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FINITE ELEMENT METHODS FOR DIRECTOR FIELDS ON FLEXIBLE SURFACES

SÖREN BARTELS, GEORG DOLZMANN, RICARDO H. NOCHETTO, AND ALEXANDER RAISCH

Abstract. We introduce a nonlinear model for the evolution of biomembranes driven by the L2-gradient
flow of a novel elasticity functional describing the interaction of a director field on a membrane with its

curvature. In the linearized setting of a graph we present a practical finite element method (FEM), and

prove a priori estimates. We derive the relaxation dynamics for the nonlinear model on closed surfaces and
introduce a parametric FEM. We present numerical experiments for both linear and nonlinear models, which

agree well with the expected behavior in simple situations and allow predictions beyond theory.

1. Introduction and discussion of the proposed model

The question of how to predict the shape of a cell bounded by a lipid bilayer membrane has inspired
a significant body of research in the past twenty years ranging from purely mechanical descriptions to
advanced mathematical analysis. We refer, e.g., to the papers [10, 20, 18, 21] for the discussion of the shape
of a red blood cell and the basic models developed for this purpose. Excellent reviews of the topic can be
found in [29, 26]. Almost all of these models share the basic structure given by an energy functional E(Γ)
depending on the shape of the cell which is identified with a surface Γ,

E(Γ) =

∫
Γ

(κ0

2
(H −H0)2 +

κG
2
K
)

dσ .(1.1)

Here H is the mean curvature and K the Gauss curvature of Γ and κ0 and κG are the associated moduli
of elasticity. By Gauss-Bonnet, the integral of K is a topological constant on a closed surface and can
be neglected for evolutions in one topological class of surfaces. The quantity H0 is usually referred to as
spontaneous curvature and describes the preferred value of curvature induced by the ambient space on a
membrane in equilibrium. Such H0 might be constant, the usual choice, but it might also depend on another
variable such as the bilipid concentration [7, 13, 17, 16, 27, 32]. Alternatively, H0 might be induced by an
underlying director field as in [25] and our models below. The first variation of (1.1) with respect to Γ is
given in [4] for H0 constant and in [12] for H0 depending on position.

In a broader context, the question to find the shape of a cell is surprisingly similar to the related problem
of determining the shape of an interface between two immiscible liquids with or without surfactants. The
prediction of the structure and the elastic properties of such interfaces is still a challenging problem in applied
mathematics and physics and has been investigated by a wide range of techniques reaching from molecular
dynamics simulations to continuum descriptions in coarse grained models; see [25] that inspired this work.
These similarities motivate us to explore model energies for membranes which combine classical elasticity
terms like those present in (1.1) with terms which couple the local orientation of the surfactants or the lipid
molecules with the curvature of the interface or the membrane, respectively; we started this investigation in
[6]. These energy contributions are relevant in the gel phase of the membrane.

In this paper we investigate a novel model for the shape of a lipid bilayer membrane which takes into
account a coupling between the curvature H = −divΓ ν of the membrane Γ and the local orientation of the
lipid molecules, described by a director field n. The nonlinear model is governed by the energy

(1.2) E(Γ, n) =

∫
Γ

(1

2

∣∣divΓ ν − δ divΓ n
∣∣2 +

λ

2

∣∣∇Γn
∣∣2)dσ,

where divΓ and ∇Γ are the tangential divergence and gradient operators and λ > 0. Comparing with (1.1),
we can interpret H0 = −δ divΓ n with δ ∈ R as an induced spontaneous curvature on Γ due to the coupling
with n. In order to develop an effective approximation scheme, we first linearize this model locally in a
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flat region of Γ and represent Γ as a graph with height u (Monge gauge). The resulting model is a special
case of that introduced by Laradji and Mouritsen [25]. We study this model, propose a practical FEM for
an L2-gradient flow of the linearized functional, and show a priori estimates, which lead to existence of a
limiting solution pair (u, n). We also explore the dynamics of defects using our FEM. We next return to
the nonlinear functional (1.2), derive an L2-gradient flow, propose a practical FEM for its solution, and
show simulations of defects. The insight gathered from the linearized graph case turns out to be useful in
understanding the nonlinear regime.

1.1. A model for surfactants. The starting point of our analysis is the Ginzburg-Landau model in Laradji
and Mouritsen [25] which was originally developed for surfactant monolayers at liquid-liquid interfaces with
a locally varying density of surfactants φ. The formulation assumes that this interface is given by a two-
dimensional surface Γ in the three-dimensional ambient space described by a height function u : Ω → R3.
The model in [25], which is discussed below, is an attempt to match deviations from the bending energy
model (1.1) with H0 = 0 for low wave numbers, which were detected via molecular dynamics computations.
The total energy of a configuration is assumed to be given by (see Appendix A in [25])

F(u, φ, n) =

∫
Ω

(
ξ
√

1 + |∇u|2 +
κ

2
|div ν|2 +

a

2
φ2 +

c

2
|∇φ|2 − µsφ

+
g(φ)

2
|n|2 − h(φ)ν · n+

k(φ)

2
|div n|2 − `(φ)

2
div ν div n

)
dx

with suitable constants ξ, κ, a, c, µs and nonnegative functions φ, h, g, k, and `. Here ∇ and div denote
the planar differential operators gradient, i.e., ∇z = (∂1z, ∂2z) for a scalar function z, and divergence, i.e.,

divF = ∂1F1 + ∂2F2 for a vectorfield F = (F1, F2, F3), whereas ν = (−∇u, 1)/
√

1 + |∇u|2 is the normal to
the graph of u. In [25] it is shown that the surface tension ξ is vanishingly small for densities φ close to one.
Therefore we may assume that ξ ≈ 0 and that φ is nearly equal to 1 and discard all terms depending on φ
and ξ in F . As a further simplification and in order to focus on the interaction of orientation and curvature,
we assume that n is a unit vector and we omit for the moment the term proportional to ν · n which favors
alignment of n along ν. This leads to the following model which contains the essential features

F(u, n) =

∫
Ω

(κ
2
|div ν|2 +

k

2
|div n|2 − `

2
div ν div n

)
dx,

with constant parameters κ, k, `. Upon completing the square, one obtains

κ

2

(
div ν − `

2κ
div n

)2

+
(k

2
− `2

8κ

)
|div n|2 .

Comparing with (1.1) and (1.2), we interpret this formula as saying that the local arrangement of the
surfactants leads to a (position dependent) spontaneous curvature

H0 =
`

2κ
div n ,

which becomes less important for large values of the bending rigidity κ. We finally observe that in order to
bound the energy it is sufficient to assume that

k

2
− `2

8κ
≥ 0 .

The corresponding positive convex term |div n|2 in the energy gives us coercivity of the functional F(u, n)
but it is insufficient for devising a practical numerical scheme, deriving a priori bounds for discrete solutions
which allow passing to the limit, and showing existence of a minimizing pair (u, n). We thus modify the
model upon replacing |div n|2 with the usual Frank energy |∇n|2 of the director field n, which is ubiquitous
in the theory of liquid crystals. This allows us to pass to the limit for n, in view of the enhanced H1

regularity, as well as to enforce the unit length constraint on n via a projection method due to Alouges [1],
and extended in [5] to FEM. Such a projection does not increase the energy of the Dirichlet integral, but
the analogous assertion is not true for the energy of the divergence.

Our interest in augmented Canham-Helfrich models originates in the search for models that allow one
to predict the experimentally observed coarsening mechanisms in membranes in the gel phase based on
recombination of topological defects [22]. Related models, based on the assumption that this recombination
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is driven by an interaction between the director field and the curvature, have been proposed in [31] and
analyzed in [6]. See also [19] for a closely related approach.

In the model in [31] the lipid monolayer is considered in the gel phase and it is assumed that the director
field is oriented in a fixed angle relative to the surface normal [28]. Therefore it suffices to study the tangential
part m of the director field which is itself a vector field of fixed length. The related energy functional in a
linearized setting is

E(u,m) =
κ

2

∫
Ω

|∆u|2dx+
Cq
2

∫
Ω

|∇m|2dx− δ
∫

Ω

D2u : (m⊗m− 1

2
I)dx,

subject to a length constraint for m. Our numerical experiments for a rigidly imposed length constraint
show that the coupling between u and m is too weak in the regime of parameters which define a well-posed
minimization problem in order to simulate the observed recombination of defects [6]. The coupling proposed
in the present model is stronger in the sense that it involves one more derivative. It also allows a direct
extension to the nonlinear model (1.2) on closed surfaces; cf. Section 1.4.

1.2. Linear model on graphs. In this section we focus on the local situation in which the surface Γ is
described by the graph of a function u : Ω → R3 with Ω ⊂ R2 convex. Moreover, we assume that the
displacements are small,

|∇u| � 1.

This yields
√

1 + |∇u|2 ≈ 1 as well as ν ≈ (−∇u, 1), whence divΓ ν ≈ −∆u. Moreover, we have

∇Γn ≈ ∇n, divΓ n ≈ div np,

where np stands for the tangential part of the director field n = (n1, n2, n3), that is, np = (n1, n2), and ∇,
div are the planar differential operators. We are now ready to write the linearized version of (1.2): find
u ∈ H2(Ω) with u = uD on ∂Ω, uD ∈ H2(Ω), n ∈ H1(Ω;R3) with n = nD on ∂Ω, nD ∈ H1(Ω; S2) and
µ ∈ L1(Ω) as stationary points of the integral

(1.3) E(u, n, µ) =
1

2

∫
Ω

|∆u+ δ div np|2dx+
1

2

∫
Ω

|∇n|2dx+
1

2

∫
Ω

µ
(
|n|2 − 1

)
dx−

∫
∂Ω

g∂νudS .

Note that µ ∈ L1(Ω) is the Lagrange multiplier for the nonlinear constraint n ∈ S2 and that g is related to
the boundary values for the mixed method we discuss below. This model captures the essential features of
the simplified linear model of Section 1.1 with energy F(u, n).

To model surfactants we do not impose an angle between ν and n, which typically tend to align. To model
biomembranes, instead, we penalize the deviation of ν · n ≈ n3 from a prescribed value ξ0 via

1

2ε2

∫
Ω

(
|n3| − ξ0

)2
,

with small parameter ε > 0. This term being lower order does not cause difficulties in the numerical method
or the passage to the limit and will thus be ignored for the subsequent discussion until Section 4. To detect
critical points we suggest a relaxation dynamics given by an L2-gradient flow, i.e., we assume that there
exist constants Γu and Γn > 0 such that

〈∂tu, v〉 = −Γu〈
δE

δu
, v〉 for all v ∈ H2(Ω) ∩H1

0 (Ω) ,

〈∂tn,m〉 = −Γn〈
δE

δn
,m〉 for all m ∈ H1

0 (R3) .

For simplicity we assume in the following that the units are chosen in such a way that Γu = Γn = 1. If we
include the equilibrium condition for the Lagrange multiplier in our equations, then we obtain the following
coupled system of partial differential equations: for all v ∈ H2(Ω) ∩H1

0 (Ω), for all m ∈ H1
0 (Ω;R3), and for

all η ∈ L1(Ω),

(1.4)

〈∂tu, v〉 = −
(
∆u+ δ div np,∆v

)
+

∫
∂Ω

g∂νvdS ,

〈∂tn,m〉 = −
(
∆u+ δ div np, δ divmp

)
− (∇n,∇m)− (µn,m) ,

0 =
1

2

(
η, |n|2 − 1

)
.
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Hereafter we write for simplicity (·, ·) for the inner product in L2. We impose the following boundary
conditions provided by the setting of the model,

u = uD, n = nD on ∂Ω ,

and we need to choose a second boundary condition for the fourth order equation involving u. Such a
condition is implicit in the equation for ut above because integration by parts gives formally z̃ = g with

z̃ = ∆u+ δ div np.

Despite the fact that this quantity is a priori only in L2, we prove that there exists a solution with z̃ ∈ H1

so that the boundary condition z̃ = g is well-posed. Note that this is a natural condition at first sight in
the energy minimization but it becomes essential for the operator splitting: we use a mixed method for the
variables u and z = z̃− g with homogeneous Dirichlet boundary conditions. Finally we collect the equations
in their strong form:

z̃ = ∆u+ δ div np , z̃
∣∣
∂Ω

= g ,

∂tu = −∆z̃ , u
∣∣
∂Ω

= uD ,

∂tnp = δ∇z̃ + ∆np − µnp , np
∣∣
∂Ω

= nD,p ,

∂tn3 = ∆n3 − µn3 , n3

∣∣
∂Ω

= nD,3 ,

|n|2 − 1 = 0 , a.e. in Ω .

The essential difference with respect to the model proposed by Uchida [31], and analyzed in [6] for a rigid
constraint |n| = 1, is the additional derivative of div np in the coupling term z̃. This leads to additional
difficulties in the stability analysis of the numerical scheme as compared to [6]. We propose in Section 3.3 a
semi-implicit algorithm for the computation of approximate solutions in finite element spaces and prove uni-
form bounds for a suitable energy of the system. We then present in Section 4 several numerical experiments
displaying quite interesting dynamics of defects.

1.3. Qualitative analysis of defect-shape interaction. In order to understand the interaction of defects
and shape in the biomembrane case, i.e., when the angle between the director and surface normal is fixed, we
consider in Sections 2 and 4 a decomposition of the director field n into a tangential and normal part. The
normal part is a fixed multiple of the surface normal and the tangential, planar part np has a fixed length.
This decomposition allows us to construct in Section 2 formal stationary solutions with −∆u = div np.
The proposed director fields are (infinite energy) limits of energy-minimizing configurations for a Ginzburg-
Landau regularization of the Frank energy

∫
Ω
|∇np|2dx subject to their own boundary data, cf. [8]. This

approach allows a precise characterization of the shape corresponding to different defects and provides insight
on the long time asymptotics of (u, n). In the numerical experiments for the linear model on graphs reported
in Section 4 we allow the tangential part of the director field to develop an out-of-plane component, so that
the full director field violates the angle condition and finite energy minimizers are possible. We observe
that for defects of degree ±1 the asymptotic behavior is dictated by the solutions found in Section 2. It
is important to realize that, in contrast to [6], our new model with rigid constraint |n| = 1 admits defects
in the limit because np is allowed to go out of plane near point singularities, a feature fully documented in
Section 4. The numerical results for the full model on closed surfaces reported in Section 6 show that the
theoretical and practical predictions of the interaction of defects with the membrane shape in the simplified
case explain the interesting dynamics occurring in the full biomembrane model for which the presence of
defects is unavoidable if the angle between ν and n is fixed.

1.4. Nonlinear model on closed surfaces. For a smooth embedded surface Γ ⊂ R3, a director field
n : Γ→ S2 and constants δ, ε and λ, we consider the energy (1.2) augmented as follows

E(Γ, n) =
1

2

∫
Γ

|divΓ ν − δ divΓ n|2dσ +
λ

2

∫
Γ

|∇Γn|2dσ +
1

2

∫
Γ

µ(|n|2 − 1)dσ +
1

2ε2

∫
Γ

f(n · ν)dσ,

where µ is the Lagrange multiplier for the rigid constraint |n| = 1 and f is given by f(x) = (x2 − ξ2
0)2, for

ξ0 ∈ [0, 1]. The last term penalizes the deviation of the three-dimensional director field n from the cone of
all vectors that have a given angle with respect to the unit normal ν to the surface, as discussed already
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in Section 1.2. In Section 5, we derive a variation of the energy with respect to Γ and n, which is the first
step on the way to discover critical points of E(Γ, n). We also introduce a semi-implicit algorithm based on
parametric finite elements of Barrett, Garcke and Nünberg [3] to model the L2-gradient flow of E(Γ, n), see
also [2]. As we are interested in the simulation of cells and biomembranes, side conditions like conservation
of the enclosed volume and/or the surface area are important. For this purpose we use a Newton-iteration
method, as proposed in [9]. In Section 6 we explore the behavior of the nonlinear model via simulations.
We first show that for δ = 1 and without angle penalization, the vectors ν and n tend to align since this
minimizes (divΓ(ν − n))2. We also display the dynamics of defects of degree ±1 and observe that locally
the membrane shape is similar to that discovered earlier in the graph case. We conclude that defects on the
director field n have a dramatic effect on the shape of Γ, as observed in experiments, e.g., reported in [23].

2. Qualitative Behavior of Graphs

To build intuition about the mechanisms introduced by the coupling term in the model, we fix stationary
tangential director fields np of unit length and compute a function u ∈ H1

0 (Ω) for which the coupling term
vanishes. For ease of readability we omit the subscript p throughout this section. We thus impose that the
auxiliary variable

z̃ = ∆u+ div n

vanishes, thereby giving the relation

−∆u = div n.

Motivated by experimental observations we are particularly concerned with the surface structure when the
director field represents a defect of positive or negative degree-one, i.e.,

n = exp(±iθ) = cos θ ± i sin θ

in polar coordinates (r, θ) and complex notation. Notice that for such a field n we have
∫

Ω
|∇n|2dx =∞, so

n cannot be a minimizer of the energy which involves the Dirichlet integral of n, but it arises as the limit
of minimizers of a corresponding Ginzburg-Landau regularization that penalizes the unit-length constraint,
cf. [8]. Therefore our calculations are only meant to explain the structures observed in our experiments
of Section 4 which necessarily involve regularizations of the corresponding fields. We first compute the
divergence

div n = ∂x cos θ ± ∂y sin θ = − sin θ ∂xθ ± cos θ ∂yθ,

and recall that θ = arctan y/x, whence

∂xθ =
−y

x2 + y2
, ∂yθ =

x

x2 + y2
.

We insert this result into the expression for div n and obtain

div n =
y2 ± x2

r3
=

sin2 θ ± cos2 θ

r
.

2.1. Positive degree-one defects. We now take n = exp(iθ) = cos θ + i sin θ. We thus seek u such that
the inhomogeneous equation (in polar coordinates)

∆u =
1

r
∂r

(
r∂ru

)
+

1

r2
∂2
θu = −1

r

holds. It is natural to look for a radial solution u(r) = −rα and the expression for ∆u implies the necessary
condition α = 1 and the cone-like surface (see Figure 1 (left)):

u(r) = −r.

Consider now the director field n = ei(θ+π/2) rotated by an angle π/2. Such an n satisfies div n = 0, whence
u = 0; this is depicted in the right plot of Figure 1. Any other rotation n = ei(θ+θ0) by an angle θ0 can be
expressed as n = cos θ0 n1 + sin θ0 n2 with n1, n2 the director fields in Figure 1. The corresponding solution
is thus

u = −r cos θ0.
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Figure 1. Positive degree-one defect: director field n = eiθ and cone-like surface u = 1 − r (left), and
rotated director field n = ei(θ+π/2) and function u = 0 (right) related by (finite element discretizations of)
−∆u = div n with u|∂Ω = 0.

2.2. Negative degree-one defects. We now take n = exp(−iθ) = cos θ − i sin θ. We thus seek u as a
solution of the inhomogeneous equation

∆u =
1

r
∂r

(
r∂ru

)
+

1

r2
∂2
θu = − sin2 θ − cos2 θ

r
= −cos(2θ)

r
.

We try a solution of the form u(r, θ) = Crα cos(2θ) for suitable constants C,α and evaluate the partial
differential equation to obtain the necessary condition

∆u = C
(
α2 − 4

)
rα−2 cos(2θ) = −cos(2θ)

r
,

whence α = 1, C = 1/3 and

u(r, θ) =
1

3
r cos(2θ).

This solution is a saddle and is depicted in Figure 2 (left). Consider now the director field n = e−i(θ−θ0)

which can be written as n = e−i(θ−θ0/2)eiθ0/2. We thus realize that the value of n at θ results from reading
the value at θ − θ0/2 and rotating clockwise by θ0/2, an effective rotation of e−iθ by the angle θ0/2. The
corresponding solution thus reads

u(r, θ) =
1

3
r cos(2θ − θ0).

Figure 2 (right) displays such a pair (u, n) for θ0 = π/2.

−1 0 1
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0

1

−1

0

1

−1

0

1

−0.1

0

0.1

−1 0 1

−1

0

1

−1

0

1

−1

0

1

−0.1

0

0.1

Figure 2. Negative degree-one defect: director field n = e−iθ and saddle-like surface u(r, θ) ≈ 1
3r cos(2θ)

(left), and rotated director field n = e−i(θ−π/2) and corresponding rotated saddle-like surface u(r, θ) ≈
1
3r cos(2θ−π/2) (right) related by (finite element discretizations of) −∆u = div n and u|∂Ω = 0. Due to the
boundary condition u mimics the exact saddle structure only in a neighborhood of the origin.

3. A semi-implicit scheme for graphs

For simplicity we suppress in this section the index h in connection with all finite element spaces and
functions, that is, we write e.g., T , V and (u, n) instead of Th, Vh and (uh, nh), respectively. We use upper
indices for the functions at discrete time steps. In particular n0 ∈ V is a suitable approximation of the initial
data nD.
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3.1. Finite element spaces. We let T be a regular triangulation [11] of Ω into triangles of maximal
diameter h > 0. We denote by V = V(T ) the space of all continuous functions on Ω that are affine on the
elements in the triangulation T and we set V0 = V ∩H1

0 (Ω). We say that T is weakly acute if the sum of
every pair of angles opposite to an interior edge is bounded by π and if the angle opposite to every edge
on the boundary is less than or equal to π/2. Let (ϕa)a∈N denote the standard nodal basis of V. For later
purposes, we note that if T is weakly acute then [5]

(3.1) Ki,j :=

∫
Ω

∇ϕai · ∇ϕaj dx ≤ 0 for all ai 6= aj ∈ N ,

where N = {a1, . . . , aN} denotes the set of nodes in T . For completeness we include now a monotonicity
estimate due to Bartels [5] for finite element methods, following the seminal work of Alouges [1].

Lemma 3.1 (monotonicity). Let T be weakly acute, and let ñ ∈ V3 be such that |ñ(a)| ≥ 1 for all a ∈ N ,
and define n ∈ V3 by setting n(a) = ñ(a)/|ñ(a)| for all a ∈ N . Then

‖∇n‖ ≤ ‖∇ñ‖.(3.2)

Proof. Let (ϕai)ai∈N denote the nodal basis of V. Besides (3.1), the symmetric matrix (Ki,j)
N
i,j=1 satisfies∑N

j=1Ki,j = 0 owing to
∑N
j=1 ϕaj = 1. We observe the relations

||∇n||2 =

N∑
i,j=1

Ki,jn(ai) · n(aj)

=
1

2

N∑
i,j=1

Ki,jn(ai) ·
(
n(aj)− n(ai)

)
+

1

2

N∑
i,j=1

Ki,jn(aj) ·
(
n(ai)− n(aj)

)
= −1

2

N∑
i,j=1

Ki,j

∣∣n(ai)− n(aj)
∣∣2.

The assertion is proved if it holds |n(ai)−n(aj)|2 ≤ |ñ(ai)− ñ(aj)|2 for all i, j = 1, · · · , N . Hence, it suffices

to show
∣∣ a
|a| −

b
|b|
∣∣ ≤ ∣∣a − b∣∣, for a, b ∈ R3 with |a|, |b| ≥ 1. This follows from the Lipschitz continuity of

πS2 : {x ∈ R3 : |x| ≥ 1} → S2, x 7→ x/|x|. �

For a fixed time-step size τ > 0 let tj = jτ for all j ≥ 0. Given q ∈ [V]3 we define the space of tangential
updates with respect to the sphere for a given vector field q with |q(a)| = 1 for all a ∈ N by

F [q] =
{
r ∈ [V0]3 : r(a) · q(a) = 0 for all a ∈ N

}
.(3.3)

Since we use time-independent boundary conditions we may assume that we are given approximations n0 ∈
[V]3 and u0 ∈ V0 of nD and uD with |n0(a)| = 1 for all a ∈ N . Moreover we replace the additional variable
z̃ = ∆u+ δ div np, which has a Dirichlet boundary value g, by z = z̃ − g, which has vanishing trace. Given
n0 ∈ [V]3 and u0 ∈ V0, we let z0 ∈ V0 be an approximation to z(0) defined as

(z0, y) = −(g, y)− (∇u0,∇y)− δ(n0
p,∇y) for all y ∈ V0 ,(3.4)

and observe that the right-hand side in this equality defines a continuous linear form on V. Since the L2

inner product is a norm on V0 (with zero Dirichlet conditions), existence of a unique solution z0 follows from
the Lax-Milgram lemma.

In the numerical analysis of our proposed scheme we will need to control ‖∇z0‖. For this we assume for
simplicity that ∆u0

∣∣
∂Ω

= 0. Then, we define the discrete Laplacian ∆0 with zero boundary values for a

finite element function v to be the unique element ∆0v ∈ V0 that satisfies

(∆0v, w) = −(∇v,∇w) for all w ∈ V0

and let Π0 denote the L2 projection onto V0. We then have that

z0 = −Π0(g − δ div n0
p) + ∆0u0
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and

‖∇z0‖ ≤ ‖∇
[
−Π0(g − δ div n0

p) + ∆0u0
]
‖.(3.5)

The assumption ∆u0
∣∣
∂Ω

= 0 can be avoided by appropriately splitting g = ∆u(0)
∣∣
∂Ω

+ g̃ and replacing g by
g̃ in the above discussion.

3.2. Difference quotients. We use two definitions of difference quotients in time, i.e., for any sequence
(uj) and for a sequence (nj) which is obtained by a post processing of a sequence (ñj) we write

dtu
j =

1

τ

(
uj − uj−1

)
, d̃tn

j =
1

τ

(
ñj − nj−1

)
.

For all j ∈ N, j ≥ 1, we have

( dtu
j , uj) =

1

2τ

(
‖uj‖2 − ‖uj−1‖2

)
+
τ

2
‖ dtu

j‖2 =
1

2
dt‖uj‖2 +

τ

2
‖ dtu

j‖2 ,(3.6)

( d̃tn
j , ñj) =

1

2τ

(
‖ñj‖2 − ‖nj−1‖2

)
+
τ

2
‖ d̃tn

j‖2 =
1

2
d̃t‖nj‖2 +

τ

2
‖ d̃tn

j‖2 .(3.7)

We recall a useful estimate for the discrepancy ñj − nj , and include a short proof [6, Proposition 4.2].

Lemma 3.2 (discrepancy ‖ñj − nj‖). For the sequences {ñj}j≥0 and {nj}j≥0 constructed by the numerical
scheme in Section 3.3 below, that is, satisfying in particular the orthogonality condition (nj−1, ñj−nj−1) = 0
for all j ≥ 0 the following estimate holds for all j ≥ 1,

‖ñj − nj‖2 ≤ γ0τ
4‖ d̃tn

j‖2 ‖∇ d̃tn
j‖2 .(3.8)

A possible numerical value for γ0 is γ0 = 25

Proof. For all nodes a ∈ N , we can write

∣∣ñj(a)− nj(a)
∣∣ =

∣∣∣ñj(a)− ñj(a)

|ñj(a)|

∣∣∣ = |ñj(a)| − 1 .

Since ñj(a) = nj−1(a)+ τ d̃tn
j(a) we obtain from orthogonality, the normalization of nj−1, and the estimate

(1 + x2)1/2 ≤ 1 + 1
2 x

2 that

∣∣ñj(a)− nj(a)
∣∣ ≤ (∣∣nj−1(a)|2 + τ2| d̃tnj(a)

∣∣2)1/2

− 1 ≤ τ2

2

∣∣ d̃tnj(a)
∣∣2 .

In view of standard estimates for mass-lumping we get the inequality ||ñj − nj ||2L2(T ) ≤ τ
4|| d̃tnj ||4L4(T ). We

take the sum over all triangles, recall the fixed boundary values for nj and use the multiplicative interpolation
estimate [24] to obtain

‖ñj − nj‖2L2(Ω) ≤ τ
4‖ d̃tn

j‖4L4(Ω) ≤ 25τ4‖ d̃tn
j‖2L2(Ω) ‖∇ d̃tn

j‖2L2(Ω) .

This estimate concludes the proof. �

We finally recall a variant of discrete integration in time: for 1 ≤ j ≤ J we have dt(u
jvj) = dtu

jvj +
uj−1 dtv

j , whence for 1 ≤ ` ≤ J

uJvJ − u`−1v`−1 = τ

J∑
j=`

dt(u
jvj) = τ

J∑
j=`

dtu
jvj + τ

J∑
j=`

uj−1 dtv
j .(3.9)
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3.3. Numerical scheme. We propose a semi-implicit method for (1.4) in which the computation of the
director field is naturally decoupled from the calculation of uj and zj . We set ñ0 = n0 and seek for j ≥ 1
and given uj−1, ñj−1, nj−1 functions

uj ∈ V0 , zj ∈ V0 , d̃tn
j ∈ F [nj−1]

such that

(zj , y) + (∇uj ,∇y) + δ(ñj−1
p ,∇y) = −(g, y) for all y ∈ V0 ,(3.10)

( dtu
j , v)− (∇zj ,∇v) = (∇g,∇v) for all v ∈ V0 ,(3.11)

( d̃tn
j ,m)− δ(∇zj ,mp) +

(
∇ñj ,∇m

)
= δ(∇g,mp) for all m ∈ F [nj−1],(3.12)

where ñj = nj−1 + τ d̃tn
j . Now set

nj(a) =
ñj(a)

|ñj(a)|
=

nj−1(a) + τ d̃tn
j(a)

|nj−1(a) + τ d̃tnj(a)|
, for all a ∈ N .

We remark that the system (3.10)-(3.11) has the structure of a saddle-point problem, that is similar to a
hybrid formulation of the bilaplacian (with penalty term), i.e., (3.10)-(3.11) can be rewritten as

(zj , y)+(∇uj ,∇y) = −(g, y)− δ(ñj−1
p ,∇y) for all y ∈ V0 ,

(∇zj ,∇v)−τ−1(uj , v) = −τ−1(uj−1, v)− (∇g,∇v) for all v ∈ V0 .

Owing to the essential boundary conditions imposed on zj and uj a P1 − P1 discretization is stable. The
Lax-Milgram lemma implies the unique solvability of (3.12) on the non-empty linear space F [nj−1].

3.4. Stability analysis. In this section we derive energy estimates for the solutions of the finite element
discretization. In particular, we verify bounds (uniform in τ) for the following quantities:

A(J) =
1

4
‖∇zJ‖2 +

1

2

J∑
j=1

τ‖ dt∇uj‖2 +
τ

2

J∑
j=1

τ‖ dt∇zj‖2 ,

B(J) =
1

2
‖zJ‖2 +

1

2
‖∇nJ‖2 +

1

2

J∑
j=1

τ
(
‖ dtu

j‖2 + ‖ d̃tn
j‖2
)

+
τ

2

J∑
j=1

τ
(
‖ dtz

j‖2 + ‖ d̃t∇nj‖2
)
,

for all J ≥ 1. The quantities which are quadratic in τ do not provide uniform estimates for the solutions.
However, they are needed in order to control various terms that appear on the right-hand sides of the following

estimates. We state all bounds for j ≥ 1 and use the conventions that
∑k
j=`(. . . ) = 0 and supj=`,...,k(. . . ) = 0

whenever k < `. We set ñ−1 = ñ0 = n0, whence dtñ
0 = 0, and recall the definition (3.4) of z0 ∈ V0. We

assume

(3.13) uD ∈ H3(Ω), nD ∈ H2(Ω), g ∈ H2(Ω).

Combined with (3.4), this implies that ‖∇z0‖ is uniformly bounded with respect to h.

Lemma 3.3 (first strong estimate). If (3.13) holds, then there exists a constant γ0 such that for J ≥ 1

A(J) =
1

4
‖∇zJ‖2 +

1

2

J∑
j=1

τ‖dt∇uj‖2 +
τ

2

J∑
j=1

τ‖ dt∇zj‖2

≤ 2γ2
0δ

2 sup
j=3,...,J

(
‖∇ñj−2‖2 + ‖∇nj−3‖2

) J∑
j=3

τ‖ d̃tn
j−2‖2 + δ2

J∑
j=2

τ‖ d̃tn
j−1
p ‖2 + ‖∇z0‖2 +

3

2
‖∇g‖2 .

Proof. Using (3.4) and the discrete time derivative of (3.10), we obtain that for j ≥ 1

( dtz
j , y) + ( dt∇uj ,∇y) + δ( dtñ

j−1
p ,∇y) = 0 ,(3.14)

because g is time-independent. The choices y = dtu
j in (3.14) and v = dtz

j in (3.11) yield

1

2
dt‖∇zj‖2 +

τ

2
‖ dt∇zj‖2 + ‖ dt∇uj‖2 = −δ( dtñ

j−1
p , dt∇uj)− (∇g, dt∇zj) ,(3.15)
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because of (3.6). Since (3.12) gives an estimate for d̃tn
j , it is thus natural to rewrite the right-hand side of

(3.15) as follows:

−δ( dtñ
j−1
p , dt∇uj) = − δ( d̃tn

j−1
p , dt∇uj)−

δ

τ
(nj−2
p − ñj−2

p , dt∇uj)

≤ 1

2
‖ dt∇uj‖2 + δ2‖ d̃tn

j−1
p ‖2 +

δ2

τ2
‖ñj−2

p − nj−2
p ‖2 .

For j = 1, 2, the last term vanishes; for j ≥ 3 we use the estimate (3.8) to infer that

‖ñj−2
p − nj−2

p ‖2 ≤ 2γ2
0τ

2
(
‖∇ñj−2‖2 + ‖∇nj−3‖2

)
‖ d̃tn

j−2‖2.

We take the sum in the foregoing estimates and multiply by τ . Using (3.9) and the fact that g is time-
independent, the second term on the right-hand side of (3.15) reduces to

−
J∑
j=1

τ(∇g, dt∇zj) = −(∇zJ ,∇g) + (∇z0,∇g) ≤ 1

4
‖∇zJ‖2 +

1

2
‖∇z0‖2 +

3

2
‖∇g‖2.

This gives the asserted estimate. �

Lemma 3.4 (second strong estimate). Suppose that (3.13) is valid and T is weakly acute, whence T satisfies
(3.1). Then the following bound holds for J ≥ 1:

B(J) ≤ 1

2
‖zJ‖2 +

1

2
‖∇ñJ‖2 +

1

2

J∑
j=1

τ
(
‖dtu

j‖2 + ‖ d̃tn
j‖2
)

+
τ

2

J∑
j=1

τ
(
‖ dtz

j‖2 + ‖ d̃t∇nj‖2
)

≤ 1

2
‖z0‖2 +

1

2
‖∇n0‖2 + δ2T‖∇g‖2 +

T

2
‖∆g‖2

+ δ2τ

J∑
j=2

τ2‖ dt∇zj‖2 + δ2τ‖∇zJ‖2 + 2δγ0τ
1/2 max

j=1,...,J
‖∇zj‖

J∑
j=2

(
τ‖ d̃tn

j−1‖2 + τ2‖ d̃t∇nj−1‖2
)
.

Proof. We use (3.14) with y = zj , (3.11) with v = dtu
j , and (3.12) with m = d̃tn

j and employ(
∇ñj , d̃t∇nj

)
=
τ

2
‖∇ d̃tn

j‖2 +
1

2τ

(
‖∇ñj‖2 − ‖∇nj−1‖2

)
which is a variant of (3.7), to arrive at

1

2
dt‖zj‖2 +

τ

2
‖dtz

j‖2 +
1

2τ

(
‖∇ñj‖2 − ‖∇nj−1‖2

)
+
τ

2
‖ d̃t∇nj‖2 + ‖ d̃tn

j‖2 + ‖ dtu
j‖2

= −δ( dtñ
j−1
p ,∇zj) + δ(∇zj , d̃tn

j
p) + ( dt∇uj ,∇g) + δ( d̃tn

j
p,∇g) .

(3.16)

For the first two terms on the right-hand side we have for j ≥ 1

−δ( dtñ
j−1
p ,∇zj) + δ(∇zj , d̃tn

j
p) = − δ

τ
(ñj−1
p − ñj−2

p −
(
ñjp − nj−1

p

)
,∇zj)

= δτ( d2
t ñ
j
p,∇zj) +

δ

τ
(ñj−1
p − nj−1

p ,∇zj) .
(3.17)

We substitute (3.17) into (3.16), multiply the resulting expression by τ , and sum it from j = 1 to J . In view
of (3.8) and the fact that ñ0

p = n0
p, the second term on the right-hand side becomes

δ

J∑
j=2

(ñj−1
p − nj−1

p ,∇zj) ≤ δ
J∑
j=2

‖ñj−1
p − nj−1

p ‖ ‖∇zj‖

≤ δ max
j=2,...,J

‖∇zj‖
J∑
j=2

γ0τ
2‖ d̃tn

j−1‖ ‖ d̃t∇nj−1‖

≤ δ

2
γ0τ

1/2 max
j=2,...,J

‖∇zj‖
J∑
j=2

(
τ‖ d̃tn

j−1‖2 + τ2‖ d̃t∇nj−1‖2
)
.

(3.18)
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Instead, for the first term on the right-hand side we use the partial summation formula (3.9), to deduce

δτ

J∑
j=1

τ( d2
t ñ
j
p,∇zj) = δτ

J∑
j=1

τ( dt( dtñ
j
p),∇zj)

= −δτ
J∑
j=1

τ( dtñ
j−1
p , dt∇zj)− δτ( dtñ

0
p,∇z0) + δτ( dtñ

J
p ,∇zJ)

= −δτ
J∑
j=2

τ( d̃tn
j−1
p , dt∇zj)− δτ

J∑
j=2

(nj−2
p − ñj−2

p , dt∇zj)

+ δτ( d̃tn
J
p ,∇zJ) + δ(nJ−1

p − ñJ−1
p ,∇zJ) = I + II + III + IV .

(3.19)

We now examine terms I − IV separately. For I and III we simply use Cauchy-Schwarz to write

I ≤ 1

4

J∑
j=2

τ‖ d̃tn
j−1
p ‖2 + δ2τ2

J∑
j=2

τ‖dt∇zj‖2, III ≤ τ

4
‖ d̃tn

J
p‖2 + δ2τ‖∇zJ‖2.

Since τ‖ dt∇zj‖ ≤ 2 max
1≤j≤J

‖∇zj‖, we proceed as in (3.19) to find

II ≤ δτ
J∑
j=2

‖nj−2
p − ñj−2

p ‖ ‖dt∇zj‖ ≤ δγ0τ
1/2 max

j=1,...,J
‖∇zj‖

J∑
j=1

(
τ‖ d̃tn

j−2‖2 + τ2‖ d̃t∇nj−2‖
)

and

IV ≤ δ‖nJ−1
p − ñJ−1

p ‖ ‖∇zJ‖ ≤ δ

2
γ0τ

1/2‖∇zJ‖
(
τ‖ d̃tn

J−1‖2 + τ2‖ d̃t∇nJ−1‖
)
.

It remains to estimate the terms involving g in the summation of (3.16). For the first term we use (3.13)
and integrate by parts to get

J∑
j=1

τ(∇g,∇ dtu
j) = −

J∑
j=1

τ(∆g, dtu
j) ≤ 1

2

J∑
j=1

τ‖ dtu
j‖2 +

T

2
‖∆g‖2,

where T ≥ τJ is the final time. For the second term we simply use Cauchy-Schwarz

δ

J∑
j=1

τ(∇g, d̃tn
j
p) ≤

1

4

J∑
j=1

τ‖ d̃tn
j‖2 + δ2T‖∇g‖2.

We finally combine the foregoing estimates and use the monotonicity ‖∇nj‖ ≤ ‖∇ñj‖ for j = 1, 2, ..., J − 1,
established in (3.2), as well as ñ0 = n0, to obtain the asserted estimate. �

Theorem 3.5 (a priori estimates). Let (3.13) hold and T be weakly acute. We define

E(J) =
1

2
‖zJ‖2 +

1

2
‖∇nJ‖2, Z0 = ‖∇z0‖2 +

3

2
‖∇g‖2, G = δ2T‖∇g‖2 +

T

2
‖∆g‖2,

and set for arbitrary 0 < ε < 1

B = E(0) +G+ 2τε , A = 16γ2
0δ

2B
2

+ 2δ2B + Z0 .

Suppose finally that

τ1−ε ≤ 1

4δ2A
, τ1/2−ε ≤ 1

8δγ0A
1/2
B
.(3.20)
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Then for all J ≥ 1 we have

A(J) =
1

2
‖∇zJ‖2 +

τ

2

J∑
j=1

τ‖dt∇zj‖2 +
1

2

J∑
j=1

τ‖ dt∇uj‖2 ≤ A

B(J) = E(J) +

J∑
j=1

τ
(
‖ dtu

j‖2 +
1

2
‖ d̃tn

j‖2
)

+
τ

2

J∑
j=1

τ
(
‖ dtz

j‖2 + ‖ d̃t∇nj‖2
)
≤ B .

Proof. We proceed by induction. For J = 1 the estimates of Lemmas 3.3 and 3.4 imply

A(1) ≤ Z0 ≤ A, B(1) ≤ E(0) ≤ B.

Suppose now that the assertion has been verified for J − 1 ≥ 1, i.e., for j = 1, ..., J − 1 we have A(j) ≤ A
and B(j) ≤ B. Lemma 3.3 and the definition of A imply

A(J) ≤ 16γ2
0δ

2 sup
j=0,...,J−1

B(j)B(J − 2) + 2δ2B(J − 1) + Z0 ≤ A .

Similarly, Lemma 3.4 gives the upper bound

B(J) ≤ E(0) +G+ 4δ2τA(J) + 8δγ0τ
1/2 max

j=1,...,J
A(j)1/2B(J − 1) .

The induction hypothesis B(J − 1) ≤ B and the conditions on τ lead to

B(J) ≤ E(0) +G+ 2τε = B

which proves the assertion of the theorem. �

Remark 3.1 (regularity of g). The H2-regularity of g, assumed in (3.13), can be weakened to g ∈ H1(Ω) at
the expense of a more technical proof of Theorem 3.5. In fact, we avoid integration by parts in the first term
involving g in Lemma 3.4 and instead write

J∑
j=1

τ(∇g, dt∇uj) ≤
ξ

2

J∑
j=1

τ‖∇ dtu
j‖2 +

1

2ξ

J∑
j=1

τ‖∇g‖2

for ξ > 0 arbitrarily small. The recursion for B(J) in the proof of Theorem 3.5 now becomes

B(J) ≤ E(0) +G+ ξA(J) + 4δ2τA(J) + 8δγ0τ
1/2A(J)1/2B(J − 1).

Replacing this bound into the recursion of A(J) allows us to absorb the term ξA(J) for ξ sufficiently small.

3.5. Weak solution of (1.4). The a priori estimates of Theorem 3.5 allow us to establish the existence of a
weak solution of the continuous L2 flow that satisfies an energy inequality. We now state precisely the notion
of solution already introduced in (1.4) and refer the reader to [6] for details about passing to the limit.

Definition 3.6 (weak solution). Let Ω ⊂ R2 be a bounded and convex Lipschitz domain and fix T > 0. We
call a pair (u, n) a weak solution of (1.4) in the time interval I = (0, T ) if the following assertions are true:

(i) n ∈ H1(I;L2(Ω;R2)) ∩ L∞(I;H1(Ω;R2)), u ∈ H1(I;L2(Ω)) ∩ L∞(I;H2(Ω));
(ii) |n(t, x)| = 1 for almost every (t, x) ∈ I × Ω;
(iii) n(0, ·) = nD, u(0, ·) = uD with uD ∈ H3(Ω) and nD ∈ H2(Ω);
(iv) n(t, ·)|∂Ω = nD and u(t, ·)|∂Ω = uD in the sense of traces for almost every t ∈ I;
(v) ∆u+ δ div np ∈ L2(I;H1(Ω)) and satisfies for a.e. t ∈ I that (∆u+ δ div np)

∣∣
Γ
= g with g ∈ H2(Ω)

given;
(vi) for all (m, v) ∈ L2(I;H1

0 (Ω;R2))× L2
(
I;H2(Ω) ∩H1

0 (Ω)
)

satisfying m · n = 0 almost everywhere in
I × Ω we have ∫

I

{
(∂tu, v) + (∆u+ δ div np,∆v)

}
dt−

∫
∂Ω

g∂νvdS = 0 ,∫
I

{
(∂tn,m) + (∆u+ δ div np, δ divmp) + (∇n,∇m)

}
dt = 0 .
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Remark 3.2. We note that the formulation of Theorem 3.5 allows one to deduce the existence of a solution
(u, n) that satisfies the energy inequality

1

2
‖∆u+ δ div np‖2 +

1

2
‖∇n‖2 +

∫ T

0

(
‖∂tu‖2 +

1

2
‖∂tn‖2

)
dt

≤ 1

2
‖∆uD + δ div(nD)p‖2 +

1

2
‖∇nD‖2 + δ2T‖∇g‖2 +

T

2
‖∆g‖2 .

We refer the reader to [30] for related existence theories in the context of the harmonic map heat flow.

4. Numerical Experiments for Graphs

In this section we report on various numerical experiments carried out with the scheme devised and
analyzed in the previous sections. Since we want to illustrate the interaction of defects and shape we
consider the case of a membrane in the gel phase where the director field prefers to have a fixed angle with
respect to the normal to the surface, say π/2 for convenience. As in Section 2 the director field n has unit
length but is allowed to develop an out-of-plane component to accommodate for topological defects; we omit
the index p throughout this section for the tangential part np of n. We thus augment the system of equations

discussed in Section 3.4 by the term ε−2(ñj3,m3), where the subscript 3 refers to the third, or out-of-plane,
component of a vectorfield, in (3.12), i.e., for the evolution of the director field we employ the equation

( d̃tn
j ,m)− δ(∇zj ,mp) +

(
∇ñj ,∇m

)
+ ε−2(ñj3,m3) = 0 .

This modification corresponds to the additional penalty term

1

2ε2

∫
Ω

|n3|2 dx

in the energy, i.e., our energy functional is

E(u, z, n) =
1

2

∫
Ω

|z|2dx+
1

2

∫
Ω

|∇n|2dx+
1

2ε2

∫
Ω

|n3|2dx

subject to the relation z = ∆u + δdiv(n1, n2), the pointwise constraint |n| = 1, and Dirichlet boundary
conditions for u, z, and n. We remark that the inclusion of an implicit treatment of the convex penalty term
in the stability analysis for the numerical scheme in Section 3 poses no difficulties.

The goal of this section is to explore the qualitative behavior of the evolution for specific initial conditions
with defects. Here, the terminology of a defect refers to a singularity in the renormalized planar part of the
director field which is also called vortex. This evolution typically shows an initial phase with a significant
change of the shape in order for the system to adjust to the given initial and boundary values which is
followed by a slower evolution towards an equilibrium shape. In the figures we display typical intermediate
shapes and states which are close to an equilibrium. In our simulations the domain Ω and the parameters
δ, T , and ε are given by

Ω = (−1/2, 1/2)2, δ = 1, T = 1, ε = 10−2 .

We denote by (r, φ) the usual polar coordinates in R2 (with respect to the origin). The function ϕ which
is used in the extension of a function given on ∂Ω to Ω is equal to ϕ(r) = tanh(r). The initial values are
always chosen to be

u0 = 0, g = Ih[div n0]

for different choices of n0 and where Ih is the nodal interpolation operator. The sequence of triangulations
T` is generated by ` uniform refinements (division of each triangle into four congruent ones) of the initial
triangulation T0 of Ω which consists of two triangles obtained by dividing Ω along the diagonal x1 = x2.
Hence the mesh-size h` is given by h` =

√
22−`. Moreover we used τ` = h`/(8

√
2) as time-step size.
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4.1. Positive degree-one defect. We choose boundary conditions which correspond to a defect of degree
one, i.e.,

n0|∂Ω(x1, x2) = n0|∂Ω(r cosφ, r sinφ) =
(

cos(φ), sin(φ), 0
)

=
(
eiφ, 0

)
, (x1, x2) ∈ ∂Ω

(in complex notation). Note that these boundary data do not allow for a continuous, purely planar extension,
since any such extension would necessarily contain topological defects of infinite energy. Thus it is expected
that the numerical solution will develop an out-of-plane component of the vectorfield despite the penalization
of this component in the energy in order to accommodate the length constraint. For energetic reasons, there
should be only one point in the domain where such a defect-like structure is observed. Therefore we define
the extension of n0 which is needed for the numerical scheme at all interior nodes a ∈ N with the help of
polar coordinates (r2, φ2) about (−1/4,−1/4) by

n0(a) = n0(r2 cosφ2, r2 sinφ2) =
(
ϕ(r2/ε) cos(φ2), ϕ(r2/ε) sin(φ2), (1− ϕ(r2/ε)

2)1/2
)
.

Thus there is such a defect-like structure already present in the initial data but it is not located at the origin
where it is expected to move during the evolution of the system.

The snapshots of the evolution in Figure 3 show indeed that this initial vortex moves slowly towards the
origin, which is an energetically favorable configuration. At the same time, the surface develops a profile
which is a smoothed version of the cone described in Section 2. The location of the maximal height moves
together with the vortex towards the origin. The initially strong energy decay shown in the bottom plot of
Figure 3 is related to the incompatibility of the initial data in the sense that ∆u0 + δ div n0 is large.

4.2. Negative degree-one defect. We employ

n0|∂Ω(r cosφ, r sinφ) =
(

cos(−φ), sin(−φ), 0
)

=
(
e−iφ, 0

)
with an extension to Ω so that the defect is located at x = (−1/4,−1/4) as above. A defect of negative
degree-one in the planar part of the director field is favored by the boundary conditions and already present
in the extension of n0|∂Ω to Ω. The corresponding evolution is shown in Figure 4. As in the case of a positive
degree-one defect we observe that the defect of negative degree-one moves towards the center of the domain.
The surface adjusts to the defect by developing a saddle-shape and follows its motion. Eventually we observe
a stationary configuration with a saddle as predicted in Section 2. In accordance, the energy shows a rapid
decay in the beginning and then only decreases moderately.

4.3. Positive degree-two defect. We set

n0|∂Ω(r cosφ, r sinφ) =
(

cos(2φ), sin(2φ), 0
)

=
(
e2iφ, 0

)
,

with an extension to Ω as above so that the defect is located at the origin. This initial configuration of the
director field is unstable as can be seen in the snapshots displayed in Figure 5. The vortex of degree two
immediately splits into two defects of positive degree one and rotated by ±π/2 which subsequently repel
each other and tend to maximize their distance. As is expected from the analysis in Section 2, the rotated
defects do not induce local curvature and the observed shape corresponds to the nearly constant director
field between the defects pointing in the negative x1-direction. In this example we observe a rapid initial
energy decay and another significant decay when the defects have reached a proper separation distance.

4.4. Two opposite degree-one defects. With polar coordinates (r±, φ±) about (±1/4, 0) we set

n0(x) =

{
−
(

cos(−φ+), sin(−φ+), 0
)

for x1 > 0(
cos(φ−), sin(φ−), 0

)
for x1 ≤ 0

for x = (x1, x2) ∈ ∂Ω, and extend to Ω as above so that the defects are located at (±1/4, 0). We point
out that in order to match smoothly the director field at x1 = 0 the negative degree-one defect is that of
Section 4.2 rotated by π. When two defects of opposite degree are present in the initial data, the surface
adjusts with a shape as predicted in Section 2 by forming a cone and a saddle-like structure, cf. Figure 6
(middle). During the evolution, the vortices attract each other and eventually annihilate. The shape of the
surface follows the location of the vortices. A smooth profile is still observable after the event of annihilation
which is related to the fact that the boundary data for n, z used in this example are non-constant. The
energy curve shown in the bottom plot of Figure 6 reveals a rapid initial decay related to incompatible initial
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data, followed by a plateau corresponding to the motion of the vortices towards each other, and a strong
decay when the annihilation of the vortices takes place.

5. The nonlinear model on closed surfaces

In this section we return to the nonlinear model of Section 1.4, which corresponds to the energy

(5.1) E(Γ, n) :=
1

2

∫
Γ

(divΓ ν − δdivΓn)2dσ +
λ

2

∫
Γ

|∇Γn|2dσ +

∫
Γ

µ
(
|n|2 − 1

)
dσ +

1

2ε2

∫
Γ

f(n · ν)dσ.

To formulate the gradient flow of E(Γ, n) we need the first variation of E(Γ, n). We thus start with a brief
review of differential geometry which we next apply to derive the first variation in Section 5.2. We follow
with a discretization of the gradient flow, using parametric finite elements and including constraints.

5.1. Elementary differential geometry. Let U ⊂ R2 be open and X : U → R3, (u1, u2) 7→ X(u1, u2)
be a local parametrization of Γ. If Xi = ∂ui

X, then the induced metric on Γ is given by gij = Xi · Xj .

The inverse of gij is gij and the square root of the matrix gij is g
(−1/2)
ij , i.e.,

∑
k g

(−1/2)
ik g

(−1/2)
jk = gij . If

g = det(gij), then the volume element on Γ is given by dσ =
√
gdu1du2. The unit normal is ν = X1×X2

|X1×X2| ,

and the second fundamental form is hij = −∂iν ·Xj . If f and F are scalar- and vector-valued functions on

Γ and f̃ , F̃ are arbitrary extensions then the tangential gradient and divergence on Γ are given by

∇Γf = ∇f̃ − (ν · ∇f̃)ν, divΓF = div F̃ − νTDF̃ν.

In the local coordinates defined above these operators are

(5.2) (∇Γf) ◦X =
∑
i,j

gij∂j(f ◦X)Xi, (divΓ F ) ◦X =
∑
i,j

gij∂i(F ◦X) ·Xj .

The first representation is standard. To deduce the second one we make use of the orthonormal basis

(V1, V2, ν), where Vi =
∑
j g

(−1/2)
ij Xj , i = 1, 2. On Γ we have

div F̃ = trDF̃ =
∑
i

V Ti DF̃Vi + νTDF̃ν

=
∑
i,j,k

g
(−1/2)
ij g

(−1/2)
ik XT

j DF̃Xk + νTDF̃ν =
∑
j,k

gjk∂j(F ◦X) ·Xk + νTDF̃ν.

For F = ν we obtain the mean curvature, i.e.,

H = − divΓ ν =
∑
i,j

gijhij .

With this definition the unit sphere S2 has mean curvature −2. It is now easy to check for all functions f ,
f1, and f2 the identities

(5.3) (∇Γf1 · ∇Γf2) ◦X =
∑
i,j

gij∂i(f1 ◦X)∂j(f2 ◦X), Xi · (∇Γf) ◦X = ∂i(f ◦X).

We note that the tangential gradient ∇ΓF of a vector field F is a square matrix in R3×3 whose i-th row is
the tangential gradient of the i-th component of F . If F is tangential, then it can be equivalently written as

F =
∑
k

(Vk · F )Vk =
∑
i,j,k

g
(−1/2)
ik g

(−1/2)
jk F ·XiXj =

∑
i,j

gijF ·XiXj .

Applying this expression to the tangential vector ∂kν yields the Weingarten equations

(5.4) ∂kν = −
∑
i,j

gijhkiXj .

The Laplace-Beltrami operator ∆Γf = divΓ∇Γf has the following expression in local coordinates

(5.5) ∆Γf =
1
√
g

∑
i,j

∂i(
√
ggij∂jf).
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Figure 3. Positive degree-one defect: in-plane component of the director field (left), out-of-plane component
of the director field (middle), and height function (right) after n = 0, 32, 256 time steps. The surface develops
a smoothed out cone and follows the motion of the defect. The energy shows a rapid initial decay when the
surface adjusts to the defect.
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Figure 4. Negative degree-one defect: in-plane component of the director field (left), out-of-plane compo-
nent of the director field (middle), height function (right) after n = 0, 8, 16 time steps. The height function
shows a saddle shape in a neighborhood of the defect and this configuration is stable. The energy decays
rapidly during the first time steps and remains almost constant subsequently.
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Figure 5. Positive degree-two defect: in-plane component of the director field (left), out-of-plane component
of the director field (middle), height function (right) after n = 0, 48, 128 time steps. The defect splits into two
rotated positive degree-one defects which do not induce local curvature, in good agreement with Section 2.
The initial energy decay is followed by another strong decay when the degree-one defects are properly
separated. 18
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Figure 6. Two opposite degree-one defects: in-plane component of the director field (left), out-of-plane
component of the director field (middle), height function (right) after n = 0, 80, 96 time steps. The surface
rapidly forms a cone and a saddle-like structure which move towards each other and disappear when the
attracting defects annihilate. The energy shows a strong decay when the annihilation takes place.
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Let φ be a smooth real-valued function on Γ and s ∈ (−ξ, ξ), ξ > 0 small enough. A normal variation of Γ
is given by the map

Xs(u1, u2) = X(u1, u2) + sφ(X(u1, u2))ν

with values in a tubular neighborhood of Γ. The first variation of E in (5.1) with respect to Γ is now defined
as 〈

δΓE, φ
〉

:=
d

ds

∣∣∣
s=0

E(Γs, n).

We write f ′ := ∂s|s=0fs for a quantity that depends on s, we recall the basic geometric identities

(5.6) g′ij = −2φhij , (gij)′ = 2φ
∑
k,`

gjkgi`h`k, ν′ = −∇Γφ, dσ′ = −φκdσ, H ′ = ∆Γφ+ φ|∇Γν|2.

We refer the reader to [33] for a detailed calculation and note that the first identity follows from

g′ij = ∂s|s=0 (Xi + s∂iφν + sφ∂iν) · (Xj + s∂jφν + sφ∂jν) = −2φhij .

For the side conditions we define the area and volume function as

A : Γ 7→
∫

Γ

1 dσ, V : Γ 7→ 1

3

∫
Γ

x · ν dσ.

5.2. First variation of the energy and gradient flow. In the following we identify n with its constant
extension in the normal direction so that ns = n and therefore n′ = 0. Notice that the variation of E(Γ, n)
with respect to Γ does depend on the particular extension. This choice is not arbitrary: biomembranes are
made of lipid bilayers and thus have a small thickness across which it is reasonable to assume no variation
of the physical quantities such as n.

Lemma 5.1. For a normal variation of Γ defined by a function φ as in Section 5.1 we have

∂s|s=0divΓs
n = −φ∇Γn : ∇Γν + νT∇Γn∇Γφ,(5.7)

∂s|s=0|∇Γsn|2 = −2φ(∇Γn)T : ∇Γν(∇Γn).(5.8)

Proof. Using the expression (5.2) for the tangential divergence divΓ n, we obtain

∂s|s=0(divΓsn) = ∂s|s=0

(∑
i,j

gijs ∂in ·Xs,j

)
=
∑
i,j

(gij)′∂in ·Xj + gij∂in
′ ·Xj + gij∂in ·X ′j .

Since n′ = 0 the middle term vanishes. For the first term we use (5.6) to write∑
i,j

(gij)′∂in ·Xj = 2φ
∑
i,j,k,`

gjkgi`h`k∂in ·Xj = 2φ
∑
i,`

gi`∂in ·
∑
j,k

gjkh`kXj .

We invoke the Weingarten equations (5.4) to identify the last factor with −∂`ν, and (5.3) to get∑
i,j

(gij)′∂in ·Xj = −2φ
∑
i,`

gi`∂in · ∂`ν = −2φ∇Γn : ∇Γν.

To manipulate the remaining term, we first observe that X ′j = ∂jφν + φ∂jν. In view of (5.3) we see that∑
i,j

gij∂in ·X ′j =
∑
k

νk∇Γnk · ∇Γφ+ φ∇Γn : ∇Γν.

Since
∑
k

νk∇Γnk · ∇Γφ = νT∇Γn∇Γφ, collecting the last two expressions leads to (5.7). To prove (5.8) we

use (5.3) for |∇Γn|2, combined with n′ = 0, to arrive at

∂s|s=0|∇Γs
n|2 = ∂s|s=0

(∑
i,j

gijs ∂in · ∂jn
)

=
∑
i,j

(gij)′∂in · ∂jn.
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We replace (gij)′ with the expression from (5.6), and next use (5.3) to write h`k = −Xk · ∇ΓνX`, whence

∂s|s=0|∇Γsn|2 = 2φ
∑
i,j,k,`

gjkgi`h`k
∑
m

∂inm∂jnm

= −2φ
∑
m

(∑
j,k

gjk∂jnmXk

)
· ∇Γν

(∑
i,`

gi`∂inmX`

)
.

The equivalent representation (5.2) of the surface gradient yields

∂s|s=0|∇Γs
n|2 = −2φ

∑
m

∇Γnm · ∇Γν∇Γnm = −2φ(∇Γn)T : ∇Γν∇Γn,

and completes the proof. �

To compute the first variation of the energy E(Γ, n) of (5.1) we recall the differentiation rule

d

ds

∣∣∣
s=0

∫
Γs

fsdσs =

∫
Γ

f ′dσ −
∫

Γ

fHdσ.

We apply to the first term in (5.1) to obtain

d

ds

∣∣∣
s=0

1

2

∫
Γs

(
Hs + δdivΓsn

)2
dσs

 =

∫
Γ

(
H + δdivΓn

)(
H ′ + δ∂s|s=0divΓsn

)
dσ − 1

2

∫
Γ

(
H + δdivΓn

)2
Hφdσ.

In light of (5.6) and (5.7), we can expand the first term I as follows:

I =

∫
Γ

(
H + δdivΓn

)(
∆Γφ+ φ|∇Γν|2 − δφ∇Γn : ∇Γν + δνT∇Γn · ∇Γφ

)
dσ

= −
(
∇ΓH,∇Γφ

)
+
(
H|∇Γν|2, φ

)
− δ
(
H(∇Γn : ∇Γν), φ

)
+ δ
(
H(νT∇Γn),∇Γφ

)
− δ
(
∇Γ(divΓn),∇Γφ

)
+ δ
(
divΓn|∇Γν|2, φ

)
− δ2

(
divΓn(∇Γn : ∇Γν), φ

)
+ δ2

(
divΓn(νT∇Γn),∇Γφ

)
− 1

2

(
H(H + δdivΓn)2, φ

)
.

For the second term in (5.1) we apply (5.8) to arrive at

d

ds

∣∣∣
s=0

∫
Γs

|∇Γs
n|2dσ = −2

∫
Γ

φ(∇Γn)T : ∇Γν∇Γndσ −
∫

Γ

|∇Γn|2Hdσ.

The third term in (5.1) gives no contribution because |n| = 1 on Γ and n′ = 0, namely

d

ds

∣∣∣
s=0

∫
Γs

(
µ
(
|n|2 − 1

))
dσ =

∫
Γ

(
µ′
(
|n|2 − 1

)
+ 2µn · n′

)
dσ −

∫
Γ

µ
(
|n|2 − 1

)
φHdσ = 0.

Finally, since (5.6) implies (n · ν)′ = n · ν′ = −n · ∇Γφ, the first variation of the last term in (5.1) reads

d

ds

∣∣∣
s=0

∫
Γs

f(n · νs)dσ = −
∫

Γ

f ′(n · ν)n · ∇Γφdσ −
∫

Γ

f(n · ν)Hφdσ.

We are now in a position to write δΓE. Collecting all previous expressions we obtain for all φ ∈ C∞(Γ)〈δE
δΓ

, φ
〉

= −
(
∇ΓH,∇Γφ

)
+
(
H|∇Γν|2, φ

)
− δ
(
H(∇Γn : ∇Γν), φ

)
+ δ
(
H(νT∇Γn),∇Γφ

)
− δ
(
∇Γ(divΓn),∇Γφ

)
+ δ
(

divΓn|∇Γν|2, φ
)
− δ2

(
divΓn(∇Γn : ∇Γν), φ

)
+ δ2

(
divΓn(νT∇Γn),∇Γφ

)
− 1

2

(
H(H + δdivΓn)2, φ

)
− λ
(

(∇Γn)T : Dν(∇Γn), φ
)

− λ

2

(
H|∇Γn|2, φ

)
− 1

2ε2

(
f ′(n · ν)n,∇Γφ

)
− 1

2ε2

(
Hf(n · ν), φ

)
,

The variation with respect to n is given by〈δE
δn
, φ
〉

= δ
(
H + δdivΓn, divΓm

)
+ λ

(
∇Γn,∇Γm

)
+
(

2µn,m
)

+
1

2ε2

(
f ′(n · ν),m · ν

)
,
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for all m ∈ C∞(Γ;R3). This expression simplifies if we impose tangential variations m ∈ C∞(Γ;TnS2) :=
{v ∈ C∞(Γ;R3) : v(x) ∈ Tn(x)S2 a.e. x ∈ Γ} so that (µn,m) = 0.

We simulate the evolution of Γ and n via a relaxation dynamics, which is an L2-gradient flow. If v denotes
the normal velocity of Γ, we then have to solve the following system of PDE on Γ

〈v, φ〉 = −
〈δE
δΓ

, φ
〉

for all φ ∈ C∞(Γ),

〈∂tn,m〉 = −
〈δE
δn
,m
〉

for all m ∈ C∞(Γ;TnS2),

subject to the constraint that n(t, x) ∈ S2 for almost every (t, x).

5.3. Finite elements on surfaces. The time discretization of the gradient flow leads to a family of surfaces
(Γj)j∈N related to the time-steps tj . Let Γjh be a polyhedral approximation of Γj consisting of flat triangles

with maximal diameter less than h > 0. Since Γjh is the union of triangles T ∈ T j , we identify the

triangulation T j and the discrete surface Γjh. Let Vj = V(Γjh) be the space of all continuous functions on Γjh
whose restriction to the triangles are affine. Moreover let Cj0 = C0(Γjh) denote the space of all functions that

are constant on every triangle and define the averaging operator Aj : Cj0 → Vj , v 7→
∑
a vaϕa, where va :=

1
|ωa|

∫
ωa
v(x)dx and (ϕa)a∈N j is the standard nodal basis of Vj . Here N j = N (tj) = {a1(tj), . . . , aN (tj)} is

the set of all nodes in Γjh, ωa = suppϕa, and the map tj 7→ a(tj) ∈ R3 is the trajectory on which a node

a ∈ N moves in time as the surface is changing its shape. If ν̃j ∈ Cj0 stands for the the piecewise constant

outer normal to Γjh, then

(5.9) νj := Aj(ν̃j) ∈ [Vj ]3

is a piecewise linear reconstruction of ν̃j . For a given function φj−1 ∈ Vj−1 we define Gj ◦ φj−1 ∈ Vj by
(Gj ◦ φj−1)(a(tj)) = φj−1(a(tj−1)) for all a ∈ N j . For a better readability we will denote Gj ◦ φj−1 also by
φj−1 if no confusion is possible.

5.4. Discretization. We start with the time discretization. Given the surface Γj−1 ⊂ R3 at time tj−1 we
follow the ideas in [14] to parametrize Γj at time tj over Γj−1. We thus look for Xj : Γj−1 → R3 and set
Γj = Xj(Γj−1). As in [3], we approximate the normal velocity via

vj ≈ 1

τ

(
Xj − idΓj−1

)
· νj−1,

where νj−1 : Γj−1 → S2 is the outer unit normal to Γj−1. Now, again, using an idea from [14] to compute
Hj we discretize the crucial geometric identity ∆X = Hν [14, 15]:

∆Γj−1Xj = Hjνj−1.

Notice that we compute the scalar mean curvature Hj , as in [3], and not the mean curvature vector, as in
[2, 9, 15]. For the evolution of n we use the techniques from [5].

In order to formulate the fully discrete evolution concisely we set DivΓ n
j−1 := Aj(divΓ n

j−1), and we de-

fine Ψj−1,j
δΓE

= Ψj−1,j
δΓE

(Hj , Hj−1, νj−1, nj−1) ∈ Vj−1 to be the representation of a semi-implicit discretization

of δE
δΓ given by(

Ψj−1,j
δΓE

, φ
)

= −
(
∇ΓH

j ,∇Γφ
)

+
(
Hj−1|∇Γν

j−1|2, φ
)
− δ
(
Hj(∇Γn

j−1 : ∇Γν
j−1), φ

)
+ δ
(
Hj((νj−1)T∇Γn

j−1),∇Γφ
)
− δ
(
∇Γ(DivΓ n

j−1),∇Γφ
)

+ δ
(

DivΓ n
j−1|∇Γν

j−1|2, φ
)
− δ2

(
DivΓ n

j−1(∇Γn
j−1 : ∇Γν

j−1), φ
)

+ δ2
(

DivΓ n
j−1((νj−1)T∇Γn

j−1),∇Γφ
)
− 1

2

(
Hj(Hj−1 + δDivΓ n

j−1)2, φ
)

− λ
(

(∇Γn
j−1)T : ∇Γν

j−1(∇Γn
j−1), φ

)
− λ

2

(
Hj |∇Γn

j−1|2, φ
)

− 1

2ε2

(
f ′(nj−1 · νj−1)nj−1,∇Γφ

)
− 1

2ε2

(
Hjf(nj−1 · νj−1), φ

)
,
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for all φ ∈ Vj−1. For ease of readability we hereafter suppress the indices j − 1 and h for the discrete
differential operators, i.e., we write ∇Γ and divΓ instead of ∇Γj−1

h
and divΓj−1

h
.

5.5. Volume and mass constraints. We now recall a method for the conservation of area and volume
proposed by Bonito, Nochetto, and Pauletti in [9]. We introduce the extended energy

F (Γ, n) = E(Γ, n) + ρ1

(
V (Γ)− V (Γ0)

)
+ ρ2

(
A(Γ)−A(Γ0)

)
,

and compute the first variation with respect to Γ:〈δF
δΓ

, φ
〉

=
〈δE
δΓ

, φ
〉

+ ρ1

∫
Γ

φdσ − ρ2

∫
Γ

Hφdσ.

Following [9] we compute in each time-step the velocities vjE , v
j
V , v

j
A via

(vjE , φ) = −
〈
Ψj−1,j
δΓE

, φ
〉
, (vjV , φ) = −(1, φ), (vjA, φ) = (Hj , φ),

and define the function

f j : R2 → R2, (ρ1, ρ2) 7→
[
V (Γj(ρ1, ρ2))− V (Γj−1)
A(Γj(ρ1, ρ2))−A(Γj−1)

]
,

for Γj(ρ1, ρ2) = X(Γj−1), X = Xj−1 + τ(vjE + ρ1v
j
V + ρ2v

j
A). Now we use a Newton iteration to compute a

solution (ρj1, ρ
j
2) of f(ρ1, ρ2) = 0 and set Xj = Xj−1 + τ(vjE + ρj1v

j
V + ρj2v

j
A) and Γj = Xj(Γj−1).

5.6. Semi-implicit fully discrete gradient flow with constraints. We start with an initial polyhedral
surface Γ0

h, time-step size τ > 0, parameters ε, δ, λ, and an initial director field n0 ∈ [V0]3 with |n0(a)| = 1
for all a ∈ N 0

h . We set j := 1 and iterate on j the following steps:

(1) Compute (X̃j , Hj) ∈ [Vj−1]3 × Vj−1 satisfying

1

τ

(
(X̃j −Xj−1) · νj−1, φ

)
Γj−1
h

= −
(

Ψj−1,j
δΓE

, φ
)

Γj−1
h

,(
∇Γj−1

h
X̃j ,∇Γj−1

h
η
)

Γj−1
h

= −
(
Hj , η · νj−1

)
Γj−1
h

,

for all φ ∈ Vj−1 and all η ∈ V(Γj−1
h ;R3).

(2) Set

vE =
1

τ

(
X̃j −Xj−1

)
· νj−1, vV = −1, vA = Hj ,

and compute (ρj1, ρ
j
2) such that f j(ρj1, ρ

j
2) = 0. Set

Xj = Xj−1 + τ(vE + ρj1vV + ρj2vA)νj−1, Γjh = {Xj(x) : x ∈ Γj−1
h }, nj−1 := Gj ◦ nj−1.

(3) Compute d̃tn
j ∈ F[nj−1] with(

d̃tn
j ,m

)
Γj
h

+ τλ
(
∇Γj

h
d̃tn

j ,∇Γj
h
m
)

Γj
h

= −λ
(
∇Γj

h
nj−1,∇Γj

h
m
)

Γj
h

− δ
(
Hj + δDivΓ n

j−1,divΓj
h
m
)

Γj
h

− 1

2ε2

(
f ′(nj−1 · νj),m · νj

)
Γj
h

,

for allm ∈ F[nj−1], where the latter is the space of vector-valued continuous piecewise linear functions
that are orthogonal to nj−1 at the nodes N j−1.

(4) For all a ∈ N j set

nj(a) =
nj−1(a) + τ d̃tn

j(a)

|nj−1(a) + τ d̃tnj(a)|
.

(5) Set Xj := Gj ◦Xj = idΓj
h
, j = j + 1 and go to (1).

Remarks 5.1. (i) Setting (ρj1, ρ
j
2) = 0 in 2 reduces the iteration to an L2-flow for E(Γ, n).

(ii) Solvability of the system in Step (1) can be established by arguing as in [3]; see also [2].

23



6. Numerical experiments for the nonlinear model

In our numerical experiments for the model on closed surfaces we distinguish the cases ε =∞ and ε� 1,
where ε =∞ means that the term penalizing variations of n from a prescribed angle relative to the surface
normal, i.e., the term including f in E(Γ, n), is omitted. The realization of the volume and area constraints
via the Newton iteration outlined above allowed us to satisfy the conservation of these quantities up to
machine precision. As a stopping criterion for the discrete evolutions we used that the change of the discrete
energy

Eh(Γh, nh) :=
1

2

∫
Γh

(H + δA(divΓh
nh))2dσ +

λ

2

∫
Γh

|∇Γh
nh|2dσ +

1

2ε2

∫
Γh

f(nh · ν)dσ

in two consecutive time-steps was less than 10−5. For significantly smaller stopping criteria we observed
in some of our experiments that the evolution became unstable which is related to unfavorable tangential
motions on the surface which eventually lead to singularities in the mesh. We believe that by employing
mesh regularization techniques such as those in [2, 9] we could use larger time steps and a smaller stopping
criterion. Our proposed algorithm was implemented in Matlab and all experiments were carried out on
a standard desktop (Intel Core (TM) 2 Quad CPU Q6600 @ 2.40GHz). The CPU-time needed for the
calculation of one step with 2048 elements including the assembly of the system matrices was around 0.05
seconds. In all figures displayed below the color scale was chosen so that low values of a quantity are
represented by dark and large values by bright colors. All displayed arrows have unit length and are scaled
for graphical purposes.

6.1. Surfactants. To simulate surfactants we omit the penalty term which corresponds to the choice ε =∞.

6.1.1. Perturbed sphere with volume constraint. We set δ = 1, λ = 5, τ = h4, choose as initial surface Γ0
h

a perturbation of the unit sphere, and as initial director field n0 a perturbation of the discrete outer unit
normal ν0. The perturbations were realized by displacing the nodes of a triangulation T of the unit sphere
with 2048 elements in normal direction and the unit normals by random vectors with magnitudes bounded
by 0.1 and 0.05, respectively. The first summand of the continuous energy functional E(Γ, n) vanishes for
n = ν and this director field is stationary for the Dirichlet energy subject to a unit-length constraint, i.e.,
the outer unit normal of the sphere is a harmonic map into the unit sphere. Therefore, we expect that the
pair (S2, ν) is a stationary point for E(Γ, n) subject to a volume constraint. The snapshots of the discrete
evolution shown in Figure 7 confirm this expected behavior and the monotone energy decay displayed in the
right plot of Figure 7 suggests that the chosen discretization parameters are sufficiently small to compute a
stable and accurate approximation of the exact evolution. When we stopped our calculations the discrete
energy was Eh = 62.8516, which is an accurate approximation of the value E(S2, ν) = 20π, i.e., the absolute
error is |Eh − E(S2, ν)| < 0.02. The alignment of the director field n describing the orientation of the
surfactant molecules and the surface normal is visualized by the coloring of the displayed arrows and is an
effect which is frequently observed for surfactants. We remark that our simulations showed that for larger
values of λ we could use larger time steps.

6.1.2. 4-4-1 Ellipsoid with area and volume constraint. We set δ = 1, λ = 1, and τ = h3. To define the initial
surface Γ0 we employ a triangulation T of the unit sphere with 768 elements and deform the triangulated
sphere by mapping its nodes contained in N onto a 4-4-1 ellipsoid, i.e., we set

N 0 = {ã : ã = 4a1e1 + 4a2e2 + e3 for a = (a1, a2, a3) ∈ N},

and this defines a triangulation Γ0
h of the ellipsoid. The initial director field was defined by setting n0 = ν0.

Incorporating volume and area constraints in the evolution allows us to compare the qualitative behavior of
our model with well known observations for the Helfrich flow which is included in our model and corresponds
to the uncoupled flow defined through δ = 0, i.e., without spontaneous curvature. The upper row in Figure 8
displays a cut through the discrete surfaces at different times within the evolution for δ = 1. We observe that
the surface develops the shape of a discocyte. Qualitatively, such shapes have been observed to be stationary
for the Helfrich flow and we plot in the second row of Figure 8 the discrete surfaces for this model, i.e., for
our scheme with δ = 0. We observe that the coupling with the director field leads to a deceleration and the
shape of the discocyte is not as pronounced as in the uncoupled case. The plots including the director field
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Figure 7. Evolution from a perturbed sphere in the surfactant case with volume constraint: snapshots of
the evolution after n = 1, 50 and 400 time-steps. The arrows are colored by n · ν. The surface normal and
the director field align and the surface attains a stable state that coincides with a sphere. The right plot
depicts the decay of the energy during the evolution.

Figure 8. Evolution from a prolate 4-4-1 ellipsoid in the surfactant case with volume and area constraint:
snapshots of the evolution after n = 50, 200, 600 and 1200 time-steps. The upper plots show the evolution
in the presence of surfactants (δ = 1) while the second row shows the Helfrich-flow (δ = 0). The coupling of
the surface and the director field decelerates the evolution and leads to a less pronounced shape.
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Figure 9. Evolution from a prolate 4-4-1 ellipsoid in the surfactant case with volume and area constraint:
snapshots of the final state of the evolution in the presence of surfactants (δ = 1). The director field is
colored by the deviation of n · ν from 1 and we observe that in regions where the surface is approximated by
a sphere the director aligns with the surface normal. A monotone decay of the energy can be observed in
the right plot.
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in Figure 9 of the nearly stationary configuration in the coupled case show that the director field is aligned
with the surface normal in regions where the surface can be approximated by a sphere, i.e., in regions where
the unit normal is a harmonic map.

6.2. Biomembranes. In our second set of experiments for the full model on closed surfaces we use ε =
1/
√

20 and consider initial director fields on the sphere with different topological properties. In the gel phase
the director field prefers to have a fixed angle with respect to the normal to the surface. As in the flat case
we restrict ourselves to π/2, which corresponds to ξ0 = 0. Throughout the first subsection the underlying
triangulation of the unit sphere consists of 8192 elements, we always choose τ = h4, λ = 1, and we enforce
conservation of the enclosed volume. For the last experiment we use a finer triangulation, consisting of 12288
elements, while τ and λ remain unchanged. To magnify relevant effects of the coupling between the director
field and the curvature of the surface we employ different values of δ.

6.2.1. Positive degree-one defects. Given a point a = (a1, a2, a3) on the sphere we let (r, θ) be the polar
coordinates of the first two components of a, i.e., (a1, a2) = r(cos θ, sin θ), set ϕε(r) = tanh(r/ε), and define
three initial director fields n0 that have defects of positive degree-one at the north and south pole as follows.

(i) Two outward pointing defects:

n0(a) =
(
ϕε(r) cos(θ), ϕε(r) sin(θ), sign(a3)(1− ϕε(r)2)1/2

)
.

(ii) Two 90◦-rotated defects:

n0(a) =
(
ϕε(r) cos(θ + π/2), ϕε(r) sin(θ + π/2), sign(a3)(1− ϕε(r)2)1/2

)
.

(iii) Inward and outward pointing defect:

n0(a) =
(0, 0, 1)− ϕε(r)a3a

|(0, 0, 1)− ϕε(r)a3a|
.

The initial director fields are shown from different perspectives in the rows of Figure 10 for (i)-(iii),
respectively. We use δ = 0.5, δ = 1, and δ = 0.75 for the settings defined by (i), (ii), and (iii), respectively,
in order to enhance the effect of the different defects on the shape of the surface.

Snapshots of the surface and the director field during the discrete evolutions defined with the initial data
from (i) and (iii) are shown in Figure 11 and 12, respectively. The observed results are in very good agreement
with our theoretical predictions from Section 2: the surface develops outward cones of negative curvature
at defects for which the tangential part of the director field points away from the defect and inward cones
if the director field points towards the defect. These configurations show close analogies with stomatocyte
and echinocyte shapes observed in experiments, cf., e.g., [23]. For the initial data defined in (i) and the
corresponding snapshots displayed in Figure 11 we see that the surface also develops large curvature in a
neighborhood of the equator. This is related to the fact that the director field is purely normal along this
line thereby leading to a large contribution from the penalty term which induces local curvature. In the plots
shown in Figure 12, where the initial director field from (iii) is tangential along the equator, the surface does
not develop such effects. For the initial data defined in (ii) we did not observe changes of the initial surface
which again matches our earlier observation that a 90◦-rotated defect of positive degree one is divergence free
and hence does not enforce local curvature. We finally remark that the qualitative behavior of the surfaces
with initial director fields defined in (i)-(iii) was nearly independent of the choice of the preferred angle ξ0.
This justifies the earlier discussed simplification of the previous sections to consider only the tangential part
of the director field and to analyze its influence on the local shape of the surfaces. In Figure 13 we see the
monotone decay of energy during the evolutions.

6.2.2. Negative degree-one defects. To analyze the effect of negative degree-one defects on the local curvature
we set δ = 1, let (r, θ) denote polar coordinates of the components (a1, a2) for a point a = (a1, a2, a3) on the
sphere, and define the initial director field by setting

ñ0(a) =
(
ϕε(r) cos(−θ), ϕε(r) sin(−θ), sign(a3)(1− ϕε(r)2)1/2

)
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Figure 10. Initial director fields with two defects of positive degree-one. Upper row: outward pointing
defects at north and south pole defined in (i). Middle row: 90◦-rotated defects at north and south pole
defined in (ii). Lower row: Inward and outward pointing defects at north and south pole defined in (iii).

and subtracting 90% of the normal component of ñ0 so that the resulting director field is nearly tangential,
i.e., we set

n0(a) =
ñ0(a)− 0.9(ñ0(a) · a)a

|ñ0(a)− 0.9(ñ0(a) · a)a|
.

The initial director field is constructed in such a way that it has two defects of negative degree one at the
poles. It is displayed in Figure 14 from two different perspectives and along the equator. By the Poincaré-
Hopf index formula the sum of the degrees of the defects equals the Euler characteristic χ of the surface. We
have χ(S2) = 2 and for our choice of n0 we obtain four defects of positive degree one located on the equator.
Two of them are outward and two of them inward pointing. The initial director field is almost stationary for
our scheme and the surface adjusts to it during the evolution. From the final configuration displayed in the
plots of Figure 15 we see that the surface forms saddles at the north and south pole and cones of positive
and negative curvature at the positions of the positive degree-one defects on the equator. This is again in
agreement with our predictions for the simplified setting discussed in Section 2.
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