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Cα-REGULARITY FOR A CLASS OF NON-DIAGONAL ELLIPTIC

SYSTEMS WITH p-GROWTH

MIROSLAV BULÍČEK AND JENS FREHSE

Abstract. We consider weak solutions to nonlinear elliptic systems in aW 1,p-
setting which arise as Euler equations to certain variational problems. The
solutions are assumed to be stationary in the sense that the differential of the
variational integral vanishes with respect to variations of the dependent and
independent variables. We impose new structure conditions on the coefficients
which yield Cα-regularity and Cα-estimates for the solutions. These structure
conditions cover variational integrals like

∫
F (∇u) dx with potential F (∇u) :=

F̃ (Q1(∇u), . . . , QN (∇u)) and positively definite quadratic forms in ∇u defined

as Qi(∇u) =
∑

αβ aαβ
i ∇uα · ∇uβ . A simple example consists in F̃ (ξ1, ξ2) :=

|ξ1|
p
2 + |ξ2|

p
2 or F̃ (ξ1, ξ2) := |ξ1|

p
4 |ξ2|

p
4 . Since the Qi need not to be linearly

dependent our result covers a class of nondiagonal, possibly nonmonotone
elliptic systems. The proof uses a new weighted norm technique with singular
weights in an Lp-setting.

1. Introduction and statement of the result

This paper focuses on global Cα-estimates for a class of elliptic PDE’s corre-
sponding to the Euler operator of the following variational integral

J(u) =

∫

Ω

F (x,∇u) dx,(1.1)

with some coercive Caratheodory function F : Ω × Rd×N → R+. Here, Ω denotes
an open bounded domain in Rd with Lipschitz boundary and u is an RN -valued
function. The Euler operator of (1.1) has the form

Lu = − divFη(x,∇u),(1.2)

where we set

Fη(x, η) :=
∂F (x, η)

∂η
: Ω× Rd×N → Rd×N .

Here ηαi corresponds to ∂uα

∂xi
. We consider a class of F ’s that for certain p ∈ (1,∞)

provides p-coercivity and p-growth estimates, more precisely we assume that there
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exists δ0,K ≥ 0 and α0, α1 > 0 such that

−K + α0(δ0 + |η|2) p
2 ≤ F (x, η) ≤ α1(1 + |η|2) p

2 ,

|Fη(x, η)| ≤ α1(1 + |η|2) p−1
2

(1.3)

for all η ∈ Rd×N . We study the properties of a weak solution u ∈ W 1,p(Ω;RN ) of
the following Euler equations corresponding to the variational problem (1.1)

Lu = 0 in Ω,

u = v on ∂Ω
(1.4)

with L given by (1.2) and with some given boundary data v ∈ W 1,p(Ω;RN ). Note
that under the growth conditions (1.3) the notion of a weak solution to (1.4) is
meaningful. However, since (1.3) does not imply nor convexity neither quasicon-
vexity of F , the existence of a minima (or a solution to (1.4)) is not guaranteed.
Furthermore, even if F is a convex smooth function, the Cα- or L∞-regularity of a
minima to (1.1) or solutions to (1.4) may fail for d ≥ 3, (d ≥ 5 respectively), see
examples given in [14] and [22]. Such a regularity of a solution is known only for a
particular class of F ’s, that is described below, and the main goal of this paper is
to extend this class and to find new structural assumptions that imply the Hölder
continuity1 of any weak solution to (1.4) and that do not rely on using any convex-
ity assumptions on F (although the existence of a weak solution to (1.4) might not
be guaranteed and also the solution, if it exists, might not be a minimizer of the
variational problem (1.1)).

Before we formulate the main results of the paper, we shortly recall known
facts about smoothness of a solution to (1.4). First, the situation concerning Cα-
everywhere regularity of a solution to (1.4) does not change very much if the fol-
lowing additional standard p-ellipticity assumption is used:

α0(|η|2 + δ0)
p−2
2 |ξ|2 ≤ ∂2F (x, η)

∂η2
· (ξ ⊗ ξ) ≤ α1(|η|2 + δ0)

p−2
2 |ξ|2(1.5)

for all η, ξ ∈ Rd×N . This assumption is sufficient for finding the unique weak solu-
tion to (1.4) that is also the minimizer to the variational problem (1.1). Moreover,
it is known that for smooth data and for δ0 > 0 the solution obeys the property
|∇u| p2 ∈ W 1,2(Ω) and therefore for p > d − 2 the solution u is Hölder continuous
which can be shown by using the embedding theorem. On the other hand in the
opposite case 1 < p ≤ d− 2 the singular solution may appear even in the simplest
case p = 2, see eg. [14] for solution not being in C1, [22] for unbounded solution
and [3] for discontinuous solutions for F dependent not continuously on x. Hence,
these results give an evidence that one has to find some new structural assumptions
that are different/additional to those introduced in (1.5) in order to guarantee the
Hölder continuity of the solution u. Up to our best knowledge, the only known
possibility is to assume additionally to (1.5) that

(1.6) F (x, η) := F (x, |η|) or F (x, η) := F0(x, |η|) + (o(η))p.

1We restrict ourselves only onto the case when p < d and N > 1. Indeed, for p > d the
continuity follows from the embedding theorem and the critical case p = d can be usually solved
by various techniques. The scalar case N = 1 is also an exceptional one for which in most cases
the regularity is known. We refer to famous paper of De Giorgi [2] for the case p = 2 (see also
[13]) and to [11] for the case p 6= 2.
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In this setting, even C1,α-regularity of the solution was proven by Uhlenbeck in [21],
where the proof relies on the use of “scalar” techniques. As mentioned above the
Uhlenbeck case (1.6) is the only one for which the global regularity of the solution
is known. On the other hand there is huge amount of papers dealing with partial
regularity of the solution only under the assumption (1.5). Since we deal with
everywhere Cα regularity and not with partial regularity of the solution we refer
here the interested reader only to the detailed survey paper [12], where the problem
of partial regularity of solution to (1.4) is described in a great detail, see also [6, 7].

In addition, the ellipticity condition (1.5) seems not be appropriate in many
physical applications. Indeed, considering even the simplest elasticity problem,
that means in our setting that d = N = 3 and p = 2, it has been shown that there
can exist some non-dissipative processes and microstructures in the material such
that the assumption (1.5) (and consequently convexity of F ) is not valid anymore,
see eg. [16, 18, 17]. Therefore, we see that the condition (1.5) is not optimal also
from physical reasons and if such a microstructure occurs and (1.5) is not valid one
has to look for additional methods and conditions on F that lead to Cα-regularity
of solution.

In the rest of the introduction, we present our results and describe the main
novelty of the paper. The conditions on F , we deal with, are more general than
the Uhlenbeck case (1.6), that however falls into this class, and lead to everywhere
Hölder continuity of any weak solution to (1.4). Besides (1.3) which is very weak
we require a kind of coercivity for the derivative of F , namely that2

α0(δ0 + |η|2) p−2
2 |η|2 ≤ Fη(x, η) · η ≤ C(F (x, η) + 1) for all η ∈ Rd×N .(1.7)

Note that the second inequality is a consequence of (1.3). However, in this paper
we will see that the method we use requires a stronger condition than the second
inequality in (1.7) and has to reflect the p-setting of the problem. Thus, in the
following we will assume that there is α2 > 0 and 0 ≤ θ < 1 such that (here p > 1
is given by (1.3))

Fη(x, η) · η ≤ pF (x, η) + α2(1 + F (x, η))θ for all η ∈ Rd×N .(1.8)

It seems that the presence of p in (1.8) is a natural restriction since it “represents”
the p-growth of F . For example, (1.8) holds for models of the Uhlenbeck type
F (x, η) ∼ (1 + |η|)p as well as for more general models given eg. by F (x, η) ∼
(1 + |η|)p + (Q(η, η))

p
2 , where Q denotes an arbitrary positively-definit quadratic

form, see also the examples given below that satisfy (1.8).
The second and the most restrictive assumption, we assume here, is that F

satisfies a splitting condition3 up to a lower order term. It means we assume that
there are symmetric matric-valued function A : Ω × Rd×N → RN×N , a symmetric
matrix valued b : Ω → Rd×d and a matrix-valued function G : Ω× Rd×N → Rd×N

such that

Fηα
i
(x, η) =

N∑

β=1

d∑

j=1

Aαβ(x, η)bij(x)η
β
j +Gα

i (x, η)(1.9)

2In fact onto the right hand side of (1.7) could be added the term −C to cover also a non-
dissipative processes. But since it is only an easy generalization, we omit it in this paper.

3Splitting conditions refers to the fact that Aαβ does not depend on i, j. Recall, the indexes
i, j correspond to derivatives w.r.t. xi, xj respectively.
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for all η ∈ Rd×N , all i = 1, . . . , d, all α = 1, . . . , N and a.a. x ∈ Ω. Observe
that (1.9) is an additional structure condition which does not reflect the fact, that
the Fηα

i
come from a potential. To fix ideas, the reader may switch to examples

(1.11)–(1.13) where the examples of quantities Aαβ are calculated. Moreover, we
require that for all µ ∈ RN , all η ∈ Rd×N , all v ∈ Rd and a.a. x ∈ Ω there holds

α0(|η|2 + δ0)
p−2
2 |µ|2 ≤

N∑

α,β=1

Aαβ(x, η)µαµβ ≤ α1(|η|2 + δ0)
p−2
2 |µ|2,

α0|v|2 ≤
d∑

i,j=1

bij(x)vivj ≤ α1|v|2,

|G(η)| ≤ α2(1 + |η|2) θ(p−1)
2 , for some θ ∈ [0, 1).

(1.10)

Despite the splitting condition of F , we are still able to treat rather general sys-
tems with really non-diagonal coupling. To show this, we give several examples of
potentials F that satisfy (1.8)–(1.10) and that are far from being of Uhlenbeck type
(1.6) and that admit also non-diagonal coupling. Let us define

Q`(ξ, µ) :=

N∑

α,β=1

d∑

i,j=1

aαβ` Hij
` ξαi µ

β
j ,

where H` and a` are symmetric positively definite constant matrices and consider
for some p ∈ (1,∞) potentials of the form

F (η) := Q1(η, η)|η|p−2, with Hij
1 := hδij and h > 0,(1.11)

F (η) := (Q1(η, η))
p
2 ,(1.12)

F (η) := (Q1(η, η))
p
2 + (Q2(η, η))

p
2 , with H1 = hH2 with h ≥ 0,(1.13)

or in general of the form

F (η) := F̃ (Q1(η, η), . . . , QM (η, η)), with Hi = hiH1 with hi ≥ 0(1.14)

for all i = 2, . . . ,M . Furthermore, for F̃ , we prescribe the following conditions:

There exists p ∈ (1,∞) and {pi}Mi=1 ∈ R such that
∑M

i=1 pi = p and

α0

M∏

i=1

ξ
pi
2
i ≤ F̃ (ξ1, . . . , ξM ) ≤ α1(1 +

M∏

i=1

ξ
pi
2
i ),(1.15)

∣∣∣∣∣
∂F̃ (ξ1, . . . , ξM )

∂ξk

∣∣∣∣∣ ≤ α1ξ
−1
k F̃ (ξ1, . . . , ξM ) for all k = 1, . . . ,M,(1.16)

α0

M∏

i=1

ξ
pi
2
i ≤ 2

M∑

k=1

∂F̃ (ξ1, . . . , ξM )

∂ξk
ξk ≤ pF̃ (ξ1, . . . , ξM ).(1.17)

For simplicity, we do not include the possible dependence on δ0 into the potential
given by (1.11)–(1.14), but it is evident that such a minor generalization is also
possible. It is also clear that we can add to each potential in (1.11)–(1.14) some
lower order term (having q-growth with q < p) and that this lower order term
does not change our results. It can be shown (we refer the interested reader to the
Appendix for precise computations) that all potentials given in (1.11)–(1.12) satisfy
(1.3), and (1.7)–(1.8). Moreover, the potentials given by (1.12)–(1.13) are convex
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and satisfy the ellipticity condition (1.5). The same is not true for (1.11) and (1.14)
in general, it depends on the choice of matrices a and H and also on their relation
to p and/or to F̃ , see again Appendix for more details. Concerning the splitting
condition (1.9) on F , the situation is more delicate. The potential given by (1.12)
evidently satisfies the splitting condition. On the other hand for (1.11) and (1.13)
we have to assume a special structure on H (also given in (1.11) and (1.13)). To
illustrate validity of the splitting condition (1.9), we get for F given by (1.11) that

Fηα
i
(η) =

N∑

β=1

d∑

j=1

2aαβ1 Hij
1 ηβj |η|p−2 + (p− 2)Q1(η, η)|η|p−4δαβδijηβj .

Therefore, defining

Aαβ(x, η) := 2haαβ1 |η|p−2 + (p− 2)Q1(η, η)|η|p−4δαβ , bij(x) := δij

we see that F satisfies (1.9) with Aαβ and bij and consequently satisfies the splitting
condition. Similarly, one can proceed also with F given by (1.13), see Appendix
for more details. For the most general example (1.14) we only note here, that the
validity of the splitting conditions follows again from the choice of Qi, the conditions
(1.15)–(1.16) represents the assumption (1.3) and finally that (1.17) implies (1.7)–
(1.8). It is also evident that potentials (1.11)–(1.14) can generate non-diagonal
systems, and in addition they do not need to be convex.

Above, we presented all structural assumptions on F that are used in the pa-
per. However, since we do not use the ellipticity condition (1.5), we must add
an additional hypothesis on the qualitative properties of the weak solution u to
(1.4). In order to simplify the presentation, we omit the dependence of F on x here
and formulate the remaining assumptions and the main results only for F being
x-independent. The full setting with x-dependence of F is discussed in Section 6.
We say in what follows that a weak solution u ∈ W 1,p(Ω;RN ) to (1.4) satisfies the
Noether equation if

(1.18)

d∑

i=1

N∑
α=1

Di(Fηα
i
(∇u) ·Dku

α) = DkF (∇u) in Ω, for all k = 1, . . . , d

in the sense of distribution, where we denote Di := ∂
∂xi

. Note that by using

the assumption (1.3) it is evident that (1.18) is meaningful for any weak solution.
Moreover, the identity (1.18) can be formally derived from (1.4)1 by multiplying
the α-th equation in (1.4)1 by Dku

α, summing the results over α = 1, . . . , N and
by using the potential structure of the equations. An alternative way, how to
derive (1.18) from the variational problem (1.1) is to minimize w.r.t. internal
variables, see [1, 5] for details. Such an formal procedure can be justified if one

assumes in addition that |∇u| p2 ∈ W 1,2. Such regularity of the solution usually
holds for convex potentials satisfying (1.5). We refer to Section 2 where the validity
of (1.18) is proved rigorously for potentials satisfying (1.5). Solutions to Euler
equation (1.4), which in addition satisfy (1.18) are also called stationary solutions
in literature, c.f. [5]. Since the notion stationary is often used in many context we
prefer to follow Giaquinta and Hildebrandt [8] who call the above equation (1.18)
Noether equation in honor of Emmy Noether [15], who used this equation to study
invariance properties of variational problems, see also [20] for other properties of
the Noether equation. An alternative naming was used by Klaus Steffen in [19] who
calls equation (1.18) Euler equation of second order. It is worth noticing that the
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same equation was used for proving partial regularity results for harmonic mapping
(see [5]). To point out the difference between the harmonic mapping setting and
this paper, we should mention that while for harmonic mapping one is usually not
able to prove the Caccioppoli inequality, it is not the case in our setting and this
inequality is the second key tool for proving the Hölder continuity of the solution.
The importance of the Noether equation also arises in elasticity theory. In this
setting the term on the left hand side of (1.18) is sometimes called the Eshelby
tensor (see [4]), and the Noether equation was also used for proving the uniqueness
of minima to (1.1) even for non-convex functions F in elasticity theory, see [10].

The first theorem, we present here, still deals with the ellipticity condition (1.5).
Having this condition we do not need to assume the validity of the Noether equation
and the result holds for the unique weak solution to (1.4) that surely exits by using
the monotone operator theory.

Theorem 1.1. Let p ∈ (1,∞) and F satisfy (1.5)–(1.10) and be x-independent.
Then there exists α > 0 such that the unique weak solution u to (1.4) belongs to
Cα
loc(Ω;RN ). Moreover, for all Ω′ ⊂⊂ Ω we have the estimate

‖u‖Cα(Ω′) ≤ C(Ω′)‖v‖1,p.
In addition, there exists C > 0 such that for all x0 ∈ Ω and all ε > 0 the solution
u satisfies the following potential inequality

∫

Br(x0)

ε|∇u|p
rε|x− x0|d−p−ε

+
|∇u · (x− x0)|2
|x− x0|d−p+2

dx

≤ C
( r

R

)αp
(
Rp +

∫

BR(x0)

|∇u|p
Rd−p

dx

)(1.19)

for all 0 < 2r < R < dist (x0, ∂Ω).

The second result that does not require the ellipticity condition (1.5), and for
which the solution might not be a minimizer of any variational problem, is the
following.

Theorem 1.2. Let p ∈ (1,∞) and F be x-independent and satisfy (1.3) and (1.7)–
(1.10). Then there exists α > 0 such that any weak solution u ∈ W 1,p(Ω;RN ) to
(1.4) satisfying Noether’s equation (1.18) belongs to Cα

loc(Ω;RN ) and satisfies the
estimate (1.19). Moreover, for all Ω′ ⊂⊂ Ω we have

‖u‖Cα(Ω′) ≤ C(Ω′)‖v‖1,p.
The novelty of the present paper concerning the analytical techniques is that we

establish a weighted hole-filling inequality in a setting where a Green function is
not available (cf. [9]) and where a sub-optimal weight can be used (”ε-hole filling”).

The rest of the paper is devoted to the proofs of Theorem 1.1 and Theorem 1.2.
In Section 2 there is shown that the assumption on ellipticity (1.5) is sufficient
for proving that the unique weak solution of (1.4) satisfies the Noether equation
(1.18). Consequently, Theorem 1.2 then implies Theorem 1.1. Next, in Section 3
we derive a hole-filling like inequality for a gradient of u with a certain weight. In
Section 4 the Caccioppoli-like inequality is established and it again takes the form
of hole-filling like inequality again with a certain weight. Finally, in Section 5, we
combine both results. The ε-hole-filling like method is used to derive the estimate
(1.19) and then it is a routine to show the Hölder continuity of a solution. For
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sake of simplicity in the proofs presented in Sections 3–5 we drop the pollution
term in (1.8) and (1.10), i.e., we set θ = 0. We also consider only the case for
which b, that is introduced in (1.9), is the identity matrix. The (formal) proof for
general θ ∈ (0, 1) and b satisfying (1.10) is given in the last section, where also some
possible extensions, as estimates up to the boundary and the dependence of b on
the spatial variable x, are shortly discussed.

2. The Noether equation

In this section we recall the uniform a priori estimates for the unique solution u
to (1.4) based on the ellipticity condition (1.5). Moreover we recall the proof that
the solution is in fact the strong one and that it also satisfies the Noether equation
(1.18).

Lemma 2.1. Let Ω be an open bounded set with Lipschitz boundary and p ∈ (1,∞).
Assume that F satisfies (1.5) and v ∈ W 1,p(Ω;RN ). Then there exists a unique
weak solution u to (1.4) such that

‖u‖1,p ≤ C(1 + ‖v‖1,p),(2.1)

‖|∇u| p2 ‖W 1,2(Ω′) ≤ C(Ω′, v).(2.2)

Moreover, the Noether equation (1.18) is satisfied in the following sense

∫

Ω




d∑

i,j=1

N∑
α=1

Fηα
i
(∇u)DiψjDju

α


 =

∫

Ω

F (∇u) divψ dx(2.3)

for all ψ ∈ C0,1
0 (Ω;Rd).

Having this Lemma, it is easy by using Theorem 1.2 to prove Theorem 1.1. In-
deed, let us assume that all assumptions of Theorem 1.1 are satisfied. Then by using
Lemma 2.1, we see that the weak solution also satisfy the Noether equation (1.18)
and therefore we can apply Theorem 1.2 to prove the statement of Theorem 1.1.

Proof of Lemma 2.1. The existence of a unique weak solution u to (1.4) that satis-
fies (2.1) follows from the standard Monotone operator theory (due to the uniform
p-convexity of F ). Thus, to prove (2.2), we introduce a mollified problem for which
we have existence of “smooth” solution, then we derive (2.2) for the approximation
where the bounded will not depend on the order of approximation and therefore in
the limit still satisfies (2.2). Hence we introduce the operator Lε as

Lεu := ε42mu+ Lu,

for some sufficiently large m ∈ N. We also find a regularization of v such that

vε → v strongly in W 1,p(Rd;RN ),

εvε → 0 strongly in W 4m,2(Rd;RN ).

Here v denotes the extension of the boundary value onto the whole space. Finally,
we study the problem

Lεu
ε = 0 in Ω,

∇luε = ∇lvε on ∂Ω for all l = 0, . . . ,m.
(2.4)
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The solvability, uniqueness and existence of strong solution to (2.4) is standard if
one takes sufficiently large m. Moreover, we get an uniform estimate

ε

∫

Ω

|∇mu|2 dx ≤ K.(2.5)

Therefore we can test (1.4) by −div(∇uετ2), where τ is an nonnegative smooth
function with compact support in Ω. Doing so, and using integration by parts and
the estimate (2.5), we find that (dropping all terms with correct sign)

(2.6) −
∫

Ω

Luε div(∇uτ2) dx ≤ C(τ).

Hence, we integrate twice by parts to observe that (we omit writing ε in what
follows)

−
∫

Ω

Ludiv(∇uτ2) dx =

d∑

i,j=1

N∑
α=1

∫

Ω

Di(Fηα
i
(∇u))Dj(τ

2Dju
α) dx

=

d∑

i,j=1

N∑
α=1

∫

Ω

Dj(Fηα
i
(∇u))Di(τDju

α) dx

=

d∑

i,j,k=1

N∑

α,β=1

∫

Ω

Fηα
i ηβ

k
(∇u)Djku

β(Diτ
2Dju

α + τ2Djiu
α) dx.

Consequently, using (1.5) we get that

−
∫

Ω

Ludiv(∇uτ2) dx ≥ α0

∫

Ω

(δ0 + |∇u|2) p−2
2 |∇2u|2τ2 dx

− C

∫

Ω

(
(δ0 + |∇u|2) p−2

2 |∇2u|2τ2
) 1

2

(1 + |∇u| p2 ) dx.

Thus, using the Young inequality, (2.1) and (2.6) we find that for any Ω′ ⊂⊂ Ω

(2.7)

∫

Ω′
(δ0 + |∇uε|2) p−2

2 |∇2uε|2 dx ≤ C(Ω′, v)

and we see that (2.2) follows for uε and having uniformity of such an estimate we
get (2.2) and (2.7) also for the unique weak solution to (1.4). Moreover, by using the
standard monotone operator theory, it is simple to deduce the strong convergence
of uε to u in W 1,p(Ω;RN ).

It remains to prove (2.3). Since uε is sufficiently smooth, we can test (2.4) by

ϕ :=
∑d

i=1 ψiDiu
ε, where ψ ∈ D(Ω;Rd). Therefore, after integration by parts we

find that

0 =

∫

Ω

N∑
α=1

(Lεu
ε)αϕα dx =

∫

Ω

d∑

i,j=1

N∑
α=1

Fηα
i
(∇uε)Di(ψjDj(u

ε)α) +O(ε),(2.8)

where “pollution” term on the right hand side of (2.8) tends to 0 as ε → 0+. By
using the potential structure of the equation, we see that the term on the right



HÖLDER CONTINUITY FOR NON-DIAGONAL SYSTEMS 9

hand side of (2.8) can be rewritten as

d∑

i,j=1

N∑
α=1

Fηα
i
(∇uε)Di(ψjDj(u

ε)α)

= ψ · ∇F (∇uε) +

d∑

i,j=1

N∑
α=1

Fηα
i
(∇uε)DiψjDj(u

ε)α.

Next, we substitute this into (2.8), integrate by parts and let ε → 0+. Hence, using
strong convergence of uε we derive (2.3). ¤

3. Estimates based on p-structure and the Noether equation

The next step is to deduce a weighted local estimate for any u ∈ W 1,p(Ω;RN )
that satisfies (2.3). In order to get the local estimates, we introduce the standard
notation

BR(x0) := {x ∈ Rd; |x− x0| ≤ R},
AR(x0) := B2R(x0) \BR(x0)

and we define the cut-off function τR as

τR(s) := τ(s/R)

for some τ ∈ D([0, 2]) being nonnegative non-increasing function such that τ ≡ 1
on [0, 1].

Lemma 3.1. Let p ∈ (1, d) and F satisfy (1.7)–(1.10). Then there is C > 0 such
that for any u ∈ W 1,p(Ω;RN ) satisfying the Noether equation (2.3), any x0 ∈ Ω
and any R > 0 such that B2R(x0) ⊂ Ω the following estimate holds

∫

BR(x0)

(|∇u|2 + δ0)
p−2
2 |(x− x0) · ∇u|2

|x− x0|d−p+2
dx

≤ C

∫

AR(x0)

(|∇u|2 + δ0)
p
2

|x− x0|d−p
dx+ CRp.

(3.1)

Proof. To simplify the paper, here we give the rigorous proof only for the case when
θ = 0, bij = δij and G ≡ 0, the parameters θ, b and G appear in the assumptions
(1.7)–(1.10). The proof in the full generality is described in Section 6. We assume
that x0 = 0 and that B2R(0) ⊂ Ω. For other x0 the proof is similar. The proof of
(3.1) is based on using x|x|p−dτpR(|x|) as a test function in (2.3). Since such setting
is not possible (due to low regularity), we first regularize the test function and then
we pass to the limit. Thus, for some fixed ε > 0 we use in (2.3) the test function
being of the form

ψ(x) :=
xτpR(|x|)
|x|d−p + ε

, ε > 0.

Such setting is possible since ψ is a Lipschitz function with compact support. Simple
computation gives

Djψi =
δijτ

p
R(|x|)

|x|d−p + ε
− (d− p)

xixj |x|d−p−2τpR(|x|)
(|x|d−p + ε)2

+ p
xixjτ

p−1
R (|x|)τ ′R(|x|)

|x|(|x|d−p + ε)

divψ =
pτpR(|x|)|x|d−p + εdτpR(|x|)

(|x|d−p + ε)2
+ p

|x|τp−1
R (|x|)τ ′R(|x|)
|x|d−p + ε

.

(3.2)
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Next, we evaluate all terms in (2.3) with our ψ. Therefore using (3.2) we get that
∫

Ω

F (∇u) divψ dx

=

∫

Ω

F (∇u)

(
pτpR(|x|)|x|d−p + εdτpR(|x|)

(|x|d−p + ε)2
+ p

|x|τp−1
R (|x|)τ ′R(|x|)
|x|d−p + ε

)
dx.

(3.3)

Similarly, using (3.2) again and using the assumption (1.9) we obtain that (note
that here is the point where the proof is simplified due to the fact that bij = δij
and G ≡ 0)

∫

Ω




d∑

i,j=1

N∑
α=1

Fηα
i
(∇u)DiψjDju

α


 dx

=

∫

Ω




d∑

i,j=1

N∑

α,β=1

Aαβ(∇u)Diu
βDju

α

(
δijτ

p
R(|x|)

|x|d−p + ε
− (d− p)

xixj |x|d−p−2τpR(|x|)
(|x|d−p + ε)2

+p
xixjτ

p−1
R (|x|)τ ′R(|x|)

|x|(|x|d−p + ε)

))
dx

=

∫

Ω

N∑

α,β=1

Aαβ(∇u)

(∇uα · ∇uβτpR(|x|)
|x|d−p + ε

− (d− p)
(x · ∇uα)(x · ∇uβ)|x|d−p−2τpR(|x|)

(|x|d−p + ε)2

+p
(x · ∇uα)(x · ∇uβ)τp−1

R (|x|)τ ′R(|x|)
|x|(|x|d−p + ε)

)
dx.

Thus, using these identities in (2.3) and moving the terms with corresponding signs
to the left respectively right hand side we deduce that

− p

∫

Ω

N∑

α,β=1

Aαβ(∇u)
(x · ∇uα)(x · ∇uβ)|x|d−p−2τp−1

R τ ′R
|x|(|x|d−p + ε)

dx

+

∫

Ω

F (∇u)
pτpR|x|d−p + εdτpR
(|x|d−γ + ε)2

dx

+ (d− p)

∫

Ω

N∑

α,β=1

Aαβ(∇u)
(x · ∇uα)(x · ∇uβ)|x|d−p−2τpR

(|x|d−p + ε)2
dx

= −p

∫

Ω

F (∇u)
|x|τp−1

R τ ′R
|x|d−p + ε

dx+

∫

Ω

N∑

α,β=1

Aαβ(∇u)
∇uα · ∇uβτp

|x|d−p + ε
dx.

(3.4)

First, since τR is non-increasing we see, after using (1.10), that all integrals on the
left hand side are nonnegative and the same holds also for the right hand side.
Moreover, we can take easily the limit ε → 0+ in all terms containing τ ′R since we
do not integrate over possible singularity. To handle also the second term on the
right hand side, we use (1.8) and (1.9) to deduce that (note that here we use the
fact that θ = 0)

N∑

α,β=1

Aαβ(∇u)∇uα · ∇uβ = Fη(∇u) · ∇u ≤ pF (∇u) + C.
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Therefore,

N∑

α,β=1

Aαβ(∇u)
∇uα · ∇uβτp

|x|d−p + ε
≤ F (∇u)

pτp|x|d−p + τpRpε

(|x|d−p + ε)2
+

CτpR
|x|d−p + ε

and we see that since d > p we can handle a crucial part of the second integral on
the right hand side of (3.4) by the second integral on the left hand side of (3.4).
Thus, using finally (1.5) and (1.10) we deduce from (3.4) that

∫

Ω

(|∇u|2 + δ0)
p−2
2 |x · ∇u|2 |x|d−p−2τpR

(|x|d−γ + ε)2
dx

≤ C(d, p, α0, α1)

∫

Ω

(|∇u|2 + δ0)
p
2
|x|τp−1

R |τ ′R|
|x|d−p + ε

+
CτpR

|x|d−p + ε
dx.

Now, it remains to let ε → 0+. For the limiting procedure in the integral on the
left hand side one can use the standard monotone convergence theorem and the
convergence in the integrals on the right hand side is easy, since in the first one
we exclude from the integration domain the singularity at 0 and the second one is
convergent and can be estimated by CRp. ¤

4. Caccioppoli inequality

In this section we use the structural assumption (1.7) to derive a local estimate
for not-weighted gradient (Caccioppoli like inequality). To simplify and shorten the
notation we formulate the result only for x0 ≡ 0 and all R such that B2R(0) ⊂ Ω.
The proof for other x0 is however the same. We also use the notation BR := BR(0)
and AR := AR(0).

Lemma 4.1. Let p ∈ (1, d) and F satisfy (1.8), (1.9) and (1.10). Assume that
u ∈ W 1,p(Ω;RN ) is a weak solution to (1.4). Then the following estimate holds

∫

BR

(|∇u|2 + δ0)
p−2
2 |∇u|2

Rd−p
dx ≤ C(IpR +Rp) +

1

4

∫

AR

(|∇u|2 + δ0)
p−2
2 |∇u|2

(2R)d−p
dx,

(4.1)

where

IpR :=





(∫

AR

(δ0 + |∇u|2) p−2
2 |∇u · x|2

Rd−p+2
dx

) 1
2 (∫

AR

(δ0 + |∇u|2) p
2

Rd−p
dx

) 1
2

for p ≥ 2,

(∫

AR

(δ0 + |∇u|2) p−2
2 |∇u · x|2

Rd−p+2
dx

) 1
p′ (∫

AR

(δ0 + |∇u|2) p
2

Rd−p
dx

) 1
p

for p < 2.

Proof. Again for simplicity, we present the proof only for bij = δij and G ≡ 0. The
complete proof is given in Section 6. Thus, we test the α-th equation in (1.4)1 by
(uα − cα)τpR(|x|). After taking the sum over α = 1, . . . , N and integration by parts
we find that

∫

Ω

Fη · ∇((u− c)τpR) dx = 0.(4.2)
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Next using (1.7), (1.9) (with bij = δij and G ≡ 0) and the properties of τR we find
that ∫

BR

α0(|∇u|2 + δ0)
p−2
2 |∇u|2 dx

≤ −
∫

AR

N∑

α,β=1

Aαβ(∇u)(∇uβ · x)(uα − cα)|x|−1τ ′R dx.

(4.3)

Finally, using (1.10) and again the properties of τR we derive from (4.3) the following
estimate ∫

BR

(δ0 + |∇u|2) p−2
2 |∇u|2 dx

≤ C(α0, α1)

∫

AR

(δ0 + |∇u|2) p−2
2 |∇u · x||u− c| |τ

′
R|
|x| dx

≤ CR−2

∫

AR

(δ0 + |∇u|2) p−2
2 |∇u · x||u− c| dx =: CR−2I1 .

(4.4)

In what follows we set c := |AR|−1
∫
AR

u dx and split the proof onto two parts.

Case p ≥ 2: In this case we can estimate I1 by using the Hölder and Poincare
inequalities as

I1 = C

∫

AR

(
δ0 + |∇u|2)

p−2
4

(
(δ0 + |∇u|2) p−2

4 |∇u · x|
)
(|u− c|) dx

≤ C

(∫

AR

(δ0 + |∇u|2) p
2 dx

) p−2
2p

(∫

AR

|u− c|p dx

) 1
p

·

·
(∫

AR

(δ0 + |∇u|2) p−2
2 |∇u · x|2 dx

) 1
2

≤ CR

(∫

AR

(δ0 + |∇u|2) p
2 dx

) 1
2
(∫

AR

(δ0 + |∇u|2) p−2
2 |∇u · x|2 dx

) 1
2

= CRd−p+2

(∫

AR

(δ0 + |∇u|2) p
2

Rd−p
dx

) 1
2
(∫

AR

(δ0 + |∇u|2) p−2
2 |∇u · x|2

Rd−p+2
dx

) 1
2

Thus, inserting these estimates into (4.4) and dividing the result by Rd−p we arrive
at (4.1).

Case 1 < p < 2: In this case we define α := 2
p′ < 1 and by using the Hölder

inequality and the Poincare inequality we conclude that

I1 ≤ C

∫

AR

(
(δ0 + |∇u|2) p−2

4 |∇u · x|
)α

|∇u · x|1−α(δ0 + |∇u|2) p−2
2 +

α(2−p)
4 |u− c| dx

≤ CR1−α

∫

AR

(
(δ0 + |∇u|2) p−2

4 |∇u · x|
)α

|u− c| dx

≤ CR1−α

(∫

AR

(δ0 + |∇u|2) p−2
2 |∇u · x|2 dx

) 1
p′
(∫

AR

|u− c|p dx

) 1
p

≤ CRd−p+2

(∫

AR

(δ0 + |∇u|2) p−2
2 |∇u · x|2

Rd−p+2
dx

) 1
p′ (∫

AR

|∇u|p
Rd−p

dx

) 1
p

,
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which again, after substitution these relations into (4.4) and division the result by
Rd−p, leads to (4.1). ¤

5. Hole filling technique

In this section we combine the results from previous two sections and by using
a generalized version of the hole-filling method we prove the following lemma that
combined with estimate (3.1) lead to the statement of Theorem 1.2.

Lemma 5.1. There exists α > 0 such that any u ∈ W 1,p(Ω;RN ) satisfying (3.1)
and (4.1) belongs to Cα(Ω′;RN ) for any Ω′ ⊂⊂ Ω. Moreover, for all x0 ∈ Ω and
any R0 > 0 such that BR0

(x0) ∈ Ω we have

(5.1)

∫

BR(x0)

|∇u|2
Rd−p+pα

dx ≤ C+C

∫

BR0 (x0)

|∇u|2
Rd−p+pα

0

dx for all 0 < R < R0/2.

Proof. In order to shorten the proof we define

UR(x0) :=

∫

BR(x0)

|∇u|p
Rd−p

dx,

WR(x0) :=

∫

BR(x0)

(δ0 + |∇u|2) p−2
2 |∇u · (x− x0)|2

|x− x0|d−p+2
dx.

Using this notation, we easily derive from (3.1) that (here we assume that B2R(x0) ∈
Ω)

(5.2) WR(x0) ≤ CRp + CU2R(x0).

Next, we define q := min(2, p). With this definition, we can also easily estimate IpR
in Lemma 4.1 as

(5.3) IpR ≤ (W2R(x0)−WR(x0))
1
q′ (R

p
q + (U2R(x0))

1
q ).

Therefore, substituting this into (4.1) we find that

(5.4) UR(x0) ≤ C(W2R(x0)−WR(x0))
1
q′ (R

p
q + (U2R(x0))

1
q ) + CRp +

1

4
U2R(x0).

In the following we combine estimates (5.2) and (5.4) to deduce (5.1). We proceed
by using a modified hole-filling technique. We see that the good “hole-filling” term,
i.e., the term (W2R − WR) is only in the inequality (5.4). Hence, this inequality
has to play more important role than (5.2). Therefore, we multiply (5.2) by ε > 0
small, which will be chosen later, multiply (5.4) by 4 and sum the result to get

4UR(x0) + εWR(x0) ≤ C(W2R(x0)−WR(x0))
1
q′ (R

p
q + (U2R(x0))

1
q )

+ CRp + (Cε+ 1)U2R(x0).
(5.5)

Next applying the Young inequality on the first term on the right hand side and
moving the resulting term WR(x0) onto the left hand side, we get (here C still
denotes some generic constant)

4UR(x0) + (ε+ C)WR(x0) ≤ CW2R(x0) + CRp + (Cε+ 2)U2R(x0).(5.6)

Note, that up to now, ε was arbitrary, while C is some generic constant independent
of ε. Thus, if we set ε := C−1 and divide (5.6) by 4 we get

UR(x0) +
C−1 + C

4
WR(x0) ≤ C

4
W2R(x0) + CRp +

3

4
U2R(x0).(5.7)
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Thus, setting finally

ZR(x0) := UR(x0) +
C−1 + C

4
WR(x0),

we see from (5.7) that

ZR(x0) ≤ γZ2R(x0) + CRp,(5.8)

with γ < 1 given as

γ := max

(
3

4
,

C

C−1 + C

)
.

Thus, defining α := min(2−1,−p−1 ln2 γ) and dividing (5.8) by Rαp we see that

ZR(x0)

Rαp
≤ Z2R(x0)

(2R)αp
+ CRp(1−α)

and therefore for all R < R0/2 we obtain

ZR(x0)

Rαp
≤ C

(
ZR0(x0)

Rαp
0

+Rp(1−α)

)

and we see that (5.1) follows. Consequently, using the Morrey lemma we find that
u ∈ Cα(Ω′) that completes the proof. ¤

6. Concluding remarks

In this final section, we first show how to generalize the procedure introduced in
Sections 3–4 to cover also the case with general θ ∈ (0, 1), b and G (these parameters
appear in the assumptions (1.7)–(1.10). Next, we also show how our result can be
extended to the regularity up to boundary and also onto the case when F and
consequently the matrix b is x-dependent. To summarize we give a sketch of the
proofs of the following theorems.

Theorem 6.1. Let p ∈ (1,∞), Ω be Lipschitz domain and F satisfy (1.5)–(1.10).
Assume in addition that F is α0-Hölder continuous w.r.t. x in the following sense

|F (x, η)− F (y, η)| ≤ C|x− y|α0(1 + |η|)p,
|Fη(x, η)− Fη(y, η)| ≤ C|x− y|α0(1 + |η|)p−1(6.1)

and assume that there is α1 > 0 such that

(6.2) sup
x0∈Ω

sup
R>0

∫

BR(x0)∩Ω

|∇v|pRp−d−α1p dx < ∞.

Then there exists α > 0 such that the unique weak solution u to (1.4) belongs to
Cα(Ω;RN ).

The proof of this theorem is based on the estimates for F being x-independent
that are valid up to the boundary, see Subsection 6.3, on generalization of Lemma 3.1
and 4.1, and on using Campanato-like comparison technique for problems with x
dependent coefficients, see Subsection 6.4.1. Note that in order to be able to apply
Campanato-like method, we require convexity of F , assumption (1.5), to guarantee
solvability of (1.4).

The second result we present here does not require the convexity assumption
(1.5), but since we are not able to use the comparison technique (because we do
not know whether the solution to problem with freezed coefficients does exist) we
need to “generalize” the notion for Noether equation due to the possible dependence
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of F on the spatial variable x. Hence similarly as in the introduction, we say that
a weak solution u to (1.4) satisfies the Noether equation provided that it satisfies
in a sense of distribution the following identities

d∑

i=1

N∑
α=1

Di(Fηα
i
(x,∇u) ·Dku

α) +
∂F (x,∇u)

∂xk

= DkF (x,∇u) for all k = 1, . . . , d.

(6.3)

Note that these equations can be formally derive from (1.4) by multiplying the α-th
equation by Dku

α, summing over α = 1, . . . , N and by using the potential structure
of the equation. Here it is also evident that due to the presence of the derivative
of F w.r.t. x in (6.3) we have to impose a stronger assumption on the regularity of
F than the one supposed for convex F in Theorem 6.1, see assumption (6.1). Thus
the second main result of the paper is the following.

Theorem 6.2. Let Ω be a Lipschitz domain, p ∈ (1,∞) and F satisfy (1.3), (1.7)–
(1.10) and ∣∣∣∣

∂F (x, η)

∂x

∣∣∣∣ ≤ C(1 + |η|)p,
∣∣∣∣
∂Fη(x, η)

∂x

∣∣∣∣ ≤ C(1 + η)p−1.

(6.4)

Assume that the boundary data v satisfies (6.2). Then there exists α > 0 such
that any weak solution u ∈ W 1,p(Ω;RN ) to (1.4) satisfying the generalized Noether
equation (6.3) belongs to Cα(Ω;RN ) and we have

‖u‖Cα(Ω) ≤ C(Ω, v).

In the rest of this section we give a sketch how one can generalize the procedure
developed in the previous sections to obtain Theorem 6.1 and 6.2. First, we give the
full proof of Lemma 4.1 and 3.1 in Subsection 6.1 and 6.2. Then in Subsection 6.3
we show how the estimates can be extended up to the boundary for the case F
being x-independent. Finally, in Subsection 6.4 we present the method that is used
to obtain the Hölder continuity of the solution u to (1.4) for F depending on the
spatial variable x.

6.1. Sketch of the proof of Lemma 4.1 for general constant b. Here the
essential change is due to the presence of general b and G in (1.9). To be able to
derive the estimate (4.1) we first modify our test function. For this purpose, we
define a modified scalar product in Rd as

(u, v)b :=

d∑

i,j=1

bijvivj .

Note that due to the assumption (1.10)2 it is the scalar product that gives the
norm |v|b the is equivalent to standard one. To capture such differences also in
localization we introduce

BR(x0) := {x ∈ Rd; |x− x0|b < R},
AR(x0) := B2R(x0) \BR(x0).

Here we want to point out that the estimates (3.1) and (4.1) are valid with the
only taking the correct “deformed” balls BR and annuli AR, replacing |∇u · x|2 by
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(∇u, x)2b . Having this notation, we use the same test function as in Section 4 to
derive the inequality similar to (4.3)
(6.5)∫

BR

(δ0 + |∇u|2) p−2
2 |∇u|2 dx ≤ −C

∫

Ω

N∑
α=1

d∑

i=1

Fηα
i
(∇u)(uα − cα)Diτ

p
R(|x|) dx.

Using (1.9) we see that there are now two terms on the right hand side of (6.5)
that have to be handled. The second term that appears is G but since θ < 1 (see
(1.10)3) it can be easily handled by using the Hölder and the Young inequality and
assuming that cα is the mean value of uα over AR as

∫

Ω

|G||uα − cα||∇τpR(|x|)| dx ≤ Rd−p

4

∫

AR

(1 + |∇u|2) p−2
2 |∇u|2

(2R)d−p
dx+ CRd.

The first term involving the matrix A then takes the form

∫

AR

N∑

α,β=1

d∑

i,j=1

Aαβ(∇u)bijDju
β(uα − cα)pτp−1

R xi|x|−1τ ′R(|x|) dx.

Therefore, using the definition of (·, ·)b we can continue as in Section 4, we have
to only replace the standard scalar product in the term involving ∇u · x by the
deformed one (∇u, x)b.

6.2. Sketch of the proof of Lemma 3.1 for general x-independent b and G.
Here we again works with deformed norm |x|b to capture the presence of b in (1.9).
Moreover, because of the presence of the pollution term G in (1.9), we do not get
directly the estimate (3.1) but we have to iterate. We would also like to remind
that the estimates are taken over different balls and we also replace |x · ∇u|2 by
(x,∇u)2b in (3.1). Thus, in (2.3) we use as a test function the following ψ

ψ(x) :=
xτpR(|x|b)
|x|d−γ

b

, γ ∈ [p, d).

Note that this is only formal and to do it rigorously one has to mollify such ψ. But
since we already showed the rigorous procedure in Section 3 we omit it here. We
can again get by using the definition of ψ and |x|b that

Djψi =
δijτ

p
R(|x|b)

|x|d−γ
b

− (d− γ)
xi

∑
k bjkxkτ

p
R(|x|b)

|x|d−p+2
b

+ p
xi

∑
k bjkxkτ

p−1
R (|x|b)τ ′R(|x|b)

|x|d−p+1
b

divψ =
γτpR(|x|b)
|x|d−γ

b

+ p
τp−1
R (|x|b)τ ′R(|x|b)

|x|d−p+1
b

.

(6.6)

In what follows we omit the presence of terms involving derivative of τR since such
terms can be always moved onto the right hand side and are of the same form as
the right hand side of (3.1). Thus, we deduce the inequality similar to (3.4) that
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has the form

γ

∫

Ω

F (∇u)|x|γ−d
b τpR dx

+ (d− γ)

∫

Ω

N∑

α,β=1

d∑

i,j,k,l=1

Aαβ(∇u)bikbjlDku
βDju

αxixl|x|p−d−2
b τpR dx

=

∫

Ω

Fη(∇u) · ∇u|x|γ−d
b τpR dx+

∫

Ω

|G||∇u||x|γ−d
b τpR dx+ pollution.

(6.7)

Thus, using (1.8) and (1.10) we get for some η < 1

(γ − p)

∫

Ω

|∇u|p|x|γ−d
b τpR dx

+ (d− γ)

∫

Ω

(δ0 + |∇u|2) p−2
2 (∇u, x)2b |x|p−d−2

b τpR dx

≤ C

∫

Ω

|∇u|ηp|x|γ−d
b τpR dx+ pollution.

(6.8)

Therefore we see that for any γ > p we get an estimate

(6.9)

∫

Ω

|∇u|p|x|γ−d
b τpR dx ≤ C(γ − p)−KRp + small terms,

which explodes as γ → p+. Consequently, we can now set γ = p in (6.8) and with
help of (6.9) (now with setting γ := p+ε with 0 < ε ¿ 1) and the Young inequality
is it easy to bound the right side of (6.8) in terms of right hand side of (3.1).

6.3. Estimates up to the boundary. Here, we give a brief explanation why the
method works up to the boundary. First, to derive Caccioppoli inequality also for
balls closed to the boundary one can replace the test function for such balls by
(uα−vα)τR. It is a possible test function (having zero trace) and also the Poincare
inequality is valid. All we need is to assume that also v belongs to sufficiently good
Morrey space.

More delicate is obtaining the estimates based on the Noether equation. To
illustrate that it is possible we consider that we are interested in estimating the
integrals over balls centered at the point of flat boundary with zero boundary data.
Then one can generalize such procedure to general domains by standard procedure.
Hence assume that that the boundary is given as {x ∈ Rd;xd = 0}. We would like to
show the estimate (3.1) on BR(0)∩Ω Thus, we multiply (1.4) by |x|p−d

∑
i xiDiu

α.
That means we would like to test (1.4) by

∑
i xiDiu

ατR (we omit the weight |x|p−d

here). Then we would like to integrate by part, but in this case it is easy, since

τ
∑d

i=1 xiDiu = 0 on the boundary (we use the fact that xd = 0 and the fact that
tangential derivatives of u are zero due to zaro Dirichlet data) and therefore the
boundary integral vanishes. Hence we get by using the potential that

∫

Rd−1×R+

N∑
α=1

d∑

i,j=1

Fηαi (∇u)Di(xjτR)Dju
α +∇F (∇u) · xτR dx = 0.

Now, we would like to integrate by parts also in the second terms, but since τRx ·n
is zero on the boundary, it is easy and the boundary integral again vanishes. So
one can easily continue in the same way as in Section 3.
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6.4. F dependent on x. Here we shortly discuss the possible dependence of F on
the spatial variable x. We need, similarly as in the introduction, split the discussion
onto two parts, first when F is convex and one can use Campanato-like procedure
and second when F is not convex and some additional hypothesis are required.

6.4.1. Convex F and Campanato technique. In this subsection we consider F sat-
isfying (1.5) and (1.7)–(1.10), where we allow a possible dependence on x. Then
we would like to show that the unique (uniqueness follows from convexity of F )
solution to (1.4) satisfies (1.19) with ε = d − p. From this the Hölder continuity
follows by using the Morrey lemma. Thus, to show it we freeze the coefficient in F
and define F̃ as

F̃ (η) := F (x0, η).

Then we consider a problem

− div F̃η(∇w) = 0 in BR(x0),

w = u on ∂BR(x0).
(6.10)

Since F̃ is x independent we can use Theorem 1.1 to deduce that there is α > 0
independent of x0 and R such that

(6.11)

∫

Br(x0)

|∇w|p
rd−p

dx ≤ C
( r

R

)α
(∫

BR(x0)

|∇u|p
Rd−p

dx+Rp

)
.

Next, since w = u on ∂BR(x0) we use (1.4) and (6.10) to get
∫

BR(x0)

(Fη(x,∇u)− F̃η(∇w)) · ∇(u− w) dx = 0.

Consequently, by using a simple algebraic manipulation we observe that
(6.12)∫

BR(x0)

(F̃η(∇u)−F̃η(∇w))·∇(u−w) dx ≤
∫

BR(x0)

|Fη(x,∇u)−F̃η(∇u)||∇(u−w)| dx.

Next, to handle the integral on the right hand side we make an assumption on the
Hölder continuity of F w.r.t. x, namely we assume that there is α0 > such that

(6.13) |Fη(x1, η)− Fη(x2, η)| ≤ C|x1 − x2|α0(1 + |η|p−1).

Consequently, using (6.11) with r = R we can bound the integral on the right hand
side of (6.12) as

(6.14)

∫

BR(x0)

|Fη(x,∇u)−F̃η(∇u)||∇(u−w)| dx ≤ CRα0(Rd+

∫

BR(x0)

|∇u|p dx).

Using convexity of F , see (1.5), and consequently monotonicity of Fη we can de-
crease the integration domain on the left hand side of (6.12) and by using (6.14)
we get

(6.15)

∫

Br(x0)

(F̃η(∇u)− F̃η(∇w)) · ∇(u−w) dx ≤ CRα0(Rd +

∫

BR(x0)

|∇u|p dx).

Next, using (1.7) onto the term on the right hand side, moving all terms depending
on u onto the right hand side and using the Young inequality we finally deduce that

(6.16)

∫

Br(x0)

|∇u|p dx ≤ CRα0(Rd +

∫

BR(x0)

|∇u|p dx) + C

∫

Br(x0)

|∇w|p dx.
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Finally, multiplying by rp−d and using (6.11) onto the last term on the right hand
side of (6.16), we find that
(6.17)∫

Br(x0)

|∇u|p
rd−p

dx ≤ C

(
Rα0

(
R

r

)d−p

+
( r

R

)α
)(

Rp +

∫

BR(x0)

|∇u|p
Rd−p

dx

)
.

Therefore, by using standard technique we see that there exists α1 > 0 such that
u ∈ Cα1(Ω;RN ).

6.4.2. Non-convex F . Since we do not assume in general such assumptions that
would guarantee the existence of solution even for F independent of x we are
not able to use Campanato technique for comparing two solutions (they may not
exist). However, it is possible to use directly our approach. The only change is
that in the Noether equation the new term involving the derivative of F w.r.t. x
appears. On the other hand since we apply the derivative on F we gain a better
power in the weight, namely |x|p−d+1 instead of |x|p−d. Therefore assuming that
|Fx(x∇u)| ≤ C(1 + F (x,∇u)) we wee that this terms is again the lower order one
and whole procedure can be used.

Appendix A. Estimates for potentials given by (1.11)–(1.13)

Here, we show under which assumptions on a and H the potentials (1.11)–(1.13)
satisfy the assumptions of Theorem 1.1 and Theorem 1.2. We start with the easiest
case (1.12). Hence, for the potential given by (1.12), a simple computation gives

∂F (η)

∂ηαi
= p(Q(η, η))

p−2
2

N∑

β=1

d∑

j=1

aαβHijη
β
j ,

∂2F (η)

∂ηαi ∂η
β
j

= p(Q(η, η))
p−4
2


Q(η, η)aαβHij + (p− 2)

N∑

γ,δ=1

d∑

k,l=1

aαγaβδβHikHjlη
γ
kη

δ
l


 .

Having such identities it is easy to check the validity of (1.5) and (1.7)–(1.10).
Similarly, we obtain for the first derivative of F given by (1.11) that

∂F (η)

∂ηαi
= |η|p−4




N∑

β=1

d∑

j=1

2aαβHijη
β
j |η|2 + (p− 2)Q(η, η)ηαi


 .

It is again evident that (1.3) and (1.7)–(1.8) are satisfied. However, we also see that
(1.9) and consequently also (1.10) holds only if Hij = hδij , where h is a positive
constant. Indeed, defining

Aαβ := |η|p−4
(
2haαβ |η|2 + (p− 2)Q(η, η)δαβ

)
,

bij := δij ,

we see that (1.9) holds. Note that even under this restriction, we treat really the
non-diagonal structure, where the coupling is achieved in vectorial components of
u. Similarly as before we can ask wether F satisfies also (1.5). Thus, computing
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the second derivatives we get

∂2F (η)

∂ηαi ∂η
β
j

= (p− 4)|η|p−6ηβj

(
N∑

γ=1

d∑

k=1

2aαγHikη
γ
k |η|2 + (p− 2)Q(η, η)ηαi

)

+ |η|p−4

(
2aαβHij |η|2 +

N∑
γ=1

d∑

k=1

4aαγHikη
γ
kη

β
j + (p− 2)Q(η, η)δαβδij

+2(p− 2)

N∑
γ=1

d∑

k=1

aβγHjkη
γ
kη

α
i

)
.

Consequently, we observe that (we use the notation (η, µ) := η · µ)
N∑

α,β=1

d∑

i,j=1

∂2F (η)

∂ηαi ∂η
β
j

µα
i µ

β
j = (p− 4)|η|p−6(η, µ)

(
2Q(η, µ)|η|2 + (p− 2)Q(η, η)(η, µ)

)

+ |η|p−4
(
2Q(µ, µ)|η|2 + 2pQ(η, µ)(η, µ) + (p− 2)Q(η, η)|µ|2) .

= (p− 4)(p− 2)|η|p−6(η, µ)2Q(η, η)

+ |η|p−4
(
2Q(µ, µ)|η|2 + 4(p− 2)Q(η, µ)(η, µ) + (p− 2)Q(η, η)|µ|2)

and we see that the function F is convex only for proper a choice of p’s and Q’s, or
to be more precise, F is convex if and only if the scalar product Q(η, µ) is closed
to the scalar product (η, µ) (how “closed” depends on p).

The last example (1.13) can be treated similarly as (1.11)–(1.12) and we skip
the computation here. We only recall that F given by (1.13) satisfy (1.5) and
(1.7)–(1.8). In addition this potential satisfies also (1.9)-(1.10) provided that either

aαβ1 = caαβ2 or Hij
1 = hHij

2 for some positive constants c, h.
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