Diffusion Processes in Thin Tubes and their Limits on Graphs

Sergio Albeverio, Seiichiro Kusuoka

no. 480

Diese Arbeit ist mit Unterstützung des von der Deutschen Forschungsgemeinschaft getragenen Sonderforschungsbereichs 611 an der Universität Bonn entstanden und als Manuskript vervielfältigt worden.

Bonn, Oktober 2010
Diffusion Processes in Thin Tubes and their Limits on Graphs

Sergio Albeverio(*) and Seiichiro Kusuoka(**)

Abstract

The present paper is concerned with diffusion processes running on tubular domains with conditions on non-reaching the boundary resp. reflecting at the boundary, and corresponding processes in the limit where the thin tubular domains are shrinking to graphs. The methods we use are probabilistic ones. For shrinking, we use big potentials resp. reflection on the boundary of tubes. We show that there exists a unique limit process and characterize the limit process by a second-order differential generator acting on functions defined on the limit graph, with Kirchhoff boundary conditions at the vertices.

Keywords: diffusion processes, thin tubes, processes on graphs, Dirichlet boundary condition, Neumann boundary condition, Kirchhoff boundary conditions, weak convergence

AMS-classification: 60J60, 60J35, 60H30, 58J65, 35K15, 34B45

1 Introduction

The present paper is concerned with diffusion processes running on tubular domains with Dirichlet (i.e. absorbing-like) (resp. Neumann i.e. reflecting) boundary conditions, and the respective processes obtained in the limit where the thin tubular domains shrink to graphs. Problems of this type have been studied before intensively in the case of Neumann boundary conditions, both by probabilistic tools \cite{22}, \cite{23}, and analytic tools \cite{2}, \cite{8}, \cite{9}, \cite{10}, \cite{13}, \cite{14}, \cite{16}, \cite{38}, and \cite{41}. The case of Dirichlet boundary conditions was known to present special difficulties which explain why there have been up to now less works concerned with this case, and in fact only concerning either special graphs or special shrinking procedures, leading mainly (with the exception of \cite{2}, \cite{9}, \cite{10}, \cite{13}) to limiting processes which “decouple at vertices”; \cite{16}, \cite{7}, \cite{11}.

Before explaining these difficulties and entering into details let us motivate the reasons to undertake such studies, pointing out also some connections with other problems and giving some historical remarks.

In many problems of analysis and probability one encounters differential operators defined on structures which have small dimensions in one or more directions. Let us mention as examples the modeling of fluid motion in narrow tubes or in nearly two dimensional domains, see e.g. \cite{42}, the propagation of electric signals along nearly 1-dimensional neurons, see e.g. \cite{3}, \cite{7}, \cite{11}, the propagation of electromagentic waves in wave guides \cite{31}, the propagation of quantum mechanical effects in thin wires (in the context of nanotechnology), see e.g. \cite{2}, \cite{9}, \cite{10}, \cite{13}, \cite{14}, \cite{16}, \cite{18}, \cite{25}, \cite{32}, \cite{33}, \cite{35}, \cite{41}, \cite{48}. Such geometrical structures tend in a certain limit (mathematically well described in general through a Gromov topology) to a graph. Modeling dynamical systems or processes on such structures by corresponding ones on a graph might present certain advantages (e.g. PDE’s becoming ODE’s on graphs ; more dimensional spectral problems reduced to 1-dimensional ones), in any case the study of dynamics and processes on graphs can be considered as an idealization or a “first approximation” for the study of the corresponding objects in more realistic situations.

There is a rich literature on differential operators on graphs. Diffusion operators and evolution equations were considered originally in work by G. Lumer \cite{37}, subsequently by many authors, see e.g. \cite{49}, \cite{50}, \cite{5}, \cite{40}. Elliptic and parabolic non-linear equations on graphs have been discussed e.g. in

(*)Inst. Aug. Mathematik, Universität Bonn, Endenicherallee 60 53115 Bonn
(**)HCM, SFB611, Universität Bonn; BiBoS (Universities of Bielefeld and Bonn)
(*)Dep. of Math., Faculty of Sci. and Tech., Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
(*)Research Fellow of the Japan Society for the Promotion of Science
relations to applications in biology, e.g. in [11], see also e.g. [7], [3] for non-linear diffusions on graphs in connection with neurobiology. Heat kernels on graphs have been studied in particular in [39]. Hyperbolic non-linear equations on graphs have been studied, e.g., in [31].

In quantum mechanics, Schrödinger equations on graphs are considered as models of nano-structures, see e.g. [18], [6], [32], [33]. Work has been particular intense in the study of spectral properties of Schrödinger-type operators on graphs, see e.g. [25], [32], [33], [35]. Such models of quantum mechanics on graphs also play an important role in the study of the relation between classical chaos and quantum chaos, see e.g. [35], [25], [17], [44], [43].

For the study of the limit of differential operators on thin domains of \mathbb{R}^n (and corresponding PDE’s) degenerating into geometric graphs (and corresponding ODE’s) we refer to [50], [42], [30] and especially to the surveys by G. Raugel [42] (which discuss topics like spectral properties, asymptotics, attractors).

For the study of parabolic equations and associated semi-groups and diffusion processes we also refer to [42]. Corresponding hyperbolic problems in connection with the modeling of ferroelectric materials have been discussed, e.g., in [1].

Probabilistic methods for the study of processes on thin domains of \mathbb{R}^n have been developed by Freidlin and Wentzell in the case of Neumann boundary conditions. They exploit the consideration of slow resp. fast components going back to [21], but applied to the thin tubes problem [22]. In these studies the basic probabilistic observation is that for a Brownian motion in a thin tube along a line the component in the transverse direction is fast, the one in the longitudinal direction is slow. The control in the limit exploits the assumption on the reflecting properties of the fast component, together with a projection technique onto the longitudinal direction. In [22] it is shown that the diffusion coefficient for this limit process is obtained by averaging the diffusion coefficient for the process in tubular domains with respect to the invariant measure of the fast component with suitable changed space and time scales.

Analytically the Laplacian in the transverse direction has a constant eigenvalue 0 (ground state in the transverse direction), which then yields a natural identification of the subspace of L^2-over the thin tube corresponding to the eigenvalue 0 for the Laplacian in the transverse direction with the L^2-space along an edge. Results about this approximation concern convergence of eigenvalues, eigenfunctions, resolvents, and semigroups [16], [26], [38], [14]. Besides, operatorial and variational methods also methods of Dirichlet form theory have been used [8].

The identification stressed above is no longer possible in the case of Dirichlet boundary conditions on the boundary of the thin tube, since the lowest eigenvalue of the Laplacian in the transverse direction diverges like $1/\varepsilon^2$, where $\varepsilon > 0$ is the width of the narrow tube. (For a probabilistic study of the first-order asymptotics of the lowest eigenvalue of the Dirichlet Laplacian in tubular neighborhoods of submanifolds of Riemannian manifolds see [28].) This has been pointed out clearly and posed as an open problem by P. Exner (see in [4]). In order to nevertheless manage analytically the limit to a graph, one has to perform a renormalization procedure, first introduced in [2], and extended in [9], [10], for the case of a V-graph (waveguide). More general cases with Dirichlet boundary conditions have been managed in the case where the shrinking at vertices is quicker than the one at the edges, however then one has “no communication between the different edges” (i.e. “decoupling”) on the graphs, see [26], [38], [41]. The interest in discussing the case of Dirichlet-boundary conditions is particularly clear in the physics of conductors, where such boundary conditions arise most naturally, both in classical and quantum mechanical problems. However, also in the other type of applications we have mentioned there is an interest in studying boundary conditions different from the Neumann ones, since boundary conditions influence the limit behavior and one is interested to obtain on the graphs most general possible boundary conditions at the vertices (even in the case of an “N-spider graph” there are N-different possible self-adjoint realizations of a Laplacian on the spider, see e.g. [18], [29]).

The present paper discusses the case of shrinking by potentials mainly and the goal is to determine the limit process on a given graph. This shrinking by potentials correspond to confining the process in thin tubes around the graph, not reaching the boundary almost surely, and in this sense is related with Dirichlet boundary conditions (the latter property corresponding however to a completely absorbing boundary). In Sections 2 and 3 we consider special cases, because the consideration of these cases illustrate better the methods we use.

In Section 2 the case of a thin tube Ω^ε in \mathbb{R}^n shrinking to a curve γ in \mathbb{R}^n is discussed. The tube Ω^ε has a uniform width $\varepsilon > 0$. In the tube we have a non-degenerate diffusion process X^ε with a drift consisting of two parts, one continuous and bounded, the other of gradient type, pushing away from the boundary, so that the first hitting time of X^ε at the boundary $\partial \Omega^\varepsilon$ is infinite almost surely. We also
construct a diffusion process X on γ and show (Theorem 2.2) that if $X^\varepsilon(0)$ converges weakly to $X(0)$ then also X^ε converges weakly to X. If pathwise uniqueness holds both for X^ε and X, then X^ε also converges to X almost surely as $\varepsilon \to 0$. We also state corresponding results for a process in Ω^ε with reflecting boundary condition on the boundary $\partial\Omega^\varepsilon$ (Theorem 2.3). These results are obtained in similar way as those obtained by our shrinking with potentials in the first part of Section 2.

In Section 3 we discuss the case of shrinking N thin tubes in \mathbb{R}^n to an N-spider graph in \mathbb{R}^n. In this section, we often use the methods discovered by Freidlin and Wentzell [22], extend their method to the case of diffusion processes instead of Brownian motions, and apply it to the case of shrinking by potentials. The process X^ε in the domain Ω^ε consisting of N tubes is defined in a similar way as in Section 2, $\varepsilon > 0$ being the parameter of shrinking to the N-spider graph Γ for $\varepsilon \to 0$. We prove again that the first hitting time of X^ε at the boundary $\partial\Omega^\varepsilon$ is infinite and that the laws of $\{X^\varepsilon : \varepsilon > 0\}$ are tight in the topology of probability measures on $C([0, +\infty))$, if their initial distributions are tight. We then show that any limit process is strong Markov and study the transition probabilities from the vertex O to any edge of the spider graph Γ. This requires quite detailed estimates of the behavior of the process X^ε in a neighborhood of O in Ω^ε. These results imply that the boundary condition at O should be a weighted Kirchhoff boundary condition for the functions in the domain of the generator of the limit processes X. (This is one of the types of boundary conditions known from the general discussions on boundary conditions for processes on graphs, see e.g. [29], [32], [33], [34], [18], [13]). The weights are determined explicitly from the construction, as transition probabilities to the edges (Lemma 3.6). This is crucial to determine the generator of the unique limit process X (Theorem 3.7). Similar considerations lead to corresponding results for the case where X^ε is a diffusion in Ω^ε with reflecting boundary conditions on $\partial\Omega^\varepsilon$ (Theorem 3.8).

In Section 4 we state the results in the case of thin tubes around general graphs, which are obtained immediately from the results in Sections 2 and 3. These are systems consisting of thin tubes around finitely ramified graphs in \mathbb{R}^n with edges which consist of C^2-curves. Theorem 4.1 presents a result similar to the one for an N-spider graph, showing, in particular, convergence of the diffusion process X^ε not leaving the system Ω^ε of tubes around the general graph to a diffusion process X on the graph. Again its generator is determined and an extension is given to the case of a diffusion with reflecting boundary conditions on $\partial\Omega^\varepsilon$. Since the latter result is not only for a Brownian motion in the thin tubes but also for reflecting diffusion processes in the thin tubes, it is also an extension of previous results of Friedlin and Wentzell [22].

All random variables discussed in the present paper are defined on a probability space with probability measure P, and $E[\cdot]$ denotes their expectation with respect to P. For a locally compact topological subspace A of \mathbb{R}^n, let $C_0(A) := \{f \in C(A) : \lim_{|x| \to +\infty} f(x) = 0\}$.

2 The case of curves

In this section, we consider shrinking of thin tubes to curves. Let n be an integer larger than or equal to 2. Let $\gamma \in C_0^2(\mathbb{R}; \mathbb{R}^n)$ such that $|\dot{\gamma}| = 1$ (with $\dot{\gamma}$ the derivatives of $t \to \gamma(t)$, and $| \cdot |$ the norm in \mathbb{R}^n), and assume that γ has no self-crossing point and $\ddot{\gamma}$ is bounded. Let $\varepsilon > 0$, $\langle \cdot, \cdot \rangle$ be the inner product on \mathbb{R}^n, and $d(x, \gamma)$ be the distance between x and γ. Note that $d(x, \gamma)$ is Lipschitz continuous in x. Define domains $\{\Omega^\varepsilon\}$ by

$$\Omega^\varepsilon := \{x \in \mathbb{R}^n : d(x, \gamma) < \varepsilon\}.$$

Consider a differentiable function u on $[0, 1)$ such that

$$u(0) = 0, \quad u' \geq 0, \quad \text{and} \quad -\lim_{R \to 1} \frac{u(R)}{\log(1 - R)} = +\infty.$$

Let

$$U^\varepsilon(x) = u(\varepsilon^{-1} d(x, \gamma)), \quad x \in \Omega^\varepsilon.$$

For $\varepsilon > 0$, consider a diffusion process X^ε given by the following equation:

$$X^\varepsilon(t) = X^\varepsilon(0) + \int_0^{t \wedge \xi^\varepsilon} \sigma(X^\varepsilon(s)) dW(s) + \int_0^{t \wedge \xi^\varepsilon} b(X^\varepsilon(s)) ds - \int_0^{t \wedge \xi^\varepsilon} (\nabla U^\varepsilon)(X^\varepsilon(s)) ds, \quad (2.1)$$

3
where $X^x(0)$ is an Ω^ε-valued random variable, W is an n-dimensional Wiener process, $\sigma \in C_b(\mathbb{R}^n; \mathbb{R}^n \otimes \mathbb{R}^n)$, $b \in C_b(\mathbb{R}^n; \mathbb{R}^n)$, and ξ^ε is the first hitting time of X^x at the boundary $\partial \Omega^\varepsilon$ of Ω^ε. Let $a := \sigma \sigma^T$ (with σ^T the transpose of σ), and assume that a is a uniformly positive definite matrix. Then, the solution X^x of (2.1) exists uniquely (see, e.g., [47]).

Lemma 2.1. $\xi^\varepsilon = +\infty$ almost surely for small $\varepsilon > 0$.

Proof. Assume $n \geq 3$. Note that X^ε does not hit γ almost surely in this case. Let X_y^ε be the solution of (2.1) replacing $X^x(0)$ and ξ^ε by x and ξ^ε, respectively, where ξ^ε is the first hitting time of X^ε at $\partial \Omega^\varepsilon$. It is sufficient to show that $\xi^\varepsilon = +\infty$ almost surely for x near to $\partial \Omega^\varepsilon$. By the tubular neighborhood theorem and Theorem 1 in [19], there exists a C^2-diffeomorphism $\phi = (\phi_1, \phi_2)$ from $\Omega^\varepsilon \setminus \gamma$ to $\{y = (y_1, y_2) \in \mathbb{R} \times \mathbb{R}^{n-1} : |y_2| < \varepsilon\}$ which satisfies, for small ε, $\phi_1(x) = \gamma^{-1} \circ \pi(x)$ and $\phi_2(x) = d(x, \gamma) \nabla d(x, \gamma), \quad x \in \Omega^\varepsilon \setminus \gamma,$

where $\pi(x)$ is the nearest point in γ from x. Note that ϕ is a C^2-function on Ω^ε and $\langle \nabla \pi, \nabla U^\varepsilon \rangle = 0$ for small ε. Hence, $\langle \nabla \phi_1, \nabla U^\varepsilon \rangle = 0$ and $\nabla \phi_2 \nabla U^\varepsilon = -\varepsilon^{-1} u'(-\varepsilon^{-1} d(\cdot, \gamma)) \nabla d(\cdot, \gamma)$. By Itô’s formula, we have

\begin{align}
\phi_1(X_y^\varepsilon(t)) &= \phi_1(x) + \int_0^{\xi^\varepsilon} \nabla \phi_1(X^\varepsilon(s)) \sigma(X^\varepsilon(s)) dW(s) \\
&\quad + \int_0^{\xi^\varepsilon} \nabla \phi_1(X^\varepsilon(s)) b(X^\varepsilon(s)) ds \\
&\quad + \frac{1}{2} \sum_{i,j=1}^n \int_0^{\xi^\varepsilon} a_{ij}(X^\varepsilon(s)) \partial_i \partial_j \phi_1(X^\varepsilon(s)) ds, \\
\phi_2(X_y^\varepsilon(t)) &= \phi_2(x) + \int_0^{\xi^\varepsilon} \nabla \phi_2(X^\varepsilon(s)) \sigma(X^\varepsilon(s)) dW(s) \\
&\quad + \int_0^{\xi^\varepsilon} \nabla \phi_2(X^\varepsilon(s)) b(X^\varepsilon(s)) ds \\
&\quad + \frac{1}{2} \sum_{i,j=1}^n \int_0^{\xi^\varepsilon} a_{ij}(X^\varepsilon(s)) \partial_i \partial_j \phi_2(X^\varepsilon(s)) ds \\
&\quad - \varepsilon^{-1} \int_0^{\xi^\varepsilon} u'(-\varepsilon^{-1} d(X^\varepsilon(s), \gamma)) \nabla d(\cdot, \gamma)|X^\varepsilon(s)| ds.
\end{align}

Moreover, again by Itô’s formula:

$$
|\phi_2(X_y^\varepsilon(t))|^2 = |\phi_2(x)|^2 + 2 \int_0^{\xi^\varepsilon} \langle \phi_2(X^\varepsilon(s)), \nabla \phi_2(X^\varepsilon(s)) \sigma(X^\varepsilon(s)) dW(s) \rangle
$$

$$
+ 2 \int_0^{\xi^\varepsilon} \langle \phi_2(X^\varepsilon(s)), \nabla \phi_2(X^\varepsilon(s)) b(X^\varepsilon(s)) \rangle ds
$$

$$
+ \int_0^{\xi^\varepsilon} \left(\phi_2(X^\varepsilon(s)), \sum_{i,j=1}^n a_{ij}(X^\varepsilon(s)) \partial_i \partial_j \phi_2(X^\varepsilon(s)) \right) ds
$$

$$
- 2\varepsilon^{-1} \int_0^{\xi^\varepsilon} |\phi_2(X^\varepsilon(s))| u'(-\varepsilon^{-1} d(X^\varepsilon(s), \gamma)) ds
$$

$$
+ \int_0^{\xi^\varepsilon} \text{trace} \left[\nabla \phi_2(X^\varepsilon(s)) \sigma(X^\varepsilon(s)) \left(\nabla \phi_2(X^\varepsilon(s)) \sigma(X^\varepsilon(s)) \right)^T \right] ds.
$$

Let

\begin{align*}
\tilde{a} \ := \sup \left\{ ||(\nabla \phi_2(x) \sigma(x))^T \xi^\varepsilon||^2 : x \in \Omega^\varepsilon, \xi \in \{y \in \mathbb{R}^n : |y| = 1\} \right\}
\end{align*}

\begin{align*}
\tilde{b} \ := \inf_{x \in \mathbb{R}^n} \left(2 \langle \phi_2(x), \nabla \phi_2(x) b(x) \rangle + \left(\phi_2(x), \sum_{i,j=1}^n a_{ij}(x) \partial_i \partial_j \phi_2(x) \right) \\
+ \text{trace} \left[\nabla \phi_2(x) \sigma(x) (\nabla \phi_2(x) \sigma(x))^T \right]. \right.
\end{align*}
Let $c_0 \in (0, 1)$ and
\[
f(x) := \int_{e^{\varepsilon}x}^{x} \exp \left(-2 \int_{e^{\varepsilon}x}^{y} \frac{b - 2\varepsilon^{-1}\sqrt{\gamma}u(x, \gamma)}{\bar{\gamma}} \, dy \right) \, dx, \quad x \in [0, \varepsilon].
\]

Then, by Itô’s formula, for δ such that $0 < \delta < 1 - c_0$ and for x such that $c_0 \varepsilon \leq d(x, \gamma) \leq \varepsilon (1 - \delta)$ we have that
\[
E[f(\phi_{2}(X_{\varepsilon}^{\varepsilon}(T^{\varepsilon}(\varepsilon^{-1}(1 - \delta)))))] \leq f(d(x, \gamma)^2),
\]
where $T^{\varepsilon} := \inf\{t > 0 : d(X_{\varepsilon}^{\varepsilon}, \gamma) = c\}$ for $c > 0$. Since
\[
E[f(\phi_{2}(X_{\varepsilon}^{\varepsilon}(T^{\varepsilon}(\varepsilon^{-1}(1 - \delta)))))] = f(c^2 \varepsilon^2) \left(T^{\varepsilon}(\varepsilon^{-1}(1 - \delta)) \right) + f \left(\varepsilon^2 (1 - \delta)^2 \right) \left(T^{\varepsilon}(\varepsilon^{-1}(1 - \delta)) \right),
\]
and
\[
P \left(T^{\varepsilon} > T^{\varepsilon}(\varepsilon^{-1}(1 - \delta)) \right) + P \left(T^{\varepsilon} > T^{\varepsilon}(\varepsilon^{-1}(1 - \delta)) \right) = 1,
\]
we have
\[
P \left(T^{\varepsilon}(\varepsilon^{-1}(1 - \delta)) \right) \leq \frac{f(d(x, \gamma)^2) - f(c^2 \varepsilon^2)}{f \left(\varepsilon^2 (1 - \delta)^2 \right) - f(c^2 \varepsilon^2)}.
\]

The assumptions on u imply that $f(\varepsilon^2 (1 - \delta)^2)$ diverges to $+\infty$ as $\delta \to 0$. Hence, the proof is achieved from the fact that $T^{\varepsilon}(\varepsilon^{-1}(1 - \delta))$ converges to ζ^ε as $\delta \to 0$. The case where $n = 2$ is proved in a similar way.

Theorem 2.2. Define a diffusion process X by the solution of the following equation:

\[
X(t) = X(0) + \int_{0}^{t} \gamma \circ \gamma^{-1}(X(s)) \left(\gamma \circ \gamma^{-1}(X(s)), \sigma(X(s)) \right) dW(s) + \int_{0}^{t} \frac{\partial}{\partial x} \gamma \circ \gamma^{-1}(X(s)) \sigma(X(s)) \sigma(X(s))^T \sigma(X(s)) \, ds + \int_{0}^{t} \frac{\partial}{\partial x} \gamma \circ \gamma^{-1}(X(s)) \sigma(X(s)) \, ds.
\]

Note that X is uniquely determined as a process on γ.

If $X^{\varepsilon}(0)$ converges to a γ-valued random variable $X(0)$ weakly, then the process X^{ε} converges weakly to X in the sense of their laws on $C([0, +\infty); \mathbb{R}^n)$ as $\varepsilon \downarrow 0$.

Moreover, if pathwise uniqueness holds for (2.4) and (2.1) for all $\varepsilon > 0$ and $X^{\varepsilon}(0)$ converges to a γ-valued random variable $X(0)$ almost surely, then X^{ε} converges to X almost surely, as $\varepsilon \downarrow 0$.

Proof. Lemma 2.1 implies that $d(X^{\varepsilon}(t), \gamma)$ converges to 0 uniformly in t almost surely as $\varepsilon \downarrow 0$. The equation (2.2) holds even if we replace $X_{\varepsilon}^{\varepsilon}$, x, and ζ^{ε} by X^{ε}, $X^{\varepsilon}(0)$, and ζ^{ε} respectively. Hence, the boundedness of the coefficients implies the tightness of the process $\phi(X^{\varepsilon})$. By standard arguments, it follows that any limit process of X^{ε} satisfies (2.4), therefore, the first assertion holds. The second assertion is obtained in a similar way.

The argument above is also available in the case where the boundary $\partial \Omega^{\varepsilon}$ carries a Neumann boundary condition, for the generator of the process, in the following sense. Consider a diffusion process \hat{X}^{ε} which is associated to
\[
\frac{1}{2} \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} + \sum_{j=1}^{n} b_j(x) \frac{\partial}{\partial x_j}
\]
in Ω^{ε} and reflecting on $\partial \Omega^{\varepsilon}$. Then, \hat{X}^{ε} can be expressed by the following equation:

\[
\hat{X}^{\varepsilon}(t) = \hat{X}^{\varepsilon}(0) + \int_{0}^{t} \sigma(\hat{X}^{\varepsilon}(s)) \, dW(s) + \int_{0}^{t} b(\hat{X}^{\varepsilon}(s)) \, ds + \Phi^{\varepsilon}(\hat{X}^{\varepsilon})(t),
\]
where Φ^{ε} is a singular drift which forces the reflecting boundary condition on $\partial \Omega^{\varepsilon}$ (see [46]). Discussing this case in a similar way as above, we obtain the following theorem.
Theorem 2.3. Define a diffusion process \tilde{X} by the solution of the following equation:

$$
\tilde{X}(t) = \tilde{X}(0) + \int_0^t \gamma \circ \gamma^{-1}(\tilde{X}(s)) \langle \gamma \circ \gamma^{-1}(\tilde{X}(s)), \sigma(\tilde{X}(s))ds \rangle W(s) + \int_0^t \gamma \circ \gamma^{-1}(\tilde{X}(s)) \langle \sigma(\tilde{X}(s))T \gamma \circ \gamma^{-1}(\tilde{X}(s)), b(\tilde{X}(s)) \rangle ds + \frac{1}{2} \int_0^t \gamma \circ \gamma^{-1}(\tilde{X}(s)) \left| \sigma(\tilde{X}(s))T \gamma \circ \gamma^{-1}(\tilde{X}(s)) \right|^2 ds. \tag{2.6}
$$

If $\tilde{X}(0)$ converges to a γ-valued random variable $\tilde{X}(0)$ weakly, then the process \tilde{X} converges weakly to \tilde{X} in the sense of their laws on $C([0, +\infty); R^n)$ as $\varepsilon \downarrow 0$. Moreover, if pathwise uniqueness holds for (2.6) and (2.5) for all $\varepsilon > 0$ and $\tilde{X}(0)$ converges to a γ-valued random variable $\tilde{X}(0)$ almost surely, then \tilde{X} converges to \tilde{X} almost surely, as $\varepsilon \downarrow 0$.

Remark 2.4. In this section, the shape of tubes was taken to be cylindrical and the “confining” potential U^ε has been defined by scaling of a fixed function U. However, neither the shape of the tubes nor the scaling property are essential. If U^ε is “along γ” (in the sense that the gradient of U is normal to the tangent of γ in any points of γ), the same results hold. In the case where U^ε is not along γ, some effect of U^ε remains in the limit process (see [45], [20]).

3 The case of N-spiders

In this section, we consider the shrinking of thin tubes to N-spider graphs. The argument in this section is the main part of this article. Consider an n-dimensional Euclidean space R^n, let $d(\cdot, \cdot)$ be the distance function in R^n, and O be the origin. Let $\{e_i\}_{i=1}^N$ be N different unit vectors in R^n and $I_i := \{s e_i : s \in [0, \infty)\}$. Consider an N-spider graph Γ defined by $\Gamma := \bigcup_{i=1}^N I_i$. Γ is also called an N-star graph. Let A be the set in R^n given by

$$
A := \bigcup_{i,j: i \neq j} \{x \in R^n : x \cdot e_i = x \cdot e_j\}.
$$

For $x \in R^n \setminus A$, let $\pi(x)$ be the nearest point in Γ from x. Note that $\pi(x)$ is uniquely determined for all $x \in R^n \setminus A$.

Let u_i be given similarly to u in Section 2 for $i = 1, 2, \ldots, N$ (so that u_i determines the potential acting in the thin tube around I_i). Let c_i be a positive number for $i = 1, 2, \ldots, N$

$$
\kappa := \max \left\{ \sqrt{2}c_i/\sqrt{1 - \langle e_i, e_j \rangle} : i, j = 1, 2, \ldots, N \right\}.
$$

c_i has the interpretation of width of the tube around I_i. Let U be a function on R^n with values in $[0, \infty]$, and assume

$$
U(x) = u_i(c_i^{-1}d(x, \Gamma)), \quad x \in \{x \in R^n : \pi(x) \in I_i, d(x, I_i) < c_i, |x| \geq \kappa\}
$$

$$
U(x) = +\infty, \quad x \in \{x \in R^n : \pi(x) \in I_i, d(x, I_i) \geq c_i, |x| \geq \kappa\},
$$

$$
U(x) < +\infty, \quad x \in \{x \in R^n : |x| \leq \kappa/2\}.
$$

$\Omega := \{x : U(x) < \infty\}$ is a simply connected and unbounded domain, $\partial \Omega$ is a C^2-manifold, and $U|\Omega$ is a C^1-function in Ω. This structure Ω is sometimes called a “fattened” N-spider. In addition, we assume

$$
- \lim_{m \to \infty} \frac{U(x_m)}{\log(d(x_m, \partial \Omega))} = +\infty
$$

for any sequence $\{x_m\}$ which converges to a point $x \in \partial \Omega$. Define domains $\Omega_i : i = 1, 2, \ldots, N$ in R^n by

$$
\Omega_i := \{x \in \Omega \setminus A : \pi(x) \in I_i, |x| \geq \kappa\}.$$
for \(i = 1, 2, \ldots, N \). Let \(\Omega^\varepsilon := \varepsilon \Omega \), \(\Omega^\varepsilon := \varepsilon \Omega \), and \(U^\varepsilon(x) = U(\varepsilon^{-1}x) \) for \(x \in \mathbb{R}^n \) for all \(\varepsilon > 0 \). Note that \(U^\varepsilon(x) \in [0, +\infty) \) for \(x \in \Omega^\varepsilon \), \(\partial U^\varepsilon \) is a \(C^2 \)-manifold, and \(U^\varepsilon|_{\partial \Omega} \) is a \(C^1 \)-function on \(\Omega^\varepsilon \). Consider a diffusion process \(X^\varepsilon \) given by the following equation:

\[
X^\varepsilon(t) = X^\varepsilon(0) + \int_0^t \sigma(X^\varepsilon(s))dW(s) + \int_0^t b(X^\varepsilon(s))ds - \int_0^t (\nabla U^\varepsilon)(X^\varepsilon(s))ds,
\]

where \(X^\varepsilon(0) \) is an \(\Omega^\varepsilon \)-valued random variable, \(\zeta^\varepsilon \) is the first hitting time of \(X^\varepsilon \) at \(\partial \Omega^\varepsilon \), \(W \) is an \(n \)-dimensional Wiener process, \(\sigma \in C_b(\mathbb{R}^n; \mathbb{R}^n \otimes \mathbb{R}^n) \), and \(b \in C_b(\mathbb{R}^n; \mathbb{R}^n) \). Let \(a(x) := \sigma(x)\sigma^T(x) \) and assume that \(a \) is a uniformly positive definite matrix. Define a second-order elliptic differential operator \(L \) on \(\Omega^\varepsilon \) by

\[
L := \frac{1}{2} \sum_{i,j=1}^n a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^n b_i(x) \frac{\partial}{\partial x_i},
\]

then the generator of \(X^\varepsilon \) is a closed extension of \((L - \nabla U^\varepsilon \cdot \nabla) \) in \(L^2(\Omega^\varepsilon, dx) \) for any \(\varepsilon > 0 \). Since \(a \) is a uniformly positive definite matrix, the process \(X^\varepsilon \) exists uniquely for all \(\varepsilon > 0 \). We denote by \(P^\varepsilon_x \) the law of \(X^\varepsilon \) on \(C([0, \infty); \mathbb{R}^n) \) with \(X^\varepsilon(0) = x \).

The following lemma implies that \(X^\varepsilon \) does not exit from \(\Omega^\varepsilon \) almost surely.

Lemma 3.1. \(\zeta^\varepsilon = +\infty \) almost surely for all \(\varepsilon > 0 \).

Proof. Locally, the discussion in the proof of Lemma 2.1 is available. Hence, by using the strong Markov property of \(X^\varepsilon \), we have the assertion. \(\Box \)

Next we shall study the tightness of \(\{X^\varepsilon : \varepsilon > 0\} \).

Lemma 3.2. If the laws of \(\{X^\varepsilon(0) : \varepsilon > 0\} \) are tight, then the laws of \(\{X^\varepsilon : \varepsilon > 0\} \) are also tight in the sense of laws on \(C([0, \infty); \mathbb{R}^n) \).

Proof. In view of Theorem 2.1 in [22] it is sufficient to show that for any \(\rho > 0 \) there exists a positive constant \(C_\rho \) such that for all \(y \in \mathbb{R}^n \) there exists a function \(f^y_\rho \) on \(\mathbb{R}^n \) which satisfies the following

\begin{enumerate}
\item \(f^y_\rho(y) = 1, f^y_\rho(x) = 0 \) for \(|x - y| \geq \rho \), and \(0 \leq f^y_\rho \leq 1 \).
\item \((f^y_\rho(X^\varepsilon(t)) + C_\rho t : t \geq 0) \) is a submartingale for sufficiently small \(\varepsilon \).
\end{enumerate}

Now we choose \(f^y_\rho \) and \(C_\rho \) satisfying the conditions above. Fix \(\rho > 0 \) and take \(\varepsilon_0 > 0 \) such that

\[
\varepsilon_0 < \rho/(8\varepsilon_0).
\]

When \(y \in \overline{\Omega^0} \) (where \(\overline{\Omega^0} \) denotes the closure of \(\Omega^0 \) in \(\mathbb{R}^n \)) and \(|y| > \rho/2 \), choose \(f^y_\rho \in C^\infty(\mathbb{R}^n) \) such that

- \(f^y_\rho(x) = f^y_\rho(\pi(x)) \) for \(x \in \Omega^0 \), and \(f^y_\rho(x) = 0 \) for \(|x - y| \geq \rho/4 \),
- \(f^y_\rho(y) = 1, 0 \leq f^y_\rho \leq 1, ||\nabla f||_\infty \leq 8/\rho, \) and \(||\nabla^2 f||_\infty \leq 64/\rho^2 \).

Since \(f^y_\rho(x) = 0 \) for \(|x| \leq 2\varepsilon_0 \) and \(\nabla \pi(x)\nabla U^\varepsilon(x) = 0 \) for \(|x| \geq 2\varepsilon_0 \), it follows by Itô’s formula that

\[
f^y_\rho(X^\varepsilon(t)) - \int_0^t Lf^y_\rho(X^\varepsilon(s))ds
\]

is a martingale for all \(\varepsilon < \varepsilon_0 \). Hence, choosing \(C_\rho \) larger than \((8/\rho + 64/\rho^2)(1/2)||\sigma||^2_\infty + ||b||_\infty \), the conditions i) and ii) are satisfied for \(\varepsilon < \varepsilon_0 \).

When \(y \in \overline{\Omega^0} \) and \(|y| \leq \rho/2 \), choose \(f^y_\rho \in C^\infty(\mathbb{R}^n) \) such that

- \(f^y_\rho(x) = f^y_\rho(\pi(x)) \) for \(x \in \Omega^0 \setminus A \), \(f^y_\rho(x) = 1 \) for \(|x| \leq \rho/2 \), and \(f^y_\rho(x) = 0 \) for \(|x - y| \geq \rho \),
- \(0 \leq f^y_\rho \leq 1, ||\nabla f||_\infty \leq 8/\rho, \) and \(||\nabla^2 f||_\infty \leq 64/\rho^2 \).
Here, note that $4\kappa \varepsilon \leq \rho / 2$ for $\varepsilon < \varepsilon_0$. Similarly to the case where $y \in \overline{\Omega}^c$ and $|y| > \rho / 2$, one proves that the conditions i) and ii) are satisfied for $\varepsilon < \varepsilon_0$ with the same C_ρ as above.

When $y \notin \overline{\Omega}^c$, choose $f'_\rho \in C^\infty(\mathbb{R}^n)$ such that $f'_\rho(y) = 1$, $f'_\rho(x) = 0$ for $x \in \overline{\Omega}^c$, and f'_ρ satisfies the conditions i) above. Since X_ε moves in Ω^c, $f'_\rho(X_\varepsilon(t)) = 0$ for all t and $\varepsilon < \varepsilon_0$.

Thus, for all $\rho > 0$, $\{f'_\rho : y \in \mathbb{R}^n\}$ and C_ρ are chosen in such a way that the conditions i) and ii) are satisfied.

By Lemma 3.2 we can choose a subsequence $\{X'_\varepsilon : \varepsilon' > 0\}$ of $\{X_\varepsilon : \varepsilon > 0\}$ such that the laws of its members converge weakly in the sense of laws on $C([0,\infty); \mathbb{R}^n)$. Define X as the limit process of this subsequence and to simplify the notation denote the subsequence ε' by ε again. From now on we fix X as the limit process of X'_ε.

Let $T_\varepsilon(w) := \inf \{t > 0 : |w(t)| = \varepsilon\}$ and $T_\varepsilon(c) := \inf \{t > 0 : w(t) \notin A, |\pi(w(t))| = \varepsilon\}$ for $c > 0$.

Theorem 2.2 determines the behavior of X on $\Gamma \setminus O$. Hence, to characterize X, we need to determine the boundary condition for X at O. Now we give some lemmas. Next lemma implies that the edge which X goes to, starting from O, is independent of the edge which X comes from. Therefore, we obtain in particular that X is a strong Markov process on Γ.

Lemma 3.3. Let $\{\delta(\varepsilon) : \varepsilon > 0\}$ be positive numbers satisfying the condition that $\lim_{\varepsilon \downarrow 0} \varepsilon^{-1} \delta(\varepsilon) = +\infty$. For $B \in \mathcal{B}(\mathbb{R}^n)$ ($\mathcal{B}(\mathbb{R}^n)$ denoting the Borel subsets of \mathbb{R}^n),

$$\sup \left\{ \left| P_x^\varepsilon \left(w(T^\delta(\varepsilon)) \in B \right) - P_0^\varepsilon \left(w(T^\delta(\varepsilon)) \in B \right) \right| : x \in \Omega, |x| \leq 2\kappa \varepsilon \right\}$$

converges to 0 as $\varepsilon \downarrow 0$.

Proof. Define a process \tilde{X}_x^ε by the solution of the equation:

$$\dot{\tilde{X}}_x^\varepsilon(t) = x + \int_0^t \sigma(\tilde{X}_x^\varepsilon(s))d\tilde{W}(s) + \varepsilon \int_0^t b(\varepsilon \tilde{X}_x^\varepsilon(s))ds - \int_0^t (\nabla U)(\tilde{X}_x^\varepsilon(s))ds, \tag{3.2}$$

for $x \in \Omega$ and $\varepsilon > 0$, where \tilde{W} is an n-dimensional Wiener process defined by $\tilde{W}(t) = \varepsilon^{-1}W(\varepsilon^2 t)$ for $t \in [0, \infty)$. Let P_x^ε be the law of \tilde{X}_x^ε on $C([0,\infty); \mathbb{R}^n)$. Then, it is easy to see that

$$\dot{\tilde{P}}_x^\varepsilon(w(t) \in dx) = P_{x-\varepsilon}(\varepsilon^{-1}w(\varepsilon^2 t) \in dx)$$

for $t \in [0, \infty)$ and $\varepsilon > 0$. Hence, it is sufficient to show that

$$\left| \dot{\tilde{P}}_x^\varepsilon \left(w(T^\delta(\varepsilon)/\varepsilon) \in \varepsilon^{-1}B \right) - \tilde{P}_0^\varepsilon \left(w(T^\delta(\varepsilon)/\varepsilon) \in \varepsilon^{-1}B \right) \right| \to 0 \tag{3.3}$$

as ε tends to 0, uniformly in $x \in \{y \in \Omega : |y| \leq 2\kappa\}$. Define stopping times

$$\tau_0(w) := \inf \{t > 0 : w(t) \notin A, |\pi(w(t))| > 3\kappa\},$$

$$\tau_k(w) := \inf \{t > \tau_{k-1} : w(t) \notin A, |\pi(w(t))| > 4\kappa, \ k \in \mathbb{N}\},$$

$$\tau_k(w) := \inf \{t > \tau_k : w(t) \notin A, |\pi(w(t))| < 3\kappa, \ k \in \mathbb{N}\},$$

for $w \in C([0,\infty); \mathbb{R}^n)$. Note that $|w(\tau_k)| = 3\kappa$ for $k = 0, 1, 2, \ldots$, and $|w(\tau_k)| = 4\kappa$ for $k = 1, 2, 3, \ldots$ almost surely under \tilde{P}_x^ε for $x \in \Omega$ and $|x| \leq 2\kappa$. Since $\Delta \pi(x) = 0$ and $\nabla \pi(x) \nabla U(x) = 0$ for $|x| \geq 2\kappa$, Itô’s formula implies

$$\pi(\tilde{X}_x^\varepsilon(t)) = \pi(\tilde{X}_x^\varepsilon(0)) + \int_{\tau_k(\tilde{X}_x^\varepsilon)}^{\tau_{k+1}(\tilde{X}_x^\varepsilon)} \nabla \pi(\tilde{X}_x^\varepsilon(s))\sigma(\varepsilon \tilde{X}_x^\varepsilon(s))d\tilde{W}(s) + \varepsilon \int_{\tau_k(\tilde{X}_x^\varepsilon)}^{\tau_{k+1}(\tilde{X}_x^\varepsilon)} \nabla \pi(\tilde{X}_x^\varepsilon(s))b(\varepsilon \tilde{X}_x^\varepsilon(s))ds \tag{3.4}$$

for $t \in [\tau_k(\tilde{X}_x^\varepsilon), \tau_{k+1}(\tilde{X}_x^\varepsilon)]$, $x \in \Omega$ and $|x| \leq 2\kappa$. Since the diffusion coefficient of the one-dimensional process $|\pi(\tilde{X}_x^\varepsilon(t))|$ is uniformly elliptic and $T^\delta(\varepsilon)/\varepsilon$ diverges to infinity as $\varepsilon \downarrow 0$ almost surely under \tilde{P}_x^ε, there exists a sequence $\{\eta(\varepsilon)\}$ converging to 0 as $\varepsilon \downarrow 0$ such that

$$\sup_{|x| = 4\kappa} \tilde{P}_x^\varepsilon \left(T^\delta(\varepsilon)/\varepsilon < T^{3\kappa} \right) \leq \eta(\varepsilon).$$
On the other hand, since $\sigma \sigma^T$ is uniformly positive definite, \tilde{X}_s^ε hits $\{x \in \Omega : |x| < \delta\}$ with positive probability for all $x \in \Omega$, $\varepsilon > 0$, $\delta > 0$. Hence, letting $\alpha(\varepsilon)$ be a sequence of positive numbers such that $\alpha(\varepsilon) \leq 2\kappa$ and $\alpha(\varepsilon)$ converges to 0 as $\varepsilon \downarrow 0$, we obtain that

$$p(\varepsilon) := \inf_{|x|=\alpha(\varepsilon)} \tilde{\nu}_x^\varepsilon \left(\tilde{T}_{\alpha(\varepsilon)} < T^\alpha \right) > 0$$

for all $\varepsilon > 0$, and that $p(\varepsilon)$ converges to 0 as $\varepsilon \downarrow 0$. Moreover, we have

$$\tilde{\nu}_x^\varepsilon \left(T^{\delta(\varepsilon)/\varepsilon} < \tilde{T}_{\alpha(\varepsilon)} \right) = \sum_{k=1}^{\infty} \tilde{\nu}_x^\varepsilon \left(T^{\delta(\varepsilon)/\varepsilon} < \tau_k, \tau_k < \tilde{T}_{\alpha(\varepsilon)} \right)$$

$$= \sum_{k=1}^{\infty} \int_{y \in \Omega : |y|=3\kappa} \int_{y \in \Omega : |y|=4\kappa} \cdots \int_{y \in \Omega : |y|=3\kappa} \tilde{\nu}_y^\varepsilon \left(T^{\delta(\varepsilon)/\varepsilon} < T^{3\kappa} \right)$$

$$\times \tilde{\nu}_x^\varepsilon \left(w(T^{3\kappa}) \in dy_k, T^{4\kappa} < \tilde{T}_{\alpha(\varepsilon)} \right)$$

$$\times \cdots \times \tilde{\nu}_x^\varepsilon \left(w(T^{4\kappa}) \in dy_1, T^{4\kappa} < \tilde{T}_{\alpha(\varepsilon)} \right)$$

$$\leq \eta(\varepsilon) \sum_{k=1}^{\infty} (1 - p(\varepsilon))^k$$

$$= \frac{\eta(\varepsilon)(1 - p(\varepsilon))}{p(\varepsilon)}.$$

Hence, if $\eta(\varepsilon)/p(\varepsilon)$ converges to 0 as $\varepsilon \downarrow 0$, $\tilde{\nu}_x^\varepsilon \left(T^{\delta(\varepsilon)/\varepsilon} < \tilde{T}_{\alpha(\varepsilon)} \right)$ converges to 0 as $\varepsilon \downarrow 0$. Now we choose $\alpha(\varepsilon)$ so that $\eta(\varepsilon)/p(\varepsilon)$ converges to 0 as $\varepsilon \downarrow 0$. Then $\eta(\varepsilon)/p(\varepsilon)$ converges to 0 as $\varepsilon \downarrow 0$. Thus, for (3.3), it is sufficient to prove that

$$\sup_{|x| \leq \alpha(\varepsilon)} \left| \tilde{\nu}_x^\varepsilon \left(w(T^{\delta(\varepsilon)/\varepsilon}) \in \varepsilon^{-1}B \right) - \tilde{\nu}_O \left(w(T^{\delta(\varepsilon)/\varepsilon}) \in \varepsilon^{-1}B \right) \right| \to 0 \quad (3.5)$$

as $\varepsilon \downarrow 0$. Approximating the equation (3.2) by equations with smooth coefficients and improving Theorem 1 of [12] to the case of diffusion processes by using the argument which appeared in [36], we have

$$\sup_{|x| \leq \alpha(\varepsilon)} \left| \tilde{\nu}_x^\varepsilon \left(w(T^{\delta(\varepsilon)/\varepsilon}) \in \varepsilon^{-1}B \right) - \tilde{\nu}_O \left(w(T^{\delta(\varepsilon)/\varepsilon}) \in \varepsilon^{-1}B \right) \right|$$

$$\leq \sup_{|x| \leq \alpha(\varepsilon)} \left(\tilde{T}(w, w') > \tilde{T}^{1/2}(w) \land \tilde{T}^{1/2}(w') \right)$$

$$\leq C \alpha(\varepsilon)$$

for $\alpha(\varepsilon) < \kappa/2$, where $\tilde{\nu}_O^\varepsilon$ is an optimal coupling probability measure for $(\tilde{X}_s^\varepsilon, \tilde{X}_t^\varepsilon)$ and

$$\tilde{T}(w, w') := \min \{ t > 0 : w(t) = w(t') \}.$$

This yields (3.5).

Next lemma implies that O is not absorbing for X.

Lemma 3.4.

$$\int_0^t E \left[\mathbb{I}_{\{x; |x| \leq \delta\}} (X(s)) \right] ds = O(\delta')$$

as $\delta' \downarrow 0$, for all $t \geq 0$.

Proof. It is sufficient to show that
\[
\int_0^t E \left[\mathbb{I}_{\{x|\pi(x)| \leq \delta\}}(X(s)) \right] ds = O(\delta')
\]
as \(\delta' \downarrow 0\). By Fatou’s lemma, we have
\[
\int_0^t E \left[\mathbb{I}_{\{x|\pi(x)| \leq \delta\}}(X(s)) \right] ds
\]
\[
\leq \liminf_{\epsilon \downarrow 0} \int_0^t E \left[\mathbb{I}_{\{x|\pi(x)| \leq 3\delta\epsilon\}}(X^{\epsilon}(s)) \right] ds
\]
\[
+ \liminf_{\epsilon \downarrow 0} \int_0^t E \left[\mathbb{I}_{\{x|\pi(x)| \leq \delta\}}(X^{\epsilon}(s)) \right] ds
\]
(3.6)
To show that the second term is \(O(\delta')\) as \(\delta' \downarrow 0\), let \(f\) be a continuous function on \(\mathbb{R}\) such that \(\mathbb{I}_{\{x|\pi(x)| \leq 3\delta\epsilon\}} \leq f \leq \mathbb{I}_{\{x|\pi(x)| \leq 2\delta\epsilon\}}\) and \(F(x) := \int_0^x f(z)dz\). Noting that \(\pi(x) = (e_i, x)e_i\) for \(x \in \Omega_i\) and \(i = 1, 2, \ldots, N\), we have \(\nabla \pi(x)\pi(x) = \pi(x)\) for \(x \in \Omega\) such that \(|x| \geq 2\delta\). Since \(\nabla \pi(x)\nabla U^{\epsilon}(x) = 0\) and \(\Delta \pi(x) = 0\) for \(x \in \Omega^{\epsilon}\) such that \(|x| \geq 3\delta\epsilon\), we have
\[
E[F(|\pi(X^{\epsilon}(t))|)] = F(|\pi(x^{\epsilon}))|
\]
\[
= \frac{1}{2} \int_0^t E \left[f(|\pi(X^{\epsilon}(s))|) \right] \left(\frac{\sigma(X^{\epsilon}(s))^T \pi(X^{\epsilon}(s))}{|\pi(X^{\epsilon}(s))|} \right)^2 ds
\]
\[
+ \int_0^t E \left[F'(\pi(X^{\epsilon}(s))) \left(\frac{\pi(X^{\epsilon}(s))}{|\pi(X^{\epsilon}(s))|} \right)^2 b(X^{\epsilon}(s)) \right] ds.
\]
It is easy to see that \(E \left[|X^{\epsilon}(t)|^2 \right]\) is dominated uniformly in \(\epsilon > 0\). Moreover, it holds that \(0 \leq F' \leq 2\delta'\) and \(0 \leq F(x) \leq 2\delta' x\) for \(x \in \mathbb{R}_+\). Thus, by uniform ellipticity of \(\alpha = \sigma \sigma^T\), we have the following estimate
\[
\int_0^t E \left[\mathbb{I}_{\{x|\pi(x)| \leq 3\delta\epsilon\}}(\pi(x^{\epsilon}(s))) \right] ds \leq C\delta'.
\]
for some constant \(C\). Hence,
\[
\liminf_{\epsilon \downarrow 0} \int_0^t E \left[\mathbb{I}_{\{x|\pi(x)| \leq 3\delta\epsilon\}}(X^{\epsilon}(s)) \right] ds = O(\delta')
\]
as \(\delta' \downarrow 0\). This yields that the second term of (3.6) is equal to \(O(\delta')\) as \(\delta' \downarrow 0\).

The proof is finished by showing that
\[
\int_0^t E \left[\mathbb{I}_{\{x|\pi(x)| \leq 3\delta\epsilon\}}(X^{\epsilon}(s)) \right] ds = O(\epsilon)
\]
(3.7)
as \(\epsilon \downarrow 0\). Define stopping times \(\{\tau_k^{\epsilon}, \bar{\tau}_k^{\epsilon}\}\) by
\[
\tau_0^{\epsilon}(w) := 0,
\]
\[
\tau_k^{\epsilon}(w) := \inf\{u > \tau_{k-1}^{\epsilon}(w) : |\pi(w(u))| > 4\delta\epsilon\}, \quad k \in \mathbb{N},
\]
\[
\bar{\tau}_k^{\epsilon}(w) := \inf\{u > \tau_k^{\epsilon}(w) : |\pi(w(u))| < 3\delta\epsilon\}, \quad k \in \mathbb{N},
\]
for \(w \in C([0, \infty); \mathbb{R}^n)\). Then,
\[
\int_0^t E \left[\mathbb{I}_{\{x|\pi(x)| \leq 3\delta\epsilon\}}(X^{\epsilon}(s)) \right] ds
\]
\[
\leq \sum_{k=1}^{\infty} \int \left(\int T^{4\delta\epsilon}(w)P_{x}^{\epsilon}(dw) \right) P_{x}^{\epsilon}(w(\tau_k^{\epsilon}) \in dx, \tau_k^{\epsilon} \leq t)
\]
\[
\leq \sup_{x \in \{y \in \mathbb{R}^n| |\pi(y)| = 3\delta\epsilon\}} \left(\int T^{4\delta\epsilon}(w)P_{x}^{\epsilon}(dw) \right) \sum_{k=1}^{\infty} P_{x}^{\epsilon}(\tau_k^{\epsilon} \leq t).
\]
By using the notation in the proof of Lemma 3.3, we have
\[
\sup_{x \in \{y \in \Omega: |\pi(y)| = 3\kappa\}} \int T^{4\kappa}(w) P^{\varepsilon}_x (dw) = \varepsilon^2 \sup_{x \in \{y \in \Omega: |\pi(y)| = 3\kappa\}} \int T^{4\kappa}(w) \tilde{P}^{\varepsilon}_x (dw).
\]
It is easy to see that
\[
\sup_{\varepsilon > 0} \sup_{x \in \{y \in \Omega: |\pi(y)| = 3\kappa\}} \int T^{4\kappa}(w) \tilde{P}^{\varepsilon}_x (dw) < +\infty.
\]
Hence, for (3.7), it is sufficient to show that
\[
\sum_{k=1}^{\infty} P^{\varepsilon}_x (\tilde{\tau}_k \leq t) \leq C \varepsilon^{-1},
\tag{3.8}
\]
for some constant C. For \(w \in C([0, \infty); \Omega) \), let \(N_t(w) \) be the number of transitions of \(w \) from the set \(\{x \in \Omega^\varepsilon: |\pi(x)| = 3\kappa\} \) to the set \(\{x \in \Omega^\varepsilon: |\pi(x)| = 4\kappa\} \) during the time interval \([0, t]\). Then,
\[
\sum_{k=1}^{\infty} P^{\varepsilon}_x (\tilde{\tau}_k \leq t) = \int N_{\varepsilon-2\kappa}(w) \tilde{P}^{\varepsilon}_x (dw). \tag{3.9}
\]
For \(i = 1, 2, \ldots, N \) and \(x \in \{y \in \Omega_i: |\pi(y)| \geq 2\kappa\} \), consider the diffusion process \(\tilde{Y}^{\varepsilon,i}_x \) which behaves just in the same way as \(\tilde{X}^{\varepsilon}_x \) in \(\{y \in \Omega_i: |\pi(y)| > 2\kappa\} \) but is reflected by \(\{y \in \Omega_i: |\pi(y)| = 2\kappa\} \). \(\tilde{Y}^{\varepsilon}_x \) is expressed as
\[
\tilde{Y}^{\varepsilon,i}(t) = x + \int_0^t \sigma(\varepsilon \tilde{Y}^{\varepsilon,i}(s)) d\tilde{W}(s) + \varepsilon \int_0^t b(\varepsilon \tilde{Y}^{\varepsilon,i}(s)) ds - \int_0^t (\nabla U)(\tilde{Y}^{\varepsilon,i}(s)) ds + \psi_i(\tilde{Y}^{\varepsilon,i}(t)),
\]
where \(\psi_i(\tilde{Y}^{\varepsilon,i}) \) is a singular drift with finite variation for reflecting on \(\{y \in \Omega_i: |\pi(y)| = 2\kappa\} \) (see [46]). It is clear that
\[
E \left[N_{\varepsilon-2\kappa}(\tilde{X}^{\varepsilon-1}_{\varepsilon,x}) \right] \leq \sum_{i=1}^N \sup_{x:|\pi(x)| \leq 4\kappa} E \left[N_{\varepsilon-2\kappa}(\tilde{Y}^{\varepsilon,i}_x) \right].
\]
Hence, by (3.8) and (3.9), it is sufficient to show that
\[
\sup_{x:|\pi(x)| \leq 4\kappa} E \left[N_{\varepsilon-2\kappa}(\tilde{Y}^{\varepsilon,i}_x) \right] \leq C \varepsilon^{-1}
\tag{3.10}
\]
with a constant \(C \) for all \(i = 1, 2, \ldots, N \). Let \(i \) be fixed. Note that \(\pi(x) = \langle x, e_i \rangle e_i \) for \(x \in \Omega_i \). Since \(\langle e_i, \nabla U(x) \rangle = 0 \) for \(x \in \{\Omega_i: |x| \geq 2\varepsilon\} \) and \(\langle e_i, d\psi(\tilde{Y}^{\varepsilon,i}_x)(s) \rangle = d|\psi(\tilde{Y}^{\varepsilon,i}_x)(s)| \), by Itô’s formula we have
\[
\langle e_i, \tilde{Y}^{\varepsilon,i}_x(t) \rangle = \langle e_i, x \rangle + \int_0^t \langle e_i, \sigma(\varepsilon \tilde{Y}^{\varepsilon,i}(s)) d\tilde{W}(s) \rangle + \varepsilon \int_0^t \langle e_i, b(\varepsilon \tilde{Y}^{\varepsilon,i}(s)) \rangle ds + |\psi_i(\tilde{Y}^{\varepsilon,i}_x(t))|.
\]
Let \(m \in \mathbb{N} \). Define \(\tau_k \) and \(\tilde{\tau}_k \) as in the proof of Lemma 3.3. Then,
\[
E[(\langle e_i, \tilde{Y}^{\varepsilon,i}_x(t) \rangle) - \langle e_i, x \rangle] = \sum_{k=1}^m E \left[\langle e_i, \tilde{Y}^{\varepsilon,i}_x(\tilde{\tau}_k \wedge t) \rangle - \langle e_i, \tilde{Y}^{\varepsilon,i}_x(\tau_{k-1} \wedge t) \rangle \right] + \sum_{k=1}^m E \left[\langle e_i, \tilde{Y}^{\varepsilon,i}_x(\tau_k \wedge t) \rangle - \langle e_i, \tilde{Y}^{\varepsilon,i}_x(\tilde{\tau}_k \wedge t) \rangle \right]
\]
$$+ E \left[\langle e_i, \tilde{Y}^{e,i}(t) \rangle - \langle e_i, \tilde{Y}^{e,i}(\tau_m \wedge t) \rangle \right]$$

$$= \sum_{k=1}^{m} E \left[\langle e_i, \tilde{Y}^{e,i}(\tilde{\tau}_k \wedge t) \rangle - \langle e_i, \tilde{Y}^{e,i}(\tau_{k-1} \wedge t) \rangle \right]$$

$$+ \varepsilon \sum_{k=1}^{m} E \left[\int_{\tilde{\tau}_k \wedge t}^{\tau_{k-1} \wedge t} (e_i, b(\epsilon \tilde{Y}^{e,i}(s))) ds \right]$$

$$+ \sum_{k=1}^{m} E \left[|\psi_i(\tilde{Y}^{e,i}(\tau_k \wedge t))| - |\psi_i(\tilde{Y}^{e,i}(\tilde{\tau}_k \wedge t))| \right]$$

$$+ E \left[\langle e_i, \tilde{Y}^{e,i}(\tau_m \wedge t) \rangle - \langle e_i, \tilde{Y}^{e,i}(\tau_m \wedge t) \rangle \right]$$

Since $|\psi_i(\tilde{Y}^{e,i}(t))|$ is a non-decreasing process, we have

$$\left| \sum_{k=1}^{m} E \left[\langle e_i, \tilde{Y}^{e,i}(\tau_k \wedge t) \rangle - \langle e_i, \tilde{Y}^{e,i}(\tau_{k-1} \wedge t) \rangle \right] \right|$$

$$\leq E \left[\langle e_i, \tilde{Y}^{e,i}(t) \rangle \right] + C_1 \varepsilon t$$

$$+ E \left[\langle e_i, \tilde{Y}^{e,i}(\tau_m \wedge t) \rangle - \langle e_i, \tilde{Y}^{e,i}(\tau_m \wedge t) \rangle \right],$$

(3.11)

with a positive constant C_1. Noting that ψ_i makes the role of reflecting on $\{ y \in \Omega_1 : |\pi(y)| = 2\kappa \}$, it is easy to see that

$$E \left[\langle e_i, \tilde{Y}^{e,i}(t) \rangle \right] \leq |x| + C_2 \left(\sqrt{t} + \varepsilon t \right),$$

with a positive constant C_2. Letting $m \to +\infty$ on (3.11), we have

$$\kappa E \left[\mathcal{N}_t(\tilde{Y}^{e,i}) \right] \leq 2|x| + C_2 \sqrt{t} + (C_1 + C_2) \varepsilon t.$$
Lemma 3.5.

\[
\lim_{\varepsilon \downarrow 0} \sup_{|x| \leq 2\kappa \varepsilon} \left| P^\varepsilon_x (w(T^\varepsilon \cdot) \in \Omega^z_{i}) - p_i \right| = 0
\]

for \(i = 1, \ldots, N \).

Proof. Applying Lemma 3.3 to both \(X^\varepsilon \) and \(Y^\varepsilon \), and using (3.13), it is sufficient to show that

\[
\lim_{\varepsilon \downarrow 0} \left| Q^\varepsilon_{D} (w(T^\varepsilon \cdot) \in \Omega^z_{i}) - p_i \right| = 0
\]

(3.14)

for \(i = 1, \ldots, N \).

We make a similar discussion as in the proof of Theorem 6.1 in [22]. Let \(\nu^\varepsilon \) be the invariant measure of the Markov chain \(\{Y^\varepsilon (\tau^\varepsilon_k)\} \), where \(\tau^\varepsilon_k \) are stopping times defined by

\[
\tau^\varepsilon_0 (w) := 0, \\
\tau^\varepsilon_k (w) := \inf \{u > \tau^\varepsilon_{k-1} (w) : |\pi (w(u))| > \delta (\varepsilon)\}, \quad k \in \mathbb{N}, \\
\tau^\varepsilon_k (w) := \inf \{u > \tau^\varepsilon_k (w) : |\pi (w(u))| < 3\kappa \varepsilon\}, \quad k \in \mathbb{N}.
\]

Define a measure \(\mu^\varepsilon \) on \(\Omega^z \) by

\[
\mu^\varepsilon (dx) := \exp (-U^\varepsilon (x)) dx, \quad x \in \Omega^z,
\]

a function space \(\mathcal{D}(\delta^\varepsilon) \) by \(\{f \in C^2 (\Omega^z) : \lim_{x \to \partial \Omega^z} f (x) = 0\} \), and a bilinear form \(\delta^\varepsilon \) by

\[
\delta^\varepsilon (f, g) := \int_{\Omega^z} (\nabla f (x), \nabla g (x)) \mu^\varepsilon (dx), \quad f, g \in \mathcal{D}(\delta^\varepsilon).
\]

Then, the pre-Dirichlet form \((\delta^\varepsilon, \mathcal{D}(\delta^\varepsilon)) \) on \(L^2 (\Omega^z, \mu^\varepsilon) \) is closable, and \(Y^\varepsilon \) is associated to the Dirichlet form obtained by closing \((\delta^\varepsilon, \mathcal{D}(\delta^\varepsilon)) \). Note that \(\mu^\varepsilon \) is an invariant measure of \(Y^\varepsilon \) (see [24]). By Theorem 2.1 in [27] we have

\[
\mu^\varepsilon (B) = \int_{\{x \in \Omega^z : |\pi (x)| = 3\kappa \varepsilon\}} \nu^\varepsilon (dx) \int_{0}^{\tau^\varepsilon} \mathbb{I}_{B} (w(t)) dt \quad Q^\varepsilon_{D} (dw)
\]

for \(B \in \mathcal{B} (\mathbb{R}^n) \). Let \(B^\varepsilon_i := \{x \in \Omega^z : \delta (\varepsilon) \leq |\pi (x)| \leq 2 \delta (\varepsilon)\} \). Then,

\[
\mu^\varepsilon (B^\varepsilon_i) = \int_{\{x \in \Omega^z : |\pi (x)| = 3\kappa \varepsilon\}} \nu^\varepsilon (dx) \int_{0}^{\tau^\varepsilon} \mathbb{I}_{B^\varepsilon_i} (w(t)) dt \quad Q^\varepsilon_{D} (dw)
\]

\[
= \int_{\{x \in \Omega^z : |\pi (x)| = 3\kappa \varepsilon\}} \nu^\varepsilon (dx) \int_{\Omega} \mathbb{I}_{B^\varepsilon_i} (w(t)) dt \quad Q^\varepsilon_{D} (dw)
\]

\[
\times \int_{0}^{T} \mathbb{I}_{B^\varepsilon_i} (\tilde{w} (t)) dt \quad Q^\varepsilon_{w[T^\varepsilon \cdot]} (d\tilde{w}).
\]

(3.15)

On the other hand, let

\[
Z (t) := -\delta (\varepsilon) + \tilde{W} (t), \quad \tilde{T} := \inf \{t > 0 : |Z (t)| > 2 \delta (\varepsilon) - 3\kappa \varepsilon\}
\]

where \(\tilde{W} \) is a one-dimensional Wiener process, and

\[
F (x) := \int_{-2 \delta (\varepsilon)}^{x} \int_{-2 \delta (\varepsilon)}^{y} \mathbb{I}_{[-\delta (\varepsilon), \delta (\varepsilon)]} (z) dz dy, \quad x \in \mathbb{R}.
\]

Then, by Itô’s formula we have

\[
E \left[F (Z (\tilde{T})) \right] - F (-\delta (\varepsilon)) = \frac{1}{2} E \left[\int_{0}^{\tilde{T}} \mathbb{I}_{[-\delta (\varepsilon), \delta (\varepsilon)]} (Z_t) dt \right].
\]
Since F can be computed explicitly, we see that $F(-\delta) = 0$ and
\[
E\left[F(Z(\bar{T}))\right] = F(2\delta - 3\kappa\varepsilon)P(Z(\bar{T}) = 2\delta - 3\kappa\varepsilon) = \frac{\delta - 3\kappa\varepsilon}{4\delta - 6\kappa\varepsilon} [2\delta^2 + 2\delta(\delta - 3\kappa\varepsilon)].
\]

Thus, it follows that
\[
E\left[\int_0^{\bar{T}} \mathbb{1}_{[-\delta,\delta]}(Z_t)dt\right] = 2\delta^2 + o(\delta^2)
\]
On the other hand, it is easy to see that
\[
\int \left(\int_0^{3\kappa\varepsilon} \mathbb{1}_{B^y_\varepsilon}(w(t))dt\right) Q^\varepsilon_y(dw) = E\left[\int_0^T \mathbb{1}_{[-\delta,\delta]}(Z_t)dt\right]
\]
for all $y \in \{x \in \Omega^\varepsilon : |\pi(x)| = \delta\varepsilon\}$. Hence, it holds that
\[
\int \left(\int_0^{3\kappa\varepsilon} \mathbb{1}_{B^y_\varepsilon}(w(t))dt\right) Q^\varepsilon_y(dw) = 2\delta^2 + o(\delta^2),
\]
for all $y \in \{x \in \Omega^\varepsilon : |\pi(x)| = \delta\varepsilon\}$. By Lemma 3.3, (3.15), and (3.16), we have
\[
\mu^\varepsilon(B^y_\varepsilon) = (2\delta^2 + o(\delta^2)) \nu^\varepsilon(\{x \in \Omega^\varepsilon : |\pi(x)| = \delta\varepsilon\})
\]
\[\times \left(Q^\varepsilon_y(w(T^\delta(x)) \in \Omega^\varepsilon) + o_\varepsilon(1)\right).
\]
Since $\sum_{i=1}^N Q^\varepsilon_y(w(T^\delta(x)) \in \Omega^\varepsilon) = 1$, we have, as $\varepsilon \downarrow 0$:
\[
\nu^\varepsilon(\{x \in \Omega^\varepsilon : |\pi(x)| = \delta\varepsilon\}) = \frac{1}{2} \delta\varepsilon^{-2} \sum_{i=1}^N \mu^\varepsilon(B^y_\varepsilon) + o_\varepsilon(1).
\]
Dividing both sides of (3.17) by those of (3.18), we obtain that
\[
Q^\varepsilon_y(w(T^\delta(x)) \in \Omega^\varepsilon) = \frac{\mu^\varepsilon(B^y_\varepsilon)}{\sum_{i=1}^N \mu^\varepsilon(B^y_\varepsilon)} + o_\varepsilon(1).
\]
By the definition of μ^ε, the continuity of σ and b, and $\sigma(O) = I_n$, $\mu^\varepsilon(B^y_\varepsilon)$ can be expressed explicitly as
\[
\mu^\varepsilon(B^y_\varepsilon) = \omega_{n-2}\delta\varepsilon c_{n-1}^{n-1} \varepsilon^{n-1} \int_0^1 r^{n-2} e^{-u(r)} dr,
\]
where ω_{n-2} is the area of the $(n-2)$-dimensional unit sphere. Therefore, (3.14) is proved.

The statement in Lemma 3.5 can be improved as follows.

Lemma 3.6. For $\delta' > 0$,
\[
\lim \lim_{\delta' \downarrow 0, \varepsilon \downarrow 0} \sup_{|x| \leq 2\kappa\varepsilon} \left|P^\varepsilon_x(w(T^{\delta'}(x)) \in \Omega^\varepsilon) - p_i\right| = 0
\]
for $i = 1, \ldots, N$.

Proof. In view of Lemma 3.3, it is sufficient to show
\[
\lim \lim_{\delta' \downarrow 0, \varepsilon \downarrow 0} \left|P^\varepsilon_x(w(T^{\delta'}(x)) \in \Omega^\varepsilon) - p_i\right| = 0
\]
for $i = 1, 2, \ldots, N$. Define stopping times $\{\tau_k, \tilde{\tau}_k\}$ by
\[
\tau^i_0(w) := 0,
\]
\[
\tilde{\tau}^i_k(w) := \inf\{u > \tau^i_{k-1}(w) : |\pi(w(u))| > \delta\varepsilon\}, \quad k \in \mathbb{N},
\]
\[
\tau^i_k(w) := \inf\{u > \tilde{\tau}^i_k(w) : |\pi(w(u))| < 3\kappa\varepsilon\}, \quad k \in \mathbb{N}.
\]
By the strong Markov property, we have

\[
P^\varepsilon_y(w(T^{\delta'}) \in \Omega^x_t)
= \sum_{k=1}^{\infty} \int_{\tau^x_{k-1} < T^{\delta'}} (w)P^\varepsilon_y(dw)
\times \int P^\varepsilon_y(T^{\delta'} < T^{3\varepsilon})P_\Omega^\varepsilon(y)P_{w(\tau^x_{k-1})}(w(T^{\delta'}) \in dy)
\]

(3.19)
and

\[
p_i = p_i \sum_{k=1}^{\infty} P^\varepsilon_y(\tau^x_{k-1} < T^{\delta'} < \tau^x_k)
= \sum_{k=1}^{\infty} \int_{\tau^x_{k-1} < T^{\delta'}} (w)P^\varepsilon_y(dw)
\times \int p_i P^\varepsilon_y(T^{\delta'} < T^{3\varepsilon})P_{w(\tau^x_{k-1})}(w(T^{\delta'}) \in dy)
\]

(3.20)
for \(i = 1, 2, \ldots, N \). Let \(h_\varepsilon^- \) and \(h_\varepsilon^+ \) be functions on \([0, \infty)\) given by

\[
h_\varepsilon^-(z) := \min_i \inf_{x \in \Omega^x_t \mid \pi(x) = z} \frac{2(e_i, b(x))}{ \sigma(x)^T e_i},
\]

\[
h_\varepsilon^+(z) := \max_i \sup_{x \in \Omega^x_t \mid \pi(x) = z} \frac{2(e_i, b(x))}{ \sigma(x)^T e_i}.
\]

respectively. Define functions \(s_\varepsilon^- \) and \(s_\varepsilon^+ \) on \([0, \infty)\) by

\[
s_\varepsilon^-(z) := \int_0^z \exp \left(- \int_0^{z'} h_\varepsilon^-(z')dz' \right) dz',
\]

\[
s_\varepsilon^+(z) := \int_0^z \exp \left(- \int_0^{z'} h_\varepsilon^+(z')dz' \right) dz',
\]

respectively. Then, for \(y \in \{ x \in \Omega^x_t : \pi(x) = \delta(\varepsilon) \} \) we have

\[
\int s_\varepsilon^-(\pi(w(T^{\delta'} \land T^{3\varepsilon})))P^\varepsilon_y(dw) - s_\varepsilon^-(\delta(\varepsilon))
= \int s_\varepsilon^-(\langle e_i, w(T^{\delta'} \land T^{3\varepsilon}) \rangle)P^\varepsilon_y(dw) - s_\varepsilon^-(\langle e_i, y \rangle)
\]

\[
= -\frac{1}{2} \int \left[\int_0^{T^{\delta'} \land T^{3\varepsilon}} h_\varepsilon^-(w(s))T e_i^2
\times \exp \left(- \int_0^{w(s)} h_\varepsilon^-(z')dz' \right) \right] P^\varepsilon_y(dw)
\]

\[
+ \int \left[\int_0^{T^{\delta'} \land T^{3\varepsilon}} \langle e_i, b(w(s)) \rangle \exp \left(- \int_0^{w(s)} h_\varepsilon^-(z')dz' \right) \right] P^\varepsilon_y(dw)
\]

\[\leq 0.\]

Hence, it holds that

\[
s_\varepsilon^-(\delta')P^\varepsilon_y \left(T^{\delta'} < T^{3\varepsilon} \right) + s_\varepsilon^-(3\varepsilon)P^\varepsilon_y \left(T^{\delta'} > T^{3\varepsilon} \right) \leq s_\varepsilon^-(\delta(\varepsilon))\]

for \(y \in \{ x \in \Omega^x_t : \pi(x) = \delta(\varepsilon) \} \). Since

\[
P^\varepsilon_y \left(T^{\delta'} < T^{3\varepsilon} \right) + P^\varepsilon_y \left(T^{\delta'} > T^{3\varepsilon} \right) = 1,
\]

15
we have

\[P_y^\varepsilon \left(T^\delta' < T^{3\varepsilon} \right) \leq \frac{s_-^\varepsilon(\delta(\varepsilon)) - s_-^\varepsilon(3\varepsilon)}{s_-^\varepsilon(\delta') - s_-^\varepsilon(3\varepsilon)} \quad (3.21) \]

for \(y \in \{ x \in \Omega^\varepsilon : |\pi(x)| = \delta(\varepsilon) \} \). Similarly we have

\[P_y^\varepsilon \left(T^\delta' < T^{3\varepsilon} \right) \geq \frac{s_-^\varepsilon(\delta(\varepsilon)) - s_-^\varepsilon(3\varepsilon)}{s_-^\varepsilon(\delta') - s_-^\varepsilon(3\varepsilon)} \quad (3.22) \]

for \(y \in \{ x \in \Omega^\varepsilon : |\pi(x)| = \delta(\varepsilon) \} \). Let \(\mathcal{N}_{T^\delta}(X_0^\varepsilon) \) be the number of transitions of \(X_0^\varepsilon \) from the set \(\{ x \in \Omega^\varepsilon : |\pi(x)| = 3\varepsilon \} \) to the set \(\{ x \in \Omega^\varepsilon : |\pi(x)| = \delta(\varepsilon) \} \) during the time interval \([0, T^\delta(X_0^\varepsilon)]\). By Lemma 3.5, (3.19), (3.20), (3.21), and (3.22), we have

\[
P_0^\varepsilon(w(T^\delta') \in \Omega_1^\varepsilon) - p_i \leq \frac{s_-^\varepsilon(\delta(\varepsilon)) - s_-^\varepsilon(3\varepsilon)}{s_-^\varepsilon(\delta') - s_-^\varepsilon(3\varepsilon)} \]

\[
\times \sum_{k=1}^{\infty} \int P_{w(\tau_{k-1}^\varepsilon)}(w(T^\delta(\varepsilon)) \in \Omega_1^\varepsilon) \mathbb{I}_{\{\tau_{k-1}^\varepsilon < T^\delta\}}(w) P_0^\varepsilon(dw) - \frac{s_-^\varepsilon(\delta(\varepsilon)) - s_-^\varepsilon(3\varepsilon)}{s_-^\varepsilon(\delta') - s_-^\varepsilon(3\varepsilon)} p_i \sum_{k=1}^{\infty} \int \mathbb{I}_{\{\tau_{k-1}^\varepsilon < T^\delta\}}(w) P_0^\varepsilon(dw) \]

\[
\leq \left(\frac{s_-^\varepsilon(\delta(\varepsilon)) - s_-^\varepsilon(3\varepsilon)}{s_-^\varepsilon(\delta') - s_-^\varepsilon(3\varepsilon)} - \frac{s_-^\varepsilon(\delta(\varepsilon)) - s_-^\varepsilon(3\varepsilon)}{s_-^\varepsilon(\delta') - s_-^\varepsilon(3\varepsilon)} \right) p_i E[\mathcal{N}_{T^\delta}(X_0^\varepsilon)] + o_\varepsilon(1) \frac{s_-^\varepsilon(\delta(\varepsilon)) - s_-^\varepsilon(3\varepsilon)}{s_-^\varepsilon(\delta') - s_-^\varepsilon(3\varepsilon)} E[\mathcal{N}_{T^\delta}(X_0^\varepsilon)].
\]

By the definitions of \(s_-^\varepsilon \) and \(s_-^\varepsilon \), we obtain

\[
\lim_{\varepsilon \to 0} \sup_{\varepsilon} \delta(\varepsilon)^{-1} \left(\frac{s_-^\varepsilon(\delta(\varepsilon)) - s_-^\varepsilon(3\varepsilon)}{s_-^\varepsilon(\delta') - s_-^\varepsilon(3\varepsilon)} - \frac{s_-^\varepsilon(\delta(\varepsilon)) - s_-^\varepsilon(3\varepsilon)}{s_-^\varepsilon(\delta') - s_-^\varepsilon(3\varepsilon)} \right) = o_\varepsilon(1)
\]

and

\[
\frac{s_-^\varepsilon(\delta(\varepsilon)) - s_-^\varepsilon(3\varepsilon)}{s_-^\varepsilon(\delta') - s_-^\varepsilon(3\varepsilon)} = O(\delta(\varepsilon)).
\]

On the other hand, a similar discussion as in the proof of Lemma 3.4 implies

\[
E[\mathcal{N}_{T^\delta}(X_0^\varepsilon)] = O(\delta(\varepsilon)^{-1}).
\]

Therefore, we have

\[
\lim_{\delta \to 0} \lim_{\varepsilon \to 0} \sup_{\varepsilon} P_0^\varepsilon(w(T^\delta') \in \Omega_1^\varepsilon) - p_i \leq 0.
\]

Similarly we obtain

\[
\lim_{\delta \to 0} \lim_{\varepsilon \to 0} \sup_{\varepsilon} (p_i - P_0^\varepsilon(w(T^\delta') \in \Omega_1^\varepsilon)) \leq 0.
\]

These inequalities yield the conclusion.

The lemmas above determine the boundary condition for \(X \) at \(O \). Now let us characterize \(X \) by a generator of a process on \(\Gamma \). Let

\[
\partial_{e_i} f(x) := \lim_{s \to 0} \frac{1}{s} (f(x + se_i) - f(x))
\]

for any differentiable function \(f \) on \(I_i \) and \(i = 1, 2, \ldots, N \). Define a second-order differential operator \(L_i \) on \(I_i \) by

\[
L_i := \frac{1}{2} \sigma^T(x) e_i^2 \partial_{e_i}^2 + (b(x), e_i) \partial_{e_i}
\]

for \(i = 1, 2, \ldots, N \).
for \(i = 1, 2, \ldots, N \). Define the second-order differential operator \(\mathcal{L} \) on \(C_0(\Gamma) \):

\[
\mathcal{D}(\mathcal{L}) := \left\{ f \in C_0(\Gamma) : f|_{I_i \setminus O} \in C^2_0(I_i \setminus O) \text{ for all } i = 1, 2, \ldots, N, \right. \\
\lim_{s \downarrow 0} \mathcal{L}_i f(se_i) \text{ has a common value for } i = 1, 2, \ldots, N, \\
\sum_{i=1}^N p_i \left(\lim_{s \downarrow 0} (\partial_n f)(se_i) \right) = 0 \right\},
\]

\[
\mathcal{L} f(x) := \mathcal{L}_i f(x), \quad x \in I_i \setminus O, \\
\mathcal{L} f(O) := \lim_{s \downarrow 0} \mathcal{L}_i f(se_i).
\]

Note that \(\mathcal{L} f(O) \) does not depend on the selection of \(i = 1, 2, \ldots, N \). We call \(\{p_i\} \) the weights of the Kirchhoff boundary condition at \(O \), and call \(\sum_{i=1}^N p_i \left(\lim_{s \downarrow 0} (\partial_n f)(se_i) \right) = 0 \) the weighted Kirchhoff boundary condition at \(O \).

Theorem 3.7. Consider diffusion processes \(X^\varepsilon \) defined by (3.1). Assume that \(\sigma(O) = I_n \) and the law of \(X^\varepsilon \) converges to a probability measure \(\mu_0 \) on \(\Gamma \). Then, \(X^\varepsilon \) converges weakly on \(C([0, +\infty); \mathbb{R}^n) \) to the diffusion process \(X \) as \(\varepsilon \downarrow 0 \), where \(X \) is determined by the conditions that the law of \(X(0) \) is equal to \(\mu_0 \) and

\[
E \left[f(X(t)) - f(X(s)) - \int_s^t \mathcal{L} f(X(u)) du \right| \mathcal{F}_s] = 0
\]

for \(t \geq s \geq 0 \) and \(f \in \mathcal{D}(\mathcal{L}) \), where \((\mathcal{F}_t) \) is the filtration generated by \(X \). Therefore, \(\mathcal{L} \) is the generator of \(X \).

Proof. From Lemma 3.2 we have that \(\{X^\varepsilon\} \) is tight. We are going to show that there is a unique limit point in this family. Let \(X \) be any limit point of \(\{X^\varepsilon\} \) and denote the sequence converging to \(X \) by \(\{X^\varepsilon\} \) again. Since this martingale problem is well-posed (see [15] for the relationship between martingale problems and partial differential equations, and [37] for the uniqueness of the semigroup generated by \(\mathcal{L} \)), it is sufficient to prove that \(X \) satisfies (3.23). Fix \(s \geq 0 \). Let \(\delta' \) be a positive number. Define the following stopping times

\[
\bar{\tau}_0 := 0, \\
\tau_0 := \inf \{ u \geq s : X(u) = O \}, \\
\bar{\tau}_k := \inf \{ u > \tau_{k-1} : |X(u)| > \delta' \}, \quad k \in \mathbb{N}, \\
\tau_k := \inf \{ u > \bar{\tau}_k : X(u) = O \}, \quad k \in \mathbb{N}.
\]

Then, for \(f \in \mathcal{D}(\mathcal{L}), s \leq t \):

\[
E \left[f(X(t)) - f(X(s)) - \int_s^t \mathcal{L} f(X(u)) du \right| \mathcal{F}_s] = E \left[\sum_{k=1}^{\infty} \left(f(X(t \wedge \bar{\tau}_k)) - f(X(t \wedge \tau_{k-1})) - \int_{t \wedge \tau_{k-1}}^{t \wedge \bar{\tau}_k} \mathcal{L} f(X(u)) du \right) \right| \mathcal{F}_s] + E \left[\sum_{k=0}^{t \wedge \bar{\tau}_k} \left(f(X(t \wedge \tau_k)) - f(X(t \wedge \bar{\tau}_k)) - \int_{t \wedge \tau_k}^{t \wedge \bar{\tau}_k} \mathcal{L} f(X(u)) du \right) \right| \mathcal{F}_s] .
\]

Because of Theorem 2.2 the second sum vanishes. We estimate the first sum as follows:

\[
E \left[\sum_{k=1}^{\infty} \left| f(X(t \wedge \bar{\tau}_k)) - f(X(t \wedge \tau_{k-1})) - \int_{t \wedge \tau_{k-1}}^{t \wedge \bar{\tau}_k} \mathcal{L} f(X(u)) du \right| \right] \leq E \left[\sum_{k: \tau_{k-1} \leq t} |f(X(\bar{\tau}_k)) - f(X(\tau_{k-1}))| \right]
\]
\[
+\|\mathcal{L}f\|\infty E \left[\int_\Delta t \mathbb{1}_{\{|x| \leq \delta t\}}(X(u))du \right] + 2\|f\|\infty P(\{|X(t)| \in (0, \delta')\}).
\]

Clearly, the third term on the right-hand side converges to 0 as \(\delta' \downarrow 0\) By Lemma 3.4 the second term on the right-hand side converges to 0 as \(\delta' \downarrow 0\). By Lemma 3.6 the first sum on the right-hand side is equal to

\[
\sum_{k=1}^{\infty} \sum_{i=1}^{N} (|f(\delta' e_i) - f(0)|) P(X(t \wedge \tilde{\tau}_k) \in I_i, \tau_{k-1} \leq t)
\]

\[
= \sum_{k=1}^{\infty} \sum_{i=1}^{N} \left(\delta' \lim_{s \to 0} \delta'(s) + o(\delta') \right) P(X(t \wedge \tilde{\tau}_k) \in I_i, \tau_{k-1} \leq t). \quad (3.24)
\]

Let, for any \(\varepsilon > 0\):

\[
\tau_0 := \inf \{u > s : |\pi(X^\varepsilon(u))| \leq 3k\varepsilon\},
\]

\[
\tilde{\tau}_k := \inf \{u > \tau_{k-1} : |\pi(X^\varepsilon(u))| > \delta', \quad k \in \mathbb{N},
\]

\[
\tau_k := \inf \{u > \tilde{\tau}_k : |\pi(X^\varepsilon(u))| \leq 3k\varepsilon\}, \quad k \in \mathbb{N}.
\]

Theorem 2.2 implies that the distributions of \(\tilde{\tau}_k\) and \(\tau_k\) converge weakly to those of \(\tilde{\tau}_k\) and \(\tau_k\) respectively as \(\varepsilon \downarrow 0\). Hence, by Lemma 3.6 we have

\[
P(X(\tilde{\tau}_k) \in I_i, \tau_{k-1} \leq t)
\]

\[
= \lim_{\varepsilon \to 0} \int P_{\varepsilon}^{\delta'}(w(T^\delta) \in \Omega^\varepsilon)P(X^\varepsilon(\tau_{k-1}) \in dy, \tau_{k-1} \leq t)
\]

\[
= (p_0 + o\varepsilon(1)) P(\tau_{k-1} \leq t).
\]

Note that \(\sum_{k=1}^{\infty} P(\tau_{k-1} \leq t)\) is equal to the expectation of the number of transitions of \(X\) from the point \(O\) to the set \(\{x \in \Omega^\varepsilon : |\pi(x)| = \delta'\}\) during the time interval \([0, t]\). Approximating that by the expectation of the number of transitions of \(X^\varepsilon\) from the set \(\{x \in \Omega^\varepsilon : |\pi(x)| = 3k\varepsilon\}\) to the set \(\{x \in \Omega^\varepsilon : |\pi(x)| = \delta'\}\) during the time interval \([0, t]\), similarly as in the proof of Lemma 3.4 we obtain the estimate

\[
\sum_{k=1}^{\infty} P(\tau_{k-1} \leq t) \leq C_t \delta
\]

with a positive constant \(C_t\) depending only on \(t\). Hence, by (3.24) we have

\[
E \left[\sum_{k=1}^{\infty} \tau_{k-1} \leq t | f(X(t \wedge \tilde{\tau}_k)) - f(X(t \wedge \tau_{k-1})) | \right]
\]

\[
\leq \frac{C_t}{\delta} \left(\sum_{i=1}^{N} \delta' \lim_{s \to 0} \delta'(s) + o(\delta') \right).
\]

Since \(f \in \mathcal{D}(\mathbb{L})\), the right hand side converges to 0 as \(\delta' \downarrow 0\).

Similarly as in Section 2, the argument above is also available in the case where the boundary of \(\Omega^\varepsilon\) carries a Neumann boundary condition. Consider a diffusion process \(X^\varepsilon\) which is associated to \(L\) in \(\Omega^\varepsilon\) and satisfies the reflecting boundary condition on \(\partial \Omega^\varepsilon\). Then, \(X^\varepsilon\) can be expressed by the following equation:

\[
\hat{X}^\varepsilon(t) = \hat{X}^\varepsilon(0) + \int_0^t \sigma(\hat{X}^\varepsilon(s))dW(s) + \int_0^t b(\hat{X}^\varepsilon(s))ds + \Phi^\varepsilon(\hat{X}^\varepsilon)(t),
\]

where \(\Phi^\varepsilon\) is a singular drift which forces the process to be reflecting on \(\partial \Omega^\varepsilon\) (see [46]). Note that \(\hat{X}^\varepsilon\) depends on \(\Omega^\varepsilon\) but is independent of \(U^\varepsilon\). Discussing this case in a similar way as we did in the case of Dirichlet boundary condition we obtain the following Theorem.
Let
\[\hat{p}_i := \frac{c_i^{n-1}}{\sum_{i=1}^{N} c_i^{n-1}}. \]
\[\mathcal{D}(\hat{L}) := \left\{ f \in C_0(\Gamma) : f|_{U \setminus O} \in C^2_0(U_i \setminus O) \text{ for all } i = 1, 2, \ldots, N, \right\} \]
\[\lim_{s \to 0} \hat{L}_i f(se_i) \text{ has a common value for } i = 1, 2, \ldots, N, \]
\[\sum_{i=1}^{N} \hat{p}_i \left(\lim_{s \to 0} (\partial_{se_i} f)(se_i) \right) = 0 \],
\[\hat{L} f := \mathcal{L} f. \]

Theorem 3.8. Consider the diffusion processes \(\hat{X}^\varepsilon \) defined by (3.25). Assume that \(\sigma(O) = I_n \) and the law of \(\hat{X}^\varepsilon \) converges to a probability measure \(\mu_0 \) on \(\Gamma \). Then, \(\{\hat{X}^\varepsilon\} \) converge weakly on \(C([0, +\infty); \mathbb{R}^n) \) to the diffusion process \(\hat{X} \) as \(\varepsilon \to 0 \), where \(\hat{X} \) is determined by the conditions that the law of \(\hat{X}(0) \) is equal to \(\mu_0 \) and
\[E \left[f(\hat{X}(t)) - f(\hat{X}(s)) - \int_s^t \hat{L} f(\hat{X}(u)) du \right] = 0 \]
for \(t \geq s \geq 0 \) and \(f \in \mathcal{D}(\hat{L}) \), where \((\mathcal{F}_t) \) is the filtration generated by \(\hat{X} \). Therefore, \(\hat{L} \) is the generator of \(\hat{X} \).

Remark 3.9. The weights \(\{\hat{p}_i\} \) of the case of Neumann boundary condition can be obtained from the weights \(\{p_i\} \) discussed in Theorem 3.7 in the heuristic limit where the potential \(u_i \) around each edge takes only the value 0 on \([0,1]\) and \(+\infty\) on \([1, +\infty)\).

Remark 3.10. As mentioned in Remark 2.4, we can discuss similarly the case where the shapes of the tubes \(\{\Omega_i^\varepsilon\} \) are not cylindrical. However, if \(U^\varepsilon \) is not defined by a scaling of a fixed function \(U \), the weights of the weighted Kirchhoff boundary condition cannot be determined uniquely. To handle this more general case, we have to assume that \(U^\varepsilon \) satisfies some uniform bound.

4 The case of general graphs

In this section we present results obtained by combining the results of Section 2 and 3, and in this way covering more general graphs. Let \(\Lambda \) be a finite or countable set, \(\Xi \) be a subset of \(\Lambda \times \Lambda \), \(\{V_\lambda : \lambda \in \Lambda\} \) be vertices in \(\mathbb{R}^n \), \(\{E_{\lambda,\lambda'} : (\lambda, \lambda') \in \Xi\} \) be \(C^2 \)-curves with ends \(\{V_\lambda, V_{\lambda'}\} \), and \(G := \cup_{(\lambda, \lambda') \in \Xi} E_{\lambda,\lambda'} \). Denote \(\lambda \sim \lambda' \) if \((\lambda, \lambda') \in \Xi \).

Let us denote the length of \(E_{\lambda,\lambda'} \) by \(|E_{\lambda,\lambda'}| \). Define \((\gamma_{\lambda,\lambda'}(s) : s \in [0, |E_{\lambda,\lambda'}|]) \) as the arc-length parameterization of \(E_{\lambda,\lambda'} \) with \(\gamma_{\lambda,\lambda'}(0) = V_\lambda \). Assume that the number of \(\{E_{\lambda,\lambda'} : \lambda \in \Lambda \} \cap \{x \in \mathbb{R}^n : |x| \leq M\} \) is finite for all \(M > 0 \), \(|E_{\lambda,\lambda'}| \) is finite for all \((\lambda, \lambda') \in \Xi \), and
\[\lim_{s \to 0} \langle \dot{\gamma}_{\lambda,\lambda_1}(s), \dot{\gamma}_{\lambda,\lambda_2}(s) \rangle < 1 \]
for all \(\lambda \sim \lambda_1 \) and \(\lambda \sim \lambda_2 \) such that \(\lambda_1 \neq \lambda_2 \). Let \(c_{\lambda,\lambda'} \) be a positive number for \((\lambda, \lambda') \in \Xi \), and let
\[k_{\lambda} := \max \left\{ \sqrt{Z_{E_{\lambda,\lambda_1}}} / \sqrt{1 - \lim_{s \to 0} \langle \dot{\gamma}_{\lambda,\lambda_1}(s), \dot{\gamma}_{\lambda,\lambda_2}(s) \rangle} : \lambda_1, \lambda_2 \in \Lambda \text{ such that } \lambda \sim \lambda_1, \lambda \sim \lambda_2 \right\} \]
for \(\lambda \in \Lambda \). Let \(\pi(x) \) be a point in \(G \) which is nearest to \(x \in \mathbb{R}^n \). Assume that there exists a small \(\varepsilon_0 > 0 \) such that \(\pi(x) \) is uniquely determined for all \(x \in \cup_{\lambda \sim \lambda'} \{x \in \mathbb{R}^n : \pi(x) \in E_{\lambda,\lambda'}, d(x, E_{\lambda,\lambda'}) < \}

19
almost surely. Assume that

By using these notations, define the second-order differential operator

where $\gamma_{\lambda,\lambda'}(s) = 0$ for sufficiently small s for each $(\lambda, \lambda') \in \Xi$.

Let $u_{\lambda,\lambda'}$ be given similarly to u in Section 2 for $(\lambda, \lambda') \in \Xi$. For $\varepsilon \in (0, \varepsilon_0]$, let U^ε be a function on \mathbb{R}^n with values in $[0, +\infty]$, and assume

where $\Omega^\varepsilon := \{ x : U^\varepsilon(x) < \infty \}$ is a simply connected domain, $\partial \Omega^\varepsilon$ is an $(n-1)$-dimensional C^2-manifold embedded in \mathbb{R}^n, and $U^\varepsilon|_{\Omega^\varepsilon}$ is a C^4-function on Ω^ε. In addition, we assume

for any sequence $\{ x_m \}$ which converges to a point $x \in \partial \Omega^\varepsilon$.

Consider a diffusion process X^ε given by the following equation:

where $X^\varepsilon(0)$ is an Ω^ε-valued random variable, W is an n-dimensional Wiener process, $\sigma \in C_b(\mathbb{R}^n; \mathbb{R}^n \otimes \mathbb{R}^n)$, and $b \in C_b(\mathbb{R}^n; \mathbb{R}^n)$. Let $a := \sigma\sigma^T$ and assume that a is uniformly positive definite. Define a second-order elliptic differential operator L on Ω^ε by

Then, X^ε is associated to $(L - \langle \nabla U^\varepsilon, \nabla \rangle)$. Similarly to Section 3, it holds that X^ε does not exit from Ω^ε almost surely. Assume that $\sigma(V_\lambda) = \sigma I_n$ for all $\lambda \in \Lambda$.

For $(\lambda, \lambda') \in \Xi$, define a second-order differential operator $\mathcal{L}_{\lambda,\lambda'}$ on $E_{\lambda,\lambda'}$ by

where s is the parameter for the arc-length parametrization $\gamma_{\lambda,\lambda'}$. Let

By using these notations, define the second-order differential operator \mathcal{L} on $C_0(G)$ by

where $\mathcal{P}(\mathcal{L}) := \left\{ f \in C_0(G) : \right.$

for $\lambda \sim \lambda'$,

for all $\lambda \in \Lambda$, $\lim_{s \to 0} \mathcal{L}_{\lambda,\lambda'} f(\gamma_{\lambda,\lambda'}(s))$ has a common value

for $\lambda' : \lambda \sim \lambda'$.

20
result of Theorem 4.2 coincides with Theorem 6.1 in [22].

Remark 4.3. is thus the generator of process \(X \). In the case where \(t \) for \(\varepsilon \) to \(s \) for \(\varepsilon \) is determined by the conditions that the law of \(X(0) \) is equal to \(\mu_0 \) and

\[
E \left[f(X(t)) - f(X(s)) - \int_s^t \mathcal{L}f(X(u))du \bigg| \mathcal{F}_s \right] = 0
\]

for \(t \geq s \geq 0 \) and all \(f \in \mathcal{D}(\mathcal{L}) \), where \((\mathcal{F}_t) \) is the filtration generated by \(X \). The operator \(\mathcal{L} \) as defined above is thus the generator of \(X \).

Similarly as in Sections 2 and 3, our discussion is also available for the case where the boundary \(\Omega^\varepsilon \) carries a Neumann boundary condition for the process. Consider a diffusion process \(\tilde{X}^\varepsilon \) which is associated to \(L \) in \(\Omega^\varepsilon \) and reflecting on \(\partial \Omega^\varepsilon \) (defined similarly as the process described by (3.25)).

Let

\[
\tilde{\mathcal{P}}_{\lambda, \lambda'} := \sum_{\lambda, \lambda' \sim \lambda} p_{\lambda, \lambda'} \lim_{s \to 0} \left(\frac{d}{ds} (f \circ \gamma_{\lambda, \lambda'}(s)) \right) = 0 \text{ for } \lambda \in \Lambda
\]

where the limit \(x \to V_{\lambda} \) is along \(E_{\lambda, \lambda'} \). Note that \(\mathcal{L}f(V_{\lambda}) \) does not depend on the selection of \(\lambda' \).

Since by locality the behavior of diffusion processes associated with differential operators is determined in a given point by the behavior in neighborhoods of it, we have the following theorem by Theorem 2.2 and 3.7.

Theorem 4.1. Consider the diffusion process \(X^\varepsilon \) defined by (4.1). Assume that the law of \(X^\varepsilon(0) \) converges to a probability measure \(\mu_0 \) on \(G \). Then, \(\{X^\varepsilon\} \) converge weakly on \(C([0, \infty); \mathbb{R}^n) \) to the diffusion process \(X \) as \(\varepsilon \downarrow 0 \), where \(X \) is determined by the conditions that the law of \(X(0) \) is equal to \(\mu_0 \) and

\[
E \left[f(X(t)) - f(X(s)) - \int_s^t \mathcal{L}f(X(u))du \bigg| \mathcal{F}_s \right] = 0
\]

for \(t \geq s \geq 0 \) and all \(f \in \mathcal{D}(\mathcal{L}) \), where \((\mathcal{F}_t) \) is the filtration generated by \(X \). The operator \(\mathcal{L} \) as defined above is thus the generator of \(X \).

Similarly as in Sections 2 and 3, our discussion is also available for the case where the boundary \(\Omega^\varepsilon \) carries a Neumann boundary condition for the process. Consider a diffusion process \(\tilde{X}^\varepsilon \) which is associated to \(L \) in \(\Omega^\varepsilon \) and reflecting on \(\partial \Omega^\varepsilon \) (defined similarly as the process described by (3.25)).

Let

\[
\tilde{\mathcal{P}}_{\lambda, \lambda'} := \sum_{\lambda, \lambda' \sim \lambda} p_{\lambda, \lambda'} \lim_{s \to 0} \left(\frac{d}{ds} (f \circ \gamma_{\lambda, \lambda'}(s)) \right) = 0 \text{ for } \lambda \in \Lambda
\]

where the limit \(x \to V_{\lambda} \) is along \(E_{\lambda, \lambda'} \). Then, we obtain the following theorem.

Theorem 4.2. Consider the diffusion process \(\tilde{X}^\varepsilon \) defined above. Assume that the law of \(\tilde{X}^\varepsilon \) converges to \(\mu_0 \). Then, \(\{\tilde{X}^\varepsilon\} \) converge weakly on \(C([0, \infty); \mathbb{R}^n) \) to the diffusion process \(\tilde{X} \) as \(\varepsilon \downarrow 0 \), where \(\tilde{X} \) is determined by the conditions that the law of \(\tilde{X}(0) \) is equal to \(\mu_0 \) and

\[
E \left[f(\tilde{X}(t)) - f(\tilde{X}(s)) - \int_s^t \tilde{\mathcal{L}}f(\tilde{X}(u))du \bigg| \mathcal{F}_s \right] = 0
\]

for \(t \geq s \geq 0 \) and all \(f \in \mathcal{D}(\tilde{\mathcal{L}}) \), where \((\mathcal{F}_t) \) is the filtration generated by \(\tilde{X} \). The operator \(\tilde{\mathcal{L}} \) as defined above is thus the generator of \(\tilde{X} \).

Remark 4.3. As mentioned in Remarks 2.4 and 3.10, similar discussions can be done for the case where the shapes of the tubes are not cylindrical. In the case where \(\sigma = I_n \), \(b = 0 \), and \(E_{\lambda, \lambda'} \) are straight, the result of Theorem 4.2 coincides with Theorem 6.1 in [22].
Acknowledgment

We are very grateful to Claudio Cacciapuoti, Gianfausto Dell’Antonio, Kazumasa Kuwada, Michael Röckner, and Luciano Tubaro for very interesting and stimulating discussions. The first author would like to express his gratitude to Gianfausto Dell’Antonio for his warm hospitality at SISSA (Trieste). We also thank Luciano Tubaro, Raul Serapioni, and Luca di Persio, resp. Michael Röckner, at the Departments of Mathematics of Trento University, resp. Bielefeld University, for their warm hospitality during our stay in Trento, resp. Bielefeld. The financial support to the first author by the Provincia Autonoma di Trento, through the NEST-Project, is also gratefully acknowledged. The second author is a Research Fellow of the Japan Society for the Promotion of Science, is supported by the Excellent Young Researcher Overseas Visit Program, and also gratefully acknowledges the warm hospitality of the Institute of Applied Mathematics of the University of Bonn.

References

Bestellungen nimmt entgegen:

Sonderforschungsbereich 611
der Universität Bonn
Endenicher Allee 60
D - 53115 Bonn

Telefon: 0228/73 4882
Telefax: 0228/73 7864
E-Mail: astrid.link@ins.uni-bonn.de http://www.sfb611.iam.uni-bonn.de/

Verzeichnis der erschienenen Preprints ab No. 460

460. Brenier, Yann; Otto, Felix; Seis, Christian: Upper Bounds on Coarsening Rates in Demixing Binary Viscous Liquids

461. Bianchi, Alessandra; Bovier, Anton; Ioffe, Dmitry: Pointwise Estimates and Exponential Laws in Metastable Systems Via Coupling Methods

462. Basile, Giada; Bovier, Anton: Convergence of a Kinetic Equation to a Fractional Diffusion Equation; erscheint in: Review Markov Processes and Related Fields

463. Bartels, Sören; Roubiček, Tomáš: Thermo-Visco-Elasticity with Rate-Independent Plasticity in Isotropic Materials Undergoing Thermal Expansion

464. Albeverio, Sergio; Torbin, Grygoriy: The Ostrogradsky-Pierce Expansion: Probability Theory, Dynamical Systems and Fractal Geometry Points of View

465. Capella Kort, Antonio; Otto, Felix: A Quantitative Rigidity Result for the Cubic to Tetragonal Phase Transition in the Geometrically Linear Theory with Interfacial Energy

466. Philipowski, Robert: Stochastic Particle Approximations for the Ricci Flow on Surfaces and the Yamabe Flow

467. Kuwada, Kazumasa; Philipowski, Robert: Non-explosion of Diffusion Processes on Manifolds with Time-dependent Metric; erscheint in: Mathematische Zeitschrift

468. Bacher, Kathrin; Sturm, Karl-Theodor: Ricci Bounds for Euclidean and Spherical Cones

469. Bacher, Kathrin; Sturm, Karl-Theodor: Localization and Tensorization Properties of the Curvature-Dimension Condition for Metric Measure Spaces

470. Le Peutrec, Dorian: Small Eigenvalues of the Witten Laplacian Acting on p-Forms on a Surface

471. Wirth, Benedikt; Bar, Leah; Rumpf, Martin; Sapiro, Guillermo: A Continuum Mechanical Approach to Geodesics in Shape Space

472. Berkels, Benjamin; Linkmann, Gina; Rumpf, Martin: An SL (2) Invariant Shape Median

473. Bartels, Sören; Schreier, Patrick: Local Coarsening of Triangulations Created by Bisections

475. Frehse, Jens; Löbach, Dominique: Improved Lp-Estimates for the Strain Velocities in Hardening Problems

476. Kurzke, Matthias; Melcher, Christof; Moser, Roger: Vortex Motion for the Landau-Lifshitz-Gilbert Equation with Spin Transfer Torque

477. Arguin, Louis-Pierre; Bovier, Anton; Kistler, Nicola: The Genealogy of Extremal Particles of Branching Brownian Motion

478. Bovier, Anton; Gayrard, Véronique: Convergence of Clock Processes in Random Environments and Ageing in the p-Spin SK Model

479. Bartels, Sören; Müller, Rüdiger: Error Control for the Approximation of Allen-Cahn and Cahn-Hilliard Equations with a Logarithmic Potential

480. Albeverio, Sergio; Kusuoka, Seiichiro: Diffusion Processes in Thin Tubes and their Limits on Graphs