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In this article, a method for constructing nested bases approximations to large-
scale fully populated discretizations of integral operators is introduced. The scheme
uses only few of the matrix entries for approximating the whole matrix. In this
sense, it is similar to the adaptive cross approximation method. However, its
computational complexity is improved.

1 Introduction

Let © C R? be an m-dimensional manifold, m = 2,3. We consider matrices A € R/*/

as; — / / ()il 03 () dpty dpig, G €T, j €, (1)

with index sets I and J, the m-dimensional measure p and ansatz and trial functions ¢;, 1;,
v € I and j € J. For simplicity, s, ¢; and 1; are assumed to be non-negative. The matrix A
is usually fully populated, i.e., all of its |I| - |J| entries are non-zero.

Since |I| and |J| are assumed to be large, the aim of this article is to reduce the storage
complexity of A in (1) to logarithmic-linear. A typical approach is to exploit smoothness
or similar properties of the kernel function x : 2 x 2 — R. k is commonly assumed to be
asymptotic smooth, i.e., for x € X and y € Y it holds that

|5f8§‘/{(x,y)| < e plle —y| Pr(z,y)| forall a,f € N, (2)

where p = |a| + |f]|. This assumption is known to be valid if, for instance, x is the singularity
function of an elliptic differential operator; see for instance [7]. In this case, suitable sub-blocks
of A can be approximated by a matrix of low rank., i.e. the rank k of the approximation

UVT = Ay, U eRXF Ve R (3)
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for each block t x s € P from a suitable partition P of A depends logarithmically on the
prescribed approximation accuracy. In addition to storing an approximation of A efficiently,
it is obvious that this approach can be used to speed up the multiplication of A by a vector.

The local approximation with matrices of low rank is exploited by techniques such as the
mosaic skeleton method [30] and hierarchical matrices [20, 23|. The Barnes-Hut algorithm [5],
the fast multipole method [18, 19], panel clustering [25] and the interpolation technique [12]
are based on similar ideas. Notice that the approximation by blockwise low-rank matrices
is not restricted to integral operators. It is also applicable to inverses and the factors of
the LU decomposition of second order elliptic boundary value problems even in the case of
non-smooth coefficients; see [7].

The construction of approximations (3) is usually done via analytic approximations (in-
terpolation, multipole expansion, etc.) of the kernel function k. Kernel independent fast
multipole methods [1, 31, 13] try to avoid explicit kernel expansions using equivalent densities.
The adaptive cross approximation (ACA) method [6, 10, 8] is a purely algebraic procedure,
which allows to construct approximations (3) from few of the original matrix entries. The
analytic background of the approximation is used only in the convergence analysis. Although
this method can be easily implemented and results in approximations of high-quality in the
sense that the rank k of approximation usually differs only slightly from the optimal rank, the
storage complexity of the approximation is k(|I| + |J|)log (|I| + |J|), whereas, for instance,
the fast multipole method and its algebraic generalization H?-matrices [24] are able to achieve
complexity k(|I| 4 |J|). The reason for this is that the latter methods construct approxima-
tions (3) such that the vectors of U (and V') are chosen from the linear hull of a nested basis
U(t) € R™* which depends on ¢ but not on s.

Nested bases are usually constructed via analytic approximation, i.e. interpolation [24, 22]
or multipole expansion. The aim of this article is to construct nested basis approximations by a
method which is in the spirit of ACA, i.e. which is based on few of the matrix entries, and hence
to bring together the ease of use and efficiency of ACA with the improved storage complexity
of nested bases. The new method differs from the procedure presented in [11], which converts
H-matrices to H2-matrices. Our algorithm constructs nested bases approximations without
intermediate H-matrix approximation. To this end, we introduce a new form of the adaptive
cross approximation, which is adapted towards numerically stable nested basis approximation.
A related technique is used in [27, 4] for the approximation of higher-order tensors.

The article is organized as follows. In Sect. 2 we introduce properties of the matrix parti-
tion on which the approximation is based. Sect. 3 reviews the adaptive cross approximation
method, which is used in Sect. 4 to construct nested bases approximations using only few of
the original matrix entries. The approximation error and the computational complexity is
analyzed. Finally, numerical experiments which demonstrate the improved efficiency of the
new approach in particular when using the recompression procedure from [11] are presented
in Sect. 5.

2 Matrix partitioning

The low-rank approximation (3) usually cannot be done globally. For instance, elliptic prob-
lems typically lead to singularities of k(z,y) for = y. An example is the Coulomb potential



k(z,y) = |[r —y|~'. Hence, the set of matrix indices I x J of A has to be partitioned suitably.
In the case of elliptic problems, for the existence of approximations (3), the sub-block ¢ x s
has to satisfy the so-called admissibility condition

max{diam Y;, diam X} < ndist(Y;, Xj) (4)

with a given parameter n > 0 or min{|t|, |s|} < nm, holds for a given n.;,, € N. Here, we
make use of the notation

di X = — d dist(X,Y):= inf —
iam ;;g{lx yl and dist(X,Y):= inf | —y

and the supports
Y, = Jsupp e, X, :=|Jsuppy;
1€t JjEs
of clusters t C I and s C J, respectively. Equivalently to (4), the pair (Y;, X;) has to satisfy
Xs C F(Y;) and Y; C F(X;), where

F(D) := {r € R® : ndist(z, D) > diam D}

denotes the far field of the bounded set D C R3. Notice that in order to satisfy (4), the
supports of t and s have to be far enough away from each other.

On the other hand, a suitable partition P of the matrix indices I x J must be computable
with logarithmic-linear complexity in order not to spoil the desired overall complexity. Search-
ing the set of possible partitions of I x .J for a partition P which guarantees (3) seems practically
impossible since this set is considerably large. By restricting ourselves to blocks ¢ X s made
up from rows ¢ and columns s which are generated by recursive subdivision, P can be found
with almost linear complexity. The structure which describes the way I and J are subdivided
into smaller parts is the cluster tree.

A tree T7 is called a cluster tree for an index set [ if it satisfies the following conditions:

(i) I is the root of T7;
(i) if t € T} is not a leaf, then ¢ is a disjoint union of its sons Sy(t) := {t1,t2} C T7.

We denote the set of leaves of the tree Ty by L(T}). Each level of T; contains a partition of
the index set I. The depth of T}, i.e. the maximum level of clusters ¢t € T} increased by one,
will be denoted by L(T). Cluster trees can be computed, for instance, by the bounding box
method [14] or the principal component analysis; see, for instance, [7]. The latter methods
take into account the geometric information associated with the matrix indices.

The construction of the desired partition P can be done no matter what the actual admis-
sibility condition is. The partition is usually generated by recursive subdivision of I x J. If
(4) is not satisfied for a block ¢ x s, then (4) is checked for its sub-blocks S;(t) x S;(s). The
recursion stops in blocks which satisfy (4) or which are small enough. The set of former blocks
are denoted by P,am, the set of latter blocks will be referred to as P,onaam- The union of P4,
and P,onaam constitutes the desired partition P of I x J. The constructed partition has the
property that for a given ¢ € T7 a constantly bounded number ¢, (t) := [{s C J : t xs € P}| of



blocks ¢ X s appear in P. Similarly, given s € Ty, the expression cg,(s) := {t C [ : t x s € P}]
is bounded by a constant. Hence, the expression

Gp 1=, max 1 (1), c5p(s)} (5)

is bounded independently of the sizes of I and J; see [17].

3 Adaptive cross approximation

The adaptive cross approximation (ACA) method was introduced for Nystrom matrices [6]
and extended to collocation matrices [10]. A version with refined pivoting strategy and a
generalization of the method to Galerkin matrices was presented in [8]. We consider sub-
blocks ¢t x s of A € R™*7 defined in (1). If t X 8 € Pyonadam, then all the entries of A, are
stored without approximation. ACA treats each block A, t X s € Pogm, independently from
all other blocks in P. The method constructs sequences of vectors uy = . /(y);, and v from
the following recursion

k—1 k—1

Uy, := Atjk - Z(W>jku€ and v = A"ks o Z(ue)i’cw

/=1 /=1

with suitable row and column indices i; and jj satisfying (ug);, # 0; see [7] for details. In
particular, this means that only k& of the original columns A;;, and rows A;, ; of the sub-block
Ays have to be computed. It is known (see [7]) that

UVT = Atcr(Anr)_lATsu (6)

where U = [uy,...,ug], V = [v,...,v) and 7 := {iy,...,ix} Ct, 0 := {j1,..., 7k} C s.
Note that both 7 and ¢ usually depend on both ¢ and s. The number of operations required
for constructing the approximation

UVT = At87 (7)

is of the order k2(|t| + |s|), while the storage required for UV is of the order k(|t| + |s|).

The required rank of the approximation k to satisfy a prescribed accuracy ¢ can be found
from inspecting the norms of 4, and vg. In the case of asymptotically smooth kernels x, the
rank k£ can be guaranteed to depends logarithmically on €. This follows from the fact that
U, = (Rg—-1)1j, and vy, = (Rg—1)i,s are columns and rows of the matrix Ry_; € R™* defined
by the iteration Ry := A;s and

(Rr—1)t5, (B—1)iys
(Re-1)ije

This matrix recursion is related with the following analytic approximation of the kernel func-
tion k: ro(z,y) = k(z,y) and for k = 1,2, ...

RkIZRk_l— ]{7:1,2,....

H('rlay) g H(x:yl)

re(z,y) = Kz, y) — | W), W@ =MT| eRF, (8
ﬁ(‘rk?y) "f(xyyk)



with points z; and y; chosen such that

k() oo k(T k)
My = : ; c RF*k
K(Try) - k(TR k)

is non-singular. In [8] we proved that

re(z, y)|l < (op +1)  max [E[r.](y)],

ze{z,x1,...,xx }
where &[f] denotes the Lagrange interpolation error for any system of & functions and
k

._ (k)
o1 = sup ; 69 ().

Approximations of type (8) were already considered by Micchelli and Pinkus in [26], where it
is proved that such approximations are optimal with respect to the L?-norm. Furthermore,
Tyrtyshnikov et al. [15] investigated the matrix analogue of (8). If the pivoting points x;,
1 =1,...,k, are chosen such that M} has maximal determinant in modulus then we obtain
or < k. In this case of so-called matrices of mazimum volume, we also refer to the error
estimates in [29] which are based on the technique of exzact annihilators; see [3, 2]. In practice
it is, however, difficult to find matrices of maximum volume. Finding the pivot ¢, from
choosing the maximum entry in modulus in the ji-th column can be done efficiently. In this
case, one can prove the conservative bound o, < 2¥ — 1. Hence, the low-rank approximation
UVT can be regarded as quasi-optimal. Possible redundancies among the vectors uy, vy,
¢ =1,...,k, can be removed by orthogonalization; cf. [7]. Treating each block in P,q, this
way, the total number of operations for the construction of an approximation to A € RII*II
is of the order k*(|I| + |J|)log (|| + |J|) and the total amount of storage required is of the
order k(|I] + |J])log (|I] + |J]).

ACA treats each block Ay, t X s € Paanm, independently from all others. However, the
low-rank approximation UV7 in (7) shares common properties with other blocks. In [9] we
presented a modified technique (RACA) which exploits the existence of common column and
row bases U = (U(t))ser, and V = (V(t))ser, of the low-rank approximations UV’ among
the blocks, i.e.

A = U)S(t,8)V(s)', txs€ Pum.

Notice that the matrices U and V' in (7) depend on both ¢ and s, whereas here only the (small)
matrix S(t,s) € R¥** depends on both ¢ and s. In order to improve the storage complexity,
in [9] the bases U and V were chosen such that they can be easily recomputed each time they
are required. As a consequence, the number of operations did not improve compared with
ACA. In order to store the cluster bases efficiently, an additional property has to be exploited.
A cluster basis U = (U(t))ier, is called nested (see [24]) if for each t € Ty \ L(T}) there are
transfer matrices Fy; € R¥** such that for the restriction of the matrix U(t) to the rows #'
it holds that

Ut)lg =U{")Fyy for all ' € Sy(t). 9)
Storing a nested cluster basis requires storing U(t) for all leaf clusters ¢ € L£(77) and the
transfer matrices Fyy, t' € Si(t), for all t € T'\ L(T7). The nestedness of cluster bases is the
reason for the improved complexity of fast multipole methods and H2-matrices.



4 Construction of nested approximations

Although ACA generates approximations of high quality, the size of the factors A;, and A,
in (6) depends linearly on the number of rows |t| and the number of columns |s|. To overcome
this, our aim is to consider the approximation

Ats ~ Atat (ATtO't)_lATtUs (ATsas)_lATss (10)

instead of (6) and store only the small matrix A,,,, for each block t X s € P,gy,. Here, 7 C ¢
and oy C F(t) satisfying |7| = |o¢| = k, represent ¢ and its far field

F(t)::U{seTJ:HfjtzfxsePadm}c{jeJ:Xjc]—"(Yt)},

respectively. The (large) matrices Ay, (Aro,) ! and (A, ) 'A, s will be approximated by
matrices U(t) € R™ and V(s) € R**™ which are constructed as nested bases. The aim of
this section is to prove error estimates for the special type of low-rank approximation

Ay = U(t) A V()T

Notice that one could also store (A,,,) *Ase,(Ar,.)"! for each block ¢t X s € Pogm and
represent A;,, and A, s recursively. This, however, leads to a numerically unstable algorithm,
because the matrices A,,,, are close to singular (their singular values decay exponentially as
we shall see in Lemma 1) and its inverse can be treated in a stable way only as a product
with Atlgt, t'ClI.

Let t € Ty and let {qi,...,qx.} be a basis of II}, where k. := dimII} ~ p* and p € N is the
smallest number such that p > |log, €|. We assume that there is 7, = {i1,... 4.} C ¢ such
that the following two conditions are satisfied.

(i) There are coefficients &;, such that

(ww QJ L2(Q Q/JW q] . .
; , ti=1,.. k. 11
Ty 25‘ i et 6 (11)

(ii) the matrix A, rq) has full rank.

To see that these assumptions are reasonable, let Z € RI***< be defined by Zi; = (Vi, ¢5) 120
i€t j=1,...,k.. Then (i) follows from rank Z < k.. The set 7; is not unique. Usually,
any sub-set of ¢ having k. elements will do. To see this, assume for the time being that
Y; = 0,. In this case, the matrix (Z;,;),; having entries (v,,q;) = ¢;(x;,) is non-singular iff
Hg is unisolvent with respect to the points z;,, £ =1, ... kg, i.e.

q(z;,) =0, (=1,.. k.,

for some ¢ € H?) implies that ¢ = 0. The set of tupels (z;,,...,2;_) for which Hg is not
unisolvent is known to be of measure zero; see [28]. Hence, we may assume that 7, C ¢ is
chosen such that also (ii) is valid. Otherwise, the rank of A,z () would already be bounded by
k.. A method for choosing 7; and o; will be discussed later in this article.



The following lemma states the existence of low-rank approximations consisting of linear
combinations of some of the block’s rows. Notice that with the previous assumptions it
is possible to guarantee that the rows 7; used for the approximation of A;; can be chosen
independently of s. This will be crucial for this article.

Lemma 1. Let assumption (i) be valid and let k, ¢; and ; in (1) be non-negative. Then
there is = € R™™ and a constant ¢; > 0 such that

||At’s - EA’HSHF S CIEHAt’sHF
for allt' Ct and s C F(t).

Proof. The asymptotic smoothness (2) of x guarantees that the Taylor series with respect to
y about y' € Y; converges exponentially, i.e. we have the decomposition

k(. y) = Tz, y) + Ryp(x,y),
where T},(z,-) € I} and for z € X, and y € Y}

. diamY; \” , .
< _ < P !
Ry <6 (g ) o)) < Sl )

due to X, C F(Y;). Exchanging the roles of y and ¢/, we obtain in particular

|5z, )] < |rl,y) + [ Rz, y)] < (1+ ém)ls(e, y)l. (12)

For simplicity we may assume that [[¢;||z: = 1, ¢ € I. Then assumption (11) is equivalent

with i
/ (% - Z fiéwi[> q(y)dp, =0
L =1

for all ¢ € II3. From

Q5 — Zfz’zaz’gj = /Q/Q Vi(y) — Zggifl/}ig(y)) k(x,y)p;(x) dpy Ay
B // ) = Yt <y>> [k(2,9) = Tyl y)]; (@) dpy dee

Ry(z,y)ej(x) dpy dps

_ /Q /Q m@)—é&m@)

we see that

ke ke
las = > Gutiil <& (1 +2 |a-e|> 7 s [ )Gyl ey i
/=1 (=1



Estimate (12) implies

/ @Iz, 9) duy € max |x(z,y)| <c min |x(z,y)| < e / )1 )] .
Q Y Q

€supp Yy yEsupp ¥;

The non-negativity of ¥, ¢;, and « leads to

ke ke
|aij — Zfi@aigj‘ < c6y <1 + Z |sz’) nP|ai;!.
=1 =1
The matrix = € R"*™ having the entries &, guarantees that
||At’s - EATtSHF < Cép(l + HEHOO)anAt’SHF-

]

Notice that Lemma 1 implies that the singular values of the matrix A,,,, decay exponentially
to zero as stated before. The following lemma uses the previous to establish the existence of
low-rank approximations of ACA type.

Lemma 2. Let assumptions (i) and (ii) be valid. Then there is o, C F(t), |oy| = |1|, such
that
HAt/s — Atlgt (A‘rtat)_lATtsHF < 62€”At’F(t)HF fOT' all s C F(t), t/ C t, (13)

where cg := c1(1+ ||(Ane,) " AnsllF)-

Proof. Let 2 € R"*™ be as in Lemma 1. According to assumption (i) there is oy C F(t),
|o¢| = |7|, such that A,,,, is invertible. Then we have

Aps = Ave,(Ari,)  Ars = {Avs — EA5s} — {Ave, — EAro,} (Aro,) ' Ars
and hence with ¢ := ||(A,,0,) " ArsllF
[Avs = Avo,(Aro) " Arslle < NJAvs = EAr e + cllAvo, — ZAs0, I
< cie((|Avsllp + el Avo, ||l p) < coel| Avpllp-
The second last estimate follows from Lemma 1, because s, 0, C F(t). O
Remark. Note that Lemma 2 holds true for every choice oy C F(t) with A,,,, invertible.

Let ¢ C t. If the matrix
Bt/t = At’O't (ATtO't)_l <14)

is applied to columns A, ;, j € F(t), then (By1A;,;)r = Avnr, and according to Lemma 2
[Avj = BitArjll2 < cael| Avp |l r,

i.e. ByyA,,; approximates Ay;. Hence, By, may be regarded as the algebraic form of an
interpolation operator. The following lemma estimates the accuracy when expressing By by
the product Byy B, of two interpolation operators. Notice that the estimate is valid only on
“smooth functions” A, s C F(t).



Lemma 3. Let t' € Ty satisfy t' Ct. Then for all s C F(t) it holds that
|[Bor — Biv Bryi] Arysl| < csel|Avsllp-
Proof. From
[Birt — By Br,il Arys = Aps — Buw Arys — (Avs — BuiArys) + Buv[Ar,s — BryiAns)
it follows using Lemma 2 that

[[Birt — Byt Bryi) Aris|l p < 26 (| Avran e + [ Avrlle + | Bev el Ary e | 7)
< &2+ [|Bevllr)el| Al p.

[]

Similar results as for the row clusters ¢ can be obtained for column clusters s provided
assumptions analogous to (i) and (ii) are made. In particular, for a given s € Ty this defines
clusters o, C s and 7, C F'(s), |75| = |os|, where

F'(s) := U{tE Tr:35D s:t X 5 € Pagm}-
For s’ C s we investigate the matrix
Cos = (Ar ) Aryr (15)
Due to the analogy, we omit the proofs.

Lemma 4. Let assumptions analogous to (i) and (ii) be valid. Then there is s C F'(s),
75| = |os|, such that
HAtS/ - Ata‘s <AT805>71ATSS/

or allt C F'(s) and s' C s.
f

|r < chel|Ars || F

Lemma 5. Let s € Ty satisfy 8" C s. Then for all t C F'(s) it holds that

||Atas [Cs’s - Cs’s’CUS/s]HF S C5€||AIS/||F'

4.1 Construction of nested row and column spaces

The construction of nested bases is usually done by analytic constructions. Fast multipole
methods [18, 19] are based on multipole expansions which have to be adapted to the respective
kernel function k. H2-matrix approximations are usually constructed via interpolation; see
[24, 22]. In this section, we construct the nested bases with a purely algebraic technique which
is based on the original matrix entries and thus avoids explicit kernel expansions. In this sense
the presented construction is in the class of kernel independent fast multipole methods; see
[1, 31, 13]. We define a nested basis U consisting of matrices U(t) € R for each t € T} in
a recursive manner starting from the leaves of T;. For leaf clusters ¢ € L(T}) set

U(t) = Bth



where By is defined in (14). Assume that matrices U(t') have already been constructed for
the sons t' € Sy(t) of t € Ty \ L(T}). Then in view of (9) we define

Ut) = U)Br, t € Si(t). (16)

Before we will prove in the following theorem that U(t) approximates A, (A, )" for
all t € Ty, let us investigate the complexity of the construction of . Since the set of leaf
clusters L(77) constitutes a partition of I and for each cluster t € L(T7) the |t| X k;-matrix
By with ky < min{k., |t|} has to be stored, at most k.|I| units of storage are required for all
U(t), t € L(T;). Similarly, the number of arithmetical operations for computing all matrices
By = Ai,(Ar,6,) 7Y, t € L(T}), is of the order

SOORI AR < Y 2k < 2k2]1).

teL(Ty) teL(Ty)

Additionally, storing the matrices B, ,; € RFEv >kt requires

>y kt/kt<22mm{k It]?} < 6k.|I|

teTI\L(Ty) €Sy (t teTr

due to max{ky, k:} < min{k.,|t|} and the estimate (see [7, Lemma 1.21], [21])

> min{e, [t} < 3/el1|. (17)

teTr

The number of operations for computing the matrices B.,; = A, ,,, (A,,5,)"" is bounded by

S0 ek AR <2k ) ) K <4k min{k2, [t} < 12k2|1).

teTI\L(TT) /€S (t) teT\L(TT) V€S (t) teTy

As a consequence, O(k?|I|) arithmetical operations and O(k.|I]) units of storage are required
for the construction of the nested basis U defined in (16).

Theorem 1. Let t € Ty and let £ = L(1;) denote the depth of the cluster tree T,. Then
IU(t) = Aio(Aro) " Arslle < cocllAusllp - for all s C F(t),

where

V2e3(v2cp)" !
2¢5 — 1
and cp := max{|[(Ans,) T AnsllF, s C F(t), t € Tr \ L(T7)}.

Cg - —

Proof. The assertion is proved by induction. It is obviously true for leaf clusters. Assume

10



that it is valid for the sons S;(t) of t € T \ L(T}). Then

U®) = Ao (Aro) NArsllz = Y- NUDe = Avo, (Arie) T As 17

t'eS;(t)
= > U{")Br = Bud Al
t'eSi(t)

<2 Z Atlo't/(ATt/O't/)_l]ATt/O't (ATtUt)_lATtSH%‘ + H[Bt/t - Bt/tlBTt/t]ATtSHi—'

t'eSr(t
<2 Z CBH At’Ut/ (ATtIJt/)_l]ATt/UtH% + C§€2|l‘At’JH?J

t/ESI )
= 2l AulE+2ek 3, UMW) = Ave, (Aryo, ) Aryon -

t'eSy(¢)

The last estimate follows from Lemma 3. Setting

Qyp = ||[U(t/) - At’O't/(ATt/Ut/)_l]ATt/Ut||%‘7

we obtain the recurrence relation

Qyr S 20%52||At1J||%’ + QCQB Z Qlyrr t/ € T[ \ ,C(T])

eS8y (t)
With ap = 0 for ' € L£(T}) this leads to

(2¢%) 1 —1
2¢% — 1
where ¢ denotes the depth of the sub-tree T,,. Hence,

U () = Ao, (Aro,) N Arsllf < 2638° | A3 + 265 D ow
t'eS(t)

1A I

ay < 23 || Avs %,

(202B)€ —1

< 2¢2e?
- 22 1

which is the assertion. O

Remark. The size of cg depends on the choice of 7y and o,. We have already mentioned that
Ao, 1s close to singular, because 7, C t and oy C F(t). Nevertheless, the norm of products of
the form Avpg,(Are,) b o1 (Are,) L Ass is bounded by a small constant cg; see the discussion
on oy, in Sect. 3. Computations show that cg ~ || ~ |loge|®. Rigorous estimates for cg will
be proved in a forthcoming article.

Similarly, for s € L(T;) we set V(s) = CL, where C, is defined in (15). Assume that
matrices V' (s') have already been constructed for the sons s’ € S;(s) of s € T;\ L(T;). Then
we define

V(s)ls =V (s)C;,

g 18)

s € S;(s). (18)

The complexity estimates on the column basis U also apply to the row bases V := (V(s))ser,,
i.e. O(k?|J|) arithmetical operations and O(k.|.J|) units of storage are required for V.

11



Theorem 2. Let s € T and let ¢ = L(Ts) denote the depth of the cluster tree Ts. Then there
18 ¢; > 0 such that
[ Ato, [(Aryo,) " Ars = V()" llp < crellArs|lr

for allt C F'(s).

4.2 Matrix approximation
Let t X s € Pygm- Using the previously constructed bases U and V), we will employ
Ut)S(t,s)V(s)",

where

S(t,s) = Ao, (19)

as an approximation to Ay. The amount of storage required for S(t,s) and the number of
arithmetical operations for its computation can be estimated by

> kiky g% >k +kl< %Z > min{kf,|t|2}+%z > min{k? |’}

txseP txseP teTr sitxseP seTy t:txseP
< (S mt ) ¢ 3 minti )
teTy seTy
3
< Sewhe(1]+ 1)

due to (17). Notice that this also includes the construction of A, t X s € Phonadm-

Theorem 3. Lett X s € Pogm. For the approximation error it holds that
[ A =U(1)S(t, )V ()" | < (c2+ ol Cusll el Ausllr + (call Buellp + ezl U ()] )el| Arsl - (20)
Proof. We have that
Ass — By S(t,5)Cos = Aps — BuArys + Byt [Arys — Aro Cis] -

From Lemma 2 it follows that ||As — BuAnrs|| < coel|Avsl|r, and from Lemma 4 we have that
HATtS - ATtUSCSSHF < C4€HA[5HF. Therefore,

[As = BusS(t, 8)Cisl|p < e(cal| Ausll e + cal| Bull pl| Arsl| 7).
Furthermore, Theorem 1 and Theorem 2 yield

|U(t)S(t, s)V(s)T — BuS(t,s)Cssllp
< NUDrlISE 9V (s)" = Culllr + |CsllplI[UE) — BulS(t, s)||r
< NWU )| perel|ArsllF + | Cusll pese || Avsll

which proves the assertion. O

12



Gathering the previously analyzed steps, we obtain the following algorithm for the con-
struction of the approximation of A € R/*/.

—_

. Generate the entries of all blocks Az, t X s € Pionadm;

2. Generate the nested basis U via (16) and the pivotal indices 7;, o, for each t € T;
3. Generate the nested basis V via (18) and the pivotal indices 7y, o, for each s € TY;
4. Generate S(t,s) for all blocks t X s € Pagn via (19).

As previously analyzed, these four steps require O((|I|+|.J|)| log £|®) arithmetical operations
and O((|I| + |J|)|loge|®) units of storage. Notice that for boundary integral operators in
R? it can be expected that k; ~ p* = [log, €]* due to the adaptivity when constructing
the nested bases via ACA, which leads to complexities O((|I| + |J])|loge|*) and O((|I| +
|J|)| log £]?), respectively. Hence, the new method saves one logarithmic factor compared with
the approximation by H-matrices via ACA.

4.3 The choice of representor sets 7; and o,

While the pivots 7 and o in ACA (6) can be found adaptively for each block t x s, 7, and
o, in (10) have to be known a-priory. For a given set ¢ C I, the pivots 7 C ¢ representing ¢
and the far field pivots o, C F(t) representing F'(t) have to be chosen such that the matrix
A5, is invertible in a numerically stable way, i.e. the norms of Ay, (A, )" and (A,,0,) A,
are small for all s C F(¢). In this section, two possible ways of constructing 7 and oy
will be presented. Both methods start from rich enough sets 7, C ¢ and &, C F(t), i.e.
|7¢|, |G| > ke, such that Az gz, has full rank. In a second step, suitable subsets 7, C 7; and
oy C 6y with k; := || = |oy| < k. and the above mentioned properties are chosen from 7; and
oy, respectively:

1. apply ACA with accuracy ¢ to the matrix As5, (likewise with global pivoting);

2. use the row pivots {iy,...,ix} and column pivots {ji, ..., jk } chosen by ACA as the
representor sets 7; and oy, respectively.

Constructing 7 and o; from larger sets has several advantages. First of all, we can adapt
the rank k; < k. to the properties of the cluster basis and hence improve the storage costs.
Secondly, ACA automatically guarantees that the matrix A,,,, is invertible, which is crucial
for the interpolation process, i.e. for the definition of the matrix By;. Furthermore, by slightly
modifying the ACA algorithm one can compute the LU decomposition of A,,,, as a byproduct.
Therefore, the expressions Ay, AZL and A-L A, can then be evaluated simply by applying
forward and backward substitution.

Note that reducing the representor sets via ACA does not change the error analysis in
Sect. 4.1. Inspecting the proof of Theorem 3 and its preceding lemmas shows that any choice
of sets 7, C t and o, C F(t) satisfying

[Avs — Avo, ALy, Arsllr < cell Aipllr for all s € F(t), t' C t, (21)

TtOt
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instead of (13) in Lemma 2 yields a nested cluster basis with an approximation property
similar to (20). One can see that replacing (13) by (21) will change only the constant in
Theorem 1. The following lemma shows that the estimate (21) can be preserved.

Lemma 6. Assume that (13) holds for 7, C t and o, C F(t), i.e.

[ Avs — Avg A2 Avslle < el Avrwllr for all s € F(t), ' C t. (22)

TtOt

Then for any pair of subsets & C 1 and xy C oy satisfying that Ag,,, is invertible and
||ATtUt - ATtXtA;;tA&Ut”F < €||ATtUt||F7 (23)

we have that (21) holds with ¢ := 1+ cg(||By||r + ||Agt;tA§tgt||F) + ||At/XtA;;t||F.
Proof. This can be easily seen from the equation

Aps — At/Xt (AﬁtXt)_lAXtS = Aps — At’Ut (ATtUt)_lATtS + Bt’t(ATtUt - ATtXtAé_ti(tAEtUt)CSt

- (At’Xt - Bt’tATth)Ag_t;tAfotcst - At'XtAg_t;t (Aﬁts - B§ttATtS)‘
Using (22) and (23), we obtain the assertion. O

In the numerical results two methods for constructing the latter sets 7, and &, will be
compared. Both are motivated by the relation of ACA with interpolation.

Geometric construction

Let t C I. Our aim is to select a sub-set x(t) C ¢, |x(t)| = min{k., |¢|}, representing ¢ in some
sense. If k. > |t], then we choose x(¢) := t. In the other case, let M(t) := {m;, i € t} C R?
be a set of points associated with the supports X;, i € t. A box @y C R? with minimal side
lengths containing M can, for instance, be computed by the principal component analysis
of the points in M(¢). The main directions of @)y are the orthogonal eigenvectors of the
covariance matrix
C, = Z:(mZ —ca)(my — )t
ict

where ¢y 1= ﬁ > ict Mi denotes the centroid of M(t). @ is then discretized using a tensor
grid G with k. = [log, €] points (e.g. [log, €] Chebyshev nodes in each spatial direction),
and we define

x(t) := {i; € t : my; is closest to a grid point j = 1,..., k. of G}.

Remark. In order to guarantee that a chosen point m;; is not used twice, we remove it from
M. This guarantees that |x(t)| = min{k., |t|} and the construction of x(t) can be done with
O(k.|t|) operations.

The method from above defines 7; := x(t) for each t € T;. A naive approach to choose the
far field pivots would be to define 6, analogously:
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This would, however, lead to an O(|I| - |J|) algorithm due to the fact that |F(t)| = O(|J]).
Instead, setting P, (t) :== (J{s € Ty : t X $ € Paam}, we exploit the recursive relation (starting
from the clusters t with Py, (t) # ()

F(t) = F(t') U Pu.(t),
where ¢/ denotes the father of ¢ in 7. We set
0 = X(0pr U Prar(1)).

Since the cardinality of Py, (t) is of the order cg,|t|, where ¢y, has been defined in (5), the
latter approach yields an O(k.|I|) algorithm.

Recursive construction

Another way of constructing 7; is based on a recursion. For the leaves set 7, := t if || is
small enough. Otherwise, we use the geometric construction from above. Assume that 7, has
already been constructed for the sons t' € Sy(t) of t € Ty \ L(17). Let

Ty = U T C 1.

€Sy (t)

Numerical experiments confirm that this method is generally faster than the first one, since
the sets of pivots taken into account for the computation of the cluster basis are smaller. On
the other hand, it turns out that the latter method may lead to a lower accuracy. This is due
to the fact that too small subsets 7; of ¢t in Lemma 1 imply a less reliable approximation of
the kernel function k.

4.4 Application of the approximation to a vector

Since the constructed approximation is similar to an H?-matrix, the matrix-vector multipli-
cation y := y + Az of a matrix A by a vector z € R’ can be done by the usual three-phase
algorithm (cf. [24]). The following algorithm is a consequence of the decomposition

Av~ Y Azt Y U)S(Es)V(s) ..

txsepnonadm txsepadm

1. Forward transform
In this first phase, transformed vectors (s) := V(s)Tx, are computed for all s € T.
Exploiting the nestedness (18) of the cluster bases V, one has the following recursive

relation
Bs)=V(s) we= > Co V(NTzg= Y  Co (s,

s'€Sy(s) s'eSy(s)

which has to be applied starting from the vectors &(s) := V(s)Tx, s € L(Ty).
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2. Far field interaction
In the second phase, the products S(t,s)Z(s) are computed and summed up over all
clusters s satisfying ¢t X s € Poqm:

gty = > St s)i(s), teTr.

5:tXSEP,dm

3. Backward transform
The third phase transforms the vectors g(t) to the target vector y. The nestedness (16)
of the cluster basis U provides the following recursion, which descends the cluster tree
T[I

(a) Compute §(t') := y(t') + Bpy(t) for all t' € Si(t);
(b) Compute y; 1=y + U(t)y(t) for all clusters t € L(T7).

4. Near field interaction
For all t X s € Pyonaam compute y; := y; + Apsxs.

The number of operations required to perform step 1 to 4 is of the order O(k.(|1] + |J|));
see [21].

5 Numerical experiments

In this section, we test the algorithm by approximating matrices A € R’/ arising from the
discretization of the classical single layer potential operator on two boundaries “cylinder” and
“hinge”, i.e., the matrix entries are defined as in (1) with piecewise constant basis functions
w; =;, 1 € I = J, and the singularity function

1

K(z,y) = m

Due to symmetry, it suffices to compute the upper triangular part of the matrix approximant,
where for admissible blocks ¢ x s we have Ay, ~ U(t)S(t, s)U(s)?. For the computation of the
representor sets 7; and g; one of the two methods explained in Sect. 4.3 is used. The geometric
one will be referred to as “ACAgeo”, the recursive method will be labeled “ACAmerge”.

For partitioning / x I, the minimal cluster size np;, = 15 and the parameter n = 0.8 is
used. When comparing the nested basis approach with the standard ACA approach, we choose
the value n = 1.1 (in terms of computational costs) for computing H-matrices via ACA. In
the following tables, the achieved accuracy (labeled “acc.”) of an H2-matrix computed by
nested ACA is the relative error in spectral norm between the latter matrix and the H-matrix
obtained by the standard ACA. Furthermore, the compression rate (labeled “compr.”), i.e.
the reduction in memory over entrywise storage, and the CPU time of a single matrix-vector
multiplication (labeled “MV mult.”) will be presented. All computations were performed
using the AHMED-library! on a single core of an Intel Xeon processor running at 2.53 GHz.

Table 1 and Table 2 compare the H2?-matrices obtained from the methods ACAmerge and
ACAgeo. ACAmerge shows a slight advantage in speed, which becomes clearer for larger
numbers of degrees of freedom.
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Table 1: Comparison of ACAmerge and ACAgeo with ¢ = 1073

ACAmerge ACAgeo
Dofs time compr. acc. time compr. acc.
3136 (cylinder 4.0s 13.77% 3.8_3 4.0s 13.67% 2.3_3

1358 3.11% 4.4 3 13.7s  3.12% 1.2,

35.1s  2.10% 6.3_3 35.6s  2.10% 884
109.5s  0.41% 3.1, 112.4s  0.42% 4.5,

12288 (cylinder

24448 (hinge
97792 (hinge

~_— — |~

Table 2: Comparison of ACAmerge and ACAgeo with ¢ = 1074

ACAmerge ACAgeo
Dofs time compr. acc. time compr. acc.

3136 (cylinder) 7.7s 22.57% 4.4 4 7.9s 22.49% 2.8 4
12288 (cylinder) 25.71s  4.91% 5.1_4 27.1s  4.97% 5.5y
)
)

24448 (hinge 61.8s  3.13% 2.7_3 65.0s  3.18% 3.7_3
97792 (hinge 186.5s  0.59% 3.3_3 199.4s  0.59% 2.9_4

In Tables 3 and 4, one observes the improvement of nested ACA over standard ACA in
building time, compression rate and performance of the matrix-vector multiplication. For
small numbers of degrees of freedom the standard ACA approach might perform better.

Table 3: Comparison of standard and nested ACA with ¢ = 1073

Dofs time compr. MV mult. acc.

nested:  4.00s 13.77% 0.0031s

3136 (cylinder) 0 4oid 491 13.18% 000285 °5-3
i nested: 13.54s 3.11% 0.0119s
12288 (cylinder) o qord 22.83s  4.45%  0.01435 523
. nested: 35.05s  2.10% 0.0306s
24448 (hinge) o ords 60.96s  2.90%  0.0364s O3
97792 (hinge) nested: 109.5s 0.41% 0.1028s 71,

standard: 302.6s  0.87% 0.1940s

Finally, we compare whether the nested ACA approximant can be further improved in terms
of storage costs. For this purpose we use the recompression procedure [11] after building the
matrix approximation. In Table 5 and Table 6 we compare storage costs and computation
time of ACA and nested ACA after coarsening the H-matrix using the technique in [16] and
recompressing the H?-matrix, respectively. We observe that the storage costs of nested ACA
can be improved by a factor 2, whereas recompressing the H-matrix obtained from standard

!see http://bebendorf.ins.uni-bonn.de/AHMED.html
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Table 4: Comparison of standard and nested ACA with e = 1074

Dofs time compr. MV mult. acc.

nested: 7.73s 22.57% 0.0051s

3136 (eylinder) o dard: 5705 18.44%  0.0038s “46
) nested: 25.7s  4.91% 0.0175s
12288 (cylinder) o qord: 314s  6.43%  0.02005 01—
i nested: 61.8s 3.13% 0.0436s
24448 (hinge) o ord: 864s  4.36%  0.0562s > -3
97792 (hinge) nested: 186.5s  0.59% 0.1406s 33,

standard: 435.8s 1.34% 0.3011s

ACA leads to only small improvements.

In conclusion, the improvement in memory requirements of nested ACA in combination with
H2-matrix recompression is significant compared with the standard ACA approach, especially
for large numbers of degrees of freedom.

Table 5: Recompression of matrix obtained from standard and nested ACA, ¢ = 1073

Dofs time compr. MV mult. acc.

nested: 0.04s  7.28% 0.0018s

3136 (eylinder) o dard: 017s 1176%  0.0023s oo
i nested: 0.13s  1.87% 0.0081s
12288 (cylinder) 0 ord: 0.625  4.06%  0.0124s S0
. nested: 0.29s  1.38% 0.0227s
24448 (hinge) o Gord: 1.94s  249% 002965 L1
97792 (hinge) nested: 0.99s  0.29% 0.0812s 37,

standard: 6.81s  0.77% 0.1639s
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