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TOTAL VARIATION MINIMIZATION WITH FINITE ELEMENTS:

CONVERGENCE AND ITERATIVE SOLUTION

SÖREN BARTELS

Abstract. The numerical solution of a convex minimization problem involving the non-smooth
total variation norm is analyzed. Consistent finite element discretizations that avoid regularizations
lead to simple convergence proofs in the case of piecewise affine, globally continuous finite elements.
For the approximation with piecewise constant finite elements it is proved that convergence to
the exact solution cannot be expected in general. The iterative solution is based on a regularized
L2 flow of the energy functional and convergence of the iteration to a stationary point is proved
under a moderate constraint on the time-step size. The extension of the techniques to an energy
functional that involves a negative order term is discussed. Numerical experiments that illustrate
the theoretical results are presented.

1. Introduction

As a model problem for total variation minimization, we consider the energy functional E : BV (Ω)∩
L2(Ω)→ R defined by

E(u) = ‖Du‖+ (α/2)‖u− g‖2L2(Ω)

for a bounded Lipschitz domain Ω ⊂ Rd, d = 2, 3, a function g ∈ L2(Ω), and a parameter α > 0.
Here, BV (Ω) ⊂ L1(Ω) consists of all functions v ∈ L1(Ω) whose distributional gradient is a Radon
measure with bounded total variation, i.e., with | · | denoting the Euclidean norm in Rd,

‖Dv‖ = sup
{∫

Ω
v div p dx : p ∈ C∞0 (Ω;Rd), |p| ≤ 1

}
<∞.

Since this quantity defines a weakly* lower semicontinuous functional on BV (Ω), it is easy to verify
that the functional E has a minimizer in BV (Ω) which is unique owing to the strict convexity of
the quadratic part of E.

Piecewise constant as well as globally continuous, piecewise affine finite elements are included in
BV (Ω) so that the restriction of the functional E to these spaces admits unique minimizers. The
questions we address are whether discrete solutions converge to the exact solution, how the total
variation norm can be evaluated practically, and whether the discrete problems can be solved
efficiently without the use of regularizations of the functional E.

It is a straightforward task to check that piecewise constant and piecewise affine, globally continuous
finite element spaces are dense in BV (Ω) with respect to weak* convergence in BV (Ω). This means
that for every function v ∈ BV (Ω) there exists a sequence (vh)h>0 in the respective finite element
spaces that converges strongly in L1(Ω) to v and whose distributional gradients are measures with
uniformly bounded total variation. Unfortunately, this is not sufficient to deduce that discrete
minimizers accumulate at exact solutions. For this, the stronger notion of strict convergence is
needed, which additionally requires that ‖Dvh‖ → ‖Dv‖ as the mesh-size h tends to zero. In
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the case of W 1,1-conforming finite elements this is easy to establish and if Ω = (0, 1)2 and g ∈
BV (Ω)∩L∞(Ω) then the error estimate ‖u−uh‖L2(Ω) ≤ ch1/6 can be proved following an argument
from [WL09]. The employed finite element setting and the resulting consistent treatment of the
energy functional leads to very simple proofs of these statements. In the language of Γ-convergence
we show that the restriction of the total variation norm to the finite element space converges to the
total variation norm in the topology of L1(Ω). For the approximation with piecewise constant finite
elements this may not be true and we demonstrate that in general convergence of approximations
to the exact solution cannot be expected. This is surprising since the approximation of functions
in BV (Ω) with piecewise constant finite elements appears natural at first glance. The proof shows
that for a generic function u ∈ BV (Ω) and a generic sequence of triangulations the simultaneous
convergence ‖u − uh‖L1(Ω) → 0 and ‖Duh‖ → ‖Du‖ is impossible for any sequence of piecewise
constant finite element functions. Nevertheless, the approximation with piecewise constants may
be sufficient in some applications, e.g., in image denoising.

In order to compute discrete minimizers of E we consider its L2 gradient flow which is formally
given by

∂tu− div p = −α(u− g), p ∈ ∂|∇u|

supplemented by Neumann boundary conditions and initial data. The equivalence

p ∈ ∂|∇u| ⇐⇒ ∇u ∈ ∂IB(p),

where B = {p ∈ L1(Ω;Rd) : |p| ≤ 1} and IB denotes its indicator functional, motivates to consider
for σ > 0 the system of evolution equations

∂tu− div p = −α(u− g), −σ∂tp+∇u ∈ ∂IB(p)

A semi-implicit discretization decouples the equations and leads to a scheme that is stable and
convergent to a stationary point if the time-step size τ and mesh-size h satisfy the condition
τ ≤ cσh. The proof of this statement is inspired by recent results in [CP10]. Owing to the simple
structure of the set B the variational inclusion can be solved pointwise, i.e., for the proposed
discretization we have (for σ = 1)

pn+1
h =

pnh + τ∇hũn+1
h

max{1, |pnh + τ∇hũn+1
h |}

, dtu
n+1
h − divh p

n+1 = −α(un+1
h − gh),

where ũn+1
h is the extrapolated function ũn+1

h = unh + τdtu
n
h, ∇h and divh are discrete versions of

the gradient and the divergence operator, and dt is a backward difference operator. Notice that this
scheme is fully explicit in the sense that it only requires the inversion of a (lumped) mass matrix
in each step.

The correct interpretation of the abstract L2 flow stated above requires the choice of a discrete space
with inner product. For piecewise affine, globally continuous finite element functions subordinated
to a triangulation Th of Ω into triangles or tetrahedra this choice will be based on the identity

‖Dvh‖ = ‖∇vh‖L1(Ω) =
∑
T∈Th

|T | sup
ξ∈Rd,|ξ|≤1

∇vh|T · ξ = sup
qh∈L0(Th)d,|qh|≤1

∫
Ω
∇vh · qh dx,

where L0(Th)d denotes the space of piecewise constant vector fields. In view of this identity it
is natural to equip L0(Th)d with the L2 scalar product. Although we make no explicit use of
the fact that the pair L0(Th)d × S1(Th) of finite element spaces is stable for the mixed finite
element discretization of the Poisson problem, the inf-sup condition appears to be relevant for the
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discretization of the total variation norm since for the related Fortin interpolant IF : C∞0 (Ω;Rd)→
L0(Th)d we have ∫

Ω
divp vh dx =

∫
Ω

divIF p vh dx

and this identity leads to consistent discretizations of the total variation norm.

The regularized L2 flow may also be regarded as a simultaneous gradient flow for a saddle-point
formulation of E. We have

inf
vh
E(vh) = inf

vh
sup
qh

∫
Ω
∇vh · qh dx+ (α/2)‖vh − g‖2L2(Ω) − IB(qh) = inf

vh
sup
qh

L(vh, qh).

The saddle-point problem can be iteratively solved with first order primal-dual algorithms which
are discretizations of the system

∂tuh = −∂vL(uh, ph), σ∂tph ∈ ∂pL(uh, ph).

While the subdifferential of L with respect to the first variable is smooth, the second equation
defines a variational inclusion. We refer the reader to [CP10] for details.

A general approach to the iterative minimization of a discretization of E includes the following
steps: (i) restriction of E to a finite-dimensional subset Xh of BV (Ω), (ii) identification of a
discrete space Yh that allows the interpretation of the gradient as an operator ∇h : Xh → Yh,
and (iii) reformulation of the primal minimization problem as a saddle-point formulation with
techniques from convex analysis. A proof of convergence for the iterative solution in an abstract,
simple situation that follows [CP10] is discussed in the appendix to illustrate this general concept.
The formal derivation of the iterative scheme as a regularized L2 flow has the advantage that it
can cover more general problems involving nonconvex contributions to the energy functional.

The presented finite element framework is particularly useful when the energy functional involves
terms that contain differential operators. To illustrate this aspect we also discuss the approximation
of the functional

E′(v) = ‖Dv‖+ (λ/2)‖v − g‖2−1,

where ‖v‖−1 is the operator norm of v when interpreted as a functional on H1(Ω). We prove
convergence to the minimizer of E′ for an iterative scheme and show that numerical approximations
converge to the minimizer of the continuous problem.

The energy functional E has been proposed in [ROF92] for the restauration or reconstruction
of a true image u from an observation g that is a noisy or blurred version of u. The use of
the total variation norm rather than a (smooth) W 1,p seminorm for p > 1 is essential since it
allows for discontinuities along curves so that edges and contours are kept in the minimizers.
The modification E′ that uses the weaker H−1 norm to define the fidelity term is appropriate to
represent textures or oscillatory patterns and has been proposed in [Mey01, OSV03]. We refer
the reader to the papers [ROF92, OSV03] for interesting numerical studies of these models. A
minor disadvantage of the functionals E and E′ is that they may lead to the formation of so-called
staircasing. To avoid this, one may regularize the total variation norm by replacing the modulus | · |
by a continuously differentiable approximation | · |ε. Although this leads to a smooth minimization
problem which can be treated with standard methods, the performance of the resulting algorithms
is poor and numerical schemes should not make explicit use of this regularization. Using that,
e.g., | · |∗ε = IB + (ε/2)| · |2, the methods discussed in this paper can be modified to include the
regularization leading to schemes whose performance is independent of ε, cf. [CP10].

The iterative solution of functionals involving the total variation norm has been discussed in a
number of papers. The paper [Cha04] proves convergence of a semi-implicit discretization of the L2

flow of the dual problem for E. This leads to simple problems in each time step but requires that
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the time-step size satisfies the restrictive condition τ ≤ ch2. The implicit discretization of gradient
flows of regularized versions of E and E′ has been investigated in [FP03, FvOP05, ES09]. Other
methods such as nonsmooth Newton methods have been studied in [DV97, CGM99, HK04] and
seem to require the use of certain regularizations. The recent paper [CP10] proves convergence of
a primal-dual method for the iterative minimization of a finite difference discretization of E and
leads to a similar algorithm as the one presented in this paper. For accelaration methods and the
application to modifications of the functional E we refer the reader to [CP10] and the references
therein. The first error bound for a discretization of E has been given in [WL09] using finite
differences.

The outline of this article is as follows. In Section 2 we recall some elementary facts about fi-
nite element spaces, discrete time derivatives, convex analysis, and functions of bounded variation.
Piecewise affine, globally continuous approximations are discussed in Section 3 and piecewise con-
stant, discontinuous methods in Section 4. Section 5 is devoted to the numerical analysis of a
model involving a negative norm. Numerical experiments for all methods and energy functionals
studied in the paper are reported in Section 6. Appendix A reviews the convergence proof of the
primal-dual algorithm from [CP10] in a simplified setting.

2. Preliminaries

We recall some elementary identities and results that are relevant in the subsequent sections.
Throughout this paper we denote by c a constant that is independent of discretization parameters
and by (·, ·) the L2 scalar product.

2.1. Discrete time derivatives. Given a time-step size τ > 0 and a sequence (vn)n∈N we define

dtv
n+1 = (vn+1 − vn)/τ

and notice that we have

dtv
n+1 · (vn+1 − v) =

dt
2
‖v − vn+1‖2 +

τ

2
‖dtvn+1‖2.

A proof follows from considering ṽn+1 = vn+1 − v and noting that 2τ(dtṽ
n+1) · ṽn+1 = 2(ṽn+1 −

ṽn) · ṽn+1 = (ṽn+1 − ṽn) · (ṽn+1 − ṽn) + (ṽn+1 − ṽn) · (ṽn+1 + ṽn). We also note that for sequences
(an)n∈N and (bn)n∈N we have dt(a

n+1 · bn+1) = (dta
n+1) · bn+1 + an · (dtbn+1) and hence

τ

N∑
n=0

{
(dta

n+1) · bn+1 + an · (dtbn+1)
}

= aN+1 · bN+1 − a0 · b0.

2.2. Convex analysis. Given a proper, convex, and lower semicontinuous functional F : X →
R ∪ {+∞} on a normed linear space X its conjugate F ∗ : X ′ → R ∪ {+∞} is defined by F ∗(x′) =
supx∈X〈x′, x〉 − F (x). We have F ∗∗ = F when F ∗∗ is restricted to the image of the canonical
embedding of X into X ′′. The subdifferential ∂F (x) of F at x ∈ X is given by

∂F (x) = {x′ ∈ X ′ : 〈x′, z − x〉 ≤ F (z)− F (x) for all z ∈ X}.

We have that x′ ∈ ∂F (x) if and only if x ∈ ∂F ∗(x′).

2.3. Finite element spaces. For a sequence of regular triangulations (Th)h>0 of Ω into triangles
or tetrahedra with maximal diameters h = maxT∈Th diam(T ) we define

L0(Th) = {qh ∈ L1(Ω) : qh|T is constant for each T ∈ Th},
S1(Th) = {vh ∈ C(Ω) : vh|T is affine for each T ∈ Th}.
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Let hmin = minT∈Th diam(T ). An elementwise inverse estimate shows that there exists c > 0 such

that ‖∇vh‖L2(Ω) ≤ ch−1
min‖vh‖L2(Ω) for all vh ∈ S1(Th). The nodal interpolant Ihv ∈ S1(Th) of a

function v ∈W 2,p(Ω), with d/2 < p ≤ ∞ or d = 2 if p = 1, satisfies, cf., e.g., [BS08],

‖v − Ihv‖Lp(Ω) + h‖∇(v − Ihv)‖Lp(Ω) ≤ ch2‖D2v‖Lp(Ω).

2.4. Approximation by smooth functions. The space BV (Ω) is continuously embedded in
Lp(Ω) for p ≤ d/(d − 1), i.e., we have ‖v‖Lp(Ω) ≤ c

(
‖v‖L1(Ω) + ‖Dv‖

)
for all v ∈ BV (Ω), and

this embedding is compact if p < d/(d − 1), cf. [AFP00] for details. Smooth functions are dense
in BV (Ω) ∩ Lp(Ω), 1 ≤ p < ∞ with respect to strict convergence in the sense that for v ∈
BV (Ω) ∩ Lp(Ω) and δ > 0 there exists ε0 > 0 and functions (vε)ε>0 ⊂ C∞(Ω) ∩ BV (Ω) ∩ Lp(Ω)
such that for all ε ≤ ε0 we have

‖∇vε‖L1(Ω) ≤ ‖Dv‖+c0δ, ‖v−vε‖Lp(Ω) ≤ c1δ, ‖D2vε‖Lp(Ω) ≤ cε−2‖v‖Lp(Ω), ‖D2vε‖L1(Ω) ≤ cε−1‖Dv‖.

If Ω = (0, 1)d we identify a function v ∈ L1(Ω) with its extension to Rd obtained by reflection and
periodification and write v ∈ Lip(β;Lp(Ω)) if for 0 ≤ β ≤ 1 we have supt>0 t

−β sup|y|≤t
( ∫

Ω |v(x+

y)− v(x)|p dx
)1/p

<∞. In this case we can choose c0 = 0 and have ‖v− vε‖Lp(Ω) ≤ εβ, cf. [WL09].

3. W 1,1 conforming approximation

Let u ∈ BV (Ω) ∩ L2(Ω) and uh ∈ S1(Th) be the unique minimizers of the functional

E(v) = ‖Dv‖+ (α/2)‖v − g‖2L2(Ω)

in BV (Ω) ∩ L2(Ω) and S1(Th), respectively.

Theorem 3.1 (Approximation). We have uh → u in L2(Ω) as h → 0 and if d = 2, Ω = (0, 1)2,

and u ∈ Lip(β;L2(Ω)) for some 0 < β ≤ 1 then ‖u− uh‖2L2(Ω) ≤ ch
β/(1+β).

Proof. Owing to the strict convexity of E and 0 ∈ ∂E(u) we have

(α/2)‖u− uh‖2L2(Ω) ≤ E(uh)− E(u).

For δ > 0 let uε ∈ C∞(Ω) ∩ L2(Ω) be as in Section 2.4 and Ihuε its nodal interpolant. Since uh
is minimal we have, using nodal interpolation estimates and the bounds ‖u‖L2(Ω), ‖Ihuε‖L2(Ω) ≤ c,
which hold provided that h ≤ cε, that

(α/2)‖u− uh‖2L2(Ω) ≤ E(Ihuε)− E(u)

= ‖∇Ihuε‖L1(Ω) + (α/2)‖Ihuε − g‖2L2(Ω) − ‖Du‖ − (α/2)‖u− g‖2L2(Ω)

≤ ‖∇Ihuε‖L1(Ω) − ‖∇uε‖L1(Ω) + c0δ + (α/2)

∫
Ω

(Ihuε − u)(Ihuε + u+ 2g) dx

≤ ‖∇(Ihuε − uε)‖L1(Ω) + c0δ + c(α/2)(‖Ihuε − uε‖L2(Ω) + ‖uε − u‖L2(Ω))

≤ ch‖D2uε‖L2(Ω) + c0δ + c(h2‖D2uε‖L2(Ω) + ‖uε − u‖L2(Ω))

≤ c
(
(h/ε2) + c0δ + (h/ε)2 + c1δ

)
.

For h sufficiently small so that h/ε2 ≤ δ we deduce that uh → u in L2(Ω). If d = 2, Ω =
(0, 1)d and u ∈ Lip(β;L2(Ω)) then c0 = 0, c1δ can be replaced by c1ε

β, and we may estimate

‖∇(Ihuε− uε)‖L1(Ω) ≤ c(h/ε)‖Du‖. With ε = h1/(β+1) we verify the aserted convergence rate. �

Remarks 3.1. (i) The assumption u ∈ Lip(β;L2(Ω)) can be derived in a periodic setting if g ∈
Lip(β;L2(Ω)) using that for minimizers u, u′ ∈ BV (Ω)∩L2(Ω) of E subject to the data g, g′ ∈ L2(Ω)
we have ‖u−u′‖L2(Ω) ≤ ‖g− g′‖L2(Ω) and that for g′ = g(· − y) we have u′ = u(· − y). This follows
from the identities −div pj + α(uj − gj) = 0, pj ∈ ∂|∇uj |, and 〈p1 − p2,∇(u1 − u2)〉 ≥ 0.
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(ii) If g ∈ BV (Ω)∩L∞(Ω) and Ω = (0, 1)2 we have g ∈ Lip(1/2;L2(Ω)), cf. [DJL92], i.e., ‖u−uh‖ ≤
ch1/6. If d = 3 we may choose ε = h1/(β+2).

We next state optimality conditions for the minimization of E in S1(Th).

Lemma 3.1 (Optimality). The function uh ∈ S1(Th) minimizes E in S1(Th) if and only if there
exists ph ∈ L0(Th)d with |ph| ≤ 1 in Ω such that

(ph,∇vh) = −α(uh − g, vh), (∇uh, qh − ph) ≤ 0

for all (vh, qh) ∈ S1(Th)× L0(Th)d with |qh| ≤ 1 in Ω.

Proof. We have

inf
vh∈S1(Th)

E(vh) = inf
vh∈S1(Th)

sup
qh∈L0(Th)d

∫
Ω
∇vh · qh dx+ (α/2)‖vh − g‖2L2(Ω) − IB(qh),

where IB is the indicator functional of B = {q ∈ L1(Ω)d : |q| ≤ 1}. The existence of a saddle
point (uh, ph) ∈ S1(Th) × L0(Th)d follows from the fact that the Lagrangian is a closed, proper,
convex-concave function and these are the solutions of the Kuhn-Tucker conditions stated in the
lemma, cf. [Roc97] for details. �

The optimality conditions depend on the choice of a scalar product on the space L0(Th)d. For the
choice of the L2 scalar product we can formulate the discrete, regularized L2 flow of the functional
E as follows.

Algorithm (P1). Let σ > 0, (u0
h, p

0
h) ∈ S1(Th)× L0(Th)d, set dtu

0
h = 0, and solve for n = 0, 1, ...

with ũn+1
h = unh + τdtu

n
h the equations

(−σdtpn+1
h +∇ũn+1

h , qh − pn+1
h ) ≤ 0, (dtu

n+1
h , vh) + (pn+1

h ,∇vn+1
h ) = −α(un+1

h − g, vh)

subject to |pn+1
h | ≤ 1 in Ω for all (vh, qh) ∈ S1(Th)× L0(Th)d with |qh| ≤ 1 in Ω.

Remark 3.1. Notice that pn+1
h is the unique minimizer of

qh 7→ σ‖qh − ph‖2/(2τ)− (qh,∇ũn+1
h ) + IB(qh)

and is given by pn+1
h =

(
pnh + (τ/σ)∇ũn+1

h

)
/max{1, |pnh + (τ/σ)dtũ

n+1
h |}.

The iterates of Algorithm (P1) converge to a sationary point, e.g., if σ = 1 and τ ≤ chmin. We
denote ‖∇‖ = sup0 6=vh∈S1(Th) ‖∇vh‖L2(Ω)/‖vh‖L2(Ω) ≤ ch−1

min.

Proposition 3.1 (Convergence). Let uh ∈ S1(Th) be minimial for E in S1(Th). If θ = τ2‖∇‖2/σ ≤
1 then the iterates of Algorithm (P1) satisfy for every N ≥ 1

τ
N∑
n=0

(
(1− θ)τ

2
‖dtun+1

h ‖2L2(Ω) + α‖uh − un+1
h ‖2L2(Ω)

)
≤ C.

Proof. Let ph ∈ L0(Th)d be as in Lemma 3.1. Upon choosing vh = uh − un+1
h and qh = ph in

Algorithm (P1) and qh = pn+1
h in Lemma 3.1 and using

(un+1
h − g, uh − un+1

h ) + ‖uh − un+1
h ‖2L2(Ω) = (uh − g, uh − un+1

h )
6



we find that
dt
2

(
‖uh − un+1

h ‖2L2(Ω) + σ‖ph − pn+1
h ‖2L2(Ω)

)
+
τ

2

(
‖dtun+1

h ‖2L2(Ω) + σ‖dtpn+1
h ‖2L2(Ω)

)
+ α‖uh − un+1

h ‖2L2(Ω)

= −(dtu
n+1
h , uh − un+1

h )− σ(dtp
n+1
h , ph − pn+1

h ) + α‖uh − un+1
h ‖2L2(Ω)

≤ (pn+1
h ,∇(uh − un+1

h )) + α(un+1
h − g, uh − un+1

h )− (ph − pn+1
h ,∇ũn+1

h ) + α‖uh − un+1
h ‖2L2(Ω)

= (pn+1
h ,∇(uh − un+1

h ))− (ph − pn+1
h ,∇ũn+1

h ) + α(uh − g, uh − un+1
h )

= (pn+1
h ,∇(uh − un+1

h ))− (ph − pn+1
h ,∇ũn+1

h )− (ph,∇(uh − un+1
h ))

= (ph − pn+1
h ,∇(un+1

h − ũn+1
h )) + (pn+1

h − ph,∇uh)

≤ (ph − pn+1
h ,∇(un+1

h − ũn+1
h )) = τ2(ph − pn+1

h ,∇d2
tu
n+1
h ),

where we used un+1
h − ũn+1

h = τ2d2
tu
n+1
h . Multiplication by τ , summation over n = 0, ..., N , discrete

integration by parts, Young’s inequality, and dtu
0
h = 0 show that for the right-hand side we have

τ3
N∑
n=0

(ph − pn+1
h ,∇d2

tu
n+1
h ) = τ3

N∑
n=0

(dtp
n+1
h ,∇dtunh) + τ2(ph − pnh,∇dtunh)

∣∣N+1

n=0

≤ τ2

2

( N∑
n=0

τ2

σ
‖∇dtunh‖2L2(Ω) + σ‖dtpn+1

h ‖2L2(Ω)

)
+
σ

2
‖ph − pN+1

h ‖2L2(Ω) +
τ4

2σ
‖∇dtuN+1

h ‖2L2(Ω).

A combination of the estimates proves the theorem. �

Remarks 3.2. (i) Notice that we cannot expect convergence pnh → ph since ph is not unique in
general.
(ii) Algorithm (P1) may not be as simple if rectangles or parallelepipeds are used instead of triangles
or tetrahedra owing to the fact that gradients are no longer piecewise constant.

4. Piecewise constant approximation

We let Sh denote the set of interior sides of elements, i.e., all (d− 1)-dimensional simplices S with
S = T+ ∩ T− for T+, T− ∈ Th. The surface measure of S is denoted by |S| and for each S ∈ Sh we
choose a unit normal νS ∈ Rd to S. For vh ∈ L0(Th) we define the jump [vh]S ∈ R across S by

[vh]S = vh|T+ − vh|T−
if νS points from T− into T+.

Lemma 4.1 (Consistency). For vh ∈ L0(Th) we have

‖Dvh‖ =
∑
S∈Sh

|S|
∣∣[vh]S

∣∣ = sup
(αS)S∈Sh ,|αS |≤1

∑
S∈Sh

|S|αS [vh]S .

Proof. For every p ∈ C∞0 (Ω;Rd) an elementwise integration by parts and a rearrangement of the
sum over boundaries of elements shows∫

Ω
vh div p dx =

∑
T∈Th

∫
∂T
vhp · νT ds =

∑
S∈Sh

[vh]S

∫
S
p · νS ds.

A maximization of this identity over p ∈ C∞0 (Ω;Rd) with |p| ≤ 1 in Ω proves the first identity. The
second identity is straightforward to verify. �

We equip the space L0(Sh) of piecewise constant functions on Sh with the inner product

(ph, qh)h =
∑
S∈Sh

|S|d/(d−1)ph|Sqh|S ,

7
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Figure 1. Construction of a sequence of triangulations (n = 2, 4) on which piece-
wise constant finite element functions are not dense in BV (Ω) with respect to strict
convergence. Triangles are only used at the boundary of Ω = (−1/2, 1/2)2.

and define the discrete gradient ∇h : L0(Th) → L0(Sh) by ∇hvh = [vh]S/|S|1/(d−1). This leads to
the following algorithm.

Algorithm (P0). Let σ > 0, (u0
h, p

0
h) ∈ L0(Th) × L0(Sh), set dtu

0
h = 0, and solve for n = 0, 1, ...

with ũn+1
h = unh + τdtu

n
h the equations

(−σdtpn+1
h +∇hũn+1

h , qh − pn+1
h )h ≤ 0, (dtu

n+1
h , vh) + (pn+1

h ,∇hvn+1
h )h = −α(un+1

h − g, vh)

for all (vh, qh) ∈ L0(Th)× L0(Sh)d with
∣∣|qh|S∣∣ ≤ 1 for all S ∈ Sh and subject to

∣∣ph|S∣∣ ≤ 1 for all
S ∈ Sh.

The proof of the following proposition follows the lines of the proof of Proposition 3.1.

Proposition 4.1 (Convergence). If τ ≤ cσh then the iteration of Algorithm (P0) converges to the
minimizer uh ∈ L0(Th) of E restricted to L0(Th).

Remarks 4.1. (i) The algorithm can also be derived employing the lowest order Raviart-Thomas

finite element space RT0(Th) equipped with the scalar product (ph, qh)h =
∑

S∈Sh |S|
d/(d−1)(ph(xS) ·

νS)(qh(xS) · νS), where xS is the midpoint of the side S ∈ Sh. The space RT0(Th) can be identified
with L0(Sh) via the isomorphism ph →

(
ph(xS) · νS

)
S∈Sh

. In view of the identity
∫

Ω vh div pdx =∫
Ω vh div IF p dx for vh ∈ L0(Th) and p ∈ C∞0 (Ω;Rd) and the Fortin operator IF : C∞0 (Ω;Rd) →
RT0(Th) this seems natural.
(ii) The choice of the inner product on L0(Sh) may be regarded as a lumped version of the L2

inner product restricted to RT0(Th) and leads to an efficient algorithm since (for σ = 1) we have
pn+1
h = (pnh + τ∇hũn+1

h )/max{1, |pnh + τ∇hũn+1
h |} on every side S ∈ Sh. The discrete L2 flow may

however not have a meaningful limit as h→ 0.

The following example shows that in general we cannot expect that the approximation with piece-
wise constant finite elements converges to the right solution.

Example 4.1 (Non-approximation). Let Ω = (−1/2, 1/2) × (0, 1) and let u ∈ BV (Ω) be defined
by u(x) = 1 for x ∈ (−1/2, 0)× (0, 1) and u(x) = 0 for x ∈ (0, 1/2)× (0, 1). For each n ≥ 1 let Tn
be a triangulation of Ω into squares and triangles of diameter hn = 1/n (and edge lengths hn/

√
2)

as shown in Figure 1. Then there is no sequence (un)n∈N ⊂ L1(Ω) with un ∈ L0(Tn) for all n ∈ N
such that un → u in L1(Ω) and ‖Dun‖ → ‖Du‖ = 1 as n→∞.

Proof. Let (un)n∈N be a sequence with un ∈ L0(Tn) such that ‖un − u‖L1(Ω) → 0 and ‖Dun‖ ≤ c
for all n ∈ N. Let n ∈ N. For j = 1, ..., n we define

Snj = {(x, y) ∈ Ω : (j − 1)/n < y < j/n}
8



and set Sn = Sn1 . Let un ∈ L1(Sn) be the average of un over all strips, i.e., for (x, y) ∈ Sn set

un(x, y) =
1

n

n∑
j=1

un(x, y + j/n),

and reflect un across the x-axis, i.e., un(x,−y) = un(x, y) for (x, y) ∈ Sn. We then define ũn ∈ L1(Ω)
by periodically extending un with period 2/n in y-direction. Then ũn ∈ L1(Ω) is continuous across

the interfaces S
n
j ∩ S

n
j+1 for j = 1, ..., n − 1 and we have ‖ũn − u‖L1(Sn

j ) = ‖un − u‖L1(Sn) and

|Dũn|(Snj ) = |Dun|(Sn) for j = 1, .., n, where |Dun|(Sn) denotes the total variation of Dun on Sn.
Therefore,

‖Dũn‖ = n|Dun|(Sn) ≤ ‖Dun‖, ‖ũn − u‖L1(Ω) = n‖un − u‖L1(Sn) ≤ ‖un − u‖L1(Ω).

For every ε > 0 there exists N ∈ N such that ‖un − u‖L1(Ω) < ε for all n ≥ N , i.e.,

‖un − u‖L1(Sn) < ε/n.

For each n ≥ N there exist squares T± ∈ Tn with T± ⊂ Sn with un|T+ ≥ 1 − 4ε and un|T− ≤ 4ε
since otherwise we had ‖un − u‖L1(Sn) ≥ ε/n. The triangle inequality implies that |Dun|(Sn) ≥
(1 − 8ε)

√
2/n and ‖Dun‖ ≥ ‖Dũn‖ ≥ (1 − 8ε)

√
2 for all n ≥ N , i.e., we have ‖Dun‖ 6→ 1 as

n→∞. �

Remark 4.1. The example is easily modified to prove a similar statement when only triangles are
used, e.g., by dividing all elements in the above example along the direction (1, 0).

5. Minimization with H−1 fidelity term

Let H1(Ω)′ denote the dual of H1(Ω) and 〈η, v〉 the duality pairing for η ∈ H1(Ω)′ and v ∈ H1(Ω)

such that 〈η, v〉 =
∫

Ω ηv dx if η ∈ L6/5(Ω). For η ∈ H1(Ω)′ with 〈η, 1〉 = 0 the inverse of the
negative Laplace operator subject to homogeneous Neumann boundary conditions applied to η is
the function Gη ∈ H1(Ω) with

∫
Ω Gη dx = 0 such that(

∇Gη,∇ϕ
)

= 〈η, ϕ〉

for all ϕ ∈ H1(Ω) with (ϕ, 1) = 0 and we set ‖η‖−1 = ‖∇Gη‖L2(Ω). Given λ > 0 and g ∈ H1(Ω)′

with 〈g, 1〉 = 0 we consider the functional

E′(v) = ‖Dv‖+ (λ/2)‖v − g‖2−1

defined for v ∈ BV (Ω) with
∫

Ω v dx = 0. Notice that owing to the continuous embeddings BV (Ω)→
L3/2(Ω) and L6/5(Ω) → H1(Ω)′ the functional is well defined for d ≤ 3. The discrete inverse

Laplacian Ghη ∈ S̊1(Th) =
{
vh ∈ S1(Th) :

∫
Ω vh dx = 0

}
is for η ∈ H1(Ω)′ with 〈η, 1〉 = 0 defined

by (
∇Ghη,∇ϕh

)
= 〈η, ϕh〉

for all ϕh ∈ S̊1(Th) and we set ‖η‖−1,h = ‖∇Ghη‖L2(Ω). We let Ph : H1(Ω)′ → S̊1(Th) denote the

L2 projection onto S̊1(Th) and define gh = Phg. We have that ‖Phη‖−1,h = ‖η‖−1,h ≤ ‖η‖−1 for all
η ∈ H1(Ω)′ with 〈η, 1〉 = 0. The discrete problem consists in the minimization of

E′h(vh) = ‖Dvh‖+ (λ/2)‖vh − gh‖2−1,h

among vh ∈ S̊1(Th).

Theorem 5.1 (Approximation). Assume d = 2, g ∈ L2(Ω), and that there exists γ > 0 such that
‖[G − Gh]η‖L2(Ω) ≤ chγ‖η‖−1 for all η ∈ H1(Ω)′ with 〈η, 1〉 = 0. Then uh → u in Lp(Ω) for every
1 ≤ p < 2 as h→ 0.
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Proof. Owing to strict convexity of E′ and 0 ∈ ∂E′(u), we have

(λ/2)‖u− uh‖2−1 ≤ E′(uh)− E′(u) = E′h(uh)− E′(u) + E′(uh)− E′h(uh).

For δ > 0 let uε ∈ C∞(Ω) ∩ BV (Ω) be as in Section 2.4 and I̊huε = Ihuε −
∫

Ω Ihuε dx/
∫

Ω 1 dx.

Since uh is minimal for E′h in S̊1(Th) and since E′h(vh) ≤ E′(vh) for all vh ∈ S̊1(Th) we have that

(λ/2)‖u− uh‖2−1 ≤ E′(I̊huε)− E′(u) + E′(uh)− E′h(uh)

= ‖∇Ihuε‖L1(Ω) − ‖∇uε‖L1(Ω) + c0δ

+ (λ/2)
(
‖I̊huε − g‖2−1 − ‖u− g‖2−1 + ‖uh − g‖2−1 − ‖uh − gh‖2−1,h

)
.

The difference of the first two terms on the right-hand side is bounded by ch/ε and it remains to
control the terms inside the brackets. Using Galerkin orthogonality and the definition of G we find

‖uh − g‖2−1 − ‖uh − gh‖2−1,h =
(
∇[G − Gh](uh − g),∇[G + Gh](uh − g)

)
=
(
∇[G − Gh](uh − g),∇G(uh − g)

)
=
(
[G − Gh](uh − g), uh − g

)
≤ ‖[G − Gh](uh − g)‖L2(Ω)‖uh − g‖L2(Ω)

≤ chγ‖uh − g‖2L2(Ω)

and the right-hand side vanishes as h→ 0 owing to continuity of the embedding BV (Ω)→ L2(Ω).
Finally, we note that

‖I̊huε − g‖2−1 − ‖u− g‖2−1 = ‖I̊huε − u‖−1‖I̊huε + u+ 2g‖−1

and it is straightforward to show that this expression converges to 0 as h→ 0. The boundedness of
(uh)h>0 in BV (Ω) and the compactness of the embedding BV (Ω)→ Lp(Ω) prove the assertion. �

Remarks 5.1. (i) If Ω is convex then the assumption of the theorem follows from the estimate
‖[G − Gh]η‖L2(Ω) ≤ ch2‖η‖L2(Ω), i.e., γ = 2.
(ii) If d = 3 then it is not clear how to control the term ‖∇(Ihuε − uε)‖L1(Ω).

We rewrite the minimization of Eh on S̊1(Th) as the saddle-point formulation

inf
vh∈S̊1(Th)

sup
qh∈L0(Th)d

∫
Ω
∇vh · qh dx+ (λ/2)‖uh − gh‖2−1,h − IB(qh).

To define the iterative solution procedure we choose the scalar product (∇Gh·,∇Gh·) on S̊1(Th) and
the L2 inner product (·, ·) on L0(Th)d. A discrete, regularized H−1 flow for E′h then reads with

ũn+1
h = unh + τdtu

n
h and σ > 0,

−σ(dtp
n+1
h , qh − pn+1

h ) + (∇ũn+1
h , qh − pn+1

h ) ≤ IB(qh)− IB(pn+1
h ),

(∇Ghdtun+1
h ,∇Ghvh) + (pn+1

h ,∇vh) = −λ(∇Gh(un+1
h − gh),∇Ghvh)

for all qh ∈ L0(Th)d and vh ∈ S̊1(Th). Upon introducing ϕh = Gh(dtu
n+1
h + λun+1

h − λgh) we obtain
the following algorithm.

Algorithm (H−1-P1). Let σ > 0, (u0
h, p

0
h) ∈ S̊1(Th) × L0(Th)d, set dtu

0
h = 0, and compute for

n = 0, 1, ... the pair (ϕh, u
n+1
h ) ∈ S̊1(Th)2 satisfying

(∇ϕh,∇ξh)− (dtu
n+1
h + λun+1

h , ξh) = −λ(gh, ξh),

−(ϕh, vh) = (pn+1
h ,∇vh)
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for all (ξh, vh) ∈ S̊1(Th)2, where for ũn+1
h = unh + τdtu

n
h we have

pn+1
h =

pnh + (τ/σ)∇ũn+1
h

max{1, |pnh + (τ/σ)∇ũn+1
h |}

.

Proposition 5.1 (Convergence). If τ ≤ cσh2
min then the iteration of Algorithm (H−1-P1) con-

verges to the unique minimizer uh ∈ S̊1(Th) of E′h.

Proof. The proof follows the lines of the proof of Proposition 3.1 using different inner products.
The estimate ‖∇vh‖ ≤ ch−2

min‖vh‖−1,h for all vh ∈ S̊1(Th) follows from the spectral properties of the
discrete Laplace operator and leads to the condition on the time-step size. �

Remark 5.1. The linear system of equations in Algorithm (H−1-P1) can be split into two linear
systems of equations which can be solved subsequently and only require the inversion of an augmented
(lumped) mass matrix (incorporating the zero-mean constraint).

6. Numerical experiments

We tested and compared the practical performance of Algorithms (P1), (P0), and (H−1-P1) with
the following two-dimensional example.

Example 6.1. Let d = 2, Ω = (−0.5, 0.5)2, α = 1.0 × 102, λ = 1.0 × 105, and g = g0 + ξh for
g0 = χBr(0) with r = 0.2 and a mesh-dependent perturbation function ξh.

6.1. Choice of data. Given a triangulation Th of Ω we define the function ξh ∈ L0(Th) by as-
sociating to each element T ∈ Th a random value ξT sampled from a Gaussian distribution with
mean 0 and standard deviation 1 and then subtracted the integral mean of the resulting function.
The employed function gh ∈ L0(Th) was defined by setting gh|T = g0(xT ) + ξh|T for all T ∈ Th,
where xT denotes the midpoint of the triangle T . For Algorithm (H−1-P1) this function was after

subtraction of the mean of g0 projected onto S̊1(Th). The projection of the function gh onto the re-
spective finite element spaces was used to define the initial u0

h unless otherwise stated. Throughout
this section we employ σ = 1.

6.2. Stopping criteria. We stopped the iteration of Algorithms (P1), (P0) and Algorithm (H−1-
P1) when

‖dtunh‖2L2(Ω)

E(0)
≤ εstop = 1.0× 10−6,

‖dtunh‖2−1,h

E′h(0)
≤ εstop = 1.0× 10−6,

respectively.

6.3. Comparison. Figure 2 displays the outputs of Algorithms (P0), (P0), and (H−1-P1) ob-
tained on a uniform triangulation consisting of 2048 triangles which are halved squares with edge

length ĥ = 2−5. The time-step size was chosen as τ = ĥ/10 for Algorithms (P1) and (P0) and

τ = (ĥ/10)2 in the case of Algorithm (H−1-P1). The iterates unh for n = 0, 10, 20, 40 and nstop
are shown in Figure 4 from a different perspective. The number nstop is the smallest integer for
which the stopping criterion was satisfied; we have nstop = 149, 112, 129 for Algorithms (P0), (P1),
and (H−1-P1), respectively. For a better comparison we added the mean π/25 of the function g0

to the iterates obtained with Algorithm (H−1-P1) in the plots. We observe sharp edges in the nu-
merical solution obtained with piecewise constant functions (left pictures) and a transition region
of width comparable to the mesh-size h in the case of piecewise affine, globally continuous functions
for the functional involving the L2 fidelity term (middle pictures). Notice that the circular edge
of the original image is not accurately approximated in the case of piecewise constant finite ele-
ments. For the image denoising method with the H−1 fidelity we see in the output of the numerical
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Figure 2. Output u
nstop

h of Algorithms (P0), (P1), and (H−1-P1) (from left to right).

experiments that certain oscillations are kept (right pictures). The scale of these oscillations is
determined by the parameter λ.
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Figure 3. Energies E(unh) for the iterates unh, n = 0, 1, ..., nstop of Algorithms (P0)

and (P1) (left). Final energies E(u
nstop

h ) of the outputs of Algorithms (P0) and (P1)

for h = 2−`, ` = 5, 6, 7, 8, 9 (right).

6.4. Convergence of the energies. In the left plot of Figure 3 we displayed the energies E(unh)
for the iterates unh, n = 0, 1, ..., nstop of Algorithms (P0) and (P1). We see that the energy is
monotonically decreasing in both cases. The curves approach a similar value. To illustrate that as
h→ 0 the values may differ we showed in right plot of Figure 3 the final energies E(u

nstop

h ) for the

outputs u
nstop

h of Algorithms (P1) and (P0) for a sequence of triangulations with mesh-size ĥ = 2−`

for ` = 5, 6, 7, 8, 9. We observe that the different methods do not tend to the same value and this
is in agreement with Example 4.1 that showed that the approximation with piecewise constant
functions cannot simultaneously converge to the exact solution and the exact energy.

6.5. Energy decay and iteration numbers. The behaviour of the energies of the functional
E′h(unh) for the choice of initial data u0

h = g̊h and u0
h = 0 is illustrated in the plot of Figure 5. While
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Figure 4. Iterates unh obtained with Algorithms (P0), (P1), and (H−1-P1) (from
left to right) for n = 0, 10, 20, 40, nstop (from top to bottom), where nstop is the
number of iterations needed to satisfy the stopping criterion.
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for u0
h = g̊h the energy is monotonically decreasing, the energy initially grows for the choice u0

h = 0.
This reflects the fact that the algorithm is not a gradient flow but a regularized one.
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Figure 5. Energies E′h(unh) for the iterates of Algorithms (H−1-P1) for different
choices of initial data u0

h.

In Table 1 we displayed the iteration numbers for Algorithms (P0), (P1), and (H−1-P1) when

used on meshes with mesh-size ĥ = 2−` for ` = 5, 6, 7, 8, 9. We observe that the numbers of
iterations required to satisfy the stopping criterion grow like 1/τ , i.e., proportional to the inverse of
the mesh-size and the square of the mesh-size for the iterations involving the L2 and H−1 fidelity
terms, respectively. The direct solution of the saddle-point problems related to the constraint on
the mean of the functions in the iteration of Algorithm (H−1-P1) did not allow us to test the

algorithm on the mesh defined through ĥ = 2−9 owing to memory restrictions. It is expected that
an Uzawa iteration for the iterative solution of the saddle-point problems avoids this effect. The
CPU times for the iterations of Algorithms (P0), (P1), and (H−1-P1) were 0.8 s, 3.5 s, and 23.3 s
for a mesh with 8192 triangles on a Dell Precision WorkStation T3500 (4 Intel Xeon CPU W3520,
2.67GHz, 6GB RAM) and an implementation in Matlab.

ĥ (P0) (P1) (H−1-P1)

2−5 149 112 129
2−6 196 158 249
2−7 279 219 787
2−8 457 350 2639
2−9 750 557 –

Table 1. Iteration numbers needed to achieve the stopping criterion for Algo-
rithms (P0), (P1), and (H−1-P1). Notice that the perturbations are mesh-
dependent.
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Appendix A. Primal-dual algorithm

For Banach spaces X and Y , proper, convex, and lower semicontinuous functionals G : X → R,
F : Y → R ∪ {+∞}, and a bounded, linear operator K : X → Y we consider the saddle-point
problem

inf
x∈X

sup
y′∈Y ′

〈Kx, y′〉 − F ∗(y′) +G(x) = inf
x∈X

sup
y′∈Y ′

L(x, y′).

The related primal and dual problem consist in the minimization of the functionals

P(x) = F (Kx) +G(x), −D(y′) = G∗(−K ′y′) + F ∗(y′),

respectively. We have P(x)−D(y′) ≥ 0 for all (x, y′) ∈ X × Y ′ with equality if and only if (x, y′)
is a saddle point for L. We assume in the following that Y is a Hilbert space and identify Y and
Y ′. The equations ∂tx = −∂xL(x, y) and ∂ty = ∂yL(x, y) motivate the following algorithm.

Algorithm (PD). Let (x0, y0) ∈ X × Y , set dtx
0 = 0, and solve for n = 0, 1, ... the equations

x̃n+1 = xn + τdtx
n, −dtyn+1 +Kx̃n+1 ∈ ∂F ∗(yn+1), −dtxn+1 −K ′yn+1 ∈ ∂G(xn+1).

Remark A.1. The equations in Algorithm (PD) are equivalent to the variational inequalities

〈−dtyn+1 +Kx̃n+1, y − yn+1〉 ≤ F ∗(y)− F ∗(yn+1),

〈−dtxn+1 −K ′yn+1, x− xn+1〉 ≤ G(x)−G(xn+1)− (α/2)‖x− xn+1‖2

for all (x, y) ∈ X × Y . Here, α > 0 if G is strictly convex.

Theorem A.1 (Convergence). Let (x̂, ŷ) be a saddle point for L. If τ‖K‖ ≤ 1 we have for N ≥ 0

1− τ‖K‖
2

‖ŷ − yN+1‖2 +
1

2
‖x̂− xN+1‖2 + τ

N∑
n=0

α

2
‖x̂− xn+1‖2 ≤ 1

2
‖ŷ − y0‖2 +

1

2
‖x̂− x0‖2.

Proof. Using P(x̂)−D(ŷ) = 0 and xn+1 − x̃n+1 = τ2d2
tx
n+1 we have

dt
2

(
‖ŷ − yn+1‖2 + ‖x̂− xn+1‖2

)
+
τ

2

(
‖dtxn+1‖2 + ‖dtyn+1‖2

)
+ (α/2)‖x̂− xn+1‖2

=− 〈dtyn+1, y − yn+1〉 − 〈dtxn+1, x̂− xn+1〉+ (α/2)‖x̂− xn+1‖2

≤F ∗(ŷ)− F ∗(yn+1)− 〈Kx̃n+1, ŷ − yn+1〉+G(x̂)−G∗(xn+1) + 〈K ′yn+1, x̂− xn+1〉
=
[
〈Kx̂, yn+1〉 − F ∗(yn+1) +G(x̂)

]
−
[
〈Kxn+1, ŷ〉 − F ∗(ŷ) +G(xn+1)

]
+ 〈Kxn+1, ŷ〉 − 〈Kx̃n+1, ŷ − yn+1〉 − 〈K ′yn+1, xn+1〉
≤P(x̂)−D(ŷ) + 〈K(xn+1 − x̃n+1), ŷ − yn+1〉 = τ2〈Kd2

tx
n+1, ŷ − yn+1〉.

Discrete integration by parts, dtx
0 = 0, and Young’s inequality show

τ3
N∑
n=0

〈Kd2
tx
n+1, ŷ − yn+1〉 = τ3

N∑
n=0

〈Kdtxn, dtyn+1〉+ τ2〈Kdtxn, ŷ − yn〉|N+1
n=0

≤ τ2

2

( N∑
n=0

τ2‖Kdtxn‖2 + ‖dtyn+1‖2
)

+
τ‖K‖

2
‖ŷ − yN+1‖2 +

τ3

2‖K‖
‖KdtxN+1‖2.

A combination of the estimates proves the theorem. �

Remarks A.1. (i) Modifications of the algorithm allow to prove unconditional stability but lead to
unphysical evolutions or expensive problems in each step.
(ii) Acceleration methods are discussed in [CP10] and it is shown that strict convexity of G is not
necessary for convergence.
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