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Fractional differentiability for the stress velocities to the

solution of the Prandtl-Reuss problem

Jens Frehse∗

Maria Specovius-Neugebauer†

Abstract

We consider the loading of an elastic perfectly plastic body governed by the Prandtl-
Reuss law. It is shown that the stress velocities of the body have fractional derivatives of
order 1/2− δ up to the boundary in the direction of the loading parameter, and of order
1/3− δ in the interior of the body in direction of the space variables.

Key words: Prandtl-Reuss-law, elastic plastic deformation, regularity, fractional differentia-
bility
AMS classification 49N60, 35B65,74C05,74G65

1 Introduction

The Prandtl-Reuss problem describes the deformation of an elastic perfectly plastic body
occupying a bounded domain Ω. We prove a regularity result for solutions to the associated
variational inequality.
For the proper formulation we need to fix some notations. Let Ω ⊂ Rn, n ≥ 2 be a bounded
domain in Rn with Lipschitz boundary ∂Ω, the main application naturally is the case n = 3.
By Rn×n

sym , we denote the set of all symmetric n × n matrices τ ∈ Rn×n with unit matrix I.
For τ, σ ∈ Rn×n, the scalar product σ : τ , Euclidean norm |σ|, the trace trσ and the deviator
σD are given by:

σ : τ =
n∑

i,k=1

σikτik, |σ| = (σ : σ)1/2, tr σ =
∑

i

σii, σD = σ − trσ

n
I.

The symbol Lp(Ω), with 1 ≤ p ≤ ∞, denotes the usual Lebesgue-space, where we do not
distinguish between scalar-, vector- , or tensor-valued functions as long as no confusion arises,
in all cases we indicate the L2(Ω)-scalar product with brackets ( · , · ). Let I = [0, T ], T > 0
be a fixed interval, then for a Banach space X (which is always a function space in the
sequel), the symbol Lp(I, X) stands for measurable and p-summable functions defined on the
interval I with values in X. For X = Lq(Ω), we frequently shorten the notation to Lp(Lq),
if no confusion arises. Now let f ∈ L2(I, L2(Ω)), p0 ∈ L2(I, L2(∂Ω)) be given vector fields
representing volume forces and external loading.

∗Institut of Applied Mathematics, University of Bonn
†Fachbereich Mathematik und Naturwissenschaften, University of Kassel
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We introduce the class of admissible stresses σ i.e. functions defined on the interval I = [0, T ]
with values in the set of symmetric matrices,

σ : [0, T ]× Ω −→ Rn×n
sym , σ ∈ L2(I; L2(Ω)),

satisfying the balance of forces (in the weak formulation) for almost every t ∈ I

(σ(t),∇ϕ) = (f(t), ϕ) +
∫

∂Ω\Γ
p0(t)ϕdo for all ϕ ∈ H1

Γ(Ω). (1.1)

Here, Γ is either void or a relatively open subset of ∂Ω, and H1
Γ(Ω) is the Sobolev space

containing all functions ϕ : Ω → Rn, such that ∇ϕ ∈ L2(Ω), and ϕ|Γ = 0 in the sense
of traces. Neither ∂Ω nor Γ need to be connected. Note that all derivatives that arise are
to be understood in the distributional sense. The variable t is interpreted as the ’loading’
parameter, we use the notation ġ = ∂

∂tg (for any function g under consideration), and, with
some abuse of notation, we refer to it also as time derivative.
In addition, the formulation of the Prandtl-Reuss law involves a yield condition and the
compliance tensor A. We confine ourselves to the von Mises yield condition

|σD| ≤ κ (1.2)

where κ > 0 is the so-called yield constant. Furthermore, the compliance tensor A = (aνµ
ik ), a

given symmetric tensor of rank four, must satisfy the usual positivity or ellipticity condition

B : AB ≥ c0|B|2 for all B ∈ Rn×n
sym with some c0 > 0,

for simplicity, we assume that the entries aνµ
ik are constant.

We introduce the convex set K(t):

K(t) = {τ ∈ L2(Ω;Rn×n
sym ) s.t. |τD(x)| ≤ κ a.e. in x ∈ Ω, and τ satisfies (1.1)} (1.3)

where σ has to be replaced by τ in (1.1), of course. For the data f and p0 we assume the
following additional regularity properties

f, ḟ ∈ L∞(0, T ; L∞(Ω)), (1.4)
p0, ṗ0 ∈ L∞(0, T ; L∞(∂Ω)), (1.5)

i.e. these functions are essentially bounded. In addition we fix an initial value σ0 ∈ K(0).
Now we consider the following variational inequality (Prandtl-Reuss law): Find

σ ∈ L2(0, T ; L2(Ω,Rn×n
sym )) with σ̇ ∈ L2(0, T ; L2), s.t. (1.6)

σ(t) := σ(t, ·) ∈ K(t) for a.e. t ∈ [0, T ], (1.7)
(Aσ̇(t), σ(t)− τ) ≤ 0 for all τ ∈ K(t), a.e. in t ∈ [0, T ], (1.8)

σ(0, ·) = σ0. (1.9)

The inclusion σ̇ ∈ L2(L2) ensures that σ(0) is defined. In fact, there holds the stronger
regularity property [6, 16, 2]

σ̇ ∈ L∞(0, T ;L2). (1.10)

It is well known, that the Prandtl-Reuss problem has a unique solution, i.e. there there exists
an admissible stress function σ satisfying (1.6) – (1.9) [10, 16, 2, 6].
For the reconstruction of strains, and more specifically, the displacement field from the
stresses, additional assumptions are needed which are known as safe load condition:
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There exists a function σ̂ ∈ L2(0, T ; L2(Ω;Rn×n
sym )) and a δ0 > 0 such that

˙̂σ ∈ L∞(I, L∞(Ω)), ¨̂σ ∈ L1(I, L∞(Ω)), (1.11)

for all t, σ̂(t) satisfies the balance of forces (1.1) together with the initial condition
σ̂(0) = σ0, and

|σ̂D| ≤ κ− δ0 (1.12)

almost everywhere.

If the safe load condition is fulfilled a vector field u ∈ L∞(I, L
n

n−1 (Ω,Rn)) exists with u̇ ∈
L∞(I, L

n
n−1 (Ω)) (cf. [16]),

ε(u̇) :=
1
2
(∇u̇ +∇u̇>) ∈ L∞(I, C(Ω)∗),

〈Aσ̇ − ε(u̇), σ − τ〉 ≤ 0 for a.e. t ∈ I, (1.13)

where, as usual, C(Ω), C(Ω)∗ stand for the space of functions continuous on the closure of
the underlying domain and its dual space, respectively. The inequality (1.13) holds for all
τ ∈ σ + C(Ω;Rn×n

sym ) with |τD| ≤ κ. Here the brackets 〈 , 〉 have to be understood as L2-
scalar product, if both arguments are in L2(Ω), and in general in the duality pairing 〈C∗, C〉.
However, it is not allowed to split up the sums: since σ is not known to be in C(Ω), e.g. the
term 〈ε(u̇), σ〉 may have no sense and has to be defined in an appropriate way [15, 1].
In the sequel we will not dwell upon these results; however, for describing the physical situa-
tion, the relation (1.13) is useful: If there were more smoothness, in particular the quantity
ε̇ an L1-function (which is not the case), (1.13) would imply

Aσ̇(t, x) = ε(u̇)(t, x) in points (t, x) where |σD| < κ in a neighborhood U(t, x). (1.14)

In general we have

ε(u̇)−Aσ̇ = λ̇ (1.15)

with λ̇ ∈ C(Ω,Rn×n
sym )∗ and, if λ̇ were smooth enough,

λ̇ · (σD − τD) ≥ 0 for all τ ∈ K(t), (1.16)

i.e. λ̇ is an outer normal to the yield surface |τD| = κ.
The quantity u̇ can be interpreted as displacement velocitiy and ε(u̇) as the strain velocity.
Thus, if the stress satisfies |σD| < κ in a neighborhood of a point (t, x), the stress and strain
velocity σ̇ and ε(u̇) satisfy the relations of linear elasticity (differentiated with respect to t).
If the boundary of the yield surface is touched, then the additional plastic deformation λ
together with the corresponding velocity λ̇ appears such that (1.15) and (1.16) hold.
Due to the bad behaviour of u and u̇, not many regularity results for the Prandtl-Reuss law
are available. In [2] the so called Norton-Hoff approximation is used to prove that the stresses
σ satisfiy

σ ∈ L∞(0, T ; H1
loc(Ω)),

i.e. the spatial derivatives of σ are locally in L2. This result´was also shown in [5] by means
of a different approximation.
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The situation of regularity for Prandtl-Reuss’s law is very similar to that of the Hencky
model. In [14], Seregin constructed approximations to the Hencky model which indicate that
the normal derivatives of σ are NOT in L2 near the boundary ∂Ω. For special geometric
situations, in [7] and [4] it was shown that the tangential derivatives of σ are in L2 up to the
boundary.
One can prove analogous results to [4] as for the Prandtl-Reuss problem. Furthermore, the
improved Lp-property u ∈ L

n
n−1

+δ(Ω) for Hencky’s law due to Hardt Kinderlehrer [9] can be
done for the Prandtl-Reuss law in the sense that u̇ ∈ L∞(L

n
n−1

+δ(Ω)) for some δ > 0. Up to
now, no regularity results are known for the stress velocities σ̇.
The purpose of the present paper is to prove that σ̇ has fractional derivatives in time direction
of order 1

2 − δ, for all δ > 0, up to the boundary. Using the aforementioned H1
loc-regularity

result for σ, cross interpolation implies that σ̇ has local fractional derivatives of order 1
3 − δ

in spatial direction. An imbedding theorem for anisotropic fractional Sobolev spaces applied
in the case n = 3 then leads to σ̇ ∈ Lq(Lq), with q = 22

9 − δ′ for all δ′ > 0. The classical
theory gives σ̇ ∈ L∞(L2), see also estimate (2.10) below. Our technique can also be applied to
problems with elastic plastic deformation with hardening. In the latter case, interior H

1
2
−δ-

regularity can be achieved also for the fractional derivatives in space direction, but we do not
elaborate this here.

2 Penalty approximation

We introduce a common approximation of the Prandtl-Reuss problem via a penalty potential.
To this end we define for τ ∈ Rn

sym the function

βµ(τ) =
1
2µ

[|τ | − κ]2+ , µ > 0, (2.1)

where for any real function [ξ]+ := max{ξ, 0} is the positive part of ξ, and get

β′µ(τ) =
∂

∂τ
βµ(τ) =

{
µ−1 [|τ | − κ]+ τ |τ |−1 for |τ | 6= 0
0 for |τ | = 0.

(2.2)

Now we want to find σ = σµ ∈ L2(0, T ; L2(Ω,Rn×n
sym )) and uµ ∈ L2(0, T ;H1

Γ(Ω,Rn)) such that

σ̇µ ∈ L2(L2), u̇µ ∈ L2(H1
Γ) (2.3)

(σµ,∇ϕ) = (f, ϕ) +
∫

∂Ω
p0ϕ do for all ϕ ∈ H1

Γ(Ω,Rn), a.e. in t ∈ [0, T ] (2.4)

ε(u̇µ) = Aσ̇µ + β′µ(σµD) for a.e. (t, x) ∈ [0, T ]× Ω, (2.5)

σµ(0) = σ0 (2.6)

Note that the penalty potential ist just βµ(σµD). It is well known that the penalized problem
(2.3)-(2.6) has a solution cf. the methods worked out in [15]. To prove this (2.5) is turned
into the equivalent weak formulation

(Aσ̇µ, τ) + (β′µ(σµD), τD) = 0

for all τ ∈ L2(L2) with (τ,∇ϕ) = 0 for all ϕ ∈ H1
Γ(Ω).

(2.7)
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Now the problem can be solved using a Rothe-Approximation. Thereby the ’time’ -derivative
σ̇(t, x) is approximated by the difference quotient

D−hσ(t, x) =
1
h

(σ(t, x)− σ(t− h, x)) ,

considered on a discrete set of time steps tk = kh, k = 1, ..., N , kN = T . The discretized prob-
lem can be solved successively at each ’time’ step tk via a minimization argument. Thereby
the existence of an admissible stress has to be assumed, while the safe load condition is not
yet needed for this step. The details can be done following the arguments in [2, 13]. Essen-
tially the proof consists in using σ − σ̂ and Dh(σ − σ̂) as testfunctions and then performing
the energy-approach. Extending the Rothe solutions by piecewise linear interpolation to σh

routine energy estimates lead to the following uniform bounds

‖σh
µ‖L2(L∞) ≤ Kµ, ‖σ̇h

µ‖L2(L2) ≤ Kµ, h → 0,

here the condition |σ0D| ≤ κ is needed. Since σ0 satisfies the equation (1.1) for the balance
of forces, we get the additional estimate

‖σ̇h
µ‖L∞(L2) ≤ Kµ.

Passing to the limit h → 0 for a subsequence and using monotonicity arguments imply the
convergence of the Rothe-approximations to the solution σµ of (2.3), (2.4), (2.6), (2.7) together
with the estimates

‖σµ‖L∞(L2) ≤ K, µ → 0, ‖σ̇µ‖L∞(L2) ≤ Kµ, (2.8)

A decomposition argument involving Korn’s inequality gives the existence of vµ(t) ∈ H1
Γ(Ω,Rn)

such that
ε(vµ) =

1
2

(
∇vµ +∇v>µ

)
= Aσ̇µ + β′µ(σµD) a.e. in (t, x).

Setting vµ = u̇µ establishes equation (2.5). With the additional assumption of the safe load
condition there holds the uniform estimate

‖β′µ(σµD)‖L∞(L1) + ‖ε(u̇µ)‖L∞(L1) ≤ K, µ → 0. (2.9)

and we may conclude
‖σ̇µ‖L∞(L2) ≤ K, µ → 0. (2.10)

Finally, any weak L2(L2) - limit (up to the choice of subsequences) σ = lim
µ→0

σµ satisfies

(1.7)-(1.10). The variational inequality (1.8) follows from (2.4), passing to the limit and the
monotonicity of βµ.
Unfortunately, the estimate (2.9) cannot be improved substantially. Thus (after passing to
subsequences), the strain velocities ε(u̇µ) weakly converge in the space C∗ only as µ → 0. By
Temam’s imbedding theorem, (2.9) implies

‖u̇‖L∞(Ln/(n−1)) ≤ K, µ → 0 (2.11)

uniformly. As already mentioned, using techniques based on reverse Hölder inequality, (2.11)
can be improved with L∞(Ln/(n−1)) replaced by L∞(Lq), q > n

n−1 , for some q, but we shall
not need this.
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Other penalty approximations give similar uniform estimates. One possibility is the Norton
Hoff approximation where βµ(σD) is replaced by 1

p
1
κp |σD|p with p → ∞ (see [16, 2]). The

penalization with βµ(σD) as in the present paper has the advantage that β′µ(σD) grows linearly
in σD, and then some steps in the proof are simpler, for example the existence of u with (2.5)
is derived in an L2-setting while for the Norton-Hoff approximation Lp-theory has to be used.
The advantage of the Norton Hoff model is, that we immediately have an Lp0-estimate for σD

(thereafter, for σ), p0 arbitrarily large, uniformly in p ≥ p0. This is important for the proof
of local L∞(H1

loc)-regularity of σ, in the limit µ → 0 or p →∞, cf [2, 5].
If one uses the penalty approximation (2.3) - (2.6) with β′µ(σD) up to now the proof of the
L∞(H1

loc)-regularity of σ works only in dimensions n = 2, 3, 4, while the approach via the
Norton-Hoff approximation works in arbitrary dimension.
In the present paper, we use βµ(σD) for the approximation (2.5) since it is convenient, however,
for fractional differentiability of σ̇ in space direction we need σ ∈ L∞(H1

loc). Because of the
uniqueness of the stresses in Prandtl-Reuss problem fortunately it does not matter by which
approximation the differentiability of σ is obtained. We do not need a uniform bound of σµ

in L∞(H1
loc) as µ → 0.

3 An asymptotic property of the penalty potential and its
derivative

For optimization problems and their penalization it is a rather common and simply proved
fact, that the penalty term tends to zero provided the admissible set is not empty. We need
the analogue statement also for the Prandtl-Reuss problem and its penalization, but since we
are not dealing with an optimization problem here, so we have to prove it.

Lemma 1 Let σµ be the solution of (2.3)-(2.6) and assume f ∈ L∞(L2), p0 ∈ L∞(L2(∂Ω))
and σ0 ∈ K(0) (see (1.3)). Then

∫ T

0

∫

Ω
βµ(σµD)dx dt =

1
2µ

∫ T

0

∫

Ω
[|σµD| − κ]2+ dx dt → 0 as µ → 0.

Proof. We may assume that σµ converges to σ weakly in L2(L2), and the uniform estimates
(2.8) are valid. We obtain from (2.7)

∫ T

0

{
(Aσ̇µ, σµ − σ) +

1
µ

(
[|σµD| − κ]+ σµD|σµD|−1, σµD − σD

) }
dt = 0.

Since |σD| ≤ κ, we estimate

[|σµD| − κ]+
σµD

|σµD|−1
: (σµD − σD) = [|σµD| − κ]+

(
|σµD| − σµD

|σµD|−1
: σD

)

≥ [|σµD| − κ]+ (|σµD| − κ) .

Hence

1
2

∫ T

0

d

dt
(A(σµ − σ), σµ − σ) dt +

1
µ

∫ T

0

∫

Ω
[|σµD| − κ]2+ ≤ −

∫ T

0
(Aσ̇, σµ − σ) dt. (3.1)
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The right hand side of (3.1) tends to zero due to the weak convergence of σµ, the left hand
side consists of two definite terms, since σµ(0) = σ0. and the Lemma is proved. ¤

The next considerations are crucial for the proof of the main result. Recalling the definitions
(2.1) and (2.2) for βµ and β′µ, the convexity of βµ implies

βµ(σµD(t + h, ·))− βµ(σµ(t, ·)) ≥ β′µ(σµD(t, ·)) : (σµD(t + h, ·)− σµ(t, ·))
= β′µ(σµD(t, ·)) : ∆hσµ(t, ·) (3.2)

where ∆hσµ(t, x) = σµ(t + h, x)− σµ(t, x). Now we deal with the quantity

T :=
1
h2

∫ h

0

∫ t2−h

t1

(β′µ(σµD), ∆sσ̇µ)dt ds. (3.3)

We decompose T = T1 − T2 where

T1 =
1
h2

∫ t2−h

t1

(
β′µ(σµD),

∫ h

0
σ̇µ(t + s, ·) ds

)
dt,

T2 =
1
h

∫ t2−h

t1

(
β′µ(σµD), σ̇µ

)
dt =

1
h

∫

Ω
βµ(σµD) dx

∣∣∣
t2−h

t1
.

Due to Lemma 1,

T2 → 0 as µ → 0, for fixed h > 0, and a. e. t1 < t2 < T − h. (3.4)

Next we rewrite T1, for t1 < t2 − h, t2 < T − h we use (3.2) to estimate

T1 =
1
h2

∫ t2−h

t1

(
β′µ(σµD), ∆hσµ

)
dt ≤ 1

h2

∫ t2−h

t1

∫

Ω
∆hβµ(σµD)dx dt

=
1
h2

∫ t2

t1+h

∫

Ω
βµ(σµD)dx dt− 1

h2

∫ t2−h

t1

∫

Ω
βµ(σµD)dx dt.

Hence, in view of lemma 1, we have for fixed h > 0

lim sup
µ→0

T1 ≤ 0 a.e. with respect to t1, t2, t1 ≤ t2 − h.

Together with (3.3) this gives the following result:

Lemma 2 For almost all t1, t2 ∈ [0, T ] with t1 < t2 − h there holds the inequality:

lim sup
µ→0

{
1
h2

∫ h

0

∫ t2−h

t1

(
β′µ(σµD),∆sσ̇µ

)
dt ds

}
≤ 0.

4 Fractional time-differentiability of the stress velocity

Recalling the notation for the difference in ’time’ direction ∆sw(t, x) = w(t + s, x)− w(t, x).
we now formulate our main result.
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Theorem 1 Let σ be the solution of the Prandtl-Reuss-law (1.6) – (1.9), where the data f ,
p0 satisfy the regularity conditions (1.4) and (1.5), respectively. Assume further the existence
of a safe load σ̂ such that (1.12) together with the regularity assumptions (1.11) hold. Then

sup
0<h<T

1
h2

∫ h

0

∫ T−h

0

∫

Ω
|∆sσ̇|2dx dt ds < ∞. (4.5)

Remark 1 This estimate has not to be confused with the Nikolski-space inclusion

sup
0<h<T

1
h

∫ T−h

0

∫

Ω
|∆hσ̇|2 dx dt < ∞ (4.6)

which states that σ̇ has the fractional derivative of order 1
2 in t-direction in the sense of

Nikolski-spaces.

Our result is slightly weaker. However, if we define the periodic extension σ̃ of σ by

σ̃(t, ·) =

{
σ(t, ·), t ∈ [0, T ]
σ(−t, ·), t ∈ [−T, 0]

, σ̃(t + 2kT, ·) = σ̃(t, ·) for k ∈ Z,

then

σ̃(t, x) =
∞∑

m=−∞
cm(x) exp(imπ/T ), (4.7)

and by simple Fourier analysis, we obtain the following conclusion, which follows from The-
orem 1 and Lemma A.1 in the appendix. Note that for differentiability up to order 3/2 in t
this extension is acceptable though not for higher order derivatives.

Corollary 1 Under the hypotheses of Theorem 1 there exists for all small δ > 0 a bound Kδ,
depending on the length T of the ”time interval” with

∞∑
m=−∞

∫

Ω
|m|3−δ|cm(x)|2 dx ≤ Kδ. (4.8)

Thus (4.5) is almost equivalent to (4.6). Function spaces with derivatives defined via Fourier
transformation are sometimes called Liouville spaces. Hence Corollary 1 states that the stress
velocity σ̇ has fractional derivatives with respect to t of order 1

2 − δ′ for any δ′ > 0 in the
sense of Liouville spaces.
Proof of Theorem 1. We fix h > 0, h < T and choose ∆sσ̇µ = σ̇µ(·+s, ·)− σ̇µ as test function
in the penalty equation (2.5), integrate the variable s from 0 to h and the variable t from t1
to t2 − h, 0 ≤ t1 ≤ t2 ≤ T , t2 ≥ t1 + h. Recalling that ε(u̇µ) : τ = ∇u̇µ : τ , if τ is symmetric,
this yields

Lµ :=
1
h2

∫ h

0

∫ t2−h

t1

(∇u̇µ, ∆sσ̇µ) dt ds = (4.9)

=
1
h2

∫ h

0

∫ t2−h

t1

(Aσ̇µ, ∆sσ̇µ) dt ds

︸ ︷︷ ︸
=:Rµ1

+
1
h2

∫ h

0

∫ t2−h

t1

(
β′µ(σµD), ∆sσ̇µ

)
dt ds

︸ ︷︷ ︸
=:Rµ2
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We analyze Lµ using the safe load condition:

Lµ =
1
h2

∫ h

0

∫ t2−h

t1

(
∇u̇µ,∆s

(
σ̇µ − ˙̂σ

))
dt ds

+
1
2

1
h2

∫ h

0

∫ t2−h

t1

(
∇u̇µ +∇u̇>µ , ∆s

˙̂σ
)

dt ds

The first term vanishes since σ̇µ and ˙̂σ satisfy the equation for balance of forces, differentiated
with respect to t, we used the symmetry of σ̂ in order to resume the term 1

2

(∇u̇µ +∇u̇>µ
)

in
the last equality. Thus

|Lµ| ≤ 1
h2

∫ h

0

∥∥∥∇u̇µ +∇u̇>µ
∥∥∥

L∞(L1)

∥∥∥∆s
˙̂σ
∥∥∥

L1(L∞)
ds

Due to the safe load condition we may use the estimate (2.9) which means that ‖∇u̇µ +
∇u̇>µ ‖L∞(L1) ≤ K uniformly as µ → 0. Furthermore we observe

1
h2

∫ h

0
‖∆s

˙̂σ‖L1(L∞)ds ≤ 1
h2

∫ h

0
s‖Ds ˙̂σ‖L1(L∞) ds ≤ ‖¨̂σ‖L1(L∞)

The latter quantity is bounded according to the assumption (1.11) on the safe load stress.
Hence

|Lµ| ≤ K uniformly as µ → 0 (4.10)

On the other hand, we have Lµ = Rµ1 + Rµ2 where lim supµ→0Rµ2 ≤ 0 due to Lemma 2.
Thus by (4.10) and (4.9) we get

lim inf
µ→0

Rµ1 = lim inf
µ→0

(Lµ −R2µ ≥ K1 (4.11)

We rewrite

Aσ̇µ : ∆sσ̇µ = −1
2
∆sσ̇µ : A∆sσ̇µ +

1
2
∆s (σ̇µ : Aσ̇µ) ,

which implies

1
2h2

∫ h

0

∫ t2−h

t1

∫

Ω
∆sσ̇µ : A∆sσ̇µdx dt ds =

− 1
h2

∫ s

0

∫ t2−h

t1

∫

Ω
Aσ̇µ : ∆sσ̇µdx dt ds+

+
1

2h2

∫ h

0

∫ t2−h

t1

∫

Ω
∆s (σ̇µ : Aσ̇µ) dx dt ds =: −Rµ1 +Rµ3

Inspecting the last term we find

Rµ3 =
1

2h2

∫ h

0

{∫ t2−h+s

t2−h

∫

Ω
σ̇µ : Aσ̇µdx dt−

∫ t1+s

t1

∫

Ω
σ̇µ : Aσ̇µ dx dt

}
ds (4.12)
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and with ‖σ̇µ‖L∞(L2) ≤ K2 and |s| ≤ h we arrive at the following estimate, which holds
uniformly as µ → 0

|R3| ≤ 1
2h2

∫ h

0
s|A|‖σ̇µ‖2

L∞(L2)ds ≤ K‖σ̇µ‖2
L∞(L2) ≤ K3 (4.13)

Thus we derive from (4.12) and (4.11) that

lim sup
µ→0

h−2

∫ h

0

∫ t2−h

t1

(∆sσ̇µ, A∆sσ̇µ) dt ds ≤ lim supµ → 0(−Rµ1 +Rmu3) ≤ K1 + K3.

and we obtain from the lower semi-continuity of positively definite quadratic forms that

1
h2

∫ h

0

∫ t2−h

t1

(∆sσ̇, A∆sσ̇) dt ds ≤ K (4.14)

for the weak L2(L2)-limit σ̇ = lim
µ→0

σ̇µ, a.e. with respect to t1, t2, 0 ≤ t1 < t2 − h ≤ T . K

does not depend on t1, t2. From the absolute continuity of Lebesgue’s integral we conclude
from (4.14)

1
h2

∫ h

0

∫ T−h

0
(∆sσ̇, A∆sσ̇) dt ds ≤ K

which implies Theorem 1.

Remark 2 If the requirements of Theorem 1 are met the solution σ of the Prandtl-Reuss
problem satisfies σ ∈ L∞(0, T ; H1

loc(Ω)) (see [2, 5] ). We can combine this result with our
main theorem to gain that σ̇ has local spatial derivatives of order 1/3− δ for any positive δ.
To be more precise, let Q ⊂ [0, T ]× Ω be a closed cube with edge length R. We extend each
component σij by symmetric reflection into a periodic function Sij defined on a cube Q̂ ⊃ Q,
where Q̂ has edge length 2R and center (t0, x0), then (we omit the subscript ij for simplicity)

S ∈ L∞per(0, T ; H1
per(Q̂)), (4.15)

and we have the Fourier expansion

S =
∑
m

cm exp(im′(x− x0)) exp(im0(t− t0)),

where the summation is taken over all multi-indices (m0,m
′) ∈ Zn+1. From (4.15) we have

∑
m

|m′|2|cm|2 < ∞,

while Theorem 1 and Lemma A.1 from the appendix give
∑
m

|m0|3−δ|cm|2 < ∞.

Now Hölder’s inequality implies
∑
m

|m′| 23−δ′ |m0|2|cm|2 < ∞.

10



In other words, if bk(t) are the Fourier coefficients of σ̇ belonging to the expansion in spatial
direction, we get ∑

k∈Zn

|k| 23−δ′
∫
|bk|2dt < ∞.

For n = 3, e.g., embedding theorems (e.g. [12, p. 390]) lead to

σ̇ ∈ Lq(Lq), q =
4 · 2

4− 2r
, r =

[
1
4

(
3 · (1

3
)−1 + (

1
2
− δ)−1

)]−1

= (
11
4

+ δ′)−1 =
4
11
− δ

Note that we only used the fact that σ ∈ L2(H1
loc), not σ ∈ L∞(H1

loc). The latter slightly
stronger fact could be used to establish an additional Morrey condition for the spatial deriva-
tives of σ̇ of order 1

3 − δ. In some cases it can be shown that the tangential derivatives (near
the boundary) of σ are in L2 up to the boundary. In [7, 4] this was shown for Hencky’s
law, but the proof works also for the Prandtl-Reuss law. Thus one obtains the existence of
fractional tangential derivatives for σ̇ of order 1

3 − δ for positive δ. Furthermore, since the
existence of spatial fractional derivatives of order 1

2 − δ for σ are known to exist up to the
boundary in case of dimension 2 (see the proof for Hencky’s model in [11]), we obtain in
a similar manner that the fractional derivatives of order 1

6 − δ for σ̇ exist in L2 up to the
boundary.

Appendix. Quasi-equivalence of norms describing fractional
derivatives

As mentioned above, we work out the correspondence between the quantity defined in (4.5)
and fractional time derivatives defined by means of Fourier transforms. Recall that any
S ∈ L2

per([−T, T ], L2) can be expanded into a Fourier series

S(t, x) =
∞∑

m=−∞
cm(x) exp

imπt

T
, cm ∈ L2(Ω,C),

∞∑
m=−∞

∫

Ω
|cm|2dx < ∞. (A.1)

If in addition Ṡ ∈ L2
per([−T, T ], L2), then for a.e. (t, x),

Ṡ(t, x) =
∞∑

m=−∞

imπ

T
cm(x) exp

imπt

T
, and

∞∑
m=−∞

m2

∫

Ω
|cm|2dx < ∞. (A.2)

Lemma A.1 Let S, Ṡ ∈ L2
per([−T, T ], L2), and assume that

I(S)2 := sup
0<h<T

1
h2

∫ h

0

∫ T

−T

∫

Ω
|∆sṠ|2 dx dt ds < ∞. (A.3)

Then, for any δ > 0,

∞∑
m=−∞

|m|3| ln(1 + |m|)|−1−δ

∫

Ω
|cm|2dx ≤ CδI(S)2.

In particular, this implies that S has fractional derivatives with respect to t of order 3
2 − δ′, if

the fractional derivatives of a function are defined via the Fourier series.
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Proof. The relation (A.2) together with (A.3) implies

1
h2

∞∑
m=−∞

m2

∫ h

0
| exp

imπs

T
− 1|2ds

∫

Ω
|cm(x)|2dx ≤ T 2

π2
I(S)2. (A.4)

With ∫ h

0
| exp

imπs

T
− 1|2ds = 2

(
h− T

mπ
sin(

mπh

T
)
)

we deduce from (A.4) for all 0 < h < T :

1
h

∞∑

m=−∞, m 6=0

2m2

(
1− T

mhπ
sin(

mπh

T
)
) ∫

Ω
|cm|2dx ≤ T 2

π2
I(S)2. (A.5)

Now put hj = 2−j , and Mj = {m ∈ Z | 1
82jT ≤ |m| ≤ 1

42jT}, which basically means
|m| ∼ h−1

j = 2j for m ∈ Mj . Then, for m ∈ Mj , we have

2
(

1− T

mhjπ
sin(

mπhj

T
)
)
≥ c0 > 0 (A.6)

with some universal constant c0 = c0(sin). We choose h = hj in (A.3), multiply with 1
j1+δ

and sum with respect to j ≥ j0, where j0 is the minimal exponent fulfilling the condition
2−j0 ≤ T . This implies

∑

j≥j0

2jj−1−δ
∞∑

m=−∞, m 6=0

(
1− T

mhjπ
sin(

mπhj

T
)
) ∫

Ω
m2|cm|2dx

≤ T 2I(S)2

π2

∑

j≥j0

j−1−δ =: K ′ (A.7)

Using (A.6), the last inequality leads to the estimate

c0

∑

j≥j0

2jj−1−δ
∑

m∈Mj

∫

Ω
m2|cm|2dx

≤
∑

j≥j0

2jj−1−δ
∑

m∈Mj , m 6=0

(
1− T

mhjπ
sin(

mπhj

T
)
)∫

Ω
m2|cm|2dx ≤ K ′.

Since |m| ∼ 2j for m ∈ Mj , it follows |m| (log(1 + |m|))−1−δ ≤ K2jj−1−δ. Hence we conclude

∑

j≥j0

∑

m∈Mj

|m|3 (log(1 + |m|))−1−δ
∫

Ω
|cm|2dx ≤ CI(S)2.

Finally we have to observe that the union
⋃∞

j=j0 Mj contains all m ∈ Z except those m

with |m| < T2j0−3. But for this finite number of m’s we find a constant C such that
|m| ln(1 + |m|)−1−δ ≤ C(1 − T

mh0π sin(mπh0
T ), where h0 = 2−j0 , and then use (A.5), which

finishes the proof of the lemma. ¤
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Under the hypothesis of Theorem 1 we know for the solution σ of the Prandtl-Reuss-problem
that for fixed positive h0 < T ,

|σ| 3
2
,[0,T ] =

(
sup

0<h<ho

1
h2

∫ h

0

∫ T−h0

0

∫

Ω
|∆sṠ|2 dx dt ds

) 1
2

< ∞ (A.8)

Now S be the even extension (with respect to t) of the function σ to the interval [−T, T ] and
denote the periodic extension from [−T, T ] again by S Since σ, σ̇ ∈ L∞([0, T ], L2), we have
S, Ṡ ∈ L∞per([−T, T ], L2(Ω)). In addition, for I(S) defined as in (A.3), we get

I(S) ≤ C(|σ| 3
2
,[0,T ] + ‖σ̇‖L∞(L2)). (A.9)

In fact, since Ṡ = −σ̇ a.e. in [−T, 0] and Ṡ = σ̇ a.e. in [0, T ], and since (A.8) holds, (A.9) is
proved once the ’transition integrals’

J =
1
h2

∫ h

0

∫

Es

∫

Ω
|∆sṠ|2dx dt ds, Es = {t < 0 | t + s ≥ 0}, or Es = {t < T | t + s ≥ T}

are bounded uniformly with respect to h ∈ (0, h0] , which is obvious since ∆sṠ ∈ L∞(L2) and
Es is of length at most h since s ∈ (0, h).
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[7] J. Frehse and J. Málek. Boundary regularity results for models of elasto-perfect plasticity.
Math. Models Methods Appl. Sci., 9(9):1307–1321, 1999.

[8] M. Fuchs and G. Seregin. Variational methods for problems from plasticity theory and
for generalized Newtonian fluids. Ann. Univ. Sarav. Ser. Math., 10(1):iv+283, 1999.

13



[9] R. Hardt and D. Kinderlehrer. Elastic plastic deformation. Appl. Math. Optim.,
10(3):203–246, 1983.

[10] C. Johnson. Existence theorems for plasticity problems. J. Math. Pures Appl. (9),
55(4):431–444, 1976.

[11] D. Knees. Regularity results for quasilinear elliptic systems of power-law growth in non-
smooth domains Boundary, transmission and crack problems. Dissertation, Universität
Stuttgart, Stuttgart, 2005.
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