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APPROXIMATION OF TWO-VARIATE FUNCTIONS:

SINGULAR VALUE DECOMPOSITION

VERSUS REGULAR SPARSE GRIDS

MICHAEL GRIEBEL AND HELMUT HARBRECHT

Abstract. We compare the cost complexities of two approxima-

tion schemes for functions f ∈ Hp(Ω1×Ω2) which live on the prod-

uct domain Ω1 × Ω2 of general domains Ω1 ⊂ Rn1 and Ω2 ⊂ Rn2 ,

namely the singular value / Karhunen-Lòeve decomposition and

the regular sparse grid representation. Here we assume that suit-

able finite element methods with associated fixed order r of accu-

racy are given on the domains Ω1 and Ω2. Then, the sparse grid

approximation essentially needs only O(ε−
max{n1,n2}

r ) unknowns to

reach a prescribed accuracy ε provided that the smoothness of f

satisfies p ≥ 2r, which is an almost optimal rate. The singular

value decomposition produces this rate only if f is analytical since

otherwise the decay of the singular values is not fast enough. If

p < 2r, then the sparse grid approach gives essentially the rate

O(ε−
2max{n1,n2}

p ) while, for the singular value decomposition, we

only can prove the rate O(ε
−

2min{r,p}min{n1,n2}+2pmax{n1,n2}

(2p−min{n1,n2}) min{r,p} ). This

shows that, in our setting and if n1 = n2, the regular sparse grid

approach is superior to the singular value decomposition. We prove

the resulting complexities, compare the two approaches and give

the results of numerical experiments which demonstrate that these

rates are also achieved in practice.

1. Introduction

The efficient approximate representation of multivariate functions is

an important task in numerical analysis and scientific computing. In

this paper, we concentrate on functions which live on the product of two

domains Ω1×Ω2. Already for this simple situation, there exists a large

amount of applications: such problems involve for example radiosity

models and radiative transfer [30]. Here, Ω1 denotes the spatial three-

dimensional domain of a geometric object under consideration and Ω2
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is the sphere S2. Moreover, in the case of space-time discretizations of

parabolic problems, Ω1 is the time interval whereas Ω2 is the spatial

domain [14, 29].

Then, there are various phase space problems where both Ω1 and Ω2

are three-dimensional cubes or the full three-dimensional real space.

Examples are the Boltzmann equation, kinetic equations or the Langevin

equation, see e.g. [1]. Furthermore, non-Newtonian flow can be mod-

eled by a coupled system which consists of the Navier Stokes equation

for the flow in a three-dimensional geometry described by Ω1 and of

the Fokker-Planck equation in 3(k−1)-dimensional configuration space

on Ω2. Here k denotes the number of atoms in a chain-like molecule

which constitutes the non-Newtonian behavior of the flow, for details

see [3, 20, 23]. Note that the domain of the configuration space is itself

again a product of k − 1 spheres.

Another example is two-scale homogenization. After unfolding [5], it

gives raise to the product of the macroscopic physical domain and the

periodic microscopic domain of the cell problem, see [24]. For multiple

scales, a general product appears here which still can be written as

the product of two domains, one containing e.g. the macroscopic scale

and the other consisting of the product of the domains of the different

microscales [19].

Also the two-point correlation functions of linear elliptic boundary

value problems with stochastic source terms are known to satisfy a de-

terministic partial differential equation with the tensor product of the

elliptic operator on the product of the physical domain [17, 26, 27].

Higher order moments then involve larger tensor products [28]. This

approach extends to stochastic diffusion functions and more general

PDEs with stochastic coefficient functions as well as to stochastic do-

mains [16, 18].

Finally we find the product of two domains in quantum mechanics

for e.g. the Schrödinger equation for Helium; systems with more than

two electrons involve then multiple product domains, of course.

In general, some problems are directly given on the product of two

domains, while for other problems the domains themselves are products

of lower-dimensional domains. Then, the domain of an n-dimensional
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problem with e.g. n being some power of two can be split into the tensor

product of two domains of dimension n/2 which then can be recursively

further split until a terminal situation (a one-dimensional domain or a

truly higher dimensional but non-tensor product domain) is reached.

Related representation methods have recently been considered in [2,

15, 22].

In this article, we consider the simple case of two domains Ω1 and Ω2

only. Here, our analysis covers the situation of the first bisection step in

the above mentioned recursion. To this end, for i = 1, 2, let Ωi denote

a domain in Rni (or alternatively also an ni-dimensional manifold in

Rni+1). We intend to compare the approximation of functions f(x,y)

of two variables on the tensor product domain Ω1 × Ω2 by either the

truncated singular value decomposition

f(x,y) ≈
M∑

ℓ=1

√
λℓϕℓ(x)ψℓ(y)

or by regular sparse grids

f(x,y) ≈
∑

j1+j2≤J

∑

k1∈∇
(1)
j1

∑

k2∈∇
(2)
j2

β(j1,k1),(j2,k2)ξ
(1)
j1,k1

(x)ξ
(2)
j2,k2

(y).

In the first representation, {ϕℓ}Mℓ=1 and {ψℓ}Mℓ=1 are sets of orthonormal

functions. They are a-priorily unknown and need thus to be approx-

imated by systematic basis functions of some ansatz spaces V
(1)
J ⊂

L2(Ω1) and V
(2)
J ⊂ L2(Ω2), respectively, which is indeed the case in

most practical applications. In the second representation, {ξ(i)j,k}k∈∇(i)
j ,j≤J

are in general multilevel or wavelet bases of V
(i)
J , where the index j

refers to the level of resolution and the index k refers to the locality of

the basis function (the precise definition will be given in Section 4).

The result of this paper is as follows: we can proof a rate of the

order O(ε
−

2min{r,p}min{n1,n2}+2pmax{n1,n2}
(2p−min{n1,n2})min{r,p} ) for the truncated singular value

decomposition. For the regular sparse grid method we essentially obtain

a rate of the order O(ε−2
max{n1,n2}
min{p,2r} ) for the degrees of freedom needed to

reach a specific prescribed accuracy ε. Here, p ≥ min{n1, n2}/2 denotes
the Sobolev smoothness of f , i.e. f ∈ Hp(Ω1 × Ω2), and r denotes the

approximation power of the ansatz spaces V
(1)
J and V

(2)
J . This shows
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(see Section 5) that, already in the simple case of n1 = n2, the regular

sparse grid approach is superior to the singular value decomposition.

We prove the resulting cost complexities, compare the two approaches

and give the results of numerical experiments which demonstrate that

these rates are also achieved in practice.

We remark that in the case of n1 6= n2 the regular sparse grid ap-

proach can even be improved by the use of an optimized sparse grid

(see Remark 4.4 and compare [4] or [11]). Moreover, adaptive approx-

imation offers the possibility of further improvements. The discussion

of such more sophisticated approximation schemes is, however, beyond

the scope of the present article and will be considered in more detail

in a forthcoming paper.

The remainder of this article is organized as follows: In Section 2 we

give a short introduction to multilevel approximation. In Section 3 we

describe the singular value decomposition of a two-valued function on

Ω1 × Ω2 and discuss its approximation properties in detail. Section 4

gives the basics of the so-called regular sparse grid approximation of a

two-valued function on Ω1 × Ω2 and presents its error rates and cost

complexities. In Section 5, we compare the two approximations. In

Section 6, we give the results of numerical experiments which show that

the theoretical complexity rates are also achieved in practice. Section 7

concludes with some final remarks.

Throughout this paper, the notion “essential” in connection with the

complexity estimates means “up to logarithmic terms”. Moreover, to

avoid the repeated use of generic but unspecified constants, we denote

by C . D that C is bounded by a multiple of D independently of

parameters which C and D may depend on. Obviously, C & D is

defined as D . C, and C ∼ D as C . D and C & D.

2. Approximation on the subdomains

Let Ω ⊂ Rn be a sufficiently smooth, bounded domain. In general one

uses finite elements to approximate functions on L2(Ω). In the present

paper we focus on the common h-method, i.e., on finite elements of

fixed approximation order. Then, particularly for applying multiscale
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techniques, one has a sequence of nested trial spaces

(2.1) V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ L2(Ω)

such that

L2(Ω) =
⋃

j∈N0

Vj , V0 =
⋂

j∈N0

Vj,

called multiscale analysis. Each space Vj is defined by a single scale

basis Φj = {φj,k}, i.e., Vj = span{φj,k : k ∈ ∆j}, where ∆j denotes a

suitable index set with cardinality #(∆j) ∼ 2nj.

We say that the trial spaces have (approximation) order r ∈ N if

(2.2) r = sup{s ∈ R : inf
vj∈Vj

‖v − vj‖L2(Ω) . hsj‖v‖s ∀v ∈ Hs(Ω)},

where the quantity hj ∼ 2−j corresponds to the mesh width of the

mesh associated with the subspace Vj on Ω. Note that the integer r > 0

refers in general to the maximal order of polynomials which are locally

contained in Vj.

Equation (2.2) implies that a given function v ∈ Hs(Ω), 0 ≤ s ≤ r,

can be approximated in Vj at a rate hsj , that is

(2.3) inf
vj∈Vj

‖v − vj‖L2(Ω) . hsj‖v‖Hs(Ω).

Thus, when we approximate a function v ∈ Hs(Ω) with 0 ≤ s ≤ r

by uniform mesh refinement we obtain the rate hsj according to (2.3).

Since the meshsize and the number of unknowns in Vj are related by

dim(Vj) ∼ 2jn ∼ h−nj , we deduce that

(2.4) N ∼ ε−s/n

unknowns have to be spent to achieve an approximation error ε. The

best possible rate N−n/d is achieved if s = r, that is if v ∈ Hr(Ω).

Note that we later will employ the definitions, properties and cost

complexities individually for each subdomain Ωi i = 1, 2, that is, we

will deal with two multiscale analyses

V
(i)
0 ⊂ V

(i)
1 ⊂ V

(i)
2 ⊂ · · · ⊂ L2(Ωi), i = 1, 2.
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3. Singular value decomposition

We intend to numerically represent functions f(x,y) ∈ L2(Ω1 ×Ω2)

on tensor product domains Ω1 ×Ω2 in the most efficient way. One way

to solve this approximation problem is to use an ansatz by means of

tensor products which separates the variables x and y. We consider the

approximation

(3.5) f(x,y) ≈
M∑

ℓ=0

αℓϕℓ(x)ψℓ(y),

with certain coefficients αℓ ∈ R and normalized functions ϕℓ ∈ L2(Ω1)

and ψℓ ∈ L2(Ω2). Such an approximation is called low rank approxima-

tion.

The decay of the αℓ is important for the fast convergence (in terms of

M) of the series (3.5). As we will see, the convergence depends on the

smoothness of the function f to be approximated. Moreover, besides

determining the coefficients {αℓ}ℓ∈N, a numerical scheme to compute

(3.5) needs to approximate the functions {ϕℓ}ℓ∈N and {ψℓ}ℓ∈N up to an

accuracy corresponding to that of (3.5).

It is well known (see e.g. [9, 21, 28] for the proof) that, with respect to

the number M of terms, the best possible representation of a function

f ∈ L2(Ω1 × Ω2) in the L2-sense is given by the Karhunen-Lòeve /

singular value decomposition. To this end, we consider the integral

operator

S : L2(Ω1) → L2(Ω2), (Su)(y) :=
∫

Ω1

f(x,y)u(x)dx.

Its adjoint is

S⋆ : L2(Ω2) → L2(Ω1), (S⋆u)(x) :=
∫

Ω2

f(x,y)u(y)dy.

Then, to obtain the representation (3.5) we need to compute the eigen-

values of the integral operator

(3.6) K = S⋆S : L2(Ω1) → L2(Ω1), (Ku)(x) :=
∫

Ω1

k(x,x′)u(x′)dx′
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whose kernel function is given by

(3.7) k(x,x′) =

∫

Ω2

f(x,y)f(x′,y)dy ∈ L2(Ω1 × Ω1).

This is a Hilbert-Schmidt kernel. Thus, the associated integral oper-

ator K is compact. Moreover, since K is self-adjoint, there exists a

decomposition into eigenpairs (λℓ, ϕℓ) which fulfill

Kϕℓ = λℓϕℓ, ℓ ∈ N,

with non-negative eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm → 0 and eigenfunc-

tions {ϕℓ}ℓ∈N, which constitute an orthonormal basis in L2(Ω1).

We now define for all ℓ ∈ N with λℓ > 0 the function ψℓ ∈ L2(Ω2) by

(3.8) ψℓ(y) =
1√
λℓ

(Sϕℓ)(y) =
1√
λℓ

∫

Ω1

f(x,y)ϕℓ(x)dx.

This constitutes a second sequence of orthonormal functions since

(ψk, ψℓ)L2(Ω2) =
1√
λkλℓ

(Sϕk,Sϕℓ)L2(Ω2) =
1√
λkλℓ

(Kϕk, ϕℓ)L2(Ω1)

=
λk√
λkλℓ

(ϕk, ϕℓ)L2(Ω1) = δk,ℓ.

If λℓ = 0 for some ℓ ∈ N we can extend this collection of functions

properly to obtain an orthonormal basis {ψℓ}ℓ∈N of L2(Ω2). Due to

(3.9)
√
λℓϕℓ(x) =

1√
λℓ

(S⋆Sϕℓ)(x) = (S⋆ψℓ)(x) =
∫

Ω2

f(x, z)ψℓ(z)dz

we finally obtain the representation

(3.10) f(x,y) =

∞∑

ℓ=0

√
λℓϕℓ(x)ψℓ(y).

In view of (3.8) and (3.9), this equation is easily verified by testing

with the othonormal basis {ϕk ⊗ ψℓ}k,ℓ∈N of L2(Ω1 × Ω2).

Remark 3.1. The adjoint kernel k̃(·, ·) is just obtained by interchang-

ing the roles of Ω1 and Ω2, i.e.,

k̃(y,y′) =

∫

Ω1

f(x,y)f(x,y′)dx ∈ L2(Ω2 × Ω2).
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Then, one has the integral operator

K̃ = SS⋆ : L2(Ω2) → L2(Ω2), (K̃u)(y) :=
∫

Ω2

k̃(y,y′)u(y′)dy′.

Again there exists a decomposition into eigenpairs

K̃ϕ̃ℓ = λ̃ℓϕ̃ℓ, ℓ ∈ N,

with non-negative eigenvalues λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃m → 0 and eigenfunc-

tions ϕ̃ℓ ∈ L2(Ω2). We also obtain a second sequence of orthonormal

functions ψ̃ℓ ∈ L2(Ω1) analogously to (3.8). The functions {ϕ̃ℓ}ℓ∈N and

{ψ̃ℓ}ℓ∈N will be the same as before but now their roles are exchanged.

Moreover, the eigenvalues λℓ and λ̃ℓ of K and K̃ coincide.

We shall prove the following auxiliary result concerning the mapping

properties of the integral operators S and S⋆. To this end, for s > 0

we mean by H−s(Ω) :=
(
Hs(Ω)

)′
the dual of the Sobolev space Hs(Ω)

(which is usually denoted by H̃−s(Ω)).

Lemma 3.2. Assume that f ∈ Hp(Ω1 × Ω2). Then, the operators

S : H−s(Ω1) → Hp−s(Ω2), S⋆ : H−s(Ω2) → Hp−s(Ω1)

are continuous for all s ∈ [0, p].

Proof. FromHp(Ω1×Ω2) ⊂ H0,p
mix(Ω1×Ω2) it follows that f ∈ H0,p

mix(Ω1×
Ω2). Therefore, the operator S : L2(Ω1) → Hp(Ω2) is continuous since

‖Su‖Hp(Ω2) = sup
‖v‖

H−p(Ω2)=1

(Su, v)L2(Ω2)

= sup
‖v‖

H−p(Ω2)=1

(f, u⊗ v)L2(Ω1×Ω2)

≤ sup
‖v‖

H−p(Ω2)=1

‖f‖H0,p
mix(Ω1×Ω2)

‖u⊗ v‖H0,−p
mix (Ω1×Ω2)

∼ ‖f‖H0,p
mix(Ω1×Ω2)

‖u‖L2(Ω1).

Note that we have used here that H0,−p
mix (Ω1×Ω2) ∼= L2(Ω1)⊗H−p(Ω2).

In complete analogy one shows that S⋆ : L2(Ω2) → Hp(Ω1) is con-

tinuous which proves the desired assertion for s = 0. By duality one

also infers the assertion for s = p. The assertion for s ∈ (0, p) is finally

obtained by interpolation. �
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With the above lemma we are able to determine the decay rate of the

eigenvalues of the integral operator K = S⋆S with kernel (3.7). Note

here that our result improves the one from [28] by a factor of two since

we exploit the regularity in both variables of the kernel function which

satisfies only k ∈ Hp,p
mix(Ω1 × Ω1).

Theorem 3.3. Consider f ∈ Hp(Ω1 × Ω2) with associated kernel k

from (3.7) and associated integral operator K from (3.6). Then, the

eigenvalues {λℓ}ℓ∈N of K decay like

(3.11) λℓ . ℓ
− 2p

min{n1,n2} as ℓ→ ∞.

Proof. We shall investigate the dependance of the decay of the eigen-

values of the integral operator K = S⋆S on the smoothness p of f .

To this end, we introduce new finite element spaces UN ⊂ L2(Ω2),

which consist of N discontinuous, piecewise polynomial functions of

total degree p on a quasi-uniform triangulation of Ω2 with mesh width

hN ∼ N−1/n2 . Then, there holds the following approximation result for

the L2-orthogonal projection PN : L2(Ω2) → UN :

‖(I − PN)w‖L2(Ω2) ≤ cpN
−p/n2‖w‖Hp(Ω2),

provided that w ∈ Hp(Ω2). Then, since S⋆PNS : L2(Ω1) → L2(Ω1) is

an operator of finite rank N , the min-max principle of Courant-Fischer

implies

λN+1 = min
V⊂L2(Ω1)

dimV ⊥≤N

max
u∈V

‖u‖
L2(Ω1)

=1

(Ku, u)L2(Ω1)

≤ max
u⊥img(S⋆PNS)
‖u‖

L2(Ω1)
=1

(S⋆Su, u)L2(Ω1)

= max
u⊥img(S⋆PNS)
‖u‖

L2(Ω1)
=1

(
S⋆(I − PN)Su, u

)
L2(Ω1)

= max
u⊥img(S⋆PNS)
‖u‖

L2(Ω1)
=1

(
(I − PN )Su, (I − PN)Su

)
L2(Ω2)

≤ sup
‖u‖L2(Ω1)

=1

‖(I − PN)Su‖2L2(Ω2)

. N−2p/n2 sup
‖u‖

L2(Ω1)
=1

‖Su‖2Hp(Ω2)
.
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Since S : L2(Ω1) → Hp(Ω2) is continuous according to Lemma 3.2,

we arrive at λN+1 . N−2p/n2 . Applying the same arguments to the

operator K̃, one gets the decay rate λN+1 . N−2p/n1 . Substituting

finally N + 1 by ℓ yields the desired result. �

Altogether, if f ∈ Hp(Ω1 × Ω2), then Theorem 3.3 implies that the

associated coeffcients {
√
λℓ} in the expansion (3.10) of f decay like√

λℓ . ℓ−p/min{n1,n2}. This leads to the following theorem.

Theorem 3.4. Let f ∈ Hp(Ω1 × Ω2) and p > min{n1, n2}/2. Then it

holds

(3.12)

∥∥∥∥f −
M∑

ℓ=0

√
λℓ(ϕℓ ⊗ ψℓ)

∥∥∥∥
L2(Ω1×Ω2)

. M
1
2
− p

min{n1,n2} .

Proof. Assume without loss of generality that n1 ≤ n2. Then, due to

λℓ ∼ ℓ−2p/n1 by Theorem 3.3, we obtain by the orthonormality of the

function sets {φℓ} and {ψℓ} that

∥∥∥∥f −
M∑

ℓ=0

√
λℓ(ϕℓ ⊗ ψℓ)

∥∥∥∥
2

L2(Ω1×Ω2)

=

∥∥∥∥
∞∑

ℓ=M+1

√
λℓ(ϕℓ ⊗ ψℓ)

∥∥∥∥
2

L2(Ω1×Ω2)

=

∞∑

ℓ=M+1

λℓ .

∞∑

ℓ=M+1

ℓ
− 2p

n1 .

Since 2p/n1 > 1 we can estimate the sum by an integral as

∞∑

ℓ=M+1

ℓ
− 2p

n1 ≤
∫ ∞

M

x
− 2p

n1 dx =
M

1− 2p
n1

2p
n1

− 1

which leads to the desired result (3.12). �

Consequently, to ensure the error bound

(3.13)

∥∥∥∥f −
M∑

ℓ=0

√
λℓ(ϕℓ ⊗ ψℓ)

∥∥∥∥
L2(Ω1×Ω2)

. ε

we need to choose the expansion degree M as

(3.14) M ∼ ε
2min{n1,n2}

min{n1,n2}−2p .
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Remark 3.5. (1) Regularity in terms of mixed derivatives does not

further improve the results. The property f ∈ Hp,p
mix(Ω1 × Ω2)

again yields the estimate λℓ . ℓ
− 2p

max{n1,n2} for the eigenvalues of

K.

(2) The use of the Sobolev regularity might give a too low decay

rate (3.11). For example, for the exponential kernel k(x, y) =

exp(−|x − y|) on the unit square, we have k ∈ H3/2−δ
(
(0, 1)×

(0, 1)
)
for all δ > 0 but we observe

√
λℓ ∼ ℓ−2 instead of

√
λℓ ∼

ℓ−3/2, see Fig. 6.3 in Section 6. Here, we expect that the use of

Besov regularity would give the correct decay.

(3) Our considerations and thus estimate (3.12) do not apply if

0 ≤ p ≤ min{n1, n2}/2. However, it still holds
∑∞

ℓ=0 λℓ < ∞
since K is a Hilbert-Schmidt operator.

Depending on the smoothness of f , we are able to prove the following

result on the regularity of the functons in the collections {ϕℓ} and

{ψℓ}. This result will be essential for any numerical computation of

the truncated singular value decomposition.

Lemma 3.6. Let f ∈ Hp(Ω1×Ω2). Then, the eigenfunctions {ϕℓ} and

{ψℓ} are in Hp(Ω1) and H
p(Ω2), respectively, and satisfy

(3.15) ‖ϕℓ‖Hp(Ω1) .
1√
λℓ
, ‖ψℓ‖Hp(Ω2) .

1√
λℓ
, ℓ ∈ N.

Proof. In view of (3.9) and Lemma 3.2, we deduce

‖ϕℓ‖Hp(Ω1) =
1√
λℓ

‖S⋆ψℓ‖Hp(Ω1) .
1√
λℓ

‖ψℓ‖L2(Ω2) =
1√
λℓ

for all ℓ ∈ N. The second estimate is proven in complete analogy. �

So far, we used an exact description of the eigenfunctions. However

this does not hold in practice. Instead, the eigenvalues {λℓ}Mℓ=1 and

eigenfunctions {ϕℓ}Mℓ=1 and {ψℓ}Mℓ=1 need to be approximately computed

in the finite element spaces V
(i)
j ⊂ L2(Ωi), introduced in Section 2.

According to (2.3) and (3.15), when we spend N degrees of freedom,
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we have

(3.16)

‖ϕℓ − ϕℓ,N‖L2(Ω1) . N
−

min{p,r}
n1 ‖ϕℓ‖Hmin{p,r}(Ω) .

1√
λℓ
N

−
min{p,r}

n1 ,

‖ψℓ − ψℓ,N‖L2(Ω2) . N
−

min{p,r}
n2 ‖ψℓ‖Hmin{p,r}(Ω) .

1√
λℓ
N

−
min{p,r}

n2 .

Here, ϕℓ,N and ψℓ,N denote the numerical approximations to ϕℓ and ψℓ,

respectively.

According to (3.16), to ensure ‖ϕℓ−ϕℓ,N‖L2(Ω1) . ε/
√
λℓM (we will

later see that this is the proper accuracy), we have to spent (cf. (3.14))

Nϕ ∼
(

ε√
M

)−
n1

min{r,p}

∼ ε
2pn1

(min{n1,n2}−2p)min{r,p}

unknowns for the representation of ϕℓ,N and, to ensure ‖ψℓ−ψℓ,N‖L2(Ω2) .

ε/
√
λℓM , we have to spent

Nψ ∼
(

ε√
M

)−
n2

min{r,p}

∼ ε
2pn2

(min{n1,n2}−2p)min{r,p}

unknowns for the representation of ψℓ,N , respectively. In the sequel, we

will spend always N := max{Nϕ, Nψ} degrees of freedom which does

not deteriorate the cost complexity. In particular, N does not depend

on ℓ, i.e., all eigenfunctions {ϕN,ℓ} and {ψN,ℓ} are approximated in the

same ansatz spaces.

Remark 3.7. If p > r, then we even may estimate

‖ϕℓ‖Hr(Ω) .

(
1√
λℓ

) r
p

, ‖ψℓ‖Hr(Ω) .

(
1√
λℓ

) r
p

by using interpolation arguments. Hence, (3.16) can be improved by

‖ϕℓ − ϕℓ,N‖L2(Ω1) . λ
−

min{r,p}
2p

ℓ N
−min{p,r}

n1 ,

‖ψℓ − ψℓ,N‖L2(Ω2) . λ
−

min{r,p}
2p

ℓ N
−min{p,r}

n2 .

As a conseqence, if p > r, the number of unknowns for approximating

the eigenfunctions can be reduced when ℓ increases. However, to exploit

this fact for the computation of the truncated singular value decom-

position, one needs the specific information on the smoothness index

p.
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We assume that the approximate eigenfunctions are normalized and

pairwise orthogonal, i.e., for 1 ≤ ℓ, ℓ′ ≤M we have
∫

Ω1

ϕℓ,N(x)ϕℓ′,N(x)dx = δℓ,ℓ′,

∫

Ω2

ψℓ,N(y)ψℓ′,N(y)dy = δℓ,ℓ′.

Concerning the approximation of theM largest eigenvalues in the space

VN , defined via their Rayleigh quotients

λℓ,N =

∫

Ω1

∫

Ω1

k(x,x′)ϕℓ,N(x)ϕℓ,N(x
′)dxdx′, ℓ = 1, 2, . . . ,M.

we assume the following estimate

(3.17) 0 ≤ λℓ − λℓ,N . λℓ‖ϕℓ − ϕℓ,N‖2L2(Ω1)
, ℓ = 1, 2, . . . ,M.

We emphasize that these assumptions, in particular (3.17), are all

satisfied if one computes the approximation {(λN,ℓ, ϕN,ℓ)}Mℓ=1 to the

eigenpairs {(λℓ, ϕℓ)}Mℓ=1 with a Ritz-Galerkin method in the space V
(1)
j

with dimV
(1)
j ∼ N . For the proof we refer the reader to [8].

Based on (3.12), (3.16) and (3.17), we can estimate the error of the

discretized truncated singular value decomposition.

Theorem 3.8. Let f ∈ Hp(Ω1 × Ω2) and choose

M ∼ ε
2min{n1,n2}

min{n1,n2}−2p , N ∼ ε
2pmax{n1,n2}

(min{n1,n2}−2p)min{r,p} .

Then, the truncated singular value decomposition satisfies the error es-

timate ∥∥∥∥∥f −
M∑

ℓ=0

√
λℓ,N(ϕℓ,N ⊗ ψℓ,N)

∥∥∥∥∥
L2(Ω1×Ω2)

. ε

uniformly in ε > 0.

Proof. It holds

E :=

∥∥∥∥∥

∞∑

ℓ=0

√
λℓ(ϕℓ ⊗ ψℓ)−

M∑

ℓ=0

√
λℓ,N(ϕℓ,N ⊗ ψℓ,N)

∥∥∥∥∥

2

L2(Ω1×Ω2)

≤
∥∥∥∥∥

∞∑

ℓ=M+1

√
λℓ(ϕℓ ⊗ ψℓ)

∥∥∥∥∥

2

L2(Ω1×Ω2)

+

∥∥∥∥∥

M∑

ℓ=0

√
λℓ(ϕℓ ⊗ ψℓ)−

√
λℓ,N(ϕℓ,N ⊗ ψℓ,N)

∥∥∥∥∥

2

L2(Ω1×Ω2)

.
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According to (3.12) and (3.13) the squared truncation error is bounded

by cε2, and thus

E . ε2 +

∥∥∥∥∥

M∑

ℓ=0

(√
λℓ −

√
λℓ,N

)
(ϕℓ ⊗ ψℓ)

∥∥∥∥∥

2

L2(Ω1×Ω2)

+

∥∥∥∥∥

M∑

ℓ=0

√
λℓ,N

(
ϕℓ ⊗ (ψℓ − ψℓ,N)

)
∥∥∥∥∥

2

L2(Ω1×Ω2)

+

∥∥∥∥∥

M∑

ℓ=0

√
λℓ,N

(
(ϕℓ − ϕℓ,N)⊗ ψℓ,N

)
∥∥∥∥∥

2

L2(Ω1×Ω2)

.

We now estimate the three terms on the right hand side separately. In

view of (3.17), we have
√
λℓ ≥

√
λℓ,N and, with (3.16), we obtain

0 ≤
∣∣∣
√
λℓ −

√
λℓ,N

∣∣∣
2

≤ λℓ − λℓ,N . λℓ‖ϕℓ − ϕℓ,N‖2L2(Ω1)
.
ε2

M
.

This yields

∥∥∥∥∥

M∑

ℓ=0

(√
λℓ −

√
λℓ,N

)
(ϕℓ ⊗ ψℓ)

∥∥∥∥∥

2

L2(Ω1×Ω2)

(3.18)

=
M∑

ℓ=0

∣∣∣
√
λℓ −

√
λℓ,N

∣∣∣
2

.

M∑

ℓ=0

ε2

M
. ε2.

Next, with λℓ,N ≤ λℓ, we have

∥∥∥∥∥

M∑

ℓ=0

√
λℓ,N

(
ϕℓ ⊗ (ψℓ − ψℓ,N)

)
∥∥∥∥∥

2

L2(Ω1×Ω2)

(3.19)

=

M∑

ℓ=0

λℓ,N‖ϕℓ ⊗ (ψℓ − ψℓ,N)‖2L2(Ω1×Ω2)

≤
M∑

ℓ=0

λℓ‖ϕℓ‖2L2(Ω1)
‖ψℓ − ψℓ,N‖2L2(Ω2)

.

M∑

ℓ=0

ε2

M
. ε2,
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and likewise
∥∥∥∥∥

M∑

ℓ=0

√
λℓ,N

(
(ϕℓ − ϕℓ,N)⊗ ψℓ,N

)
∥∥∥∥∥

2

L2(Ω1×Ω2)

. ε2.(3.20)

Plugging (3.18)–(3.20) into the above estimate of E finally leads to the

desired estimate E . ε2. �

Altogether, since we have to deal with M eigenfunctions with N

coefficients each, we arrive at the following theorem.

Theorem 3.9. The number of degrees of freedom needed to approxi-

mate a function f ∈ Hp(Ω1 × Ω2) by the singular value decomposition

approach (3.5) with (3.16) and (3.17) to a prescribed accuracy ε is

(3.21) dofsvd(ε) =M ·N ∼ ε
−

2min{r,p}min{n1,n2}+2pmax{n1,n2}
(2p−min{n1,n2})min{r,p}

We emphasize that the estimate (3.21) does not include the work to

be spent for computing the singular values nor the eigenfunctions. Here,

a naive approach would result in a cost complexity of orderM ·N2, the

use of fast methods for nonlocal operators would result in an almost

linear or even linear complexity per eigenpair. Note that in any case at

least linear complexity O(M ·N) is required, see e.g. [6, 7, 28].

4. Regular sparse grids

In general one uses finite elements to approximate the functions on

L2(Ωi), i = 1, 2. Then, particularly for applying multiscale techniques,

one has a sequence of nested trial spaces

(4.22) V
(i)
0 ⊂ V

(i)
1 ⊂ V

(i)
2 ⊂ · · · ⊂ L2(Ωi), i = 1, 2,

called multiscale analysis.

This gives a second method to approximate functions in tensor prod-

uct spaces: By choosing complementary spaces

W
(i)
j = span

{
ξ
(i)
j,k : k ∈ ∇(i)

j := ∆
(i)
j \∆(i)

j−1

}
, i = 1, 2,

such that

V
(i)
j =W

(i)
j ⊕ V

(i)
j−1, V

(i)
0 = W

(i)
0 ,
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we can approximate a function f ∈ L2(Ω1×Ω2) in the so called regular

sparse grid space, see [4],

(4.23)
̂

V
(1)
J ⊗ V

(2)
J :=

⊕

j1+j2≤J

W
(1)
j1

⊗W
(2)
j2
.

Then, a function f̂J ∈ ̂
V

(1)
J ⊗ V

(2)
J is represented as

(4.24) f̂J(x,y) =
∑

j1+j2≤J

∑

k1∈∇
(1)
j1

∑

k2∈∇
(2)
j2

β(j1,k1),(j2,k2)ξ
(1)
j1,k1

(x)ξ
(2)
j2,k2

(y).

Note here that the regular sparse grid space has substantially less un-

knowns than the full tensor product space

V
(1)
J ⊗ V

(2)
J :=

⊕

j1,j2≤J

W
(1)
j1

⊗W
(2)
j2
.

Lemma 4.1. There holds

dim
̂

V
(1)
J ⊗ V

(2)
J =




J2Jn1, if n1 = n2,

2Jmax{n1,n2}, if n1 6= n2.

Proof. The first assertion is already well known, see e.g. [4]. Here, we

shall assume without loss of generality that n1 ≥ n2. Then, it follows

∑

j1+j2≤J

2j1n1+j2n2 = 2Jn1

J∑

j1=0

2(j1−J)n1

J−j1∑

j2=0

2j2n2

= 2Jn1

J∑

j1=0

2(j1−J)(n1−n2)

.




J2Jn1 , if n1 = n2,

2Jn1, if n1 > n2.

�

Sparse grids can be constructed via hierarchical bases, interpolets

and wavelet-like bases (see e.g. [11, 26, 27, 28, 31]) or even directly by

finite elements in terms of frames (see e.g. [10, 12, 18]). For a survey

on sparse grids we refer the reader to [4] and the references therein.

From the approximation property (2.3) it follows that the order of

approximation for a function f ∈ Hs(Ω1 × Ω2) (0 ≤ s ≤ r) in the full
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tensor product space Vj ⊗ Vj is s. Nonetheless, according to [4, 11, 25],

by spending additional smoothness in terms of mixed Sobolev spaces

Hs,s
mix(Ω1 × Ω2), essentially the same approximation order is provided

in the regular sparse grid space (4.23). The following result has been

proven in [25], see also [13].

Lemma 4.2. Let f ∈ Hs,s
mix(Ω1 × Ω2), 0 ≤ s ≤ r. Then, the L2-

orthogonal projection P̂J onto the sparse tensor product space ̂VJ ⊗ VJ
satisfies

(4.25)
∥∥f − P̂Jf

∥∥
L2(Ω1×Ω2)

.




2−Js

√
J‖f‖Hs,s(Ω1×Ω2), if s = r,

2−Js‖f‖Hs,s(Ω1×Ω2), if 0 ≤ s < r.

Thus, in view of Lemma 4.1, for a given function f ∈ Hs,s
mix(Ω1×Ω2)

with s ≥ r and a desired accuracy ε > 0, we essentially, i.e., up to

logarithmic terms, have to spent

(4.26) N ∼ ε−
max{n1,n2}

r

unknowns to guarantee this accuracy. Note that this rate is essentially

of optimal order in the present situation, i.e., for the case s ≥ r. If f

provides less smoothness, say f ∈ Hs,s
mix(Ω1×Ω2) and s < r, then (4.25)

induces the reduced approximation rate 2−Js. Since the the sparse grid

space owns at most J2Jmax{n1,n2} degrees of freedom, we conclude that

essentially

N ∼ ε−
max{n1,n2}

s

degrees of freedom are needed to guarantee an accuracy of ε. Thus,

altogether, we essentially obtain for f ∈ Hs,s
mix(Ω× Ω), s ≥ 0, the rate

N ∼ ε−
max{n1,n2}
min{s,r} .

If we now assume as above that f is an isotropic function such that

f ∈ Hp(Ω1 ×Ω2), we conclude, due to Hp(Ω1 × Ω2) ⊂ H
p

2
, p
2

mix(Ω1 ×Ω2),

that f ∈ H
p

2
, p
2

mix(Ω1 × Ω2). This leads to the following theorem.

Theorem 4.3. The number of degrees of freedom needed to approxi-

mate a function f ∈ Hp(Ω1 × Ω2) to a prescribed accuracy ε by the

regular sparse grid approach (4.24) is essentially

(4.27) dofsg(ε) = N ∼ ε
−

2max{n1,n2}

min{p,2r} .
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Remark 4.4. Following the idea of an equilibrated cost-benefit rate

(see [4]), one arrives at the optimized sparse grid

(4.28)
̂

V
(1)
J ⊗ V

(2)
J :=

⊕

j1
√

n1+r

n2+r
+j2

√

n2+r

n1+r
≤J

W
(1)
j1

⊗W
(2)
j2
.

As we will show in a forthcoming paper such a problem-adapted sparse

grid is superior to the standard regular sparse grid (4.23) if the spatial

dimensions of Ω1 and Ω2 differ, i.e., if n1 6= n2.

5. Comparison of the two approximations

Now, we will compare the two approximation schemes. We are inter-

ested for which values of p, r, n1 and n2 the regular sparse grid approach

is asymptotically superior to the singular value decomposition. To this

end, we shall distinguish three regimes of the smoothness parameter p

where one should have in mind the condition p ≥ min{n1, n2}. Nev-
ertheless, the subsequent discussion has to be carefully interpreted,

cf. Remark 3.5.

5.1. The case p ≥ 2r. In this case it holds f ∈ Hr,r
mix(Ω1 × Ω2).

Then, according to Theorem 4.3, it follows that the regular sparse grid

approach produces essentially optimal approximation rates, whereas

the truncated singular value decomposition is only of essentially op-

timal complexity if f is analytical. This follows from the fact that

M ∼ | log(ε)|min{n1,n2} dominating singular values are needed, see [28].

5.2. The case 2r > p ≥ r. According to Theorems 3.9 and 4.3, the

truncated singular value decomposition has the complexity

dofsvd(ε) ∼ ε
−

2rmin{n1,n2}+2pmax{n1,n2}
(2p−min{n1,n2})r

and the regular sparse grid approach has the complexity

dofsg(ε) ∼ ε−
2max{n1,n2}

p .

The sparse grid approximation is asymptotically superior to the trun-

cated singular value decomposition if dofsg(ε) . dofsvd(ε) which holds

if
2max{n1, n2}

p
≤ 2rmin{n1, n2}+ 2pmax{n1, n2}

(2p−min{n1, n2})r
.
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One readily infers that this inequality is equivalent to

0 ≤ p2 − rp

(
1 +

|n1 − n2|
max{n1, n2}

)
+ rmin{n1, n2} =: g(p).

The polynomial g(p) cannot be easily discussed for general values of

p, r, n1 and n2. But at least for the simple case n = n1 = n2, the

polynomial g(p) might be bounded from below by

g(p) = p2 − rp+ rn ≥ rp− rp+ rn ≥ 0

due to p ≥ r. Thus, in this case the sparse grid approach exhibits higher

rates of convergence.

5.3. The case r > p ≥ 0. Theorems 3.9 and 4.3 lead to the complex-

ities

dofsvd(ε) ∼ ε
−

2(n1+n2)
2p−min{n1,n2}

for the singular value decomposition and

dofsg(ε) ∼ ε−
2max{n1,n2}

p

for the regular sparse grid approach. Now, it holds dofsg(ε) . dofsvd(ε)

if the inequality

2max{n1, n2}
p

≤ 2(n1 + n2)

2p−min{n1, n2}
is satisfied. Straightforward manipulation yields the condition

n1n2 > p|n1 − n2|

for the superiority of the sparse grid approximation. Especially this

condition is satisfied if the dimensions n1 and n2 coincide.

Let us remark here that in the situation r > p an approximation in

the full tensor product space is of the same complexity as the approx-

imation by regular sparse grids.

6. Numerical experiments

In our numerical experiments we consider the special situation that

f is a symmetric function (i.e., f(x, y) = f(y, x)) and that Ω1 = Ω2 =

(0, 1) (i.e., n1 = n2 = 1). Hence, the singular value decomposition of f

is just its spectral decomposition.
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Figure 6.1. The sparse grid approximation of the

Gauss kernel converges essentially like N−2.

On level j, we subdivide (0, 1) into 2j intervals of length 2−j which

leads to 2j + 1 ansatz functions. The approximation spaces Vj under

consideration are then generated by continuous piecewise linear poly-

nomials on an equidistant subdivision of the interval (0, 1) (i.e., r = 2).

6.1. Gauss kernel. In our first example we discuss the approximation

of the Gauss kernel

f(x, y) =
1√
2πσ

exp

(
− |x− y|2

σ2

)
, σ > 0.

Since f is known to be analytical and thus arbitrarily smooth, par-

ticularly f ∈ H2,2
mix

(
(0, 1) × (0, 1)

)
, the regular sparse grid approach

converges with the optimal rate h2j
√
j ∼ 4−j

√
j. This is also observed

by our numerical results, see Fig. 6.1. Of course, the smaller the value

of σ the larger the constant which appears in front of the complexity

estimate.

According to [28], the singular values of an analytical kernel decay

exponentially (if n1 = n2 = 1). In fact, in case of the Gauss kernel

the eigenvalues decay even double exponentially, cf. Fig. 6.2, where the

decay is the faster the larger σ is. Since the eigenfunctions are also

analytical, it holds

‖ϕℓ‖Hr(0,1) . λ−sℓ for any s > 0.
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Figure 6.2. The eigenvalues of the Gauss kernel decay

double exponentionally.

Therefore, it suffices to compute the eigenfunctions with accuracyO(h2j )

(see [28] for the details) which leads to a quadratic rate of conver-

gence within O
(
N log1/2(N)

)
cost. Altogether, this shows that both

approaches converge in our setting for the Gauss kernel with essen-

tially the same rate.

6.2. Exponential kernel. Our second example is concerned with the

exponential kernel

k(x, y) = exp(−|x− y|).
Since k is only Lipschitz continuous at the diagonal x = y, it follows

that k ∈ H3/2−δ
(
(0, 1) × (0, 1)

)
for any δ > 0. According to Theorem

3.9 we therefore can essentially guarantee the rate dofsvd(ε) ∼ ε−2.

Nonetheless, as already mentioned in Remark 3.5, the singular values

decay like
√
λℓ ∼ ℓ−2 which is faster than predicted. In addition, it

turned out in our numerical tests that also the eigenfunctions {ϕℓ}
are more regular than expected, satisfying ‖ϕℓ‖H2(0,1) ∼

√
λℓ ∼ ℓ2.

The first nine eigenfunctions are depicted in Fig. 6.4. By repeating our

analysis with these settings (that is, p = r = 2 and n1 = n2 = 1) one

can shows that

dofsvd(ε) ∼ ε−4/3

which is much better than predicted.
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Figure 6.3. The eigenvalues of the exponential kernel

(blue line) decay quadratically (indicated by the grey

shadow).
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Figure 6.4. The first nine eigenfunctions of the expo-

nential kernel.
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Figure 6.5. The sparse grid approximation of the ex-

ponential kernel converges essentially like N−0.75.

On the other hand, in accordance with Theorem 4.3, the regular

sparse grid approach realizes (essentially) the same rate: dofsg(ε) ∼
ε−4/3. Indeed, this is validated by our computations (see Fig. 6.5).

Note here that only a regular sparse grid is involved and no locally

adapted sparse grid is used, see e.g. [4] and the references therein.

There, we expect a doubling of the convergence rate, i.e., essentially

the rate N−1.5. The analysis of such a nonlinear approximation scheme

is however beyond of the scope of this paper.

7. Concluding remarks

In the present paper we compared the cost complexities of the trun-

cated singular value decomposition and the regular sparse grid ap-

proach. We have shown that the regular sparse grid provides an ef-

ficient tool to approximate two-variate functions. Its cots complexity is

at least equal to the truncated singular value decomposition. In certain

situations it is even superior.

In case of the sparse grid approach we envision further improvements

by the use of an optimized sparse grid and local adaptivity. Both tech-

niques would increase the performance of the sparse grid approach.

In case of the singular value decomposition the truncation length is

determined by the smoothness of the function under consideration and
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is thus fixed. Therefore, improvements for the truncated singular value

decomposition can only be achieved by a more efficient representation

of the eigenfunctions.
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