proposition 3.1) it is proven that Eπn-almost surely,

EG(U0, v, bantc)− EG(U1, v, bantc)→ 0. (3.13)

This result would not be expected for our expression, but we do not need this. The proof
of Proposition 3.1 of [1], however, directly implies our Lemma 3.3.

The computation of the expression involving the comparison process U1 is fairly easy.
First, note that by independence,

EG(U1, v, θn) =
[
EG(U1, v, ν)

]θn/ν (3.14)

=
[
1−

(
1− EG(U1, v, ν)

)]θn/ν
But in [1], Proposition 2.1, it is shown that

anν
−1
(
1− EG(U1, v, ν)

)
→ Kpv

γ/β2

. (3.15)

This implies immediately that

kn(t)
[
1−

(
1− EF (U1, v, ν)

)]θn/ν → Kpv
γ/β2

t, (3.16)

as desired. Combining this with Lemma 3.3, the assertion of Lemma 3.2 follows. �

3.3. Concentration of νtn. To conclude the proof, we need to control the fluctuations of
νtn.

Lemma 3.4. Under the same hypothesis as in Lemma 3.2, there exists an increasing
function, ζ(p), such that for all p ≥ 3, ζ(p) > 1, and ζ(p) ↑

√
2 ln 2, such that, if

γ/β2 < min(1, ζ(p)/β),

E
(
ν̂tn(v)− Eν̂n(v)

)2 ≤ Cn1−p/2. (3.17)
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Proof. The proof is again very similar to the proof of Proposition 3.1 in [1]. We have to
compute

E
(
Eπne−vZn

)2
= EEπnE ′πn

(
e−v(Zn+Z′n) | FJ ×FJ ′

)
. (3.18)

To express this as in the previous proof, we introduce the Gaussian process V 0 by

V 0(i) ≡

{
n−1/2Hn(Jn(i)), if 0 ≤ i ≤ θn − 1

n−1/2Hn(J ′n(i)), if θn ≤ i ≤ 2θn − 1.
(3.19)

Then, with the notation of (3.10)

EπnE ′πn
(
e−v(Zn+Z′n) | FJ ×FJ ′

)
= G(V 0, v, 2θn). (3.20)

Next we define the comparison process V 1 with covariance matrix

Λ2
ij ≡

{
Λ0
ij, if i ∧ j < θn or i ∨ j ≥ θn,

0, else.
(3.21)

The point is that

EπnE
′
πnEG(V 1, v, 2θn) =

(
EπnEG(V 0, v, θn)

)2
=
(
EEπne−vZn

)2
. (3.22)

On the other hand, using the standard Gaussian interpolation formula, we obtain the rep-
resentation

EG(V 0, v, 2θ)− EG(V 0, v, θ) =
1

2

∫ 1

0

∑
0≤i<θn
θn≤j<2θn

Λ0
ijE

∂2G(V h, v, 2θn)

∂vi∂vj
dh+ (i↔ j) .

(3.23)
The second derivatives ofGwere computed and bounded in [1], (see Eq. (3.7) and Lemma
3.2). We recall these bounds:

Lemma 3.5. With the notation above and the assumptions of Lemma 3.2,∣∣∣∣∂2G(V h, v, 2θn)

∂vi∂vj

∣∣∣∣ ≤ v2c−2
n β2Neβ

√
n(V h(i)+V h(j)) (3.24)

× exp
(
−2g

(
c−1
n veβ

√
nV h(i)

)
− 2g

(
c−1
n veβ

√
nV h(i)

))
≡ Ξn(Λh

ij).

Moreover, for λ > 0 small enough,

Ξn(c) ≤ Ξ̄n(c) =

{
C
(
(1− c)−1/2 ∧

√
n
)
e
− γ2n

β2(1+c) , if 1 > c > γ/β2 + λ− 1,
CNe−n(β2(1+c)−2γ), if c ≤ (γ/β2) + λ− 1,

(3.25)

where C(γ, β, v, λ) is a suitably chosen constant independent of n and c.

Remark. Notice that, since γ/β2 < 1 under our hypothesis, we can always choose λ such
that the top line in (3.25) covers the case c ≥ 0.

Note that, for c ≥ 0, (see Eq. (3.25) in [1]; note that there is trivial misprint in the last
inequality there) ∫ 1

0

Ξn((1− h)c)dh ≤ 2C exp

(
− γ2n

β2(1 + c)

)
. (3.26)
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The terms with negative correlation are in principle smaller than those with positive one,
but some thought reveals that one cannot really gain substantially over the bound∫ 1

0

Ξn((1− h)c)dh ≤ C exp

(
−γ

2n

β2

)
, (3.27)

that is used in [1] (See Eq. 3.24)).
Next we must compute the probability that Λ0

ij takes on a specific value. But since Λ0
ij

is a function of Rn(Jn(i), J ′n(j)), this turns out to be very easy, namely, since both chains
start in the invariant distribution:

EπnE ′πn1nRn(Jn(i),J ′n(j))=m = t2
∑
x,y∈Sn

Pπn(Jn(i) = x)P ′πn(J ′n(i) = y)1nRn(x,y)=m

= 2−n
∑
x∈Sn

1nRn(x,1)=m = 2−n
(

n

(n−m)/2

)
. (3.28)

Putting all things together, we arrive at the bound

kn(t)2
∣∣EG(V 0, v, 2θ)− EG(V 0, v, θ)

∣∣
≤

n∑
m=0

2−n
(

n

(n−m)/2

)(m
n

)p
nenγ

2/β2

2C exp

(
− nγ2

β2(+(m/n)p)

)

+
n∑

m=0

2−n
(

n

(n−m)/2

)(m
n

)p
nenγ

2/β2

2C exp

(
−nγ

2

β2

)
, (3.29)

where we did use that kn(t)θn = t
√
nenγ

2/β2 . Clearly the second term is smaller than the
first, so we only need to worry about the latter. But this term is exactly the term (3.28) in
[1], where it is shown that this is smaller than

C ′t2n1−p/2, (3.30)

provided γ < ζ(p). This provides the assertion of our Lemma 3.4 and concludes its
proof. �

Remark. The estimate on the second moment we get here allows to get almost sure con-
vergence only if p > 4. It is not quite clear whether this is natural. We were tempted to
estimate higher moments to get improved estimates on the convergence speed. However,
any straightforward application of the comparison methods used here does produce the
same order for all higher moments. We have not been able to think of a tractable way to
improve this result.

3.4. Verification of Condition (A3-1). To show that condition (A3-1) holds, we again
first prove that the average of the right hand side vanishes as ε ↓ 0, and then we prove a
concentration result.

Lemma 3.6. Under the Assumptions of the theorem, there is a constant K <∞, such that

lim sup
n↑∞

anc
−1
n EEπnλ−1

n (x)e11λ−1
n (x)e1≤εcn ≤ Kε1−α. (3.31)
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Proof. The proof is through explicit estimates. We must control the integral∫ ∞
0

xe−xdx

∫ ∞
−∞

e−
z2

2 1xeβ
√
nz≤ecne

β
√
nzdz (3.32)

=

∫ ∞
0

xe−xdx

[∫ ln cn+ln(ε/x)

β
√
n

−∞
e−

z2

2
+β
√
nzdz

]

=

∫ ∞
0

xe−xdx

[
eβ

2n/2

∫ ln cn+ln(ε/x)

β
√
n

−β
√
n

−∞
e−

z2

2 dz

]
Now for our choice cn = exp(γn), the upper integration limit in the z-integral is

ln cn + ln(ε/x)

β
√
n

− β
√
n =
√
n

(
γ

β
− β

)
+

ln ε− lnx

β
√
n

. (3.33)

Thus, for any γ < β2, this tends to −∞ uniformly for, say, all x ≤ n2. We therefore
decompose the x-integral in the domain x ≤ n2 and its complement, and use first that∫ ∞

n2

xe−xdx

∫
e−

z2

2 1xeβ
√
nz≤ecne

β
√
nzdz ≤ εn2cne

−n2

, (3.34)

which tend to zero, as n ↑ ∞. For the remainder we use the bound∫ ∞
u

e−z
2/2 ≤ 1

u
e−u

2/2. (3.35)

This yields

eβ
2n/2

∫ ln cn+ln(ε/x)

β
√
n

−β
√
n

−∞
e−

z2

2 dz (3.36)

≤ eβ
2n/2

exp

(
−1

2

(√
n
(
β − γ

β

)
− ln ε−lnx

β
√
n

)2
)

(β − β−1γ)
√
n− ln ε−lnx

β
√
n

=
exp

(
−n γ2

2β2 + nγ
)

√
n(β − γ/β) + o(1)

exp
(
−(γ/β2 − 1) ln(ε/x) +O(n−1/2)

)
= cna

−1
n

1

β − γ/β + o(1)
exp

(
−(γ/β2 − 1) ln(ε/x) +O(n−1/2

)
.

Hence

lim sup
n↑∞

anc
−1
n

∫ ∞
0

xe−xdx

∫ ∞
−∞

e−
z2

2 1xeβ
√
nz≤ecne

β
√
nzdz (3.37)

≤ 1

β − γ/β
ε1−α

∫ ∞
0

xαe−xdx.

where α = γ/β2. This yields the assertion of the lemma. �

To conclude the proof, we need a concentration estimate. The first step is a simple
Gaussian bound.

Lemma 3.7. Let X1, X2 be centered normal Gaussian random variables with covariance

EXY = c. (3.38)
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Then, with the previous notation, there exists a constants C, independent of n and c, such
that

E
(
eβ
√
nX
1eβ

√
nX≤cnεe

β
√
nY
1eβ

√
nY ≤cnε′

)
− E

(
eβ
√
nX
1eβ

√
nX≤cnε

)
E
(
eβ
√
nY
1eβ

√
nY ≤cnε′

)
≤
(
ε

2|c| γ2n

2β2(1+|c|) − 1

)(
Eeβ

√
nX
1eβ

√
nX≤cnε

)(
Eeβ

√
nX
1eβ

√
nX≤cnε′

)
. (3.39)

Proof. The left hand side of (3.39) equals (we assume c ≥ 0 below, but the same estimate
with c replaced by −c can be obtained for c < 0)

1

2π

∫ γn−ln ε
β
√
n

−∞

∫ γn−ln ε′
β
√
n

−∞

(
1√

1− c2
e
− z

2
1+z

2
2+2cz1z2

2(1−c2) − e−
z21+z

2
2

2

)
eβ
√
n(z1+z2)dz1dz2

=
1

2π

∫ γn−ln ε
β
√
n

−∞

∫ γn−ln ε′
β
√
n

−∞
eβ
√
n(z1+z2)e−

z21+z
2
2

2

×
(

1√
1− c2

e
− c(z1−z2)

2−c(1−c)(z21+z
2
2)

2(1−c2) − 1

)
dz1dz2

≤ 1

2π

∫ γn−ln ε
β
√
n

−∞

∫ γn−ln ε′
β
√
n

−∞
eβ
√
n(z1+z2)e−

z21+z
2
2

2

×
(

1√
1− c2

e+
c(z21+z

2
2)

2(1+c) − 1

)
dz1dz2

=
1

2π
√

1− c2

(∫ γn−ln ε
β
√
n

−∞
eβ
√
nze−

z2

2(1+c)dz

)(∫ γn−ln ε′
β
√
n

−∞
eβ
√
nze−

z2

2(1+c)dz

)

−

(∫ γn−ln ε
β
√
n

−∞
eβ
√
nze−

z2

2 dz

)(∫ γn−ln ε′
β
√
n

−∞
eβ
√
nze−

z2

2 dz

)
. (3.40)

Now the integrals in the first term can written as∫ γn−ln ε
β
√
n

−∞
eβ
√
nze−

z2

2(1+c)dz =
√

1 + c

∫ γn−ln ε
β′
√
n

−∞
eβ
′√nze−

z2

2 dz, (3.41)

with β′ = β
√

1 + c, resp. with ε replaced by ε′. Using the formula obtained in the
preceding lemma, we see that indeed∫ γn−ln ε

β′
√
n

−∞
eβ
′√nze−

z2

2 dz =

∫ γn−ln ε
β
√
n

−∞
eβ
√
nze−

z2

2 dz × ec
γ2n

2β2(1+c) (1 +O(c)). (3.42)

From here the claim of the lemma follows. �

We will now use Lemma 3.7 to prove the desired concentration estimate.

Lemma 3.8. With the notation above,

E
(
Eπnλ−1

n (Jn(1))e11λ−1
n (Jn(1))e1≤εcn

)2

−
(
EEπnλ−1

n (Jn(1))e11λ−1
n (Jn(1))e1≤εcn

)2

≤ Cn1−p/2
(
EEπnλ−1

n (Jn(1))e11λ−1
n (Jn(1))e1≤εcn

)2

. (3.43)
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Proof. Writing out everything explicitly, we have

E
(
Eπnλ−1

n (Jn(1))e11λ−1
n (Jn(1))e1≤εcn

)2

−
(
EEπnλ−1

n (Jn(1))e11λ−1
n (Jn(1))e1≤εcn

)2

= 2−2n
∑

x,x′∈Σn

∫
dy1dy2e

−y1−y2y1y2

×

(
E
(
eβ(Hn(x)+Hn(x′)

1eβHn(x)≤cnε/y11eβHn(x′)≤cnε/y2

)
−E

(
eβHn(x)

1eβHn(x)≤cnε/y1
)
E
(
eβHn(x′)

1eβHn(x′)≤cnε/y2

))
. (3.44)

Now the last terms depend only on the covariance of Hn(x) and Hn(x′), i.e. on Rn(x, x′).
Using Lemma 3.7, we get, when Rn(x, x′)p = c,∫

dy1dy2e
−y1−y2y1y2 (3.45)

×

(
E
(
eβHn(x)+Hn(x′))

1eβHn(x)≤cnε/y11eβHn(σ′)≤cnε/y2

)
−E

(
eβHn(x)

1eβHn(σ)≤cnε/y1
)
E
(
eβHn(σ′)

1eβHn(σ′)≤cnε/y2

))

≤
(
e
cn γ2

β2(1+c) − 1

)(
EEπneβHn(σ)e11eβHn(σ)e1≤ε

)2
(1 +O(c)).

Thus we have to control

2−2n

1∑
m=−1

∑
x,x′∈Σn

1Rn(x,x′)=m

(
e
mpn γ2

β2(1+mp) − 1

)
(3.46)

=
1∑

m=−1

2−n
(

n

n(m+ 1)/2

)(
e
mpn γ2

β2(1+mp) − 1

)
.

The analysis of the last sum can be carried out in the same way as was done in [1] for a
very similar sum. It yields that

1∑
m=−1

2−n
(

n

n(m+ 1)/2

)(
e
mpn γ2

β2(1+mp) − 1

)
= Cn1−p/2. (3.47)

�

3.5. Conclusion of the proof. Consider first the case p > 4. Lemmata 3.2 and 3.4,
together with Chebychev’s inequality and the Borel-Cantelli lemma, establish that, for
each v > 0,

lim
n→∞

ν̂tn(v) = ν̂t(v) = Kpv
γ/β2−1 , P− a.s. (3.48)

Together with the monotonicity of ν̂tn(v) and the continuity of the limiting function ν̂t(v),
this implies that there exists a subset Ω1 ⊂ Ω of the sample space Ω of the τ ’s with the
property that P(Ω1) = 1, and such that, on Ω1,

lim
n→∞

ν̂tn(v) = ν̂t(v) , ∀ v > 0 . (3.49)
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Finally, applying Feller’s Extended Continuity Theorem for Laplace transforms of (not
necessarily bounded) positive measures (see [14], Theorem 2a, Section XIII.1, p. 433) we
conclude that, on Ω1,

lim
n→∞

νtn(u,∞) = νt(u,∞) = Kpu
−γ/β2

, ∀u > 0 . (3.50)

In the cases p = 3, 4, where our estimates give only convergence in probability, we
obtain convergence of νtn(u,∞) in probability, e.g. by using the characterisation of con-
vergence of probability in terms of almost sure convergence of sub-sequences (see e.g.
[22], Sect. II. 19).

Thus we have established Conditions (A1-1), (A2-1), and (A3-1) under the stated con-
ditions on the parameters γ, β, p, and Theorem 1.4 follows from Theorem 1.3.

3.6. Consequences for correlation functions. We now turn to the proof of Theorem 1.5.

Proof. The proof of this theorem relies on the following simple estimate. Let us denote
by Rn the range of the coarse grained and rescaled clock process Sbn. The argument of
[1] in the proof of Theorem 1.2 that the event Aεn(s, t) ∩ {Rn ∩ (s, t) 6= ∅} has vanishing
probability carries over unaltered. However, while in their case, Aεn(s, t) ⊂ {Rn∩ (s, t) =
∅}, was obvious due to the fact that the coarse graining was done on a scale o(n), this is
not immediately clear in our case, where the number of steps within a block is of order
n2. What we have to show is that if the process spends the whole time from s to t within
one bloc, then almost all of this time is spent, without interruption, within a small ball of
radius εn.

To do this, we need some simple facts about correlated Gaussian processes.

Lemma 3.9. Let X, Y be standard Gaussian variables with covariance Cov(X, Y ) =
1− c, 0 < c < 1/4. Then for a� 1,

P (X > a, Y > a(1− c/4)) ≤ 1

a22πc
e−a

2/2
(
e−ca

2/32 + e−3ca2/8
)
. (3.51)

Proof. Note that the variables X, Y have the joint density
1

2π(2c− c2)
e
−x

2

2
− (y−(1−c)x)2

4c−2c2 . (3.52)

Next,

P (X > a, Y > a(1− c/2)) ≤ P (X > a, |Y − (1− c)X| > ac/4)) + P
(
X > a1−c/2

1−c

)
.

(3.53)
The result is now a trivial application of the standard tail estimates for Gaussian integrals.

�

This lemma has the following corollary:

Corollary 3.10. Let Hn(σ) be the Gaussian process defined in (1.27). LetMn ⊂ Σn be
arbitrary. Then

P (∃x,x′∈Mn : Rn(x, x′) < 1− ε andHn(x) ≥ an ∧Hn(x) ≥ an(1− pε/4))

≤ |Mn|2e−na
2/2e−na

2pε/40 (3.54)

This lemma implies that if in a set of size, say, n2 there is a point, x, where Hn(x) >
na, then with overwhelming probability, all points where Hn(x) > na(1 − c/4) is of
comparable size are within a small ball of radius o(n). All points for which Hn(x) ≤
na(1− c/4) do not give a perceptible contribution to the total time.
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This means the following: within a block of θn steps of the chain Jn, that gives a
contribution to a jump, there is only a very small ball which contributes to the time. It
remains to show that these contributions come in one “block”, i.e. the process will not
return to this region once it left it within θn steps. But this is an elementary property of the
random walk on the hypercube.

Let us make this precise. As remarked above,

Pπn (Aεn(s, t)) = Pπn (Aεn(s, t) ∩ {Rn ∩ (s, t) = ∅}) (3.55)
+ Pπn (Aεn(s, t) ∩ {Rn ∩ (s, t) 6= ∅}) ,

where the second term tends to zero. Next we observe that

Pπn (Aεn(s, t) ∩ {Rn ∩ (s, t) = ∅}) (3.56)
= Pπn (Rn ∩ (s, t) = ∅)− Pπn ((Aεn(s, t))c ∩ {Rn ∩ (s, t) = ∅})

Here the first term is what we want. To show that the second term tends to zero, we
proceed as follows.

For any N <∞, we clearly have

Pπn ((Aεn(s, t))c ∩ {Rn ∩ (s, t) = ∅}) (3.57)

=

kn(N)−1∑
k=0

Pπn
(
((Aεn(s, t))c) ∩

{
(s, t) ⊂

(
S̄n(k), S̄n(k + 1)

)})
+

∞∑
k=kn(N)

Pπn
(
((Aεn(s, t))c) ∩

{
(s, t) ⊂

(
S̄n(k), S̄n(k + 1)

)})
.

The second term is bounded by
∞∑

k=kn(N)

Pπn
(
((Aεn(s, t))c) ∩

{
(s, t) ⊂

(
S̄n(k), S̄n(k + 1)

)})
≤ Pπn

(
Sbn(N) ≤ s

)
→ P (Vα(N) > s) , (3.58)

where convergence is almost sure with respect to the environment. The last probability
can be made as small as desired by choosing N sufficiently large. It remains to deal with
the first sum on the right-hand side of (3.57).

Define the event

Gρ(k) ≡
⋃

kθn≤i<j<(k+1)θn
Rn(Jn(i),Jn(j))≤1−ρ

{
λ−1
n (Jn(i))en,i ≥

cn
θn

(t− s)
}
∩
{
λ−1
n (Jn(j))en,j ≥

cn
θn
n−1

}
.

(3.59)
Note that Corollary 3.10 implies that the probability of this event with respect to the law
P is bounded nicely uniformly in the variables J .

On the other hand, on the event Gρ(k)c ∩ (Aεn(s, t))c ∩
{

(s, t) ⊂
(
S̄n(k), S̄n(k + 1)

)}
,

the following must be true: First, there still must exist some i such that λ−1
n (Jn(i))en,i ≥

cn(t− s)θ−1
n , and second, the random walk must make a loop, i.e. it the event

Wρ,ε(k) ≡
⋃

kθn≤i<j<`<(k+1)θn

{Rn(Jn(i), Jn(j)) > 1− ε ∧Rn(Jn(i), Jn(`)) ≤ 1− ρ} .

(3.60)
The probability of this event is generously bounded by

Pπn (Wρ,ε(k)) ≤ n4e−n(I(1−ρ)−I(1−ε)), (3.61)
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where I is Cramèr’s rate function.
By these considerations, we have the bound

E

kn(N)∑
k=0

Pπn
(
(Aεn(s, t))c ∩

{
(s, t) ⊂

(
S̄n(k), S̄n(k + 1)

)}) (3.62)

≤
kn(N)∑
k=0

E
(
Pπn (Gρ(k)) + Pπn

({
∃kθn≤i<(k+1)θnλ

−1
n (Jn(i))eni > cnθ

−2
n

}
∩Wρ,ε(k)

))
.

Now
EPπn (Gρ(k)) ≤ a−1

n e−δn, (3.63)
for some δ > 0 depending on the choice of ρ. The simplest way to see this is to use that
the probability that one of the en,i is larger than n2 is smaller than exp(−n2), and then use
the bound from Corollary 3.10.

Finally, the two events in
{
∃kθn≤i<(k+1)θnλ

−1
n (Jn(i))eni > cnθ

−2
n

}
∩ Wρ,ε(k) are inde-

pendent, and hence

EPπn
({
∃kθn≤i<(k+1)θnλ

−1
n (Jn(i))eni > cnθ

−2
n

}
∩Wρ,ε(k)

)
(3.64)

= P
(
∃kθn≤i<(k+1)θnλ

−1
n (Jn(i))eni > cnθ

−2
n

)
Pπn (Wρ,ε(k))

≤ θ2
nP
(
eβHn(x) > cnn

−4
)
e−n(I(1−ρ)−I(1−ε)) + θne

−n2

≤ θ4
na
−1
n n−γβ

−2−1/2e−n(I(1−ρ)−I(1−ε)) + θne
−n2

.

Combining all this, we see that

E

kn(N)∑
k=0

Pπn
(
(Aεn(s, t))c ∩

{
(s, t) ⊂

(
S̄n(k), S̄n(k + 1)

)}) ≤ CNe−δn, (3.65)

for some positive δ, whatever the choice of ε. But this estimate implies that the term (3.56)
converges to zero P- almost surely, for any choice of N . Hence the result is obvious from
the J1 convergence of S̄n. �
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