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FINITE ELEMENT APPROXIMATION OF LARGE BENDING ISOMETRIES

SÖREN BARTELS

Abstract. A finite element scheme for the approximation of large isometric deformations with
minimal bending energy is devised and analyzed. The convergence and energy decreasing property
of an iterative algorithm for the numerical solution of the scheme is proved. Numerical experi-
ments illustrate the performance of the iteration and show that the discretization leads to accurate
approximations for large vertical loads and compressive tensile boundary conditions.

1. Introduction

Mathematical models for plate bending have recently been rigorously derived in [18] via Γ-
convergence from three-dimensional elasticity. For ε > 0 let the deformation yε : Ωε → R3 of
the thin domain Ωε = Ω× (−ε/2, ε/2) ⊂ R3 be a minimizer of the energy functional

E3D
ε (y) =

∫
Ωε

Ŵ (∇y) dx−
∫

Ωε

f̂ · y dx

with an appropriate isotropic stored-energy function Ŵ , an external force f̂ : Ωε → R3, and subject
to boundary conditions yε = ŷD on ΓD × (−ε, ε) for ΓD ⊂ ∂Ω. Provided that ε−3Eε(yε) remains
bounded as ε→ 0 it has been shown that the cluster points of solutions (yε)ε>0 for ε→ 0 are the
minimizers of the reduced model

E(y) =

∫
Ω
W (D2y,∇y) dx−

∫
Ω
f · y dx =

1

24

∫
Ω

(
2µ|II|2 +

λµ

µ+ λ/2
(tr II)2

)
dx−

∫
Ω
f · y dx

among smooth isometries y : Ω → R3 with second fundamental form II = (D2y)b whose trace is
denoted by tr II and with normal b = ∂1y×∂2y, subject to the conditions y|ΓD

= yD and b|ΓD
= bD.

The isometry condition means that the first fundamental form I = (∇y)

⊥

∇y coincides with the
identity matrix I2 almost everywhere in Ω. The parameters λ and µ are defined through the second

derivative of W , the function f : Ω→ R3 is an average of the function f̂ in vertical direction, and
the boundary data yD and bD are defined through ŷD. This two-dimensional model coincides with
the formulation proposed in [21]. For related lower dimensional theories in different scaling regimes
we refer the reader to [17, 19, 11].

As a consequence of Gauss’s theorema egregium we have for an isometry y : Ω → R3 that the
Gaussian curvature K vanishes. Therefore, we deduce that for the mean curvature H, which is
defined as half the trace of the Weingarten mapping, we have the identity |II|2 = 4H2−2K = 4H2.
Moreover, we have for isometries that tr II = 2H and −∆y = 2Hb and

|D2y|2 = |II|2 = 4H2 = | tr II|2 = |∆y|2,
cf. Appendix A.1. We therefore consider the energy functional

E(y) =
α

2

∫
Ω
|D2y|2 dx−

∫
Ω
f · y dx
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among isometries y : Ω → R3 that satisfy the boundary conditions stated above. The first part
of the energy functional coincides with the Willmore energy proposed in [24] on isometries. We
remark that our numerical method is not restricted to the particular form of the energy E and flat
isometries but devises a general approach to the approximation of an isometry constraint.

Critical aspects in the numerical minimization of the reduced energy functional E are the occurence
of second order derivatives and the nonlinear pointwise constraint that the deformation y : Ω→ R3

is an isometry, i.e., that the first fundamental form I = (∇y)

⊥

∇y satisfies I = I2 with the identity
matrix I2 ∈ R2×2. Our approach to the iterative minimization of E results from the following steps:
We first relax the second order derivatives by introducing the variable Φ ≈ ∇y, i.e., for a small
parameter t > 0 we consider

Et(Φ, y) =
t−2

2
‖Φ−∇y‖2 +

α

2

∫
Ω
|∇Φ|2 dx−

∫
Ω
f · y dx

subject to the boundary conditions y|ΓD
= yD, Φ|ΓD

= ΦD and the pointwise constraint Φ

⊥

Φ = I2,
i.e., the column vectors Φ1,Φ2 ∈ R3 of Φ =

[
Φ1,Φ2

]
are perpendicular unit-length vector fields

that are prescribed on ΓD. Notice that the functional Et is convex and that the space of admissible
pairs (Φ, y) is non-empty (under moderate assumptions on yD and ΦD). The fact that the original
problem may have no solutions, i.e., that the set of admissible displacements may be empty, is
related to the possibility that the minimal values of the energies (Et)t>0 may be unbounded as t
tends to zero. We remark that even if a minimizer for E exists, the Euler-Lagrange equations may
not hold, e.g., for the fully clamped plate described by yD(x) = (x, 0)

⊥

and bD(x) = (0, 0, 1)

⊥

for
x ∈ ΓD = ∂Ω the only admissible isometry equals yD.

For the minimization of Et we employ a discrete H1 gradient flow of Et with respect to Φ, i.e., we
consider the time-incremental evolution defined by the successive minimization of the functionals

Ent (Φ, y) =
1

2τ
‖∇(Φ− Φn−1)‖2 +

t−2

2
‖Φ−∇y‖2 +

α

2

∫
Ω
|∇Φ|2 dx−

∫
Ω
f · y dx,

where Φn−1 is the solution from the previous time step and τ > 0 the time-step size. The iteration
may be regarded as an H2 flow of the functional E and is justified by the fact that E is finite
only on deformations y ∈ H2(Ω;R3). Motivated by work in [1, 6, 3] the condition that Φ satisfies

Φ

⊥

Φ = I2 is in the minimization of Ent replaced by the linearized condition

(Φ− Φn−1)

⊥

Φn−1 + Φn−1,

⊥

(Φ− Φn−1) = 0,

i.e., for the two column vectors of Φ =
[
Φ1,Φ2

]
and Φn−1 =

[
Φn−1

1 ,Φn−1
2

]
we impose that

(Φ1 − Φn−1
1 ) · Φn−1

1 = 0, (Φ2 − Φn−1
2 ) · Φn−1

2 = 0

and

(Φ1 − Φn−1
1 ) · Φn−1

2 + (Φ2 − Φn−1
2 ) · Φn−1

1 = 0

The new approximation Φn is obtained from a correction of the minimizer Φ̃n of Ent , i.e., we set

Φn
1 =

Φ̃n
1

|Φ̃n
1 |
, Φn

2 =
Φ̃n

2

|Φ̃n
2 |
.

Notice that |Φ̃n
j |2 = |Φn−1

j |2 + |Φ̃n
j − Φn−1

j |2 for j = 1, 2 so that if |Φn−1
j | = 1 then the projection

onto the unit sphere is well defined. Moreover, the projection of the vectors Φ̃n
1 and Φ̃n

2 will not
change their relative angle and the identity

Φ̃n
1 · Φ̃n

2 = Φn−1
1 · Φn−1

2 + (Φ̃n
1 − Φn−1

1 ) · (Φ̃n
2 − Φn−1

2 )
2



together with the observation that the second term on the right-hand side is of higher order allow
us to employ an inductive argument to show that Φn

1 · Φn
2 remains small. We will show that

a discretization of this iteration with low order finite elements on a triangulation with maximal
mesh-size h > 0 converges to a stationary point of Eh,t under the mild constraint on the time-step
size

τ ≤ Ch2/3

provided that h ≤ Ct. The limiting stationary point may not be an absolute minimizer but in our
numerical experiments we did not observe problems related to local minima.

The spatial discretization of the functionals Ent will be based on a continuous extension of a robust
mixed method for Reissner-Mindlin plates proposed and analyzed in [2] which is uniformly accurate
for 0 < t ≤ 1 for small vertical displacements. It realizes a softening of the term (t−2/2)‖Φ−∇y‖2
and leads to system matrices whose inverses are uniformly bounded in t as long as the displacement
is small and exterior forces act in vertical direction.

The finite element approximation of bending problems such as the minimization of the Willmore
energy has recently attracted significant attention motivated by applications in biophysics and com-
puter graphics, cf. [10, 14, 13, 12, 4, 23, 15, 5, 7, 16]. The method developed in [23] replaces the Will-
more functional by a discrete quadratic curvature energy that can be regarded as a discretization of
∆y with Crouzeix-Raviart finite elements and imposes an isometry condition by requiring that the
lengths and the angles of edges in the underlying triangulation remain (approximately) unchanged
by the discrete deformation. The method can only lead to good approximations of the continuous
solutions if the directions of the edges are uniformly distributed. In general, mesh-dependence of
the approximations has to be expected. The algorithms devised in [5, 7, 16] approximate solutions
of the Willmore flow by computing a family of discrete closed surfaces, employing the identity
−2Hb = ∆ΓidΓ on Γ, and incorporating the constraint that the surface area remains constant.
Most algorithms that evolve the surface instead of computing a family of parametrizations have to
deal with problems related to emerging mesh irregularities.

Using an isometry constraint in large bending problems has several advantages: (i) computation-
ally, it allows us to work on one fixed grid which avoids difficulties related to mesh distortions,
(ii) analytically, the condition is the result of rigorous derivations of lower dimensional theories
from three-dimensional elasticity which imply existence of solutions, and (iii) physically, it is more
meaningful since it is a local condition and therefore appears better suited for the modeling of thin
incompressible elastic sheets. To our knowledge, the proposed finite element method is the first
one that approximates an isometry constraint and allows free boundary conditions on part of the
boundary of the plate. In addition, we provide a complete numerical analysis for the discretization
and the iterative scheme that solves the discrete formulation.

The outline of this paper is as follows. In Section 2 we recall a few facts about the considered math-
ematical model and the employed mixed finite element method. Section 3 provides a Γ-convergence
result for the discretized functional which implies convergence of numerical approximations pro-
vided that smooth isometries are dense in the set of admissible deformations or that there exists a
minimizer y ∈ H3(Ω;R3). Sufficient conditions for the convergence of the discretized H2 gradient
flow to stationary points are derived in Section 4 and its efficient implementation is discussed in
Section 5. Numerical experiments with vertical loads and compressive tensile boundary conditions
are reported in Section 6. Some auxiliary results are proved in Appendix A.

2. Preliminaries

2.1. Notation. Throughout this paper we abbreviate the L2 norm on Ω by ‖ · ‖ and let (·, ·) be
the L2 inner product on Ω. By | · | we denote the Frobenius norm of a matrix or a vector. For
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a scalar function φ we define the vectorial curl operator by Curlφ = (−∂2φ, ∂1φ) and for a vector
field v : Ω → R3 we define Curl v : Ω → R3×2 by applying the curl operator to each component of
v. We use standard notation for Lebesgue and Sobolev spaces. We always let C denote a generic
nonnegative constant that is independent of discretization parameters.

2.2. Mathematical model. For a bounded Lipschitz domain Ω ⊂ R2 with polygonal boundary, a
function f ∈ L2(Ω;R3), and functions yD, bD ∈ L2(ΓD;R3) on a closed subset ΓD ⊂ ∂Ω of positive
surface measure and such that yD has a tangential derivative ∂yD/∂s ∈ L2(ΓD;R3) along ΓD with
|∂yD/∂s| = 1 and |bD| = 1, the functional E : H1(Ω;R3)→ R ∪ {+∞} is finite for deformations in

A =
{
z ∈ H2(Ω;R3) : (∇z)

⊥

∇z = I2, z|ΓD
= yD,

(
∂1z × ∂2z

)
|ΓD

= bD
}

and is for y ∈ A defined by

E(y) =
α

2

∫
Ω
|D2y|2 dx−

∫
Ω
f · y dx.

We assume that the functions yD and ΦD admit smooth extensions to Ω and are sufficiently smooth
so that they can be approximated with arbitrary accuracy in L2(ΓD) by nodal interpolation on ΓD.

Remarks 2.1. (i) The boundary condition b|ΓD
= bD can be replaced by the condition ∇y|ΓD

= ΦD,

where ΦD ∈ L2(ΓD;R3×2) is uniquely defined through the conditions Φ

⊥

DΦD = I2, ΦDθ = ∂yD/∂s
for the unit tangent vector θ on ΓD, and ΦD,1 × ΦD,2 = bD.
(ii) The set of admissible displacements A may be empty in general.

We will use that smooth isometries are dense in A which is justified by results in [22, 20]. Since a
precise formulation of the conditions on the domain and boundary data is technical, we formulate
the result as an assumption. The use of this result can be avoided if there exists a minimizer
y ∈ H3(Ω;R3) ∩ A of E.

Assumption (D). For all z ∈ A and ε > 0 there exists zε ∈ C∞(Ω;R3)∩A with ‖D2(z−zε)‖ ≤ ε.

2.3. Finite element spaces. For a regular triangulation Th of the domain Ω with maximal mesh-
size h > 0 let Nh denote the set of nodes (vertices of elements) and Eh the set of edges of elements.
For each E ∈ Eh let zE denote the midpoint of the edge E and for each T ∈ Th let zT be the
midpoint of the triangle T . We define the finite element spaces

L0(Th) = {φh ∈ L1(Ω) : φh|T constant for all T ∈ Th},
S1(Th) = {φh ∈ C(Ω) : φh|T affine for all T ∈ Th},
S1
cr(Th) = {φh ∈ L1(Ω) : φh|T affine for all T ∈ Th

and φh continuous at every zE , E ∈ Eh}.
With the nodal basis (ϕz : z ∈ Nh) the bubble function associated to an element T ∈ Th with
vertices z1, z2, z3 ∈ Nh is defined by bT = ϕz1ϕz2ϕz3 and we set

B3(Th) =
{
φh =

∑
T∈Th

αT bT : (αT )T∈Th ⊂ R
}
.

We let P0 : L2(Ω) → L0(Th) denote the L2 projection onto L0(Th) and Ih : C(Ω) → S1(Th) the
nodal interpolation operator. We remark that for vh ∈ S1(Th) and bh ∈ B3(Th) we have

(2.1) (∇vh,∇bh) = 0.

For every vh ∈ S1(Th) and 1 ≤ p <∞ we have the equivalence

(2.2) C−1‖vh‖pLp(Ω) ≤
∑
z∈Nh

hdz |vh(z)|p ≤ C‖vh‖pLp(Ω).
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We will occasionally employ inverse estimates of the form

‖∇vh‖ ≤ Ch−1‖vh‖

which hold for all vh ∈ S1(Th) and all vh ∈ B3(Th) provided that Th is quasiuniform. We say that
Th is weakly acute if for every interior edge the sum of opposite angles does not exceed π and for
every edge on the boundary the angle opposite to it is bounded by π/2. In this case we have for
every ṽh ∈ Vp1 with |ṽh(z)| ≥ 1 for all z ∈ Nh and vh ∈ Vp1 defined by vh(z) = ṽh(z)/|ṽh(z)| for all
z ∈ Nh that

(2.3) ‖∇vh‖ ≤ ‖∇ṽh‖.

We refer the reader to [6] and Appendix A.2 for a proof.

2.4. Discrete vector fields. Spaces of discrete vector fields are defined by setting

Vp1 = S1(Th)3, Vp1,D = {vh ∈ Vp1 : vh|ΓD
= 0
}
,

Vcr = S1
cr(Th)3, Vcr,D = {vh ∈ Vcr : vh(zE) = 0 for all E ∈ Eh

}
,

Vmini = S1(Th)3 ⊕ B3(Th)3, Vmini,D =
{
vh ∈ Vmini : vh|ΓD

= 0
}
,

VB = B3(Th)3

and, with ν denoting the outer unit normal to Ω on ΓN = ∂Ω \ ΓD,

◦
Q p1,N =

{
qh ∈ S1(Th)3 : (qh, 1) = 0, (Curl qh)ν = 0 on ΓN

}
.

Given Ψh ∈ V2
mini we define

Wmini,D[Ψh] =
{

Φh ∈ V2
mini,D : Φh(z)

⊥

Ψh(z) + Ψh(z)

⊥

Φh(z) = 0 for all z ∈ Nh
}
,

where a pair of vectors V1, V2 ∈ R3 is identified with the matrix [V1, V2] ∈ R3×2. We note that for
every vh ∈ Vmini we have vh = Ihvh + IBvh with Ihvh ∈ Vp1 and IBvh ∈ VB, where

IBvh = (1− Ih)vh.

2.5. Discontinuous finite element functions. For a (possibly discontinuous) function vh ∈
S1
cr(Th) its elementwise gradient ∇hvh is for every T ∈ Th defined by

∇hvh|T = ∇(vh|T ).

The interpolation operator Ih,cr : H2(Ω) → S1
cr(Th) defined by Ih,cru(zE) = u(zE) for all E ∈ Eh

satisfies

(2.4) ‖u− Ih,cru‖+ h‖∇u−∇hIh,cru‖ ≤ ch2‖D2u‖

for all u ∈ H2(Ω). We note that we may extend the definition of ∇h to elementwise weakly differ-
entiable functions and then we have ∇hu = ∇u for every u ∈ H1(Ω). The following lemma shows
that bounded sequences of finite element functions in Vcr accumulate at functions in H1(Ω;R3). A
proof is given in Appendix A.3.

Lemma 2.1. For each h > 0 let yh ∈ Vcr be such that yh(zE) = yD(zE) for all E ∈ Eh with E ⊂ ΓD

and ‖∇hyh‖ ≤ C. Then there exists y ∈ H1(Ω;R3) with y|ΓD
= yD such that (for a subsequence)

we have yh ⇀ y in L2 and ∇hyh ⇀ ∇y in L2.
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3. Convergence of approximations

Let

Ah =
{

(Ψh, zh) ∈ V2
mini × Vcr : Ψh(z) = ΦD(z) f.a. z ∈ Nh ∩ ΓD, Ψh(z)

⊥

Ψh(z) = I2 f.a. z ∈ Nh,

zh(zE) = yD(zE) f.a. E ∈ Eh ∩ ΓD

}
and for t > 0 and (Ψh, zh) ∈ Ah consider the energy functional

Eh,t(Ψh, zh) =
t−2

2
‖P0Ψh −∇hzh‖2 +

α

2

∫
Ω
|∇Ψh|2 dx−

∫
Ω
f · zh dx.

Remarks 3.1. (i) The use of the projection operator P0 implies the robust solvability of the problem
for small displacements with vertical loads, cf. Section 5.
(ii) Notice that under moderate assumptions on yD and ΦD we have Ah 6= ∅.
Proposition 3.1 (Existence). If Ah 6= ∅ then there exists a minimizer (Φh, yh) ∈ Ah for Eh,t with
‖∇hyh‖ ≤ C(1 + ‖P0Φh‖).
Proof. For every fixed Ψh the minimal yh = LhΨh of yh 7→ Eh,t(Ψh, yh) among yh ∈ Vcr such that
the pair (Ψh, yh) ∈ Ah satisfies

(∇hyh,∇hzh) = t2(f, zh) + (P0Ψh,∇zh)

for all zh ∈ Vcr,D. Choosing zh = yh − IcryD yields that

‖∇hyh‖ ≤ C(1 + ‖P0Ψh‖).
For the functional Fh,t(Ψh) = Eh,t(Ψh,LhΨh) we thus have for every δ > 0 that

Fh,t(Ψh) ≥ (α/2)‖∇Ψh‖2 − Cδ‖f‖2 − δ‖P0Ψh‖2 − C,
i.e., Fh,t is coercive and hence there exists a minimizer Φh such that (Φh,LhΦh) ∈ Ah. �

Proposition 3.2 (Lower bound). Let t = t(h)→ 0 as h→ 0 and for each h > 0 let (Φh, yh) ∈ Ah
with ‖∇hyh‖ ≤ C(1 + ‖P0Φh‖) be such that as h→ 0 we have

Eh,t(Φh, yh) ≤ C.
Then, the sequence (Φh, yh)h>0 has weak accumulation points in H1(Ω;R3×2)×H1(Ω;R3) and for
each such point (Φ, y) ∈ H1(Ω;R3×2)×H1(Ω;R3) we have Φ = ∇y in Ω, y ∈ A, and

E(y) ≤ lim inf
h→0

Eh,t(Φh, yh).

Proof. Following the proof of Proposition 3.1 the boundedness Eh,t(Φh, yh) ≤ C and ‖∇hyh‖ ≤
C(1+‖P0Ψh‖) imply that (Φh) is bounded in H1 and thus has weak accumulation points. Moreover,
(∇hyh) is bounded in L2 and we deduce with Lemma 2.1 that (after extraction of a subsequence)
∇hyh → ∇y in L2 as h→ 0 with y|ΓD

= yD. Let Φ ∈ H1(Ω;R3×2) be a weak accumulation point of
(Φh) in H1(Ω;R3×2). By weak continuity of the trace operator we have Φ|ΓD

= ΦD. The sequence

Φh−∇hyh converges strongly to zero in L2 so that ∇y = Φ. Since Φh(z)

⊥

Φh(z) = I2 for all z ∈ Nh
we have by elementwise discrete Poincaré inequalities that

‖Φ

⊥

h Φh − I2‖ ≤ Ch‖∇Φh‖
and therefore Φ

⊥

Φ = I2 in Ω. In particular, we find that y ∈ H2(Ω;R3) is an isometry. The weak
lower semicontinuity of the H1 seminorm implies the assertion of the proposition. �

Proposition 3.3 (Attainment). Assume that Assumption (D) holds, let y ∈ A, and suppose that
t−1h→ 0 as h→ 0. For every h > 0 there exists a pair (Φh, yh) ∈ Ah such that as h→ 0 we have

Eh,t(Φh, yh)→ E(y).

6



Proof. Owing to Assumption (D) we may assume that y ∈ H3(Ω). Choosing yh = Ih,cry and
Φh = Ih

[
∇y
]
∈ V2

p1 we have (Φh, yh) ∈ Ah and owing to standard interpolation results, cf. [8]

and (2.4),

‖Φh −∇y‖+ h‖∇Φh −D2y‖+ h‖Φh −∇y‖L∞(Ω) + ‖yh − y‖+ h‖∇hyh −∇y‖ ≤ ch2‖y‖H3(Ω).

To show that Eh,t(Φh, yh)→ E(y) we first note that

t−1‖P0Φh −∇hyh‖ ≤ t−1
(
‖P0Φh − Φh‖+ ‖Φh −∇y‖+ ‖∇hyh −∇y‖

)
≤ Ct−1(h+ h2 + h).

With Φ = ∇y it follows that ∫
Ω
|∇Φh|2 dx→

∫
Ω
|D2y|2 dx

as h→ 0. Since we also have that
∫

Ω f · yh dx→
∫

Ω f · y dx we deduce the assertion. �

Remark 3.1. For the case that E has a minimizer y ∈ H3(Ω) ∩ A we have proved the one-sided
error estimate

min
Ah

Eh,t −min
A

E ≤ C(t−2h2 + h)

which motivates the choice t = O(h1/2).

The propositions imply the following convergence result.

Theorem 3.1 (Approximation). Assume that Assumption (D) holds or that E has a minimizer
y ∈ H3(Ω;R3) ∩ A. For each (h, t) > 0 let (Φh, yh) ∈ Ah be such that ‖∇hyh‖ ≤ C(1 + ‖P0Φh‖)
and

Eh,t
(
Φh, yh

)
≤ min

(Ψh,zh)∈Ah

Eh,t
(
Ψh, zh

)
+ εh ≤ C

where εh → 0 as h→ 0. Then, if t−1h→ 0 as h→ 0 the sequence (Φh, yh)h>0 has weak accumula-
tion points in H1(Ω;R3×2)×H1(Ω;R3) and for each such point (Φ, y) ∈ H1(Ω;R3×2)×H1(Ω;R3)
we have Φ = ∇y in Ω, y ∈ A, and

E(y) = min
z∈A

E(z) = lim
h→0

Eh,t(Φh, yh).

4. Iterative energy reduction

We propose the following scheme for the computation of stationary points of the functional Eh,t.

4.1. Iterative algorithm. For given Φ0
h ∈ V2

mini such that Φ0
h(z) = ΦD(z) for all z ∈ Nh ∩ ΓD

and Φ0
h(z)

⊥

Φ0
h(z) = I2 for all z ∈ Nh we iterate the following steps.

Step A. Compute for given Φn−1
h ∈ V2

mini the pair (Φ̃n
h, ỹ

n
h) ∈ V2

mini×Vcr with ỹnh(zE) = yD(zE) for

all E ∈ Eh ∩ ΓD, Φ̃n
h(z) = ΦD(z) for all z ∈ Nh ∩ ΓD, and(

Φ̃n
h(z)− Φn−1

h (z)
) ⊥

Φn−1
h (z) + Φn−1

h (z)

⊥

(Φ̃n
h(z)− Φn−1

h (z)) = 0

that is minimal for

(Φh, yh) 7→ 1

2τ
‖∇(Φh − Φn

h)‖2 +
t−2

2
‖P0Φh −∇hyh‖2 +

α

2

∫
Ω
|∇Φh|2 dx−

∫
Ω
f · yh dx.

Step B. Define Φn
h = IBΦ̃n

h + Φ̂n
h ∈ V2

mini, where Φ̂n
h ∈ V2

p1 is defined by setting

Φ̂n
h,1(z) =

Φ̃h,1(z)

|Φ̃h,1(z)|
, Φ̂n

h,2(z) =
Φ̃h,2(z)

|Φ̃h,2(z)|
for all z ∈ Nh, and let ynh ∈ Vcr be such that ynh(zE) = yD(zE) for all E ∈ Eh ∩ ΓD and(

∇hynh ,∇hzh
)

=
(
P0Φn

h,∇hzh
)

+ t2
(
f, zh

)
7



for all zh ∈ Vcr,D.

Remarks 4.1. (i) Notice that the part of Φ̃n
h belonging to V2

B remains unchanged in Step 2, i.e.,
only the nodal values are projected onto the unit sphere.
(ii) The iterates do not satisfy Φn

h,1(z) · Φn
h,2(z) = 0 for z ∈ Nh but this quantity remains small.

(iii) For each n ≥ 1 there exists a unique solution (Φ̃n
h, ỹ

n
h) in Step 2 which is the solution of

τ−1
(
∇[Φ̃n

h − Φn
h],∇Ψh

)
+ t−2

(
P0Φ̃n

h −∇hỹnh ,Ψh −∇hzh
)

+ α
(
∇Φ̃n

h,∇Ψh

)
=
(
f, zh

)
for all (Ψh, zh) ∈ V2

mini,D × Vcr,D with

(4.1) (Ψh(z)− Φn−1
h (z))

⊥

Φn−1
h (z) + Φn−1

h (z)

⊥

(Ψh(z)− Φn−1
h (z)) = 0

for all z ∈ Nh. In particular, we have for all zh ∈ Vcr,D that(
∇hỹnh ,∇hzh

)
=
(
P0Φ̃n

h,∇hzh
)

+ t2
(
f, zh

)
.

(iv) For all zh ∈ Vcr,D we have that(
∇h[ỹnh − yn−1

h ],∇hzh
)

=
(
P0[Φ̃n

h − Φn−1
h ],∇hzh

)
.

4.2. Convergence of the iteration. We show that if the time-step size τ is sufficiently small
then the iteration converges.

Theorem 4.1 (Convergence). Assume that Th is quasiuniform and weakly acute and that t−1h ≤
C0. If τ ≤ C1h

2/3 then we have for all N ≥ 1 with Nτ‖f‖2 ≤ C2 that

Eh,t
(
ΦN
h , y

N
h

)
+ (τ/2)

N∑
`=1

‖∇hd̃tΦ`
h‖2 ≤ Eh,t

(
Φ0
h, y

0
h

)
,

where d̃tΦ
`
h =

(
Φ̃`
h − Φ`−1

h

)
/τ , and∥∥Ih[ΦN

h,1 · ΦN
h,2

]∥∥
L1(Ω)

≤ C3τEh,t
(
Φ0
h, y

0
h

)
.

The constants C0, C1, C2, C3 depend on upper bounds for ‖∇Φ0
h‖, ‖∇hy0

h‖, ‖f‖, α, and α−1.

Proof. Given two sequences (an) and (ãn) we write d̃ta
n = (ãn − an−1)/τ in this proof.

(i) Induction hypothesis. We argue by induction over N and assume that the first estimate of the

theorem has been proved for N − 1. This is true for N = 1. Since ‖d̃tynh‖ ≤ C‖d̃tΦn
h‖ we have for

all 1 ≤ n ≤ N that

(4.2) Ên−1
h,t ≤ Ê

0
h,t + C(n− 1)τ‖f‖2 ≤ Ct−2,

where

Ên−1
h,t = Eh,t(Φ

n
h, y

n
h) +

∫
Ω
f · ynh dx =

t−2

2
‖P0Φn−1

h −∇hyn−1
h ‖2 +

α

2
‖∇Φn−1

h ‖2.

From this we deduce with (2.1) that ‖∇IBΦn−1
h ‖ ≤ ‖∇Φn−1

h ‖ ≤ Ct−1. Let 1 ≤ n ≤ N in the
following.

(ii) Local energy inequality. Upon choosing Ψh = d̃tΦ
n
h and zh = d̃ty

n
h in (4.1) we have

(4.3) ‖∇d̃tΦn
h‖2 + d̃t

( t−2

2
‖P0Φn

h −∇hynh‖2 +
α

2
‖∇Φn

h‖2 −
(
f, ynh

))
+ τ
( t−2

2
‖d̃t(P0Φn

h −∇hynh)‖2 +
α

2
‖d̃t∇Φn

h‖2
)

= 0.

8



(iii) Coarse bound for d̃t∇Φn
h. From (4.3) and ‖∇d̃tynh‖ ≤ ‖d̃tΦn

h‖ we deduce that

‖∇d̃tΦn
h‖2 ≤

t−2

τ
‖P0Φn−1

h −∇hyn−1
h ‖2 +

α

2τ
‖∇Φn−1

h ‖2 + C‖f‖2.

Since the columns of Φn−1
h (z) are unit length vectors for every z ∈ Nh and since by local Poincaré

inequalities ‖IBΦn−1
h ‖ ≤ Ch‖∇IBΦn−1

h ‖ ≤ Cht−1 ≤ C we verify with an inverse estimate that

‖P0Φn−1
h ‖ ≤ C, ‖∇Φn−1

h ‖ ≤ C(h−1 + t−1)

and, upon choosing zh = yn−1
h − y0

h in Step B,

‖∇hyn−1
h ‖ ≤ ‖P0Φn−1

h ‖+ ‖∇hy0
h‖+ Ct2‖f‖ ≤ C.

This implies the bound

‖∇d̃tΦn
h‖ ≤ C

(
1 + τ−1/2(t−1 + h−1)

)
.

(iv) Bound for IBΦn
h. Using that ‖∇d̃tynh‖ ≤ ‖d̃tΦn

h‖ the estimate (4.3), IBΦ̃n
h = IBΦn

h, and

‖∇IBΦn
h‖ ≤ ‖∇Φ̃n

h‖ imply

‖∇IBΦn
h‖2 ≤ Ên−1

h,t + Cτ‖f‖2 ≤ Ê0
h,t + Cnτ‖f‖2 ≤ Ct−2

and with elementwise Poincaré inequalities we find ‖IBΦn
h‖ ≤ Ch‖∇IBΦn

h‖ ≤ Cht−1 ≤ C.

(v) Bound for projection error. Since Φn
h,j(z) = Φ̃n

h,j(z)/|Φ̃n
h,j(z)| and d̃tΦ

n
h,j(z) · Φ

n−1
h,j (z) = 0 for

j = 1, 2 and every z ∈ Nh we have∣∣Φn
h,j(z)− Φ̃n

h,j(z)
∣∣ =

∣∣Φ̃n
h,j(z)

∣∣− 1 =
(
1 + τ2

∣∣d̃tΦn
h(z)

∣∣2)1/2 − 1 ≤ (τ2/2)
∣∣d̃tΦn

h(z)
∣∣2.

A Sobolev inequality and (2.2) imply

‖Φ̃n
h − Φn

h‖ ≤ Cτ2‖d̃tIhΦn
h‖2L4(Ω) ≤ Cτ

2‖d̃t∇Φn
h‖2,

where we also used that ‖∇d̃tIhΦn
h‖ ≤ ‖∇d̃tΦn

h‖.
(vi) Energy of projected iterates. We want to show that

(4.4) Eh,t
(
Φn
h, y

n
h

)
=
t−2

2
‖P0Φn

h −∇hynh‖2 +
α

2
‖∇Φn

h‖2 −
(
f, ynh

)
≤ E

(
Φ̃n
h, ỹ

n
h

)
+ (τ/2)‖d̃t∇Φn

h‖2.

Using ‖∇h(ỹnh−ynh)‖ ≤ ‖Φ̃n
h−Φn

h‖, ‖d̃t∇hynh‖ ≤ ‖d̃tΦn
h‖, ‖∇hy

n−1
h ‖ ≤ C, ‖∇hynh‖ ≤ C(1+‖P0Φn

h‖),
the identities Φ̃n

h = Φn−1
h +τ d̃tΦ

n
h and ỹnh = yn−1

h +τ d̃ty
n
h , and the coarse bound on d̃t∇Φ̃n

h we verify
that

‖P0Φ̃n
h −∇hỹnh‖2 − ‖P0Φn

h −∇hynh‖2

≤ ‖P0(Φ̃n
h − Φn

h)−∇h(ỹnh − ynh)‖‖P0(Φ̃n
h + Φn

h)−∇h(ỹnh + ynh)‖

≤ 2‖Φ̃n
h − Φn

h‖
(
‖P0Φ̃n

h‖+ ‖P0Φn
h‖+ ‖∇hỹnh‖+ ‖∇hynh‖

)
≤ Cτ2‖∇d̃tIhΦn

h‖2
(
‖P0Φn−1

h ‖+ τ‖d̃tΦn
h‖+ ‖Φn

h‖+ ‖∇hyn−1
h ‖+ τ‖d̃t∇hynh‖+ ‖∇hynh‖

)
≤ Cτ2‖∇d̃tIhΦn

h‖2
(
1 + τ‖d̃tΦn

h‖+ ‖IhΦn
h‖+ ‖IBΦn

h‖
)

≤ Cτ‖∇d̃tΦn
h‖2(τ + τ3/2(h−1 + t−1)).

By (2.3) we have

‖∇Φn
h‖ ≤ ‖∇Φ̃n

h‖.
Finally, we estimate∫

Ω
fynh dx−

∫
Ω
fỹnh dx ≤ ‖f‖‖ynh − ỹnh‖ ≤ C‖f‖‖Φn

h − Φ̃n
h‖ ≤ Cτ2‖f‖‖∇d̃tΦn

h‖2.
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For h ≤ Ct, τ ≤ Ch2/3, and τ‖f‖ ≤ C the combination of the last three estimates leads to (4.4).
(vii) Global energy inequality. Using (4.4) in (4.3) shows

Eh,t
(
Φn
h, y

n
h

)
+ (τ/2)‖∇d̃tΦn

h‖2 ≤ Eh,t
(
Φn−1
h , yn−1

h

)
,

for all n ≤ N and this implies the induction hypothesis for N and thus the first assertion of the
theorem.
(viii) Almost-orthogonality of column vectors. Since for every z ∈ Nh we have d̃tΦ

n
h,1(z) ·Φn−1

h,2 (z) +

d̃tΦ
n
h,2(z) · Φn−1

h,1 (z) = 0 we deduce that(
|Φ̃n
h,1(z)|Φn

h,1(z)
)
·
(
|Φ̃n
h,2(z)|Φn

h,2(z)
)

= Φ̃n
h,1(z) ·Φ̃n

h,2(z) = Φn−1
h,1 (z) ·Φn−1

h,2 (z)+τ2d̃tΦ
n
h,1(z) · d̃tΦn

h,2(z)

and thus, since |Φ̃n
h,1(z)|, |Φ̃n

h,2(z)| ≥ 1, we deduce with (2.2) that

‖Ih
[
Φn
h,1 · Φn

h,2

]
‖L1(Ω) ≤ ‖Ih

[
Φn−1
h,1 · Φ

n−1
h,2

]
‖L1(Ω) + τ2‖d̃tΦn

h,1‖‖d̃tΦn
h,2‖

≤ ‖Ih
[
Φn−1
h,1 · Φ

n−1
h,2

]
‖L1(Ω) + Cτ2‖d̃t∇Φn

h‖2.

An inductive argument with Ih
[
Φ0
h,1 · Φ0

h,2

]
= 0 proves the second assertion of the theorem. �

Remarks 4.2. (i) The result of the theorem is based on the estimate

Eh,t
(
Φn
h, y

n
h

)
≤ Eh,t

(
Φ̃n
h, ỹ

n
h

)
+ (τ/2)‖d̃t∇Φn

h‖2

which can be monitored during a simulation and used to adjust the time-step size. This is important
when the (unknown) constant C1 in τ ≤ C1h

2/3 is small.
(ii) If Th is not weakly acute then we need to assume τ ≤ Ch2 to derive the same result.

5. Efficient implementation

5.1. Motivation. To motivate an efficient implementation of Step A of the algorithm proposed
in the previous section, we discuss the numerical scheme in a semi-discrete setting. Given Φn−1 ∈
H1(Ω;R3×2) we need to find a minimizing pair (Φ̃n, ỹn) ∈ H1(Ω;R3×2)×H1(Ω;R3) for

Ent (Φ, y) =
1

2τ
‖∇(Φ− Φn−1)‖2 +

t−2

2
‖Φ−∇y‖2 +

α

2

∫
Ω
|∇Φ|2 dx−

∫
Ω
f · y dx

subject to the boundary conditions ỹn = yD and Φ̃n = ΦD on ΓD and the pointwise constraint

(Φ̃n − Φn−1)

⊥

Φn−1 + Φn−1,

⊥

(Φ̃n − Φn−1) = 0.

The corresponding Euler-Lagrange equations read

1

τ

(
∇(Φ̃n − Φn−1),∇Ψ

)
+ t−2

(
Φ̃n −∇ỹn,Ψ

)
+ α

(
∇Φ̃n,∇Ψ

)
= 0,

−t−2
(
Φ̃n −∇ỹn,∇z

)
−
(
f, z
)

= 0,
(5.1)

for all Ψ ∈ H1
D(Ω;R3×2) and z ∈ H1

D(Ω;R3) with (Ψ − Φn−1)

⊥

Φn−1 + Φn−1,

⊥

(Ψ − Φn−1) = 0.

Notice that on ΓN we have t−2(Φ̃n − ∇ỹn)ν = 0. Following [2] we choose rn ∈ H1
D(Ω;R3) and

pn ∈ H1(Ω;R3) with (∇rn)ν = 0 and (Curl pn)ν = 0 on ΓN and (pn, 1) = 0 such that

(5.2) t−2(Φ̃n −∇yn) = −∇rn − Curl pn.

Using that
(

Curl pn,∇z
)

= 0 for all z ∈ H1
D(Ω;R3) we can simplify the solution of (5.1) as follows:

(i) From (5.2) and the second identity in (5.1) we get for all η ∈ H1
D(Ω;R3) that(

∇rn,∇η
)

=
(
f, η
)
.

10



(ii) From (5.2) and the first equation in (5.1) we get for all Ψ ∈ H1
D(Ω;R3×2) with (Ψ −

Φn−1)

⊥

Φn−1 + Φn−1,

⊥

(Ψ− Φn−1) = 0 that

1

τ

(
∇(Φ̃n − Φn−1),∇Ψ

)
−
(

Curl pn,Ψ
)

+ α
(
∇Φ̃n,∇Ψ

)
=
(
∇rn,Ψ

)
.

(iii) Testing (5.2) with Curl q for q ∈ H1(Ω;R3) such that (Curl q)ν = 0 on ΓN and (q, 1) = 0
yields that (

Φ̃n,Curl q
)

+ t2
(

Curl pn,Curl q
)

= 0.

(iv) Testing (5.2) with ∇z for z ∈ H1
D(Ω;R3) yields that(

∇yn,∇z
)

=
(
Φ̃n,∇z

)
+ t2

(
∇rn,∇z

)
.

Notice that the formulation in (i) can be solved individually, that (ii)-(iii) defines a saddle-point
problem with penalty term (which in general is owing to certain boundary terms not the variational
derivative of a quadratic energy functional), and that (iv) can be solved once the solutions of (i)-(iii)
have been computed. We also observe that rn is independent of n and that yn is not required in
the solution of (ii)-(iii), hence the formulation (ii)-(iii) can be iterated without solving (i) and (iv).

5.2. Discrete realization. The reformulation described above leads to the following implementa-
tion of the iterative algorithm which we stop if the magnitude of the rate of decrease of the energy
is smaller than the prescribed parameter εstop > 0.

Step 0. Choose a parameter εstop > 0, a time-step size τ > 0, a regular triangulation Th, a parameter

t > 0, and Φ0
h ∈ V2

mini with Φ0
h(z) = ΦD(z) for all z ∈ Nh ∩ ΓD and Φ0

h(z)

⊥

Φ0
h(z) = I2 for

all z ∈ Nh. Set n = 1.
Step 1. Compute rh ∈ Vcr,D such that(

∇hrh,∇hηh
)

=
(
f, ηh

)
for all ηh ∈ Vcr,D.

Step 2. Compute d̃tΦ
n
h ∈Wmini,D

[
Φn−1
h

]
and pnh ∈

◦
Q p1,N such that(

∇d̃tΦn
h,∇Ψh

)
+ α

(
∇(τ d̃tΦ

n
h + Φn−1

h ),∇Ψh

)
−

(
Curl pnh,Ψh

)
=
(
∇hrh,Ψh

)
,

− τ
(
d̃tΦ

n
h,Curl qh

)
−t2
(

Curl pnh,Curl qh
)
=
(
Φn−1
h ,Curl qh

)
for all Ψh ∈Wmini,D

[
Φn−1
h

]
and qh ∈

◦
Q p1,N.

Step 3. Define Φn
h = IBΦ̃n

h + Φ̂n
h ∈ V2

mini, where Φ̂n
h =

[
Φ̂n
h,1, Φ̂

n
h,2

]
∈ V2

p1 is defined by setting for
all z ∈ Nh

Φ̂n
h,1(z) =

Φn−1
h,1 (z) + τ d̃tΦ

n
h,1(z)

|Φn−1
h,1 (z) + τ d̃tΦn

h,1(z)|
, Φ̂n

h,2(z) =
Φn−1
h,2 (z) + τ d̃tΦ

n
h,2(z)

|Φn−1
h,2 (z) + τ d̃tΦn

h,2(z)|
.

Step 4. Compute ynh ∈ Vcr with ynh(zE) = yD(zE) for all E ∈ Eh ∩ ΓD and(
∇hynh ,∇hzh

)
=
(
P0Φn

h,∇hzh
)

+ t2
(
∇hrh,∇hzh

)
for all zh ∈ Vcr,D.

Step 5. Stop if Eh,t
(
Φn
h, y

n
h

)
− Eh,t(Φn−1

h , yn−1
h

)
≥ −τεstop.

Step 6. Set n = n+ 1 and go to Step 2.

Remarks 5.1. (i) The projection P0Φh guarantees that there exists a discrete Helmholtz decompo-

sition t−2(P0Φ̃n
h −∇hỹnh) = −∇hrnh − Curl pnh, cf. [2].

(ii) The degrees of freedom related to the functions in B3(Th) can be eliminated from the equations
11



since the related stiffness matrix decouples owing to (2.1) and can be explicitly inverted, i.e., Step 2
in matrix-vector notation readsSP1 + τLP1 0 −C

⊥

P1

0 SB + τLB −C

⊥

B
−τCP1 −τCB −t2sp1

d̃tΦP1

d̃tΦB

p

 =

 GP1r − LP1Φn−1
P1

GBr − LBΦn−1
B

CP1Φn−1
P1 + CBΦn−1

B


and using that d̃tΦB = X−1

B

(
C

⊥

B p + GBr − LBΦn−1
B

)
, where XB = (SB + τLB), this is equivalent

to the system[
SP1 + τLP1 −C

⊥

P1

−τCP1 −τCBX−1
B C

⊥

B − t2sp1

] [
d̃tΦP1

p

]
=

[
GP1r − LP1Φn−1

P1

CP1Φn−1
P1 + CBΦn−1

B + b′B

]
with b′B = τX−1

B

(
GBr − LBΦn−1

B

)
. We have LP1 = αSP1 and LB = αSB.

(iii) The inf-sup condition can not be expected to hold for the linear system of equations in Step 2 of
the algorithm, i.e., for Ψ ∈ R3×2 there does in general not exist Φ ∈ H1(Ω;R3×2) with curl Φ = F for

given F ∈ L2(Ω;R3) such that Φ

⊥

Ψ+Ψ

⊥

Φ = 0. The situation Ψ =

[
1 0 0
0 1 0

] ⊥

and F = (0, 0, f)

⊥

corresponds to small displacements and a vertical load and in this case the inf-sup condition holds,
cf. [2]. Nevertheless, a unique discrete solution always exists in Step 2.
(iv) The decrease of the energy Eh,t

(
Φn
h, y

n
h

)
≤ Eh,t(Φ

n−1
h , yn−1

h

)
guaranteed by Theorem 4.1 for

τ sufficiently small can be monitored during the iteration. If this energy decrease is violated the
time-step size should be decreased.

6. Numerical experiments

To illustrate the practical performance of our algorithm we study three prototypical specifications
of the model problem. These are defined by vertical loads with a fixed part of the boundary of
the plate and compressive tensile boundary conditions in the absence of an exterior body force. In
all of our experiments we employed triangulations Th = T` determined by a positive integer ` that

consist of halved squares with edge-lengths ĥ = 2−` and diameters h =
√

2 ĥ. The parameter t was

defined by t = ĥ1/2/4 and the time-step size by τ = ĥ/4, where the extra factor ĥ1/3/4 accounts

for the unknown constants in the condition τ ≤ Ch2/3. The stopping criterion of our algorithm
was specified by εstop = 1.0 × 10−3. To display the possibly discontinuous discrete displacement
yh ∈ Vcr we employed an L2 projection of yh onto the respective C0-conforming finite element
space Vp1.

6.1. Vertical load on a rectangular plate. The first problem considers a rectangular plate that
is clamped on one side and subject to a vertical load.

Example 6.1. Let Ω = (0, 4) × (0, 1), ΓD = {0} × [0, 1], α = 1, yD(x) = (x, 0)

⊥

and bD(x) =

(0, 0, 1)

⊥

for x ∈ ΓD, and f(x) = cf (0, 0, 1)

⊥

for x ∈ Ω with cf = 2.5× 10−2.

For ` = 2, 3, 4 we plotted in Figure 1 the outputs of our approximation scheme. The deformed plate
is colored by the discrete mean curvatureHh = (1/2) tr IIh for the piecewise constant approximation
of the second fundamental form defined by

IIh = −
(
∇Ih

[
Φh,1 × Φh,2

]) ⊥

∇hyh.

As initial guesses we chose the compatible pairs Φ0
h(x) =

[
1 0 0
0 1 0

] ⊥

and y0
h(x) = (x, 0)

⊥

for

x ∈ Ω. We observe that the deformations do not differ significantly for the different mesh-sizes
and that the deformations can not be approximated as graphs of functions defined on Ω. In the
second column of Table 1 we displayed for ` = 2, 3, 4, 5 the number of iterations carried out by
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Figure 1. Deformations of a clamped 4 × 1 plate for a uniform vertical load on
different uniform triangulations. The deformations are colored by the discrete mean
curvature Hh.

our algorithm before termination. As expected, the number of time steps needed to satisfy the
stopping criterion grows linearly. The computed energy Eh,t(Φh, yh) of the output is shown in the

third column and it increases as the mesh-size ĥ decreases. The failure of being an exact isometry,
i.e., the L1 norm of the elementwise constant function

δI =
(
∇hyh

) ⊥

∇hyh − I2,

is shown in the fourth column of Table 1 and we observe that this quantity decreases nearly linearly
to zero. We also displayed the L1 norm of an elementwise constant approximation of the Gaussian
curvature defined by Kh = det IIh. The experimental results show that this quantity decays almost
quadratically to zero as h approaches zero. As is guaranteed by Theorem 4.1, the column vectors
of the computed approximations Φh are nearly orthogonal and this is confirmed by the numbers
displayed in the last column of Table 1.

6.2. Vertical load on a square-shaped plate. To illustrate the performance of our algorithm
when the profile of the deformation is not one-dimensional in the direction of one of the coordinate
axes, we employ a square-shaped plate that is clamped on two nonparallel sides and a load as in
Example 6.1.
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ĥ Niter Eh,t(Φh, yh) ‖δI‖L1(Ω) ‖Kh‖L1(Ω) ‖Ih[Φh,1 · Φh,2]‖L1(Ω)

2−2 29 −1.543× 10−2 7.304× 10−4 6.035× 10−6 1.778× 10−6

2−3 56 −1.536× 10−2 3.656× 10−4 1.498× 10−6 2.463× 10−7

2−4 110 −1.532× 10−2 1.890× 10−4 3.669× 10−7 3.208× 10−8

2−5 219 −1.531× 10−2 9.717× 10−5 9.037× 10−8 4.117× 10−9

Table 1. Iteration numbers, computed energy, deviation of the discrete first fun-
damental form from I2, norm of the discrete Gaussian curvature, and inner product
of the column vectors of Φh for the iteration of the iterative algorithm on triangu-
lations with different mesh-sizes for a vertical load on a clamped rectangular plate.

Example 6.2. Let Ω = (0, 4)× (0, 4), ΓD = {0} × [0, 4] ∪ [0, 4]× {4}, α = 1, yD(x) = (x, 0)

⊥

and

bD(x) = (0, 0, 1)

⊥

for all x ∈ ΓD, and f(x) = cf (0, 0, 1)

⊥

for x ∈ Ω with cf = 2.5× 10−2.

We used the same initial pairs (Φ0
h, y

0
h) as in the previous experiment. The outputs of our algorithm

are for three different triangulations defined by ` = 2, 3, 4 shown in Figure 2 and we observe a
nontrivial large deformation. We note that the employed triangulations are such that the diagonals
of halved squares are orthogonal to the direction (1, 1) so that the triangulations do not lead to an
artificial improvement of the computed solution. We also tested the algorithm with triangulations
for which the diagonals of halved squares were parallel to (1, 1) and observed nearly the same results.
Table 2 displays the iteration numbers, the computed energies, the deviation of the discrete first
fundamental form from the identity matrix, the L1 norm of the discrete Gaussian curvature, and the
L1 norm of the inner product of the column vectors of the output Φh for different mesh-sizes. We see
that in this experiment the discrete first fundamental form approaches the unity matrix only very
slowly and also the discrete Gaussian curvature decreases slowly as the mesh-size becomes smaller.
The relative change of the area of the deformed plate is approximately 5.0× 10−3/16.0 ≈ 0.03%.

ĥ Niter Eh,t(Φh, yh) ‖δI‖L1(Ω) ‖Kh‖L1(Ω) ‖Ih[Φh,1 · Φh,2]‖L1(Ω)

2−2 26 −1.009× 10−2 5.444× 10−3 2.234× 10−3 2.551× 10−4

2−3 49 −9.864× 10−3 5.138× 10−3 2.162× 10−3 1.168× 10−4

2−4 96 −9.721× 10−3 5.007× 10−3 2.130× 10−3 5.550× 10−5

2−5 185 −9.545× 10−3 4.776× 10−3 2.043× 10−3 2.672× 10−5

Table 2. Iteration numbers, computed energy, deviation of the discrete first fun-
damental form from I2, norm of the discrete Gaussian curvature, and inner product
of the column vectors of Φh for the iteration of the iterative algorithm on trian-
gulations with different mesh-sizes for a vertical load on a clamped square-shaped
plate.

For clamped boundary conditions on ΓD ⊂ ∂Ω we expect that any isometric deformation coincides
with the identity inside the convex hull of ΓD. Hence, in Example 6.2 the third component of the
discrete deformations yh should converge to zero in the region above the diagonal {(x1, x2) ∈ Ω :
x1 = x2}. In Figure 3 we plotted the third component of the approximate deformations along

this diagonal for different mesh-sizes and for the relations t = ĥ1/2/4 as well as for t = ĥ/4. We
observe that the curves slowly converge to zero and that the curves related to the smaller value of
t lie below the ones for the larger values. Table 3 shows the maxima of the curves and we see that
these values decrease slowly as the mesh-size decreases. The numbers imply that we have a relative
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Figure 2. Deformations of a clamped 4 × 4 plate for a uniform vertical load on
different uniform triangulations.
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approximation error in L∞ of about 10% and that a choice t ∼ ĥ1−ε for some small parameter

ε > 0 may be preferable over t ∼ ĥ1/2 in this example.

t ĥ = 2−2 ĥ = 2−3 ĥ = 2−4 ĥ = 2−5

ĥ1/2/4 4.110× 10−2 3.973× 10−2 3.902× 10−2 3.804× 10−2

ĥ/4 3.931× 10−2 3.815× 10−2 3.510× 10−2 2.924× 10−2

Table 3. Maximum value of the third component of the discrete deformations
along the diagonal {(x1, x2) ∈ Ω : x1 = x2} for a vertical load on a 4× 4 plate.

6.3. Tensile compression of a strip. We next study compressive boundary conditions on part
of the boundary of a rectangular plate. A small vertical load selects one of two possible solutions
related to the symmetry in vertical direction of the problem for f = 0.

Example 6.3. Let Ω = (−2, 2) × (0, 1), ΓD = {−2, 2} × [0, 1], α = 1, f(x) = cf (0, 0, 1)

⊥

with

cf = 1.0× 10−5 for x ∈ Ω, bD = (0, 0, 1)

⊥

on ΓD, and

yD(x) = (x1 ± a, x2, 0)

⊥

for (x1, x2) ∈ ΓD with x1 = ∓2. We set a = 1.4.

To start the iteration we set Φ0
h =

[
1 0 0
0 1 0

] ⊥

and defined the initial deformation for x = (x1, x2) ∈

Ω by

y0
h(x) =


(x1 + a, x2, 0), −2 ≤ x1 ≤ −a,
(0, x2, x1 + a), −a ≤ x1 ≤ 0,

(0, x2,−x1 + a), 0 ≤ x1 ≤ a,
(x1 − a, x2, 0), a ≤ x1 ≤ 2.

We note that this choice of initial guesses is incompatible in the sense that ‖P0Φ0
h − ∇hy0

h‖ 6= 0.
Owing to this possibly suboptimal choice of initial values we found that our choice of the time-step

size τ = ĥ/4 was almost optimal, i.e., for larger time-steps we did not observe convergence of the
iteration for the tested mesh-sizes. The outputs for different mesh-sizes are displayed in Figure 4
and we observe large curvatures along the line x1 = 0. The computed energies, the iteration
numbers, the deviation of the discrete first fundamental form from the identity matrix, the L1

norm of the discrete Gaussian curvature, and the inner products of the column vectors of Φh are
displayed in Table 4. The displayed numbers reveal that a large number of iterations is required to
approximate a stationary point, that the minimal energies decrease as the mesh-size decreases in
this experiment, and that the approximation error for the first fundamental form is nearly linear
for ` ≥ 3. The L1 norm of the discrete Gaussian curvature is very small and decays quadratically
to zero.

Acknowledgements. The author acknowledges support by the DFG through the Collaborative
Research Center (SFB) 611 Singular Phenomena and Scaling in Mathematical Models.

Appendix A. Auxiliary results

A.1. Elementary differential geometry. Given a parametrized surface y : Ω → R3 the first
fundamental form is given by gij = ∂iy · ∂jy and the second fundamental form by hij = ∂ib · ∂jy =
−b · ∂i∂jy, where b = ∂1y × ∂2y. The inverse of g has the entries gij . The Gaussian curvature is

16



−2 0 20

1

0

1

2

−2 0 20

1

0

1

2

−2 0 20

1

0

1

2

-3.0

3.0

Figure 4. Numerical solutions for 70.0% tensile compression of a 4 × 1 plate
on triangulations with different mesh-sizes. The deformations are colored by the
discrete mean curvature Hh.

ĥ Niter Eh,t(Φh, yh) ‖δI‖L1(Ω) ‖Kh‖L1(Ω) ‖Ih[Φh,1 · Φh,2]‖L1(Ω)

2−2 115 −1.892 1.857× 10−1 2.798× 10−7 9.614× 10−9

2−3 194 −2.713 1.698× 10−1 7.173× 10−8 8.003× 10−10

2−4 357 −3.295 1.052× 10−1 1.672× 10−8 8.121× 10−11

2−5 684 −3.619 5.753× 10−2 4.045× 10−9 1.159× 10−11

Table 4. Iteration numbers, computed energy, deviation of the first fundamental
form from identity, norm of the discrete Gaussian curvature, and inner product of
the column vectors of Φh for the iteration of the iterative algorithm on triangulations
with different mesh-sizes for tensile compression.

the determinant of the Weingarten map L =
(∑

k hikg
kj
)

and given by K = dethij/det gij . The
mean curvature is half of the trace of L and given by H = (h11g22−2h12g12 +h22g11)/(2 det gij). If
the parametrization is an isometry, i.e., if gij = δij , then Gauss’s theorema egregium implies K = 0.
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Moreover, we have tr II = trL = 2H and

|II|2 =
∑
i,j

h2
ij = h2

11 + h2
22 + 2h2

12 = (h11 + h22)2 − 2h11h22 + 2h2
12 = 4H2 − 2K = 4H2.

For a C2 isometry with |∂jy|2 = 1, j = 1, 2, and ∂1y · ∂2y = 0 we deduce that ∂2
1y · ∂1y = 0

and ∂2
1y · ∂2y = −∂1y · ∂1∂2y = 0. Analogously, we verify that ∂2

2y · ∂1y = −∂2y · ∂1∂2y = 0 and
∂2

2y · ∂2y = 0 so that −∆y = βb. Since −∆y · b = tr II = 2H we verify that −∆y = 2Hb. The
vectors (∂1y, ∂2y, b) form an orthonormal basis of R3 for every x ∈ Ω so that |∂i∂jy| = |∂i∂jy · b|
and hence |D2y|2 =

∑
i,j |∂i∂jy · b|2 = |II|2.

A.2. Proof of (2.3). Given a weakly acute triangulation Th we have for the entries kzy =
(∇ϕz,∇ϕy) of the stiffness matrix that kzy ≤ 0 if z 6= y for all z, y ∈ Nh. The symmetry kzy = kyz
and the identity

∑
y∈Nh

kzy = 0 for all z ∈ Nh show

‖∇vh‖2 =
1

2

∑
z,y∈Nh

kzyvh(z) · (vh(y)− vh(z)) +
1

2

∑
z,y∈Nh

kzyvh(y) · (vh(z)− vh(y))

= −1

2

∑
z,y∈Nh

kzy|vh(z)− vh(y)|2.

The assertion follows from the fact that the mapping x 7→ x/|x| is Lipschitz continuous with
constant 1 in {x ∈ R3 : |x| ≥ 1}.

A.3. Proof of Lemma 2.1. A discrete Poincaré inequality shows that ‖yh‖ ≤ C and hence there
exists y ∈ L2(Ω;R3) with (after extraction of a subsequence) yh ⇀ y in L2. Since ‖∇hyh‖ ≤ C there
exists ξ ∈ L2(Ω;R3×2) such that (after extraction of another subsequence) ∇hyh ⇀ ξ in L2. We
have, using that

∫
E [yh] ds = 0 for all E ∈ Eh and that the (row-wise applied) Fortin interpolant IFΨ

of Ψ ∈ C∞0 (Ω;R3×2) on the Raviart-Thomas finite element space, cf. [9], satisfies that (IFΨ)ν|E is
constant on each E ∈ Eh, that∫

Ω
∇hyh : Ψ dx = −

∫
Ω
yh · div Ψ dx+

∑
E∈Eh

∫
E

[yh] · ([Ψ− IFΨ]ν) ds

= −
∫

Ω
yh · div Ψ dx+

∫
Ω
∇hyh : [Ψ− IFΨ] dx+

∫
Ω
yh · div[Ψ− IFΨ] dx.

Since the last two terms on the right-hand side converge to zero as h→ 0 we deduce that ξ = ∇y.
The fact that y|ΓD

= yD follows from an elementwise integration by parts as above provided that
yh → y in L2(ΓD).

References

[1] Alouges, F. A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case.
SIAM J. Numer. Anal. 34, 5 (1997), 1708–1726.

[2] Arnold, D. N., and Falk, R. S. A uniformly accurate finite element method for the Reissner-Mindlin plate.
SIAM J. Numer. Anal. 26, 6 (1989), 1276–1290.

[3] Barrett, J. W., Bartels, S., Feng, X., and Prohl, A. A convergent and constraint-preserving finite element
method for the p-harmonic flow into spheres. SIAM J. Numer. Anal. 45, 3 (2007), 905–927 (electronic).

[4] Barrett, J. W., Garcke, H., and Nürnberg, R. On the variational approximation of combined second and
fourth order geometric evolution equations. SIAM J. Sci. Comput. 29, 3 (2007), 1006–1041 (electronic).

[5] Barrett, J. W., Garcke, H., and Nürnberg, R. Parametric approximation of Willmore flow and related
geometric evolution equations. SIAM J. Sci. Comput. 31, 1 (2008), 225–253.

[6] Bartels, S. Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J.
Numer. Anal. 43, 1 (2005), 220–238 (electronic).

18



[7] Bonito, A., Nochetto, R. H., and Pauletti, M. S. Parametric FEM for geometric biomembranes. J.
Comput. Phys. 229, 9 (2010), 3171–3188.

[8] Brenner, S. C., and Scott, L. R. The mathematical theory of finite element methods. Springer, 2008.
[9] Brezzi, F., and Fortin, M. Mixed and hybrid finite element methods, vol. 15 of Springer Series in Computa-

tional Mathematics. Springer-Verlag, New York, 1991.
[10] Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., and Rusu, R. A finite element method for surface

restoration with smooth boundary conditions. Comput. Aided Geom. Design 21, 5 (2004), 427–445.
[11] Conti, S., and Maggi, F. Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal. 187, 1

(2008), 1–48.
[12] Deckelnick, K., Dziuk, G., and Elliott, C. M. Computation of geometric partial differential equations and

mean curvature flow. Acta Numer. 14 (2005), 139–232.
[13] Du, Q., Liu, C., Ryham, R., and Wang, X. A phase field formulation of the Willmore problem. Nonlinearity

18, 3 (2005), 1249–1267.
[14] Du, Q., Liu, C., and Wang, X. A phase field approach in the numerical study of the elastic bending energy

for vesicle membranes. J. Comput. Phys. 198, 2 (2004), 450–468.
[15] Dziuk, G. Computational parametric Willmore flow. Numer. Math. 111, 1 (2008), 55–80.
[16] Elliott, C. M., and Stinner, B. Modeling and computation of two phase geometric biomembranes using

surface finite elements. J. Comput. Phys. 229, 18 (2010), 6585–6612.
[17] Friesecke, G., James, R. D., and Müller, S. The Föppl-von Kármán plate theory as a low energy Γ-limit
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[21] Kirchhoff, G. R. Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math.
40 (1850), 51–88.

[22] Pakzad, M. R. On the Sobolev space of isometric immersions. J. Differential Geom. 66, 1 (2004), 47–69.
[23] Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., and Grinspun, E. Discrete quadratic curvature

energies. Comput. Aided Geom. Design 24, 8-9 (2007), 499–518.
[24] Willmore, T. J. Total curvature in Riemannian geometry. Ellis Horwood Series: Mathematics and its Appli-

cations. Ellis Horwood Ltd., Chichester, 1982.

Institute for Numerical Simulation, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstr.
6, 53115 Bonn, Germany
E-mail address: bartels@ins.uni-bonn.de

19



Bestellungen nimmt entgegen: 
 
Sonderforschungsbereich 611 
der Universität Bonn 
Endenicher Allee 60 
D - 53115 Bonn  
 
Telefon: 0228/73 4882 
Telefax: 0228/73 7864 
E-Mail: astrid.avila.aguilera@ins.uni-bonn.de http://www.sfb611.iam.uni-bonn.de/ 
 
 
 

Verzeichnis der erschienenen Preprints ab No. 475 

 
 
475.  Frehse, Jens; Löbach, Dominique: Improved Lp-Estimates for the Strain Velocities  
  in Hardening Problems 
 
476. Kurzke, Matthias; Melcher, Christof; Moser, Roger: Vortex Motion for the Landau- 
  Lifshitz-Gilbert Equation with Spin Transfer Torque 
 
477. Arguin, Louis-Pierre; Bovier, Anton; Kistler, Nicola: The Genealogy of Extremal  
  Particles of Branching Brownian Motion 
 
478. Bovier, Anton; Gayrard, Véronique: Convergence of Clock Processes in Random 
  Environments and Ageing in the p-Spin SK Model 
 
479. Bartels, Sören; Müller, Rüdiger: Error Control for the Approximation of Allen-Cahn  
  and Cahn-Hilliard Equations with a Logarithmic Potential 
 
480. Albeverio, Sergio; Kusuoka, Seiichiro: Diffusion Processes in Thin Tubes and their  
  Limits on Graphs 
 
481. Arguin, Louis-Pierre; Bovier, Anton; Kistler, Nicola: Poissonian Statistics in the Extremal  
  Process of Branching Brownian Motion 
 
482. Albeverio, Sergio; Pratsiovyta, Iryna; Torbin, Grygoriy: On the Probabilistic, Metric and  
  Dimensional Theories of the Second Ostrogradsky Expansion 
 
483.   Bulíček, Miroslav; Frehse, Jens: C

α
-Regularity for a Class of Non-Diagonal Elliptic Systems  

          with p-Growth 
 
484. Ferrari, Partik L.: From Interacting Particle Systems to Random Matrices 
 
485. Ferrari, Partik L.; Frings, René: On the Partial Connection Between Random Matrices and  
  Interacting Particle Systems 
 
486. Scardia, Lucia; Zeppieri, Caterina Ida: Line-Tension Model as the Γ–Limit of a Nonlinear  
  Dislocation Energy 
 
487. Bolthausen, Erwin; Kistler, Nicola: A Quenched Large Deviation Principle and a Parisi  
  Formula for a Perceptron Version of the Grem 
 
488. Griebel, Michael; Harbrecht, Helmut: Approximation of Two-Variate Functions: Singular  
  Value Decomposition Versus Regular Sparse Grids 
 
489. Bartels, Sören; Kruzik, Martin: An Efficient Approach of the Numerical Solution of  



  Rate-independent Problems with Nonconvex Energies 
 
490. Bartels, Sören; Mielke, Alexander; Roubicek, Tomas: Quasistatic Small-strain Plasticity  
  in the Limit of Vanishing Hardening and its Numerical Approximation 
 
491. Bebendorf, Mario; Venn, Raoul: Constructing Nested Bases Approximations from the  
  Entries of Non-local Operators 
 
492. Arguin, Louis-Pierre; Bovier, Anton; Kistler, Nicola: The Extremal Process of Branching  
  Brownian Motion 
 
493. Adler, Mark; Ferrari, Patrik L.; van Moerbeke, Pierre: Non-intersecting Random Walks  
  in the Neighborhood of a Symmetric Tacnode 
 
494. Bebendorf, Mario; Bollhöfer, Matthias; Bratsch, Michael:  Hierarchical Matrix  
  Approximation with Blockwise Constrains 
 
495. Bartels, Sören: Total Variation Minimization with Finite Elements: Convergence  
  and Iterative Solution 
 
496. Kurzke, Matthias; Spirn, Daniel: Vortex Liquids and the Ginzburg-Landau Equation 
 
497. Griebel, Michael; Harbrecht, Helmut: On the Construction of Sparse Tensor  
  Product Spaces 
 
498. Knüpfer, Hans; Kohn, Robert V.; Otto, Felix: Nucleation Barriers for the  
  Cubic-to-tetragonal Phase Transformation 
 
499. Frehse, Jens; Specovius-Neugebauer, Maria: Fractionial Differentiability for the Stress  
  Velocities to the Prandtl-Reuss Problem 
 
500. McCord, Jeffrey; Otto, Felix; Schäfer, Rudolf; Steiner, Jutta; Wieczoreck, Holm:  
  The Formation and Coarsening of the Concertina Pattern 
 
501. Bartels, Sören: Finite Element Approximation of Large Bending Isometries 


