
Diffusion Processes in Thin Tubes and 
their Limits on Graphs 

 
 

 Sergio Albeverio, Seiichiro Kusuoka 
 
 
 

no. 480 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Diese Arbeit ist mit Unterstützung des von der Deutschen Forschungs-

gemeinschaft getragenen Sonderforschungsbereichs 611 an der Universität 

Bonn entstanden und als Manuskript vervielfältigt worden. 

Bonn, Oktober 2010 



Diffusion Processes in Thin Tubes and their Limits on Graphs

Sergio Albeverio∗†and Seiichiro Kusuoka‡§

Abstract

The present paper is concerned with diffusion processes running on tubular domains with condi-
tions on non-reaching the boundary resp. reflecting at the boundary, and corresponding processes in
the limit where the thin tubular domains are shrinking to graphs. The methods we use are probabilis-
tic ones. For shrinking, we use big potentials risp. reflection on the boundary of tubes. We show that
there exists a unique limit process and characterize the limit process by a second-order differential
generator acting on functions defined on the limit graph, with Kirchhoff boundary conditions at the
vertices.

Keywords: diffusion processes, thin tubes, processes on graphs, Dirichlet boundary condition, Neumann
boundary condition, Kirchhoff boundary conditions, weak convergence
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1 Introduction

The present paper is concerned with diffusion processes running on tubular domains with Dirichlet (i.e.
absorbing-like) (resp. Neumann i.e. reflecting) boundary conditions, and the respective processes ob-
tained in the limit where the thin tubular domains shrink to graphs. Problems of this type have been
studied before intensively in the case of Neumann boundary conditions, both by probabilistic tools [22],
[23], and analytic tools [2], [8], [9], [10], [13], [14], [16], [38], and [41]. The case of Dirichlet boundary
conditions was known to present special difficulties which explain why there have been up to now less
works concerned with this case, and in fact only concerning either special graphs or special shrinking
procedures, leading mainly (with the exception of [2], [9], [10], [13]) to limiting processes which “decouple
at vertices”; [16], [7], [11].

Before explaining these difficulties and entering into details let us motivate the reasons to undertake
such studies, pointing out also some connections with other problems and giving some historical remarks.

In many problems of analysis and probability one encounters differential operators defined on struc-
tures which have small dimensions in one or more directions. Let us mention as examples the modeling of
fluid motion in narrow tubes or in nearly two dimensional domains, see e.g. [42], the propagation of elec-
tric signals along nearly 1-dimensional neurons, see e.g. [3], [7], [11], the propagation of electromagnetic
waves in wave guides [31], the propagation of quantum mechanical effects in thin wires (in the context of
nanotechnology), see e.g. [2], [9], [10], [13], [14], [16], [18], [25], [32], [33], [35], [41], [48]. Such geometrical
structures tend in a certain limit (mathematically well described in general through a Gromov topology)
to a graph. Modeling dynamical systems or processes on such structures by corresponding ones on a
graph might present certain advantages (e.g. PDE’s becoming ODE’s on graphs ; more dimensional
spectral problems reduced to 1-dimensional ones), in any case the study of dynamics and processes on
graphs can be considered as an idealization or a “first approximation” for the study of the corresponding
objects in more realistic situations.

There is a rich literature on differential operators on graphs. Diffusion operators and evolution
equations were considered originally in work by G. Lumer [37], subsequently by many authors, see e.g.
[49], [50], [5], [40]. Elliptic and parabolic non-linear equations on graphs have been discussed e.g. in
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relations to applications in biology, e.g. in [11], see also e.g. [7], [3] for non-linear diffusions on graphs in
connection with neurobiology. Heat kernels on graphs have been studied in particular in [39]. Hyperbolic
non-linear equations on graphs have been studied, e.g., in [31].

In quantum mechanics, Schrödinger equations on graphs are considered as models of nano-structures,
see e.g. [18], [6], [32], [33]. Work has been particular intense in the study of spectral properties of
Schödinger-type operators on graphs, see e.g. [25], [32], [33], [35]. Such models of quantum mechanics
on graphs also play an important role in the study of the relation between classical chaos and quantum
chaos, see e.g. [35], [25], [17], [44], [43].

For the study of the limit of differential operators on thin domains of Rn (and corresponding PDE’s)
degenerating into geometric graphs (and corresponding ODE’s) we refer to [50], [42], [30] and especially
to the surveys by G. Raugel [42] (which discuss topics like spectral properties, asymptotics, attractors).
For the study of parabolic equations and associated semi-groups and diffusion processes we also refer to
[42]. Corresponding hyperbolic problems in connection with the modeling of ferroelectric materials have
been discussed, e.g., in [1].

Probabilistic methods for the study of processes on thin domains of Rn have been developed by
Freidlin and Wentzell in the case of Neumann boundary conditions. They exploit the consideration of
slow resp. fast components going back to [21], but applied to the thin tubes problem [22]. In these
studies the basic probabilistic observation is that for a Brownian motion in a thin tube along a line the
component in the transverse direction is fast, the one in the longitudinal direction is slow. The control
in the limit exploits the assumption on the reflecting properties of the fast component, together with a
projection technique onto the longitudinal direction. In [22] it is shown that the diffusion coefficient for
this limit process is obtained by averaging the diffusion coefficient for the process in tubular domains
with respect to the invariant measure of the fast component with suitable changed space and time scales.

Analytically the Laplacian in the transverse direction has a constant eigenvalue 0 (ground state in the
transverse direction), which then yields a natural identification of the subspace of L2-over the thin tube
corresponding to the eigenvalue 0 for the Laplacian in the transverse direction with the L2-space along an
edge. Results about this approximation concern convergence of eigenvalues, eigenfunctions, resolvents,
and semigroups [16], [26], [38], [14]. Besides, operatorial and variational methods also methods of Dirichlet
form theory have been used [8].

The identification stressed above is no longer possible in the case of Dirichlet boundary conditions on
the boundary of the thin tube, since the lowest eigenvalue of the Laplacian in the transverse direction
diverges like 1/ε2, where ε > 0 is the width of the narrow tube. (For a probabilistic study of the
first-order asymptotics of the lowest eigenvalue of the Dirichlet Laplacian in tubular neighborhoods of
submanifolds of Riemannian manifolds see [28].) This has been pointed out clearly and posed as an open
problem by P. Exner (see in [4]). In order to nevertheless manage analytically the limit to a graph,
one has to perform a renormalization procedure, first introduced in [2], and extended in [9], [10], for
the case of a V-graph (waveguide). More general cases with Dirichlet boundary conditions have been
managed in the case where the shrinking at vertices is quicker than the one at the edges, however then
one has “no communication between the different edges” (i.e. “decoupling”) on the graphs, see [26],
[38], [41]. The interest in discussing the case of Dirichlet-boundary conditions is particularly clear in
the physics of conductors, where such boundary conditions arise most naturally, both in classical and
quantum mechanical problems. However, also in the other type of applications we have mentioned there is
an interest in studying boundary conditions different from the Neumann ones, since boundary conditions
influence the limit behavior and one is interested to obtain on the graphs most general possible boundary
conditions at the vertices (even in the case of an “N -spider graph” there are N2-different possible self-
adjoint realizations of a Laplacian on the spider, see e.g. [18], [29]).

The present paper discusses the case of shrinking by potentials mainly and the goal is to determine
the limit process on a given graph. This shrinking by potentials correspond to confining the process
in thin tubes around the graph, not reaching the boundary almost surely, and in this sense is related
with Dirichlet boundary conditions (the latter property corresponding however to a completely absorbing
boundary). In Sections 2 and 3 we consider special cases, because the consideration of these cases illustrate
better the methods we use.

In Section 2 the case of a thin tube Ωε in Rn shrinking to a curve γ in Rn is discussed. The tube
Ωε has a uniform width ε > 0. In the tube we have a non-degenerate diffusion process Xε with a drift
consisting of two parts, one continuous and bounded, the other of gradient type, pushing away from the
boundary, so that the first hitting time of Xε at the boundary ∂Ωε is infinite almost surely. We also
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construct a diffusion process X on γ and show (Theorem 2.2) that if Xε(0) converges weakly to X(0)
then also Xε converges weakly to X. If pathwise uniqueness holds both for Xε and X, then Xε also
converges to X almost surely as ε ↓ 0. We also state corresponding results for a process in Ωε with
reflecting boundary condition on the boundary ∂Ωε (Theorem 2.3). These results are obtained in similar
way as those obtained by our shrinking with potentials in the first part of Section 2.

In Section 3 we discuss the case of shrinking N thin tubes in Rn to an N -spider graph in Rn. In
this section, we often use the methods discovered by Freidlin and Wentzell [22], extend their method
to the case of diffusion processes instead of Brownian motions, and apply it to the case of shrinking by
potentials. The process Xε in the domain Ωε consisting of N tubes is defined in a similar way as in
Section 2, ε > 0 being the parameter of shrinking to the N -spider graph Γ for ε ↓ 0. We prove again that
the first hitting time of Xε at the boundary ∂Ωε is infinite and that the laws of {Xε : ε > 0} are tight in
the topology of probability measures on C([0, +∞)), if their initial distributions are tight. We then show
that any limit process is strong Markov and study the transition probabilities from the vertex O to any
edge of the spider graph Γ. This requires quite detailed estimates of the behavior of the process Xε in a
neighborhood of O in Ωε. These results imply that the boundary condition at O should be a weighted
Kirchhoff boundary condition for the functions in the domain of the generator of the limit processes
X. (This is one of the types of boundary conditions known from the general discussions on boundary
conditions for processes on graphs, see e.g. [29], [32], [33], [34], [18], [13]). The weights are determined
explicitly from the construction, as transition probabilities to the edges (Lemma 3.6). This is crucial
to determine the generator of the unique limit process X (Theorem 3.7). Similar considerations lead to
corresponding results for the case where Xε is a diffusion in Ωε with reflecting boundary conditions on
∂Ωε (Theorem 3.8).

In Section 4 we state the results in the case of thin tubes around general graphs, which are obtained
immediately from the results in Sections 2 and 3. These are systems consisting of thin tubes around
finitely ramified graphs in Rn with edges which consist of C2-curves. Theorem 4.1 presents a result
similar to the one for an N -spider graph, showing, in particular, convergence of the diffusion process Xε

not leaving the system Ωε of tubes around the general graph to a diffusion process X on the graph. Again
its generator is determined and an extension is given to the case of a diffusion with reflecting boundary
conditions on ∂Ωε. Since the latter result is not only for a Brownian motion in the thin tubes but also
for reflecting diffusion processes in the thin tubes, it is also an extension of previous results of Friedlin
and Wentzell [22].

All random variables discussed in the present paper are defined on a probability space with probability
measure P , and E[·] denotes their expectation with respect to P . For a locally compact topological
subspace A of Rn, let C0(A) := {f ∈ C(A) : lim|x|→+∞ f(x) = 0}.

2 The case of curves

In this section, we consider shrinking of thin tubes to curves. Let n be an integer larger than or equal
to 2. Let γ ∈ C2

b (R; Rn) such that |γ̇| = 1 (with γ̇ the derivatives of t → γ(t), and | · | the norm in Rn),
and assume that γ has no self-crossing point and γ̈ is bounded. Let ε > 0, ⟨·, ·⟩ be the inner product on
Rn, and d(x, γ) be the distance between x and γ. Note that d(x, γ) is Lipschitz continuous in x. Define
domains {Ωε} by

Ωε := {x ∈ Rn : d(x, γ) < ε}.
Consider a differentiable function u on [0, 1) such that

u(0) = 0, u′ ≥ 0, and − lim
R↑1

u(R)
log(1 − R)

= +∞.

Let
Uε(x) = u

(
ε−1d(x, γ)

)
, x ∈ Ωε.

For ε > 0, consider a diffusion process Xε given by the following equation:

Xε(t) = Xε(0) +
∫ t∧ζε

0

σ(Xε(s))dW (s) +
∫ t∧ζε

0

b(Xε(s))ds

−
∫ t∧ζε

0

(∇Uε)(Xε(s))ds, (2.1)
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where Xε(0) is an Ωε-valued random variable, W is an n-dimensional Wiener process , σ ∈ Cb(Rn; Rn ⊗
Rn), b ∈ Cb(Rn; Rn), and ζε is the first hitting time of Xε at the boundary ∂Ωε of Ωε. Let a := σσT (with
σT the transpose of σ), and assume that a is a uniformly positive definite matrix. Then, the solution Xε

of (2.1) exists uniquely (see, e.g., [47]).

Lemma 2.1. ζε = +∞ almost surely for small ε > 0.

Proof. Assume n ≥ 3. Note that Xε does not hit γ almost surely in this case. Let Xε
x be the solution of

(2.1) replacing Xε(0) and ζε by x and ζε
x respectively, where ζε

x is the first hitting time of Xε at ∂Ωε. It is
sufficient to show that ζε

x = +∞ almost surely for x near to ∂Ωε. By the tubular neighborhood theorem
and Theorem 1 in [19], there exists a C2-diffeomorphism ϕ = (ϕ1, ϕ2) from Ωε \ γ to {y = (y1, y2) ∈
R × Rn−1 : 0 < |y2| < ε} which satisfies, for small ε,

ϕ1(x) = γ−1 ◦ π(x) and ϕ2(x) = d(x, γ)∇d(x, γ), x ∈ Ωε \ γ,

where π(x) is the nearest point in γ from x. Note that ϕ is a C2-function on Ωε and ⟨∇π,∇Uε⟩ = 0 for
small ε. Hence, ⟨∇ϕ1,∇Uε⟩ = 0 and ∇ϕ2∇Uε = ε−1u′(ε−1d(·, γ))∇d(·, γ). By Itô’s formula, we have

ϕ1(Xε
x(t)) = ϕ1(x) +

∫ t∧ζε
x

0

∇ϕ1(Xε
x(s))σ(Xε

x(s))dW (s)

+
∫ t∧ζε

x

0

∇ϕ1(Xε
x(s))b(Xε

x(s))ds

+
1
2

n∑
i,j=1

∫ t∧ζε
x

0

aij(Xε
x(s))∂i∂jϕ1(Xε

x(s))ds,

(2.2)

ϕ2(Xε
x(t)) = ϕ2(x) +

∫ t∧ζε
x

0

∇ϕ2(Xε
x(s))σ(Xε(s))dW (s)

+
∫ t∧ζε

x

0

∇ϕ2(Xε
x(s))b(Xε(s))ds

+
1
2

n∑
i,j=1

∫ t∧ζε
x

0

aij(Xε
x(s))∂i∂jϕ2(Xε

x(s))ds

−ε−1

∫ t∧ζε
x

0

u′(ε−1d(Xε
x(s), γ))∇d(·, γ)|Xε

x(s)ds.

(2.3)

Moreover, again by Itô’s formula :

|ϕ2(Xε
x(t))|2

= |ϕ2(x)|2 + 2
∫ t∧ζε

0

⟨ϕ2(Xε
x(s)),∇ϕ2(Xε

x(s))σ(Xε
x(s))dW (s)⟩

+2
∫ t∧ζε

x

0

⟨ϕ2(Xε
x(s)),∇ϕ2(Xε

x(s))b(Xε
x(s))⟩ds

+
∫ t∧ζε

x

0

⟨
ϕ2(Xε

x(s)),
n∑

i,j=1

aij(Xε
x(s))∂i∂jϕ2(Xε

x(s))

⟩
ds

−2ε−1

∫ t∧ζε
x

0

|ϕ2(Xε
x(s))|u′(ε−1d(Xε

x(s), γ))ds

+
∫ t∧ζε

x

0

trace
[
∇ϕ2(Xε

x(s))σ(Xε
x(s)) (∇ϕ2(Xε

x(s))σ(Xε
x(s)))T

]
ds.

Let

ā := sup
{∣∣(∇ϕ2(x)σ(x))T ξ

∣∣2 : x ∈ Ωε, ξ ∈ {y ∈ Rn : |y| = 1}
}

b̄ := inf
x∈Ωε

2⟨ϕ2(x),∇ϕ2(x)b(x)⟩ +

⟨
ϕ2(x),

n∑
i,j=1

aij(x)∂i∂jϕ2(x)

⟩

+ trace
[
∇ϕ2(x)σ(x) (∇ϕ2(x)σ(x))T

] .
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Let c0 ∈ (0, 1) and

f(x) :=
∫ x

c2
0ε2

exp

(
−2

∫ y

c2
0ε2

b̄ − 2ε−1
√

zu′(ε−1
√

z)
āz

dz

)
dy, x ∈ [0, ε2).

Then, by Itô’s formula, for δ such that 0 < δ < 1 − c0 and for x such that c0ε ≤ d(x, γ) ≤ ε(1 − δ) we
have that

E[f(|ϕ2(Xε
x(T c0ε ∧ T ε(1−δ)))|2)] ≤ f(d(x, γ)2),

where T c := inf{t > 0 : d(Xε
x, γ) = c} for c > 0. Since

E[f(|ϕ2(Xε
x(T c0ε ∧ T ε(1−δ)))|2)]

= f
(
c2
0ε

2
)
P

(
T c0ε < T ε(1−δ)

)
+ f

(
ε2 (1 − δ)2

)
P

(
T c0ε > T ε(1−δ)

)
,

and
P

(
T c0ε < T ε(1−δ)

)
+ P

(
T c0ε > T ε(1−δ)

)
= 1,

we have

P
(
T c0ε > T ε(1−δ)

)
≤

f(d(x, γ)2) − f
(
c2
0ε

2
)

f (ε2(1 − δ)2) − f (c2
0ε

2)
.

The assumptions on u imply that f(ε2(1 − δ)2) diverges to +∞ as δ → 0. Hence, the proof is achieved
from the fact that T ε(1−δ) converges to ζε

x as δ → 0. The case where n = 2 is proved in a similar way.

Theorem 2.2. Define a diffusion process X by the solution of the following equation:

X(t) = X(0) +
∫ t

0

γ̇ ◦ γ−1(X(s))⟨γ̇ ◦ γ−1(X(s)), σ(X(s))dW (s)⟩

+
∫ t

0

γ̇ ◦ γ−1(X(s))⟨γ̇ ◦ γ−1(X(s)), b(X(s))⟩ds

+
1
2

∫ t

0

γ̈ ◦ γ−1(X(s))
∣∣σ(X(s))T γ̇ ◦ γ−1(X(s))

∣∣2 ds. (2.4)

Note that X is uniquely determined as a process on γ.
If Xε(0) converges to a γ-valued random variable X(0) weakly, then the process Xε converges weakly

to X in the sense of their laws on C([0, +∞); Rn) as ε ↓ 0.
Moreover, if pathwise uniqueness holds for (2.4) and (2.1) for all ε > 0 and Xε(0) converges to a

γ-valued random variable X(0) almost surely, then Xε converges to X almost surely, as ε ↓ 0.

Proof. Lemma 2.1 implies that d(Xε(t), γ) converges to 0 uniformly in t almost surely as ε ↓ 0. The
equation (2.2) holds even if we replace Xε

x, x, and ζε
x by Xε, Xε(0), and ζε respectively. Hence, the

boundedness of the coefficients implies the tightness of the process ϕ1(Xε). By standard arguments,
it follows that any limit process of Xε satisfies (2.4), therefore, the first assertion holds. The second
assertion is obtained in a similar way.

The argument above is also available in the case where the boundary ∂Ωε carries a Neumann boundary
condition, for the generator of the process, in the following sense. Consider a diffusion process X̂ε which
is associated to

1
2

n∑
i,j=1

aij(x)
∂

∂xi

∂

∂xj
+

n∑
j=1

bj(x)
∂

∂xj

in Ωε and reflecting on ∂Ωε. Then, X̂ε can be expressed by the following equation:

X̂ε(t) = X̂ε(0) +
∫ t

0

σ(X̂ε(s))dW (s) +
∫ t

0

b(X̂ε(s))ds + Φε(X̂ε)(t), (2.5)

where Φε is a singular drift which forces the reflecting boundary condition on ∂Ωε (see [46]). Discussing
this case in a similar way as above, we obtain the following theorem.
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Theorem 2.3. Define a diffusion process X̂ by the solution of the following equation:

X̂(t) = X̂(0) +
∫ t

0

γ̇ ◦ γ−1(X̂(s))⟨γ̇ ◦ γ−1(X̂(s)), σ(X̂(s))dW (s)⟩

+
∫ t

0

γ̇ ◦ γ−1(X̂(s))⟨γ̇ ◦ γ−1(X̂(s)), b(X̂(s))⟩ds

+
1
2

∫ t

0

γ̈ ◦ γ−1(X̂(s))
∣∣∣σ(X̂(s))T γ̇ ◦ γ−1(X̂(s))

∣∣∣2 ds. (2.6)

If X̂ε(0) converges to a γ-valued random variable X̂(0) weakly, then the process X̂ε converges weakly
to X̂ in the sense of their laws on C([0, +∞); Rn) as ε ↓ 0. Moreover, if pathwise uniqueness holds for
(2.6) and (2.5) for all ε > 0 and X̂ε(0) converges to a γ-valued random variable X̂(0) almost surely, then
X̂ε converges to X̂ almost surely, as ε ↓ 0.

Remark 2.4. In this section, the shape of tubes was taken to be cylindrical and the “confining” potential
Uε has been defined by scaling of a fixed function U . However, neither the shape of the tubes nor the
scaling property are essential. If Uε is “along γ” (in the sense that the gradient of U is normal to the
tangent of γ in any points of γ), the same results hold. In the case where Uε is not along γ, some effect
of Uε remains in the limit process (see [45], [20]).

3 The case of N-spiders

In this section, we consider the shrinking of thin tubes to N -spider graphs. The argument in this
section is the main part of this article. Consider an n-dimensional Euclidean space Rn, let d(·, ·) be
the distance function in Rn, and O be the origin. Let {ei}N

i=1 be N different unit vectors in Rn and
Ii := {sei : s ∈ [0,∞)}. Consider an N -spider graph Γ defined by Γ :=

∪N
i=1 Ii. Γ is also called an N -star

graph. Let A be the set in Rn given by

A :=
∪

i,j: i ̸=j

{x ∈ Rn : x · ei = x · ej} .

For x ∈ Rn \ A, let π(x) be the nearest point in Γ from x. Note that π(x) is uniquely determined for all
x ∈ Rn \ A.

Let ui be given similarly to u in Section 2 for i = 1, 2, . . . , N (so that ui determines the potential
acting in the thin tube around Ii). Let ci be a positive number for i = 1, 2, . . . , N and

κ := max
{√

2ci/
√

1 − ⟨ei, ej⟩ : i, j = 1, 2, . . . , N

}
.

ci has the interpretation of width of the tube around Ii. Let U be a function on Rn with values in [0,∞],
and assume

U(x) = ui(c−1
i d(x, Γ)), x ∈ {x ∈ Rn : π(x) ∈ Ii, d(x, Ii) < ci, |x| ≥ κ}

U(x) = +∞, x ∈ {x ∈ Rn : π(x) ∈ Ii, d(x, Ii) ≥ ci, |x| ≥ κ},

U(x) < +∞, x ∈ {x ∈ Rn : |x| ≤ κ/2},

Ω := {x : U(x) < ∞} is a simply connected and unbounded domain, ∂Ω is a C2-manifold, and U |Ω is a
C1-function in Ω. This structure Ω is sometimes called a “fattened” N -spider. In addition, we assume

− lim
m→∞

U(xm)
log(d(xm, ∂Ω))

= +∞

for any sequence {xm} which converges to a point x ∈ ∂Ω. Define domains {Ωi : i = 1, 2, . . . , N} in Rn

by
Ωi := {x ∈ Ω \ A : π(x) ∈ Ii, |x| ≥ κ}
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for i = 1, 2, . . . , N . Let Ωε := εΩ, Ωε
i := εΩi, and Uε(x) = U(ε−1x) for x ∈ Rn for all ε > 0. Note

that Uε(x) ∈ [0,+∞) for x ∈ Ωε, ∂Uε is a C2-manifold, and Uε|Ωε is a C1-function on Ωε. Consider a
diffusion process Xε given by the following equation:

Xε(t) = Xε(0) +
∫ t∧ζε

0

σ(Xε(s))dW (s) +
∫ t∧ζε

0

b(Xε(s))ds

−
∫ t∧ζε

0

(∇Uε)(Xε(s))ds, (3.1)

where Xε(0) is an Ωε-valued random variable, ζε is the first hitting time of Xε at ∂Ωε, W is an n-
dimensional Wiener process, σ ∈ Cb(Rn; Rn ⊗ Rn), and b ∈ Cb(Rn; Rn). Let a(x) := σ(x)σT (x) and
assume that a is a uniformly positive definite matrix. Define a second-order elliptic differential operator
L on Ωε by

L :=
1
2

n∑
i,j=1

aij(x)
∂

∂xi

∂

∂xj
+

n∑
i=1

bi(x)
∂

∂xi
,

then the generator of Xε is a closed extension of (L −∇Uε · ∇) in L2(Ωε, dx) for any ε > 0. Since a is
a uniformly positive definite matrix, the process Xε exists uniquely for all ε > 0. We denote by P ε

x the
law of Xε on C([0,∞); Rn) with Xε(0) = x.

The following lemma implies that Xε does not exit from Ωε almost surely.

Lemma 3.1. ζε = +∞ almost surely for all ε > 0.

Proof. Locally, the discussion in the proof of Lemma 2.1 is available. Hence, by using the strong Markov
property of Xε, we have the assertion.

Next we shall study the tightness of {Xε : ε > 0}.

Lemma 3.2. If the laws of {Xε(0) : ε > 0} are tight, then the laws of {Xε : ε > 0} are also tight in the
sense of laws on C([0,∞); Rn).

Proof. In view of Theorem 2.1 in [22] it is sufficient to show that for any ρ > 0 there exists a positive
constant Cρ such that for all y ∈ Rn there exists a function fy

ρ on Rn which satisfies the following

i) fy
ρ (y) = 1, fy

ρ (x) = 0 for |x − y| ≥ ρ, and 0 ≤ fy
ρ ≤ 1.

ii) (fy
ρ (Xε(t)) + Cρt ; t ≥ 0) is a submartingale for sufficiently small ε.

Now we choose fy
ρ and Cρ satisfying the conditions above. Fix ρ > 0 and take ε0 > 0 such that

ε0 < ρ/(8κ). When y ∈ Ωε0 (where Ωε0 denotes the closure of Ωε0 in Rn) and |y| > ρ/2, choose
fy

ρ ∈ C∞(Rn) such that

• fy
ρ (x) = fy

ρ (π(x)) for x ∈ Ωε0 , and fy
ρ (x) = 0 for |x − y| ≥ ρ/4,

• fy
ρ (y) = 1, 0 ≤ fy

ρ ≤ 1, ||∇f ||∞ ≤ 8/ρ, and ||∇2f ||∞ ≤ 64/ρ2.

Since fy
ρ (x) = 0 for |x| ≤ 2κε0 and ∇π(x)∇Uε(x) = 0 for |x| ≥ 2κε0, it follows by Itô’s formula that

fy
ρ (Xε(t)) −

∫ t

0

Lfy
ρ (Xε(s))ds

is a martingale for all ε < ε0. Hence, choosing Cρ larger than (8/ρ + 64/ρ2)(1/2||σ||2∞ + ||b||∞), the
conditions i) and ii) are satisfied for ε < ε0.

When y ∈ Ωε0 and |y| ≤ ρ/2, choose fy
ρ ∈ C∞(Rn) such that

• fy
ρ (x) = fy

ρ (π(x)) for x ∈ Ωε0 \ A, fy
ρ (x) = 1 for |x| ≤ ρ/2, and fy

ρ (x) = 0 for |x − y| ≥ ρ,

• 0 ≤ fy
ρ ≤ 1, ||∇f ||∞ ≤ 8/ρ, and ||∇2f ||∞ ≤ 64/ρ2.
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Here, note that 4κε ≤ ρ/2 for ε < ε0. Similarly to the case where y ∈ Ωε0 and |y| > ρ/2, one proves that
the conditions i) and ii) are satisfied for ε < ε0 with the same Cρ as above.

When y ̸∈ Ωε0 , choose fy
ρ ∈ C∞(Rn) such that fy

ρ (y) = 1, fy
ρ (x) = 0 for x ∈ Ωε0 , and fy

ρ satisfies the
conditions i) above. Since Xε moves in Ωε, fy

ρ (Xε(t)) = 0 for all t and ε < ε0.
Thus, for all ρ > 0, {fy

ρ : y ∈ Rn} and Cp are chosen in such a way that the conditions i) and ii) are
satisfied.

By Lemma 3.2 we can choose a subsequence {Xε′
: ε′ > 0} of {Xε : ε > 0} such that the laws of its

members converge weakly in the sense of laws on C([0,∞); Rn). Define X as the limit process of this
subsequence and to simplify the notation denote the subsequence ε′ by ε again. From now on we fix X
as the limit process of Xε.

Let T̃ c(w) := inf{t > 0 : |w(t)| = c} and T c(w) := inf{t > 0 : w(t) /∈ A, |π(w(t))| = c} for c > 0.
Theorem 2.2 determines the behavior of X on Γ \O. Hence, to characterize X, we need to determine

the boundary condition for X at O. Now we give some lemmas. Next lemma implies that the edge which
X goes to, starting from O, is independent of the edge which X comes from. Therefore, we obtain in
particular that X is a strong Markov process on Γ.

Lemma 3.3. Let {δ(ε) : ε > 0} be positive numbers satisfying the condition that limε↓0 ε−1δ(ε) = +∞.
For B ∈ B(Rn) (B(Rn) denoting the Borel subsets of Rn),

sup
{∣∣∣P ε

x

(
w(T δ(ε)) ∈ B

)
− P ε

O

(
w(T δ(ε)) ∈ B

)∣∣∣ : x ∈ Ωε, |x| ≤ 2κε
}

converges to 0 as ε ↓ 0.

Proof. Define a process X̂ε
x by the solution of the equation:

X̂ε
x(t) = x +

∫ t

0

σ(εX̂ε
x(s))dŴ (s) + ε

∫ t

0

b(εX̂ε
x(s))ds −

∫ t

0

(∇U)(X̂ε
x(s))ds, (3.2)

for x ∈ Ω and ε > 0, where Ŵ is an n-dimensional Wiener process defined by Ŵ (t) = ε−1W (ε2t) for
t ∈ [0,∞). Let P̂ ε

x be the law of X̂ε
x on C([0,∞); Rn). Then, it is easy to see that

P̂ ε
x(w(t) ∈ dx) = P ε

ε−1x(ε−1w(ε2t) ∈ dx)

for t ∈ [0,∞) and ε > 0. Hence, it is sufficient to show that∣∣∣P̂ ε
x

(
w(T δ(ε)/ε) ∈ ε−1B

)
− P̂ ε

O

(
w(T δ(ε)/ε) ∈ ε−1B

)∣∣∣ → 0 (3.3)

as ε tends to 0, uniformly in x ∈ {y ∈ Ω : |y| ≤ 2κ}. Define stopping times

τ0(w) := inf{t > 0 : w(t) ̸∈ A, |π(w(t))| > 3κ},
τ̃k(w) := inf{t > τk−1 : w(t) ̸∈ A, |π(w(t))| > 4κ}, k ∈ N,

τk(w) := inf{t > τ̃k : w(t) ̸∈ A, |π(w(t))| < 3κ}, k ∈ N,

for w ∈ C([0,∞); Rn). Note that |w(τk)| = 3κ for k = 0, 1, 2, . . . , and |w(τ̃k)| = 4κ for k = 1, 2, 3, . . .

almost surely under P̂ ε
x for x ∈ Ω and |x| ≤ 2κε. Since △π(x) = 0 and ∇π(x)∇U(x) = 0 for |x| ≥ 2κ,

Itô’s formula implies

π(X̂ε
x(t)) = π(τ̃k(X̂ε

x)) +
∫ t

τ̃k( bXε
x)

∇π(X̂ε
x(s))σ(εX̂ε(s))dŴ (s)

+ε

∫ t

τ̃k( bXε
x)

∇π(X̂ε
x(s))b(εX̂ε(s))ds (3.4)

for t ∈ [τ̃k(X̂ε
x), τk(X̂ε

x)], x ∈ Ω and |x| ≤ 2κε. Since the diffusion coefficient of the one-dimensional
process |π(X̂ε

x(t))| is uniformly elliptic and T δ(ε)/ε diverges to infinity as ε ↓ 0 almost surely under P̂ ε
x ,

there exists a sequence {η(ε)} converging to 0 as ε ↓ 0 such that

sup
|x|=4κ

P̂ ε
x

(
T δ(ε)/ε < T 3κ

)
≤ η(ε).
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On the other hand, since σσT is uniformly positive definite, X̂ε
x hits {x ∈ Ω : |x| < δ′} with positive

probability for all x ∈ Ω, ε > 0, δ′ > 0. Hence, letting α(ε) be a sequence of positive numbers such that
α(ε) ≤ 2κ and α(ε) converges to 0 as ε ↓ 0, we obtain that

p(ε) := inf
|x|=3κ

P̂ ε
x

(
T̃α(ε) < T 4κ

)
> 0

for all ε > 0, and that p(ε) converges to 0 as ε ↓ 0. Moreover, we have

P̂ ε
x

(
T δ(ε)/ε < T̃α(ε)

)
=

∞∑
k=1

P̂ ε
x

(
T δ(ε)/ε < τk, τ̃k < T̃α(ε)

)
=

∞∑
k=1

∫
{y∈Ω:|y|=3κ}

∫
{y∈Ω:|y|=4κ}

· · ·
∫
{y∈Ω:|y|=3κ}

∫
{y∈Ω:|y|=4κ}

P̂ ε
yk

(
T δ(ε)/ε < T 3κ

)
×P̂ ε

xk

(
w(T 4κ) ∈ dyk, T 4κ < T̃α(ε)

)
P̂ ε

yk−1

(
w(T 3κ) ∈ dxk, T δ(ε)/ε > T 3κ

)
× · · · × P̂ ε

x1

(
w(T 4κ) ∈ dy1, T 4κ < T̃α(ε)

)
P̂ ε

x

(
w(T 3κ) ∈ dx1, T δ(ε)/ε > T 3κ

)
≤ η(ε)

∞∑
k=1

(1 − p(ε))k

=
η(ε)(1 − p(ε))

p(ε)
.

Hence, if η(ε)/p(ε) converges to 0 as ε ↓ 0, P̂ ε
x

(
T δ(ε)/ε < T̃α(ε)

)
converges to 0 as ε ↓ 0. Now we choose

α(ε) so that η(ε)/p(ε) converges to 0 as ε ↓ 0. Then η(ε)/p(ε) converges to 0 as ε ↓ 0. Thus, for (3.3), it
is sufficient to prove that

sup
|x|≤α(ε)

∣∣∣P̂ ε
x

(
w(T δ(ε)/ε) ∈ ε−1B

)
− P̂ ε

O

(
w(T δ(ε)/ε) ∈ ε−1B

)∣∣∣ → 0 (3.5)

as ε ↓ 0. Approximating the equation (3.2) by equations with smooth coefficients and improving Theorem
1 of [12] to the case of diffusion processes by using the argument which appeared in [36], we have

sup
|x|≤α(ε)

∣∣∣P̂ ε
x

(
w(T δ(ε)/ε) ∈ ε−1B

)
− P̂ ε

O

(
w(T δ(ε)/ε) ∈ ε−1B

)∣∣∣
≤ sup

|x|≤α(ε)

P̂ ε
O,x

(
T̂ (w,w′) > T̃ 1/2(w) ∧ T̃ 1/2(w′)

)
,

≤ Cα(ε)

for α(ε) < κ/2, where P̂ ε
O,x is an optimal coupling probability measure for (X̂ε

O, X̂ε
x) and

T̂ (w,w′) := min {t > 0 : w(t) = w(t′)} .

This yields (3.5).

Next lemma implies that O is not absorbing for X.

Lemma 3.4. ∫ t

0

E
[
I{x:|x|≤δ′}(X(s))

]
ds = O(δ′)

as δ′ ↓ 0, for all t ≥ 0.
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Proof. It is sufficient to show that∫ t

0

E
[
I{x:|π(x)|≤δ′}(X(s))

]
ds = O(δ′)

as δ′ ↓ 0. By Fatou’s lemma, we have∫ t

0

E
[
I{x:|π(x)|≤δ′}(X(s))

]
ds

≤ lim inf
ε↓0

∫ t

0

E
[
I{x:|π(x)|≤3κε}(Xε(s))

]
ds

+ lim inf
ε↓0

∫ t

0

E
[
I{x:3κε≤|π(x)|≤δ′}(Xε(s))

]
ds (3.6)

To show that the second term is O(δ′) as δ′ ↓ 0, let f be a continuous function on R such that
I{x∈R:3κε≤x≤δ′} ≤ f ≤ I{x∈R:2κε≤x≤2δ′} and F (x) :=

∫ x

0

∫ y

0
f(z)dzdy. Noting that π(x) = ⟨ei, x⟩ei

for x ∈ Ωi and i = 1, 2, . . . , N , we have ∇π(x)π(x) = π(x) for x ∈ Ω such that |x| ≥ 2κ. Since
∇π(x)∇Uε(x) = 0 and △π(x) = 0 for x ∈ Ωε such that |x| ≥ 2κε, we have

E[F (|π(Xε(t))|)] − F (|π(xε)|)

=
1
2

∫ t

0

E

[
f(|π(Xε(s))|)

∣∣∣∣σ(Xε(s))T π(Xε(s))
|π(Xε(s))|

∣∣∣∣2
]

ds

+
∫ t

0

E

[
F ′(|π(Xε(s))|)

⟨
π(Xε(s))
|π(Xε(s))|

, b(Xε(s))
⟩]

ds.

It is easy to see that E
[
|Xε(t)|2

]
is dominated uniformly in ε > 0. Moreover, it holds that 0 ≤ F ′ ≤ 2δ′

and 0 ≤ F (x) ≤ 2δ′x for x ∈ R+. Thus, by uniform ellipticity of a = σσT , we have the following estimate∫ t

0

E
[
I{x∈R:3κε≤x≤δ′}(|π(Xε(s))|)

]
ds ≤ Cδ′.

for some constant C. Hence,

lim inf
ε↓0

∫ t

0

E
[
I{x:3κε≤|π(x)|≤δ′}(Xε(s))

]
ds = O(δ′)

as δ′ ↓ 0. This yields that the second term of (3.6) is equal to O(δ′) as δ′ ↓ 0.
The proof is finished by showing that∫ t

0

E
[
I{x:|π(x)|≤3κε}(Xε(s))

]
ds = O(ε) (3.7)

as ε ↓ 0. Define stopping times {τε
k , τ̃ ε

k} by

τε
0 (w) := 0,

τ̃ε
k(w) := inf{u > τ ε

k−1(w) : |π(w(u))| > 4κε}, k ∈ N,

τε
k(w) := inf{u > τ̃ ε

k(w) : |π(w(u))| < 3κε}, k ∈ N,

for w ∈ C([0,∞); Rn). Then,∫ t

0

E
[
I{x:|π(x)|≤3κε}(Xε(s))

]
ds

≤
∞∑

k=1

∫ (∫
T 4κε(w)P ε

x(dw)
)

P ε
xε(w(τε

k) ∈ dx, τ ε
k ≤ t)

≤ sup
x∈{y∈Ω:|π(y)|=3κε}

(∫
T 4κε(w)P ε

x(dw)
) ∞∑

k=1

P ε
xε(τε

k ≤ t).
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By using the notation in the proof of Lemma 3.3, we have

sup
x∈{y∈Ω:|π(y)|=3κε}

∫
T 4κε(w)P ε

x(dw) = ε2 sup
x∈{y∈Ω:|π(y)|=3κ}

∫
T 4κ(w)P̂ ε

x(dw).

It is easy to see that

sup
ε>0

sup
x∈{y∈Ω:|π(y)|=3κ}

∫
T 4κ(w)P̂ ε

x(dw) < +∞.

Hence, for (3.7), it is sufficient to show that

∞∑
k=1

P ε
xε(τ̃ε

k ≤ t) ≤ Cε−1, (3.8)

for some constant C. For w ∈ C([0,∞); Ω), let Nt(w) be the number of transitions of w from the set
{x ∈ Ωε : |π(x)| = 3κ} to the set {x ∈ Ωε : |π(x)| = 4κ} during the time interval [0, t]. Then,

∞∑
k=1

P ε
xε(τ̃ε

k ≤ t) =
∫

Nε−2t(w)P̂ ε
ε−1xε(dw). (3.9)

For i = 1, 2, . . . , N and x ∈ {y ∈ Ωi : |π(y)| ≥ 2κ}, consider the diffusion process Ŷ ε,i
x which behaves

just in the same way as X̂ε
x in {y ∈ Ωi : |π(y)| > 2κ} but is reflected by {y ∈ Ωi : |π(y)| = 2κ}. Ŷ i

x is
expressed as

Ŷ ε,i
x (t) = x +

∫ t

0

σ(εŶ ε,i
x (s))dŴ (s) + ε

∫ t

0

b(εŶ ε,i
x (s))ds

−
∫ t

0

(∇U)(Ŷ ε,i
x (s))ds + ψi(Ŷ ε,i

x )(t),

where ψi(Ŷ ε,i
x ) is a singular drift with finite variation for reflecting on {y ∈ Ωi : |π(y)| = 2κ} (see [46]).

It is clear that

E
[
Nε−2t(X̂ε

ε−1xε)
]
≤

N∑
i=1

sup
x:|π(x)|≤4κ

E
[
Nε−2t(Ŷ ε,i

x )
]
.

Hence, by (3.8) and (3.9), it is sufficient to show that

sup
x:|π(x)|≤4κ

E
[
Nε−2t(Ŷ ε,i

x )
]
≤ Cε−1 (3.10)

with a constant C for all i = 1, 2, . . . , N . Let i be fixed. Note that π(x) = ⟨x, ei⟩ei for x ∈ Ωi. Since
⟨ei,∇U(x)⟩ = 0 for x ∈ {Ωi : |x| ≥ 2κε} and

⟨
ei, dψi(Ŷ ε,i

x )(s)
⟩

= d|ψi(Ŷ ε,i
x )(s)|, by Itô’s formula we have

⟨ei, Ŷ
ε,i
x (t)⟩

= ⟨ei, x⟩ +
∫ t

0

⟨
ei, σ(εŶ ε,i

x (s))dŴ (s)
⟩

+ε

∫ t

0

⟨
ei, b(εŶ ε,i

x (s))
⟩

ds + |ψi(Ŷ ε,i
x )(t)|.

Let m ∈ N. Define τk and τ̃k as in the proof of Lemma 3.3. Then,

E[⟨ei, Ŷ
ε,i
x (t)⟩] − ⟨ei, x⟩

=
m∑

k=1

E
[
⟨ei, Ŷ

ε,i
x (τ̃k ∧ t)⟩ − ⟨ei, Ŷ

ε,i
x (τk−1 ∧ t)⟩

]
+

m∑
k=1

E
[
⟨ei, Ŷ

ε,i
x (τk ∧ t))⟩ − ⟨ei, Ŷ

ε,i
x (τ̃k ∧ t)⟩

]
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+E
[
⟨ei, Ŷ

ε,i
x (t)⟩ − ⟨ei, Ŷ

ε,i
x (τm ∧ t)⟩

]
=

m∑
k=1

E
[
⟨ei, Ŷ

ε,i
x (τ̃k ∧ t)⟩ − ⟨ei, Ŷ

ε,i
x (τk−1 ∧ t)⟩

]
+ε

m∑
k=1

E

[∫ τk∧t

τ̃k∧t

⟨ei, b(εŶ ε,i
x (s)⟩ds

]

+
m∑

k=1

E
[
|ψi(Ŷ ε,i

x )(τk ∧ t)| − |ψi(Ŷ ε,i
x )(τ̃k ∧ t)|

]
+E

[
⟨ei, Ŷ

ε,i
x (t)⟩ − ⟨ei, Ŷ

ε,i
x (τm ∧ t)⟩

]
Since |ψi(Ŷ ε,i

x )(t)| is a non-decreasing process, we have∣∣∣∣∣
m∑

k=1

E
[
⟨ei, Ŷ

ε,i
x (τ̃k ∧ t)⟩ − ⟨ei, Ŷ

ε,i
x (τk−1 ∧ t)⟩

]∣∣∣∣∣
≤ E[⟨ei, Ŷ

ε,i
x (t)⟩] + ⟨ei, x⟩ + C1εt

+
∣∣∣E [

⟨ei, Ŷ
ε,i
x (t)⟩ − ⟨ei, Ŷ

ε,i
x (τm ∧ t)⟩

]∣∣∣ , (3.11)

with a positive constant C1. Noting that ψi makes the role of reflecting on {y ∈ Ωi : |π(y)| = 2κ}, it is
easy to see that

E[⟨ei, Ŷ
ε,i
x (t)⟩] ≤ |x| + C2

(√
t + εt

)
,

with a positive constant C2. Letting m → +∞ on (3.11), we have

κE
[
Nt(Ŷ ε,i

x )
]
≤ 2|x| + C2

√
t + (C1 + C2)εt.

Therefore, replacing t by ε−2t, (3.10) is obtained.

The lemmas above yield that the boundary condition at O is an weighted Kirchhoff boundary condi-
tion. Hence, the next step is to determine the weights associated with the edges. Let Y ε

x be a diffusion
process defined by the solution of the following stochastic differential equation:

Y ε
x (t) = x + σ(O)W (t) −

∫ t

0

(∇Uε)(Y ε
x (s))ds. (3.12)

Note that Y ε
x is a special case of Xε with the condition Xε(0) = x and Y ε

x does not hit Ωε almost surely.
Denote the law of Y ε

x on C([0,∞); Rn) by Qε
x. It is easy to see that the law of Y ε

x is the same as that of
εY 1

ε−1x. By (3.2) one has that the law of X̂ε
x converges to that of Y 1

x as ε ↓ 0, and therefore, the law of
Xε

x and that of Y ε
x are getting closer as ε ↓ 0. In particular, we have

lim
ε↓0

|P ε
O(w(T cε) ∈ Ωε

i ) − Qε
O(w(T cε) ∈ Ωε

i )| = 0

for all c > 0 and i = 1, 2, . . . , N . Since this holds for all c > 0, it is possible to choose a subsequence of ε
(denote the subsequence by ε again) and positive numbers β(ε) which satisfy limε↓0 β(ε) = +∞, and

lim
ε↓0

∣∣∣P ε
O(w(T β(ε)ε) ∈ Ωε

i ) − Qε
O(w(T β(ε)ε) ∈ Ωε

i )
∣∣∣ = 0 (3.13)

for i = 1, 2, . . . , N . Let δ(ε) := εβ(ε). Then, δ(ε) satisfies the conditions in Lemma 3.3.
Now we assume that σ(O) = In where In means the unit matrix. This assumption enables us to

determine the weights of the edges explicitly. Let

pi :=
cn−1
i

∫ 1

0
rn−2e−ui(r)dr∑N

i=1 cn−1
i

∫ 1

0
rn−2e−ui(r)dr

.

We remark that when ui is independent of i, then we have
pi := cn−1

i /
(∑N

i=1 cn−1
i

)
, hence the weights {pi} are determined by the ratio of the area of the cross-

section around the edge Ii. Then, the following lemma holds.
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Lemma 3.5.
lim
ε↓0

sup
|x|≤2κε

∣∣∣P ε
x(w(T δ(ε)) ∈ Ωε

i ) − pi

∣∣∣ = 0

for i = 1, . . . , N .

Proof. Applying Lemma 3.3 to both Xε
· and Y ε

· , and using (3.13), it is sufficient to show that

lim
ε↓0

∣∣∣Qε
O(w(T δ(ε)) ∈ Ωε

i ) − pi

∣∣∣ = 0 (3.14)

for i = 1, . . . , N .
We make a similar discussion as in the proof of Theorem 6.1 in [22]. Let νε be the invariant measure

of the Markov chain {Y ε(τε
k)}, where τε

k are stopping times defined by

τ ε
0 (w) := 0,

τ̃ ε
k(w) := inf{u > τ ε

k−1(w) : |π(w(u))| > δ(ε)}, k ∈ N,

τ ε
k(w) := inf{u > τ̃ε

k(w) : |π(w(u))| < 3κε}, k ∈ N.

Define a measure µε on Ωε by

µε(dx) := exp(−Uε(x))dx, x ∈ Ωε,

a function space D(E ε) by {f ∈ C2(Ωε) : limx:d(x,∂Ωε)→0 f(x) = 0}, and a bilinear form E ε by

E ε(f, g) :=
∫

Ωε

⟨∇f(x),∇g(x)⟩µε(dx), f, g ∈ D(E ε).

Then, the pre-Dirichlet form (E ε, D(E ε)) on L2(Ωε, µε) is closable, and Y ε is associated to the Dirichlet
form obtained by closing (E ε, D(E ε)). Note that µε is an invariant measure of Y ε (see [24]). By Theorem
2.1 in [27] we have

µε(B) =
∫
{x∈Ωε:|π(x)|=3κε}

νε(dx)
∫ [∫ τ1

0

IB(w(t))dt

]
Qε

x(dw)

for B ∈ B(Rn). Let Bε
i := {x ∈ Ωε

i : δ(ε) ≤ |π(x)| ≤ 2δ(ε)}. Then,

µε(Bε
i )

=
∫
{x∈Ωε:|π(x)|=3κε}

νε(dx)
∫ [

IΩi(w(τ̃1))
∫ τ1

τ̃1

IBε
i
(w(t))dt

]
Qε

x(dw)

=
∫
{x∈Ωε:|π(x)|=3κε}

νε(dx)
∫

Ωi

Qε
x(dw)

×
∫ [∫ T 3κε

0

IBε
i
(w̃(t))dt

]
Qε

w(T δ(ε))(dw̃). (3.15)

On the other hand, let

Z(t) := −δ(ε) + W̌ (t), Ť := inf{t > 0 : |Z(t)| > 2δ(ε) − 3κε}

where W̌ is a one-dimensional Wiener process, and

F (x) :=
∫ x

−2δ(ε)

∫ y

−2δ(ε)

I[−δ(ε),δ(ε)](z)dzdy, x ∈ R.

Then, by Itô’s formula we have

E
[
F (Z(Ť ))

]
− F (−δ(ε)) =

1
2
E

[∫ Ť

0

I[−δ(ε),δ(ε)](Zt)dt

]
.
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Since F can be computed explicitly, we see that F (−δ(ε)) = 0 and

E
[
F (Z(Ť ))

]
= F (2δ(ε) − 3κε)P

(
Z(Ť ) = 2δ(ε) − 3κε

)
=

δ(ε) − 3κε

4δ(ε) − 6κε

[
2δ(ε)2 + 2δ(ε)(δ(ε) − 3κε)

]
.

Thus, it follows that

E

[∫ Ť

0

I[−δ(ε),δ(ε)](Zt)dt

]
= 2δ(ε)2 + o(δ(ε)2)

On the other hand, it is easy to see that∫ (∫ T 3κε

0

IBε
i
(w(t))dt

)
Qε

y(dw) = E

[∫ Ť

0

I[−δ(ε),δ(ε)](Zt)dt

]

for all y ∈ {x ∈ Ωε : |π(x)| = δ(ε)}. Hence, it holds that∫ (∫ T 3κε

0

IBε
i
(w(t))dt

)
Qε

y(dw) = 2δ(ε)2 + o(δ(ε)2), (3.16)

for all y ∈ {x ∈ Ωε : |π(x)| = δ(ε)}. By Lemma 3.3, (3.15), and (3.16), we have

µε(Bε
i ) =

(
2δ(ε)2 + o(δ(ε)2)

)
νε({x ∈ Ωε : |π(x)| = 3κε})

×
(
Qε

O(w(T δ(ε)) ∈ Ωε
i ) + oε(1)

)
. (3.17)

Since
∑N

i=1 Qε
O(w(T δ(ε)) ∈ Ωε

i ) = 1, we have, as ε ↓ 0 :

νε({x ∈ Ωε : |π(x)| = 3κε}) =
1
2
δ(ε)−2

N∑
i=1

µε(Bε
i ) + oε(1). (3.18)

Dividing both sides of (3.17) by those of (3.18), we obtain that

Qε
O(w(T δ(ε)) ∈ Ωε

i ) =
µε(Bε

i )∑N
i=1 µε(Bε

i )
+ oε(1).

By the definition of µε, the continuity of σ and b, and σ(O) = In, µε(Bε
i ) can be expressed explicitly as

µε(Bε
i ) = ωn−2δ(ε)cn−1

i εn−1

∫ 1

0

rn−2e−ui(r)dr,

where ωn−2 is the area of the (n − 2)-dimensional unit sphere. Therefore, (3.14) is proved.

The statement in Lemma 3.5 can be improved as follows.

Lemma 3.6. For δ′ > 0,
lim
δ′↓0

lim
ε↓0

sup
|x|≤2κε

∣∣∣P ε
x(w(T δ′

) ∈ Ωε
i ) − pi

∣∣∣ = 0

for i = 1, . . . , N .

Proof. In view of Lemma 3.3, it is sufficient to show

lim
δ′↓0

lim
ε↓0

∣∣∣P ε
O(w(T δ′

) ∈ Ωε
i ) − pi

∣∣∣ = 0

for i = 1, 2, . . . , N . Define stopping times {τk, τ̃k} by

τ ε
0 (w) := 0,

τ̃ ε
k(w) := inf{u > τ ε

k−1(w) : |π(w(u))| > δ(ε)}, k ∈ N,

τ ε
k(w) := inf{u > τ̃ε

k(w) : |π(w(u))| < 3κε}, k ∈ N.

14



By the strong Markov property, we have

P ε
O(w(T δ′

) ∈ Ωε
i )

=
∞∑

k=1

∫
I{τε

k−1<T δ′}(w)P ε
O(dw)

×
∫

P ε
y (T δ′

< T 3κε)IΩε
i
(y)Pw(τε

k−1)
(w(T δε

) ∈ dy) (3.19)

and

pi = pi

∞∑
k=1

P ε
O(τε

k−1 < T δ′
< τε

k)

=
∞∑

k=1

∫
I{τε

k−1<T δ′}(w)P ε
O(dw)

×
∫

piP
ε
y (T δ′

< T 3κε)Pw(τε
k−1)

(w(T δε

) ∈ dy) (3.20)

for i = 1, 2, . . . , N . Let hε
− and hε

+ be functions on [0,∞) given by

hε
−(z) := min

i
inf

x∈Ωε:|π(x)|=z

2⟨ei, b(x)⟩
|σ(x)T ei|2

,

hε
+(z) := max

i
sup

x∈Ωε:|π(x)|=z

2⟨ei, b(x)⟩
|σ(x)T ei|2

,

respectively. Define functions sε
− and sε

+ on [0,∞) by

sε
−(z) :=

∫ z

0

exp

(
−

∫ z′

0

hε
−(z′′)dz′′

)
dz′,

sε
+(z) :=

∫ z

0

exp

(
−

∫ z′

0

hε
+(z′′)dz′′

)
dz′,

respectively. Then, for y ∈ {x ∈ Ωε
i : |π(x)| = δ(ε)} we have∫

sε
−(|π(w(T δ′

∧ T 3κε))|)P ε
y (dw) − sε

−(δ(ε))

=
∫

sε
−(⟨ei, (w(T δ′

∧ T 3κε)⟩)P ε
y (dw) − sε

−(⟨ei, y⟩)

= −1
2

∫ [∫ T δ′∧T 3κε

0

hε
−(w(s))|σ(w(s))T ei|2

× exp

(
−

∫ w(s)

0

hε
−(z′)dz′

)]
P ε

y (dw)

+
∫ [∫ T δ′∧T 3κε

0

⟨ei, b(w(s))⟩ exp

(
−

∫ w(s)

0

hε
−(z′)dz′

)]
P ε

y (dw)

≤ 0.

Hence, it holds that

sε
−(δ′)P ε

y

(
T δ′

< T 3κε
)

+ sε
−(3κε)P ε

y

(
T δ′

> T 3κε
)
≤ sε

−(δ(ε)),

for y ∈ {x ∈ Ωε : |π(x)| = δ(ε)}. Since

P ε
y

(
T δ′

< T 3κε
)

+ P ε
y

(
T δ′

> T 3κε
)

= 1,
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we have

P ε
y

(
T δ′

< T 3κε
)
≤

sε
−(δ(ε)) − sε

−(3κε)
sε
−(δ′) − sε

−(3κε)
(3.21)

for y ∈ {x ∈ Ωε : |π(x)| = δ(ε)}. Similarly we have

P ε
y

(
T δ′

< T 3κε
)
≥

sε
+(δ(ε)) − sε

+(3κε)
sε
+(δ′) − sε

+(3κε)
(3.22)

for y ∈ {x ∈ Ωε : |π(x)| = δ(ε)}. Let NT δ′ (Xε
O) be the number of transitions of Xε

O from the set
{x ∈ Ωε : |π(x)| = 3κε} to the set {x ∈ Ωε : |π(x)| = δ(ε)} during the time interval [0, T δ′

(Xε
O)]. By

Lemma 3.5, (3.19), (3.20), (3.21), and (3.22), we have

P ε
O(w(T δ′

) ∈ Ωε
i ) − pi

≤
sε
−(δ(ε)) − sε

−(3κε)
sε
−(δ′) − sε

−(3κε)

×
∞∑

k=1

∫
Pw(τε

k−1)
(w(T δ(ε)) ∈ Ωε

i )I{τε
k−1<T δ′}(w)P ε

O(dw)

−
sε
+(δ(ε)) − sε

+(3κε)
sε
+(δ′) − sε

+(3κε)
pi

∞∑
k=1

∫
I{τε

k−1<T δ′}(w)P ε
O(dw)

≤
(

sε
−(δ(ε)) − sε

−(3κε)
sε
−(δ′) − sε

−(3κε)
−

sε
+(δ(ε)) − sε

+(3κε)
sε
+(δ′) − sε

+(3κε)

)
piE [NT δ′ (Xε

O)]

+oε(1)
sε
−(δ(ε)) − sε

−(3κε)
sε
−(δ′) − sε

−(3κε)
E [NT δ′ (Xε

O)] .

By the definitions of sε
− and sε

+, we obtain

lim sup
ε↓0

δ(ε)−1

(
sε
−(δ(ε)) − sε

−(3κε)
sε
−(δ′) − sε

−(3κε)
−

sε
+(δ(ε)) − sε

+(3κε)
sε
+(δ′) − sε

+(3κε)

)
= oδ′(1)

and
sε
−(δ(ε)) − sε

−(3κε)
sε
−(δ′) − sε

−(3κε)
= O(δ(ε)).

On the other hand, a similar discussion as in the proof of Lemma 3.4 implies

E [NT δ′ (Xε
O)] = O(δ(ε)−1).

Therefore, we have
lim sup

δ′↓0
lim sup

ε↓0
(P ε

O(w(T δ′
) ∈ Ωε

i ) − pi) ≤ 0.

Similarly we obtain
lim sup

δ′↓0
lim sup

ε↓0
(pi − P ε

O(w(T δ′
) ∈ Ωε

i )) ≤ 0.

These inequalities yield the conclusion.

The lemmas above determine the boundary condition for X at O. Now let us characterize X by a
generator of a process on Γ. Let

∂eif(x) := lim
s→0

1
s

(f(x + sei) − f(x))

for any differentiable function f on Ii and i = 1, 2, . . . , N . Define a second-order differential operator Li

on Ii by

Li :=
1
2
|σT (x)ei|2∂2

ei
+ ⟨b(x), ei⟩∂ei
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for i = 1, 2, . . . , N . Define the second-order differential operator L on C0(Γ):

D(L) :=

{
f ∈ C0(Γ) : f |Ii\O ∈ C2

b (Ii \ O) for all i = 1, 2, . . . , N,

lim
s↓0

Lif(sei) has a common value for i = 1, 2, . . . , N,

N∑
i=1

pi

(
lim
s↓0

(∂eif)(sei)
)

= 0

}
,

Lf(x) := Lif(x), x ∈ Ii \ O,

Lf(O) := lim
s↓0

Lif(sei).

Note that Lf(O) does not depend on the selection of i = 1, 2, . . . , N . We call {pi} the weights of
the Kirchhoff boundary condition at O, and call

∑N
i=1 pi (lims↓0(∂eif)(sei)) = 0 the weighted Kirchhoff

boundary condition at O.

Theorem 3.7. Consider diffusion processes Xε defined by (3.1). Assume that σ(O) = In and the law
of Xε converges to a probability measure µ0 on Γ. Then, Xε converges weakly on C([0, +∞); Rn) to the
diffusion process X as ε ↓ 0, where X is determined by the conditions that the law of X(0) is equal to µ0

and

E

[
f(X(t)) − f(X(s)) −

∫ t

s

Lf(X(u))du

∣∣∣∣ Fs

]
= 0 (3.23)

for t ≥ s ≥ 0 and f ∈ D(L), where (Ft) is the filtration generated by X. Therefore, L is the generator
of X.

Proof. From Lemma 3.2 we have that {Xε} is tight. We are going to show that there is a unique limit
point in this family. Let X be any limit point of {Xε} and denote the sequence converging to X by
{Xε} again. Since this martingale problem is well-posed (see [15] for the relationship between martingale
problems and partial differential equations, and [37] for the uniqueness of the semigroup generated by
L), it is sufficient to prove that X satisfies (3.23). Fix s ≥ 0. Let δ′ be a positive number. Define the
following stopping times

τ̃0 := 0,
τ0 := inf{u ≥ s : X(u) = O},
τ̃k := inf{u > τk−1 : |X(u)| > δ′}, k ∈ N,

τk := inf{u > τ̃k : X(u) = O}, k ∈ N.

Then, for f ∈ D(L), s ≤ t:

E

[
f(X(t)) − f(X(s)) −

∫ t

s

Lf(X(u))du

∣∣∣∣ Fs

]
= E

[ ∞∑
k=1

(
f(X(t ∧ τ̃k)) − f(X(t ∧ τk−1)) −

∫ t∧τ̃k

t∧τk−1

Lf(X(u))du

)∣∣∣∣∣ Fs

]

+
∞∑

k=0

E

[
f(X(t ∧ τk)) − f(X(t ∧ τ̃k)) −

∫ t∧τk

t∧τ̃k

Lf(X(u))du

∣∣∣∣ Fs

]
.

Because of Theorem 2.2 the second sum vanishes. We estimate the first sum as follows:

E

[ ∞∑
k=1

∣∣∣∣∣f(X(t ∧ τ̃k)) − f(X(t ∧ τk−1)) −
∫ t∧τ̃k

t∧τk−1

Lf(X(u))du

∣∣∣∣∣
]

≤ E

 ∑
k:τk−1≤t

|f(X(τ̃k)) − f(X(τk−1))|
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+||Lf ||∞E

[∫ t

s

I{x:|x|≤δ′}(X(u))du

]
+2||f ||∞P (|X(t)| ∈ (0, δ′)) .

Clearly, the third term on the right-hand side converges to 0 as δ′ ↓ 0 By Lemma 3.4 the second term on
the right-hand side converges to 0 as δ′ ↓ 0. By Lemma 3.6 the first sum on the right-hand side is equal
to

∞∑
k=1

N∑
i=1

(|f(δ′ei) − f(O)|) P (X(t ∧ τ̃k) ∈ Ii, τk−1 ≤ t)

=
∞∑

k=1

N∑
i=1

((
δ′ lim

s↓0
|f ′(sei)| + o(δ′)

)
P (X(t ∧ τ̃k) ∈ Ii, τk−1 ≤ t)

)
. (3.24)

Let, for any ε > 0:

τ ε
0 := inf{u > s : |π(Xε(u))| ≤ 3κε},

τ̃ ε
k := inf{u > τk−1 : |π(Xε(u))| > δ′}, k ∈ N,

τ ε
k := inf{u > τ̃k : |π(Xε(u))| ≤ 3κε}, k ∈ N.

Theorem 2.2 implies that the distributions of τ̃ε
k and τε

k converge weakly to those of τ̃k and τk respectively
as ε ↓ 0. Hence, by Lemma 3.6 we have

P (X(τ̃k) ∈ Ii, τk−1 ≤ t)

= lim
ε↓0

∫
P ε

y (w(T δ′
) ∈ Ωε

i )P (Xε(τ ε
k−1) ∈ dy, τ ε

k−1 ≤ t)

= (pi + oδ′(1))P (τk−1 ≤ t).

Note that
∑∞

k=1 P (τk−1 ≤ t) is equal to the expectation of the number of transitions of X from the point
O to the set {x ∈ Ωε : |π(x)| = δ′} during the time interval [0, t]. Approximating that by the expectation
of the number of transitions of Xε from the set {x ∈ Ωε : |π(x)| = 3κε} to the set {x ∈ Ωε : |π(x)| = δ′}
during the time interval [0, t], similarly as in the proof of Lemma 3.4 we obtain the estimate

∞∑
k=1

P (τk−1 ≤ t) ≤ Ct

δ′

with a positive constant Ct depending only on t. Hence, by (3.24) we have

E

 ∑
k:τk−1≤t

|f(X(t ∧ τ̃k)) − f(X(t ∧ τk−1))|


≤ Ct

δ′

(
N∑

i=1

δ′ lim
s↓0

|f ′(sei)|pi + o(δ′)

)
.

Since f ∈ D(L), the right hand side converges to 0 as δ′ ↓ 0.

Similarly as in Section 2, the argument above is also available in the case where the boundary of
Ωε carries a Neumann boundary condition. Consider a diffusion process Xε which is associated to L in
Ωε and satisfies the reflecting boundary condition on ∂Ωε. Then, Xε can be expressed by the following
equation:

X̂ε(t) = X̂ε(0) +
∫ t

0

σ(X̂ε(s))dW (s) +
∫ t

0

b(X̂ε(s))ds + Φε(X̂ε)(t), (3.25)

where Φε is a singular drift which forces the process to be reflecting on ∂Ωε (see [46]). Note that X̂ε

depends on Ωε but is independent of Uε. Discussing this case in a similar way as we did in the case of
Dirichlet boundary condition we obtain the following Theorem.

18



Let

p̂i :=
cn−1
i∑N

i=1 cn−1
i

.

D(L̂) :=

{
f ∈ C0(Γ) : f |Ii\O ∈ C2

b (Ii \ O) for all i = 1, 2, . . . , N,

lim
s↓0

L̂if(sei) has a common value for i = 1, 2, . . . , N,

N∑
i=1

p̂i

(
lim
s↓0

(∂eif)(sei)
)

= 0

}
,

L̂f := Lf.

Theorem 3.8. Consider the diffusion processes X̂ε defined by (3.25). Assume that σ(O) = In and the
law of X̂ε converges to a probability measure µ0 on Γ. Then, {X̂ε} converge weakly on C([0, +∞); Rn)
to the diffusion process X̂ as ε ↓ 0, where X̂ is determined by the conditions that the law of X̂(0) is equal
to µ0 and

E

[
f(X̂(t)) − f(X̂(s)) −

∫ t

s

L̂f(X̂(u))du

∣∣∣∣ Fs

]
= 0

for t ≥ s ≥ 0 and f ∈ D(L̂), where (Ft) is the filtration generated by X̂. Therefore, L̂ is the generator
of X̂.

Remark 3.9. The weights {p̂i} of the case of Neumann boundary condition can be obtained from the
wights {pi} discussed in Theorem 3.7 in the heuristic limit where the potential ui around each edge takes
only the value 0 on [0, 1) and +∞ on [1, +∞).

Remark 3.10. As mentioned in Remark 2.4, we can discuss similarly the case where the shapes of the
tubes {Ωε

i} are not cylindrical. However, if Uε is not defined by a scaling of a fixed function U , the
weights of the weighted Kirchhoff boundary condition cannot be determined uniquely. To handle this
more general case, we have to assume that Uε satisfies some uniform bound.

4 The case of general graphs

In this section we present results obtained by combining the results of Section 2 and 3, and in this way
covering more general graphs. Let Λ be a finite or countable set, Ξ be a subset of Λ×Λ, {Vλ : λ ∈ Λ} be
vertices in Rn, {Eλ,λ′ : (λ, λ′) ∈ Ξ} be C2-curves with ends {Vλ, Vλ′}, and G := ∪(λ,λ′)∈ΞEλ,λ′ . Denote
λ ∼ λ′ if (λ, λ′) ∈ Ξ.

Let us denote the length of Eλ,λ′ by |Eλ,λ′ |. Define (γλ,λ′(s) : s ∈ [0, |Eλ,λ′ |]) as the arc-length
parameterization of Eλ,λ′ with γλ,λ′(0) = Vλ. Assume that the number of {Vλ : λ ∈ Λ} ∩ {x ∈ Rn : |x| ≤
M} is finite for all M > 0, |Eλ,λ′ | is finite for all (λ, λ′) ∈ Ξ, and

lim
s↓0

⟨γ̇λ,λ1(s), γ̇λ,λ2(s)⟩ < 1

for all λ ∼ λ1 and λ ∼ λ2 such that λ1 ̸= λ2. Let cλ,λ′ be a positive number for (λ, λ′) ∈ Ξ, and let

κλ := max

{
√

2cλ,λ1/
√

1 − lim
s↓0

⟨γ̇λ,λ1(s), γ̇λ,λ2(s)⟩ :

λ1, λ2 ∈ Λ such that λ ∼ λ1, λ ∼ λ2

}
for λ ∈ Λ. Let π(x) be a point in G which is nearest to x ∈ Rn. Assume that there exists a small
ε0 > 0 such that π(x) is uniquely determined for all x ∈ ∪λ∼λ′{x ∈ Rn : π(x) ∈ Eλ,λ′ , d(x,Eλ,λ′) <
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cλ,λ′ε, d(x, Vλ) ≥ κλε} and for all ε ∈ (0, ε0], and that γ̈λ,λ′(s) = 0 for sufficiently small s for each
(λ, λ′) ∈ Ξ.

Let uλ,λ′ be given similarly to u in Section 2 for (λ, λ′) ∈ Ξ. For ε ∈ (0, ε0], let Uε be a function on
Rn with values in [0, +∞], and assume

Uε(x) = uλ,λ′(c−1
λ,λ′ε

−1d(x, Eλ,λ′)),

x ∈ {x ∈ Rn : π(x) ∈ Eλ,λ′ , d(x, Eλ,λ′) < cλ,λ′ε, d(x, Vλ) ≥ κλε},

Uε(x) = +∞,

x ∈ {x ∈ Rn : π(x) ∈ Eλ,λ′ , d(x, Eλ,λ′) ≥ cλ,λ′ε, d(x, Vλ) ≥ κλε},

Uε(x) < +∞,

x ∈ {x ∈ Rn : d(x, Vλ) ≤ κλε/2},

Ωε := {x : Uε(x) < ∞} is a simply connected domain, ∂Ωε is an (n − 1)-dimensional C2-manifold
embedded in Rn, and Uε|Ωε is a C1-function on Ωε. In addition, we assume

− lim
m→∞

Uε(xm)
log(d(xm, ∂Ωε))

= +∞

for any sequence {xm} which converges to a point x ∈ ∂Ωε.
Consider a diffusion process Xε given by the following equation:

Xε(t) = Xε(0) +
∫ t

0

σ(Xε(s))dW (s) +
∫ t

0

b(Xε(s))ds −
∫ t

0

(∇Uε)(Xε(s))ds, (4.1)

where Xε(0) is an Ωε-valued random variable, W is an n-dimensional Wiener process, σ ∈ Cb(Rn; Rn ⊗
Rn), and b ∈ Cb(Rn; Rn). Let a := σσT and assume that a is uniformly positive definite. Define a
second-order elliptic differential operator L on Ωε by

L :=
1
2

n∑
i,j=1

aij(x)
∂

∂xi

∂

∂xj
+

n∑
i=1

bi(x)
∂

∂xi
.

Then, Xε is associated to (L−⟨∇Uε,∇⟩). Similarly to Section 3, it holds that Xε does not exit from Ωε

almost surely. Assume that σ(Vλ) = σλIn for all λ ∈ Λ.
For (λ, λ′) ∈ Ξ, define a second-order differential operator Lλ,λ′ on Eλ,λ′ by

Lλ,λ′ :=
1
2
|σ(x)T γ̇λ,λ′ ◦ γ−1

λ,λ′(x)|2 d2

ds2
+ ⟨b(x), γ̇λ,λ′ ◦ γ−1

λ,λ′(x)⟩ d

ds
, x ∈ Eλ,λ′

where s is the parameter for the arc-length parametrization γλ,λ′ . Let

pλ,λ′ :=
cn−1
λ,λ′

∫ 1

0

rn−1 exp
(
−uλ,λ̃(r)

)
dr∑

λ̃:λ̃∼λ

cn−1

λ,λ̃

∫ 1

0

rn−1 exp
(
−uλ,λ̃(r)

)
dr

.

By using these notations, define the second-order differential operator L on C0(G) by

D(L) :=

{
f ∈ C0(G) :

f |Eλ,λ′\{Vλ,Vλ′} ∈ C2
b (Eλ,λ′ \ {Vλ, Vλ′}) for λ ∼ λ′,

for λ ∈ Λ, lim
s↓0

Lλ,λ′f(γλ,λ′(s)) has a common value

for λ′ : λ ∼ λ′,
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∑
λ′:λ′∼λ

pλ,λ′ lim
s↓0

(
d

ds
(f ◦ γλ,λ′(s))

)
= 0 for λ ∈ Λ

}
,

Lf(x) := Lλ,λ′f(x), x ∈ Eλ,λ′ , (λ, λ′) ∈ Ξ,

Lf(Vλ) := lim
x→Vλ

Lλ,λ′f(x), λ ∈ Λ,

where the limit x → Vλ is along Eλ,λ′ . Note that Lf(Vλ) does not depend on the selection of λ′.
Since by locality the behavior of diffusion processes associated with differential operators is determined

in a given point by the behavior in neighborhoods of it, we have the following theorem by Theorem 2.2
and 3.7.

Theorem 4.1. Consider the diffusion process Xε defined by (4.1). Assume that the law of Xε(0) con-
verges to a probability measure µ0 on G. Then, {Xε} converge weakly on C([0, +∞); Rn) to the diffusion
process X as ε ↓ 0, where X determined by the conditions that the law of X(0) is equal to µ0 and

E

[
f(X(t)) − f(X(s)) −

∫ t

s

Lf(X(u))du

∣∣∣∣ Fs

]
= 0

for t ≥ s ≥ 0 and all f ∈ D(L), where (Ft) is the filtration generated by X. The operator L as defined
above is thus the generator of X.

Similarly as in Sections 2 and 3, our discussion is also available for the case where the boundary
Ωε carries a Neumann boundary condition for the process. Consider a diffusion process X̂ε which is
associated to L in Ωε and reflecting on ∂Ωε (defined similarly as the process described by (3.25)).

Let

p̂λ,λ′ :=
cn−1
λ,λ′∑

λ̃:λ̃∼λ

cn−1

λ,λ̃

.

D(L̂) :=

{
f ∈ C0(G) :

f |Eλ,λ′\{Vλ,Vλ′} ∈ C2
b (Eλ,λ′ \ {Vλ, Vλ′}) for λ ∼ λ′,

for λ ∈ Λ, lim
s↓0

Lλ,λ′f(γλ,λ′(s)) has a common value

for λ′ : λ ∼ λ′,∑
λ′:λ′∼λ

p̂λ,λ′ lim
s↓0

(
d

ds
(f ◦ γλ,λ′(s))

)
= 0 for λ ∈ Λ

}
,

L̂f(x) := Lλ,λ′f(x), x ∈ Eλ,λ′ , (λ, λ′) ∈ Ξ,

L̂f(Vλ) := lim
x→Vλ

Lλ,λ′f(x), λ ∈ Λ,

where the limit x → Vλ is along Eλ,λ′ . Then, we obtain the following theorem.

Theorem 4.2. Consider the diffusion process X̂ε defined above. Assume that the law of X̂ε converges
to µ0. Then, {X̂ε} converge weakly on C([0,+∞); Rn) to the diffusion process X̂ as ε ↓ 0, where X̂ is
determined by the conditions that the law of X̂(0) is equal to µ0 and

E

[
f(X̂(t)) − f(X̂(s)) −

∫ t

s

L̂f(X̂(u))du

∣∣∣∣ Fs

]
= 0

for t ≥ s ≥ 0 and f ∈ D(L̂) where (Ft) is the filtration generated by X̂. The operator L̂ as defined above
is thus the generator of X̂.

Remark 4.3. As mentioned in Remarks 2.4 and 3.10, similar discussions can be done for the case where
the shapes of the tubes are not cylindrical. In the case where σ = In, b = 0, and Eλ,λ′ are straight, the
result of Theorem 4.2 coincides with Theorem 6.1 in [22].
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