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APPROXIMATION OF LARGE BENDING ISOMETRIES WITH DISCRETE

KIRCHHOFF TRIANGLES

SÖREN BARTELS

Abstract. We devise and analyze a simple numerical method for the approximation of large
bending isometries. The discretization employs a discrete Kirchhoff triangle to deal with second
order derivatives and convergence of discrete solutions to minimizers of the continuous formulation
is proved. Unconditional stability and convergence of an iterative scheme for the computation of
discrete minimizers that is based on a linearization of the isometry constraint is verified. Numerical
experiments illustrate the performance of the proposed method.

1. Introduction

A dimension reduction from three-dimensional hyperelasticity with an isotropic energy density with
quadratic growth leads to the variational problem of finding a deformation y : Ω→ R3 of a bounded
Lipschitz domain Ω ⊂ R2 that minimizes the functional

E(y) =
α

2

∫
Ω
|D2y|2 dx−

∫
Ω
f · y dx

under the constraint that y is an isometry, i.e., that (∇y)

⊥

∇y = I2 almost everywhere in Ω with
the identity matrix I2 ∈ R2×2, and subject to the boundary conditions y = yD and ∇y = ΦD on ΓD,
e.g., the clamped boundary condition y(x) = [x, 0]

⊥
and∇y(x) = [I2, 0]

⊥
for all x ∈ ΓD. Imposing a

condition on ∇y on ΓD is equivalent to prescribing the normal of the deformed plate along ΓD. The
functional E is the bending energy of the plate described by Ω on which the (rescaled) body force
f ∈ L1(Ω;R3) is acting. This formulation has recently been rigorously justified in [9] and coincides
with the model proposed in [11]. The density results for smooth isometries among isometries in
H2(Ω;R3) proved in [10] allow to replace the Frobenius norm of the second fundamental form of
the surface parametrized by y by the Frobenius norm of its Hessian.
In [3] a numerical method for the approximation of minimizers of E has been proposed and an-
alyzed. It is based on the introduction of the additional variable Φ ≈ ∇y and the penalty term
(t−2/2)‖Φ−∇y‖2. This approach allowed to treat the isometry constraint with techniques devel-
oped for harmonic maps into surfaces studied in [2]. In this paper we aim at devising a scheme that
leads to simpler systems of equations which can be solved effectively. For this we will discretize
the Hessian by employing a so-called discrete Kirchhoff triangle. For numerical methods for related
nonlinear bending problems we refer the reader to [7, 1, 8, 5].
Finite element methods based on discrete Kirchhoff triangles have been developed in [4] and [12] to
approximate linear bending problems. Given a triangulation Th of Ω a discrete Kirchhoff triangle
defines a linear mapping θh : Wh → Θh between appropriate finite element spaces Wh and Θh

that serves as an approximation of the gradient. In the case of the operator constructed in [4] the
space Wh ⊂ H1(Ω) consists of continuous functions that are reduced cubic polynomials on each
element such that their gradients are continuous at the vertices of elements. The space Θh ⊂ H1(Ω)
contains continuous, piecewise quadratic vector fields whose normal derivative is linear along every
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side of an element. The operator θh enables us to define an approximate Hessian by ∇θh(wh). The
fact that the gradient of a function in Wh is continuous at vertices of elements allows us to impose
the isometry constraint at those points. Letting Nh denote the set of vertices of elements and Ih
the nodal interpolation operator onto the space of continuous, piecewise affine finite elements, we
consider the following finite-dimensional constrained minimization problem:

(1.1)


Minimize yh 7→ Eh(yh) =

α

2

∫
Ω
|∇θh(yh)|2 dx−

∫
Ω
Ih[fh · yh] dx

subject to yh ∈W 3
h and [∇yh(z)]

⊥

∇yh(z) = I2 for all z ∈ Nh,

and yh(z) = yD(z), ∇yh(z) = ΦD(z) for all z ∈ Nh ∩ ΓD.

For the vector field yh ∈ W 3
h , the approximate gradient θh(yh) is obtained by applying θh to each

component of yh. We remark that only the nodal values
(
yh(z) : z ∈ Nh

)
and

(
∇yh(z) : z ∈ Nh

)
are

required for the implementation, in particular, no interpolation of yh on elements in Th is required.
We will show that discrete minimizers accumulate at minimizing isometries in H2(Ω;R3) for the
energy functional E.
Our iterative scheme for the practical solution of (1.1) realizes a discrete H2 gradient flow of the
energy functional with a linearization of the nodal isometry constraint about the current iterate.
For this it is important to realize that for the employed finite element space Wh the nodal values
of the discrete deformation

(
yh(z) : z ∈ Nh

)
and its gradient

(
∇yh(z) : z ∈ Nh

)
are independent

variables in the minimization problem (1.1). Given an approximation ynh ∈W 3
h we define

Fh[ynh ] =
{
wh ∈W 3

h : [∇wh(z)]

⊥

∇ynh(z) + [∇ynh(z)]

⊥

∇wh(z) = 0 for all z ∈ Nh
and wh(z) = 0, ∇wh(z) = 0 for all z ∈ Nh ∩ ΓD

}
and compute for τ > 0 the correction dty

n+1
h ∈ Fh[ynh ] as the solution of

(1.2)
(
∇θh(dty

n+1
h ),∇θh(zh)

)
+ α

(
∇θh(ynh + τdty

n+1
h ),∇θh(zh)

)
=
(
fh, zh

)
h

for all zh ∈ Fh[ynh ]. The new iterate is defined by yn+1
h = ynh + τdty

n+1
h . In (1.2), (·, ·) denotes the

L2 inner product on Ω with corresponding norm ‖·‖ and (·, ·)h is defined by (v, w)h =
∫

Ω Ih[vw] dx.
We will show that this iteration is unconditionally stable and energy decreasing in the sense that
for all n ≥ 0 we have

(1.3) Eh(yn+1
h ) +

τ

2
‖∇θh(dty

n+1
h )‖2 ≤ Eh(ynh).

The iterates (ynh) will in general not satisfy the nodal isometry constraint but provided that the

initial deformation y0
h satisfies

[
∇y0

h(z)
] ⊥

∇y0
h(z) = I2 for all z ∈ Nh we have that

(1.4) ‖[∇ynh ]

⊥

∇ynh − I2‖L1
h(Ω) ≤ CτEh(y0

h),

where ‖v‖L1
h(Ω) = ‖Ihv‖L1(Ω) for a piecewise polynomial function that is continuous in Nh. We

remark that the iterates of our scheme satisfy |∂jynh(z)| ≥ 1 for j = 1, 2, z ∈ Nh, and n ≥ 1 so that
a correction to guarantee |∂jynh(z)| = 1 can easily be incorporated. Moreover, the scheme can be
embedded into multilevel methods owing to its nodal character.
The outline of this article is as follows. In Section 2 we collect some elementary results needed for
the definition and analysis of our approximation scheme. Convergence proofs for the discretization
in the spirit of variational convergence and for the iterative scheme in terms of a discrete energy
law is given in Section 3. In Section 4 some illustrative computational experiments are reported.
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2. Preliminaries

2.1. Finite element spaces. For a regular triangulation Th of Ω into triangles of maximal diam-
eter h > 0 we let Nh denote the set of vertices of elements and Eh the set of edges of elements. We
let S1(Th) be the space of piecewise affine, globally continuous functions in H1(Ω) and (ϕz)z∈Nh

the nodal basis of S1(Th) defined by ϕz(y) = δzy for all z, y ∈ Nh. The nodal interpolation operator

Ihv =
∑
z∈Nh

v(z)ϕz

is defined for every function v ∈ L1(Ω) that is continuous at the nodes z ∈ Nh. We note that for
every 1 ≤ p <∞ we have the equivalence

(2.1) c−1‖vh‖pLp(Ω) ≤
∑
z∈Nh

βz|vh(z)|p ≤ c‖vh‖pLp(Ω)

for all vh ∈ S1(Th) with βz =
∫

Ω ϕz dx. For an integer k ≥ 0 we let Pk(T ) be the set of polynomials
of degree at most k on T ∈ Th and, if z1, z2, z3 ∈ Nh∩T are the vertices of T and xT = (z1+z2+z3)/3,

P3,red(T ) =
{
p ∈ P3(T ) : 6p(xT ) =

3∑
j=1

[
2p(zj)−∇p(zj) · (zj − xT )

]}
,

where the constraint excludes the element bubble function bT = ϕz1ϕz2ϕz3 . We then define

Wh =
{
wh ∈ C(Ω) : wh|T ∈ P3,red(T ) for all T ∈ Th and ∇wh is continuous in Nh

}
and

Θh =
{
θh ∈ C(Ω;R2) : θh|T ∈ P2(T )2 and θh · nE |E is linear for all E ∈ Eh

}
.

Here, nE ∈ R2 is a unit vector that is perpendicular to the edge E ∈ Eh.

Figure 1. Schematic description of the finite element spaces Wh (left) and Θh (right).

2.2. Discrete gradient operator. The discrete gradient operator θh : Wh → Θh is for wh ∈ Wh

defined by the conditions that for ψh = θh(wh) ∈ Θh we have

ψh(z) = ∇wh(z), ψh(zE) · tE = ∇wh(zE) · tE
for all z ∈ Nh and E ∈ Eh, where tE is a unit tangent vector on E and zE the midpoint of E for
every E ∈ Eh. Owing to the definition of Θh we have that ψh(zE) ·nE = (1/2)

(
ψh(z1)+ψh(z2)

)
·nE

for every E ∈ Eh with endpoints z1, z2 ∈ E ∩Nh. This implies that

ψh(zE) = (1/2)
[(
∇wh(z1) +∇wh(z2)

)
· nE

]
nE +

[
∇wh(zE) · tE

]
tE

for every E ∈ Eh. The mapping θh can naturally be extended to functions in H3(Ω) ⊂ C1(Ω).

Lemma 2.1 (Properties of θh, [4, 6]). (i) There exist c1, c2 > 0 such that for all wh ∈ Wh and
T ∈ Th we have for ` = 0, 1 that

c−1
1 ‖D

`+1wh‖L2(T ) ≤ ‖D`θh(wh)‖L2(T ) ≤ c1‖D`+1wh‖L2(T ),

and with hT = diam(T )

‖θh(wh)−∇wh‖L2(T ) ≤ c2hT ‖D2wh‖L2(T ).
3



(ii) There exists c3 > 0 such that for all w ∈ H3(Ω) and T ∈ Th we have

‖θh(w)−∇w‖L2(T ) + hT ‖∇θh(w)−D2w‖L2(T ) ≤ c3h
2
T ‖w‖H3(T ).

(iii) The mapping wh 7→ ‖∇θh(wh)‖ defines a norm on
{
wh ∈ Wh : wh(z) = 0, ∇wh(z) =

0 for all z ∈ Nh ∩ ΓD

}
.

Proof. The estimates follow from linearity of the mapping wh 7→ θh(wh), injectivity of ∇wh 7→
θh(wh), the Bramble-Hilbert lemma, and transformation arguments, cf. [4, 6] for details. �

3. Approximation and computation

We assume in the following that yD ∈ C(ΓD;R3) and ΦD ∈ C(ΓD;R3×2) are compatible in the
sense that there exists an isometry ỹD ∈ H2(Ω;R3) with ỹD|ΓD

= yD, ∇ỹD|ΓD
= ΦD on ΓD, and

that every such isometry can be approximated in H2(Ω;R3) by smooth isometries with the same
boundary conditions, cf. [10]. We suppose that yD and ΦD can be approximated with arbitrary
accuracy by nodal interpolation on ΓD, i.e., we have for h→ 0 that∥∥yD − IhỹD|ΓD

∥∥
L2(ΓD)

+
∥∥ΦD − Ih∇ỹD|ΓD

∥∥
L2(ΓD)

→ 0.

Theorem 3.1 (Approximation). Let (Th)h>0 be a sequence of triangulations of Ω and assume
that fh ∈ S1(Th) satisfies fh ⇀ f in L2(Ω;R3) as h→ 0. For each h > 0 there exists a minimizer
yh ∈W 3

h for (1.1) and if (yh)h>0 is a sequence of (almost) minimizers then ‖∇yh‖ ≤ C for all h > 0
and every accumulation point y ∈ H1(Ω;R3) of the sequence is a strong accumulation point, belongs

to H2(Ω;R3), satisfies (∇y)

⊥

∇y = I2 almost everywhere in Ω, y|ΓD
= yD, and ∇y|ΓD

= ΦD, and
is a minimizer of E.

Proof. By Lemma 2.1 (iii) we have that ‖∇θh(yh)‖ is a norm and this implies that (1.1) has a
solution. Owing to the assumptions on the boundary data it follows with Poincaré’s inequality and
Lemma 2.1 (i) that that ‖∇yh‖ ≤ C and ‖∇θh(yh)‖ ≤ C for all h > 0. Let y ∈ H1(Ω;R3) and z ∈
H1(Ω;R3×2) be such that for a subsequence (which is not relabeled) we have yh ⇀ y in H1(Ω;R3)
and θh(yh) ⇀ z in H1(Ω;R3×2). With Lemma 2.1 we verify that ‖θh(yh)−∇yh‖ ≤ ch‖∇θh(yh)‖ and
this yields ∇y = z, in particular y ∈ H2(Ω;R3). The attainment of the boundary conditions follows
from continuity of the trace operators and the fact that ‖yh − Ihyh‖+ ‖θh(yh)− Ihθh(yh)‖ → 0 as
h→ 0. A nodal interpolation estimate and an inverse inequality yield that∥∥(∇yh) ⊥

∇yh − I2

∥∥
L1(T )

≤ ch‖D2yh‖L2(T )‖∇yh‖L2(T )

and this implies after summation over all T ∈ Th together with fact that ∇yh converges strongly
to ∇y that (∇y)

⊥

∇y = I2 almost everywhere in Ω. To verify that y minimizes E we first notice
that by weak lower semicontinuity of the L2 norm we have

‖D2y‖ = ‖∇z‖ ≤ lim inf
h→0

‖∇θh(yh)‖

and ∫
Ω
Ih[yh · fh] dx =

∫
Ω
yh · fh dx+

∫
Ω

{
yh · fh − Ih[yh · fh]

}
dx,

where the first term converges to
∫

Ω y · f dx whereas the second one converges to zero owing to
standard interpolation results and inverse estimates. This implies that

E(y) ≤ lim inf
h→0

Eh(yh).

To show that the minimal energy is attained let ỹ ∈ H2(Ω;R3) be a minimizing isometry for E.
Owing to the density results from [10] we may assume that ỹ ∈ C∞(Ω;R3). We then let ỹh ∈ W 3

h
4



be the interpolant of ỹ (the uniquely defined function ỹh ∈ W 3
h that satisfies ỹh(z) = ỹ(z) and

∇ỹh(z) = ∇ỹ(z) for all z ∈ Nh). We then have with Lemma 2.1 (ii) that

‖θh(ỹh)−∇ỹ‖+ h‖∇θh(ỹh)−D2ỹ‖ ≤ ch2‖ỹ‖H3(Ω)

which implies the attainment of the minimal energy. This concludes the proof of the theorem. �

Theorem 3.2 (Computation). Given τ > 0 and y0
h ∈ W 3

h such that y0
h(z) = yD(z) and ∇y0

h(z) =

ΦD(z) for all z ∈ Nh ∩ ΓD and [∇y0
h(z)]

⊥

∇y0
h(z) = I2 for all z ∈ Nh there exists for each n ≥ 0 a

unique function dty
n+1
h ∈ Fh[ynh ] that satisfies (1.2). For the sequence (ynh)n≥0 inductively defined

by yn+1
h = ynh + τdty

n+1
h we have (1.3) and (1.4).

Proof. The existence of a unique dty
n+1
h ∈ Fh[ynh ] that solves (1.2) follows from the fact that the

bilinear form (vh, wh) 7→
(
∇θh(vh),∇θh(wh)

)
defines a coercive continuous bilinear form on Fh[ynh ],

cf. Lemma 2.1 (iii). Upon choosing zh = dty
n+1
h we find that∥∥∇θh(dty

n+1
h )

∥∥2
+
α

2
dt
∥∥∇θh(yn+1

h )
∥∥2

+
ατ

2

∥∥∇θh(dty
n+1
h )

∥∥2
=
(
fh, dty

n+1
h

)
h

and this gives (1.3). Using yn+1
h = ynh + τdty

n+1
h we have(

∇yn+1
h

) ⊥

∇yn+1
h =

(
∇ynh

) ⊥

∇ynh +τ
(
∇dtyn+1

h

) ⊥

∇ynh +τ
(
∇ynh

) ⊥

∇dtyn+1
h +τ2

(
∇dtyn+1

h

) ⊥

∇dtyn+1
h .

Since dty
n+1
h ∈ Fh[ynh ] the sum of the second and third term on the right-hand side vanishes at

every z ∈ Nh and an inductive argument leads to∣∣[∇yn+1
h (z)

] ⊥

∇yn+1
h (z)− I2

∣∣ ≤ τ2
n∑
`=0

∣∣∇dty`+1
h (z)

∣∣2.
The norm characterization (2.1), nodal interpolation estimates, and a local inverse inequality imply
the assertion. �

4. Numerical experiments

To illustrate the practical performance of our scheme and our algorithm we study two prototypical
specifications of the model problem. These are defined by a vertical load with a fixed part of the
boundary of the plate and compressive boundary conditions, respectively. In all of our experiments
we employed triangulations Th = T` determined by a positive integer ` that consist of halved squares

with edge-lengths ĥ = 2−` and diameters h =
√

2 ĥ. The time-step size for the iterative scheme

was chosen as τ = ĥ unless otherwise stated and as a stopping criterion for the iteration we used
‖dt∇θh(yn+1

h )‖ ≤ εstop = 1.0 × 10−3. To display the discrete deformations yh ∈ W 3
h we always

plotted its nodal interpolant Ihyh. Our finest triangulations consisted of 131.072 triangles and
the overall CPU time needed to compute the corresponding discrete solutions defined by 544.441
degrees of freedom was on the order of a few hours on these meshes.

Remarks 4.1. If S is the stiffness matrix related to piecewise quadratic vector fields with six
components, T realizes the operator θh : W 3

h → Θ3
h, and Bn encodes the constraints and boundary

conditions defined in the space Fh[ynh ], then one step of the discrete gradient flow leads to the linear
system of equations [

(1 + ατ)T

⊥

ST B

⊥

n

Bn 0

] [
dtY

n+1

Λ

]
=

[
−τT

⊥

ST Y n + τF
0

]
In our implementation these linear systems of equations were solved with a direct solver.
(ii) If wh|E is cubic we have ∇wh(zE)·tE = (3/(2`E))

(
wh(z2)−wh(z1)

)
−(1/4)

(
∇wh(z1)+∇wh(z2)

)
·

tE with `E and z1, z2 ∈ Nh ∩ E such that z2 − z1 = `EtE.
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For a deformation yh ∈W 3
h we set νh = Ih[∂1yh × ∂2yh] and define the quantities

δIh =
∣∣(∇[Ihyh]

) ⊥

∇[Ihyh]− I2

∣∣, Kh = det
(
∇νh

) ⊥

∇[Ihyh],

that measure the deviation of a discrete first fundamental form from the identity, i.e., how much
yh fails to be an isometry, and provide an approximation of the Gaussian curvature, respectively.

4.1. Vertical load on a square-shaped plate. In the first experiment the plate is square-shaped,
clamped along two non-parallel sides, and subject to a vertical load.

Example 4.1. Let Ω = (0, 4)× (0, 4), ΓD = {0} × [0, 4] ∪ [0, 4]× {0}, α = 1, yD(x) = (x, 0)

⊥

and

ΦD(x) = [I2, 0]

⊥

for all x ∈ ΓD, and f(x) = cf (0, 0, 1)

⊥

for x ∈ Ω with cf = 2.5× 10−2.

In Figure 2 we plotted the discrete deformations obtained with our numerical scheme together
with the modulus of the approximate Gaussian curvature Kh for the triangulations T3, T4, and T5.
Owing to Gauss’ theorema egregium every exact solution defines a surface with vanishing Gaussian
curvature. In the plots of the numerical approximations we see that the discrete Gaussian curvature
does not vanish but becomes small as the mesh-size is decreased and that it is largest along the
diagonal {x+ y = 4}. Closely related is the observation that the maximal displacement decreases
as the mesh-size becomes smaller, i.e., the relaxation of the isometry condition becomes less and
less soft. Every exact deformation has to be the identity in the region {x ≤ 4 − y}. The inexact
treatment of the isometry condition leads to an artificial displacement in this region. To illustrate
the convergence of this error, we plotted in Figure 3 the discrete deformations along the diagonal
{x + y = 4} and we observe that the maximum decays to zero. In Table 1 we displayed for

different triangulations and fixed relation τ = ĥ the numbers of iterations required to satisfy the
stopping criterion, the computed discrete energy, the L1 norm of the difference between the discrete
fundamental form and the identity matrix, and the L1 norm of the discrete Gaussian curvature.
We see that the number of iterations increases by a factor 2 whenever the mesh-size is halved.
The approximation of the Gaussian curvature and the error in the discretization of the isometry
constraint approach an experimental rate of convergence close to 1. We remark that our results were
independent of geometrical properties of the underlying triangulations and that in this experiment
smaller time-step sizes and finer stopping criteria did not lead to significant changes in the numerical
approximations.

0
2

4 0

2

40

0.25

0
2

4 0

2

40

0.25

0
2

4 0

2

40

0.25

0

2−4

Figure 2. Discrete deformations of a clamped 4 × 4 plate subject to a uniform
vertical load and modulus of corresponding discrete Gaussian curvature on the tri-
angulations T3, T4, and T5 in Example 4.1.

4.2. Compression of a strip. We next study compressive boundary conditions on a part of the
boundary of a rectangular plate. A small vertical load selects one of at least two possible solutions
related to the symmetry in vertical direction of the problem for f = 0.
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Figure 3. Artificial discrete displacements along the diagonal {(x, y) ∈ Ω : x+y =
4} for different mesh-sizes in Example 4.1.

ĥ Niter Eh(yh) ‖δIh‖L1(Ω) ‖Kh‖L1(Ω)

2−2 22 −1.009−2 8.674−3 3.389−3

2−3 40 −9.821−3 7.124−3 3.043−3

2−4 71 −9.041−3 5.143−3 2.308−3

2−5 130 −7.666−3 3.032−3 1.469−3

2−6 272 −6.024−3 1.511−3 8.656−4

Table 1. Iteration numbers, computed energy, deviation of the discrete first
fundamental form from I2, and L1 norm of the discrete Gaussian curvature for

different mesh-sizes and time-step size τ = ĥ in Example 4.1.

Example 4.2. Let Ω = (−2, 2) × (0, 1), ΓD = {−2, 2} × [0, 1], α = 1, f(x) = cf (0, 0, 1)

⊥

with

cf = 1.0× 10−5 for x ∈ Ω, ΦD = [I2, 0]

⊥

on ΓD, and

yD(x) = (x1 ± a, x2, 0)

⊥

for (x1, x2) ∈ ΓD with x1 = ∓2. We set a = 1.4.

For the triangulation T5 we ran our iterative scheme with τ = ĥβ for β = 0.5, 1.0, 1.5. The
computed deformations together with the quantity δIh are shown in the plots of Figure 4. The
symmetry of the problem implies a non-trivial displacement only in one coordinate direction so that
the approximation error of the exact Gaussian curvature is very small in this experiment. A strong
violation of the isometry constraint is however observable in large regions of the deformed plate for
the large time-step size defined through β = 0.5. The results for the time-step sizes specified through
the exponents β = 1.0 and β = 1.5 lead to a smaller error δIh and the corresponding computed
deformations differ significantly. Similar conclusions can be drawn for the numbers displayed in
Table 2. The L1 norm of δIh for β = 1.5 is notably smaller than for the larger time-step sizes.
The expense for the more accurate approximation of the isometry constraint is a larger number
of iterations. The iteration numbers in this experiment increased by a factor approximately 5
whenever we increased the exponent β by 0.5. We remark that we employed a simple extension of
the boundary data to initialize the iteration.
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Figure 4. Discrete deformations for the compression of a 4 × 1 plate with a
small uniform vertical load on the triangulation T5 obtained with the time-step size

τ = ĥβ for β = 0.5, 1.0, 1.5. The deformations are colored by the error δIh.
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