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The shape derivative of a dense N ×N BEM matrix is a sparse three-way
tensor with O(N2) non-zero entries, to which standard BEM acceleration
techniques such as the Adaptive Cross Approximation (ACA) and FMM
cannot be directly applied. The tensor can be used to compute shape sen-
sitivities, or via adjoint equations, the gradient of an objective function.
Although for many PDEs, calculation of the tensor can be avoided by ex-
pressing the shape derivative of the solution as the solution of a related PDE,
this approach is not always easily amenable to BEM. Therefore, the com-
putation of shape derivatives via the sparse three-way tensor is a valuable
alternative, provided that efficient acceleration techniques exist. We propose
a new algorithm for approximation of BEM shape derivative tensors based
on 2d ACA that achieves the same complexity and error bounds as ACA
for the BEM matrix itself. Numerical examples show that despite the much
larger amount of data involved, the tensor approximation is only moderately
slower than the matrix approximation. We also demonstrate the method on
a shape optimization problem from the literature.
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1 Introduction

The original motivation for this work was to solve shape optimization problems in struc-
tural acoustics under the framework of [21]. These involve Neumann boundary con-
ditions, and are amenable to modeling using BEM-FEM coupling [22, 13, 14]. More
generally, shape optimization problems with PDE constraints expressed in the form of
boundary integral equations (BIE) have been studied in [24, 23, 9, 10, 12]. For un-
bounded exterior domains, the BIE yield solutions exactly satisfying the Sommerfeld
radiation condition and therefore avoid the need for artificial truncation of the domain.
BIE also lend themselves to point-measurement of the external field via a representa-
tion formula. In addition, re-meshing during optimization can be avoided so long as
the design changes are not too large. In the case of multiphysics coupling, or when the
objective function requires fast access to the state over a bounded domain, BEM-FEM
coupling can maintain the advantages of BEM for the exterior domain [11].

Discretization of BIE leads to dense BEM matrices, and to an O(N2) operation count.
Computation of all matrix entries becomes impractically costly, even for moderately-
sized problems. Many methods for acceleration of BEM are given in the literature,
e.g., ACA [3], panel-clustering [20], FMM [16, 17, 8, 32], FFT-based methods [6], and
wavelets [5]. Fundamentally, all are based on the same observation - that the interaction
of well-separated portions of the surface is of low rank. In the context of PDE-constrained
optimization algorithms, it is essential to be able to accelerate computation of objective
function derivatives in a similar manner.

In §2.1, we will consider as a model problem the Laplace equation on an unbounded
exterior domain. It is well-known [30, Ch. 3] that the shape derivative of the state can
be expressed as the solution of a related boundary value problem, with boundary data
involving the state and its derivatives: in the best case, one need only know the state or
its normal derivative on the boundary. Since these quantities are already known, or can
be accurately computed using BEM, shape optimization problems of this type can be
solved using BEM and standard acceleration techniques such as ACA. This approach is
followed in [24, 9, 11]. Things become more involved when the original boundary value
problem is of Neumann type, or when second derivatives of the objective function are
required: then, the extraction technique of Schwab and Wendland [29] can be used to
compute tangential derivatives of the state on the boundary. In general, this involves the
solution of additional integral equations, but allows acceleration of BEM via standard
techniques. This approach is followed in [12], and is detailed further in §2.2.

An alternative approach to the adjoint calculus, detailed in §2.3, is to calculate the
shape derivative of the boundary integral operator directly, and then apply it to the
state and to the adjoint state in order to compute a gradient. If under discretization,
the boundary integral operator becomes an N×N BEMmatrix, then its shape derivative
becomes a sparse three-way tensor of size N ×N ×O(N). This approach avoids some of
the complexity of the extraction technique, and does not require the solution of additional
integral equations, but is of no practical utility if one must compute all O(N2) non-zero
entries of the tensor. In §3, we present a new algorithm for approximation of these
tensors based on 2d ACA. Finally, we demonstrate the approach in §4 via a numerical
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example.

2 Operator Shape Derivatives

Consider the formal operator equation representation

A(φ)u = r(φ)

of a PDE with solution u[φ], where φ specifies the shape of the domain boundary. The
shape sensitivity Du[φ] satisfies

Du[φ] = A−1(φ)
(
Dr(φ)−DA(φ)u[φ]

)
.

The sensitivity could itself be the quantity of interest, or the derivative of the mapping
φ 7→ J(u[φ]) to an objective function J could be computed via adjoint equations. For
many problems (e.g., Laplace, Helmholtz), the sensitivity Du[φ] can be characterized
as the solution of a related PDE, in which case discretization of the operator deriva-
tive DA(φ) is not essential. However, when such a characterization is not known, or
when it requires boundary data that is not easily computed using BEM, discretization
of DA(φ) is advantageous.

Let A ∈ RN×N be the matrix resulting from a discretization of A, and ∇A ∈ RN×N×P

be the three-way tensor of derivatives of all matrix entries with respect to some discrete
shape parameter set of dimension P . Assuming that each of the P shape parameters is
associated with a local variation in φ, i.e., that the support of the variation intersects the
support of only a constant-order number of the N basis functions, then the complexity
of computing ∇A is the same as that of computing A itself. If A is discretized using
FEM so that A is sparse, computation of ∇A presents no real problem. But if A is
discretized using BEM, then the resulting matrix A is dense, and its calculation must
be accelerated using an approximation algorithm such as ACA or FMM. In this case,
computation of ∇A must likewise be accelerated. However, standard matrix methods
cannot be applied to the tensor ∇A. While kernel-independent FMM [32] can han-
dle generic vector-valued kernels, it assumes the same size and structure of the kernel
throughout the computation. We have therefore developed an approximation method
for the tensor based on knowledge of its sparsity structure, and on the purely algebraic
method of 2d ACA.

2.1 Adjoint Equation Formulation

In this section, we will present the model problem, and standard PDE characterizations
of the shape derivative of the state u. In §2.2 and §2.3, we will contrast two different
formulations of the adjoint calculus, and discuss their implications for numerical solution
methods.

Let Ω− be a bounded, simply-connected domain with boundary Γ, and complement
Ω+ = R3 \ Ω−. Consider the exterior Neumann problem for Laplace’s equation: find
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u ∈ H1
loc(Ω

+) s.t.

−∆u = 0 in Ω+, (1a)
∂u

∂n
= ψ on Γ, (1b)

u(x) = O(1/|x|) as |x| → ∞. (1c)

The radiation condition (1c) ensures unique solvability: otherwise, u is only determined
up to a constant. We define the boundary integral operators K : H1/2(Γ) → H1/2(Γ),
and V : H−1/2(Γ)→ H1/2(Γ) via

(Kϕ)(x) =

∫
Γ

∂nyS(x, y)ϕ(y) dsy, (Vψ)(x) =

∫
Γ

S(x, y)ψ(y) dsy,

where S(x, y) = (4π|x−y|)−1 is the singularity function for the Laplace equation. Then,
the integral equation

Aϕ := (1
2
I − K)ϕ = −Vψ (2)

can be solved for the unknown Dirichlet data ϕ = u|Γ. The state u can then be expressed
via the representation formula

u(x) =

∫
Γ

∂S

∂ny
(x, y)ϕ(y)− S(x, y)ψ(y) dsy; (3)

see [28, 29] for further details.
This problem can be formulated with Γ a Lipschitz surface, but in order to use Pot-

thast’s shape calculus [25, 26] for the boundary integral operators V ,K, we will assume
that Γ is of class C2. Consider a perturbed boundary shape Γφ, defined by

Γ 3 x 7→ x+ φ(x).

Solving (1) on Γφ gives the state u[φ]. Under the assumption that

φ ∈ C :=
{
η ∈ [C2(Γ)]3 : ‖η‖[C2(Γ)]3 ≤ l

}
,

for some fixed l > 0, Potthast [26] showed (see also [30, §3.2]) that the Fréchet derivative
v = Du[φ = 0]δφ (in the direction δφ) solves

−∆v = 0 in Ω+, (4a)
∂v

∂n
= −

(
∂n

∂φ
δφ

)
· ∇u− δφ · ∇2u · n on Γ, (4b)

v(x) = O(1/|x|) as |x| → ∞. (4c)

The result (4) thus characterizes the Fréchet derivative of the state u, the solution to (1),
as the solution to another Laplace problem with Neumann boundary data. We have
access to the given Neumann data ψ = ∂u

∂n
|Γ, and to the Dirichlet data ϕ = u|Γ computed
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via solution of (2), but (4b) requires ∇u|Γ and ∇2u|Γ. The condition (4b) can also be
expressed in a weak form using [30, (3.12)]. This avoids the need to evaluate ∇2u|Γ,
but the surface gradient ∇Γu is still needed, and can be computed using the extraction
approach of Schwab and Wendland [29]. Thus, for first-order shape calculus associated
with the Neumann problem (4), only first-order derivatives of u on Γ are needed; this
approach is detailed in §2.2. The extraction approach can also be used to compute
second-order derivatives of the state on the boundary required for second-order shape
calculus, as is done in [12] for a shape optimization problem on a two-dimensional domain
(i.e., with a one-dimensional boundary).

The situation is significantly different from that of a Dirichlet model problem:

−∆u = 0 in Ω+,

u = ϕ on Γ,

u(x) = O(1/|x|) as |x| → ∞.

In this case, v = Du[φ = 0]δφ solves (see [25] or [30, §3.1])

−∆v = 0 in Ω+, (5a)

v = −(δφ · n)
∂u

∂n
on Γ, (5b)

v(x) = O(1/|x|) as |x| → ∞. (5c)

Here, the situation is much nicer. Once again, the Fréchet derivative can be characterized
as the solution of a related (Dirichlet) Laplace problem, but this time, the boundary data
depends on ∂u

∂n
, the Neumann data for the state, which would already be known as the

solution of an integral equation related to (2). Thus, adjoint equations can easily be
formulated using (5). This approach is used in [24, 9, 11].

Returning to the Neumann problem (1), we will consider minimization of an objective
function J by suitable choice of φ in some admissible set Φ:

min
φ∈Φ

J(ϕ[φ], ψ[φ];φ), (6)

with the Neumann data ψ[φ] given, and the unknown Dirichlet data ϕ[φ] determined
as the solution to (2). Through the representation formula (3), this allows generic
dependence of the objective function on u, although in practice, since we intend to use
BEM, the objective function should depend only on the boundary data, or on u evaluated
at a small number of points in Ω+.
We will not discuss existence of solutions to (6), as it depends on assumptions on J

and on Φ. Rather, our focus is on evaluation of the objective function derivative

DφJ(ϕ[φ], ψ[φ];φ) +DϕJ(ϕ[φ], ψ[φ];φ)Dϕ[φ] +DψJ(ϕ[φ], ψ[φ];φ)Dψ[φ].

We will examine two different ways to evaluate the derivative

〈DϕJ(ϕ[φ], ψ[φ];φ)Dϕ[φ], δφ〉Φ∗×Φ (7)

in the direction δφ:
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1. Extraction: using the solution v = Du[φ = 0]δφ to (4), in §2.2.

2. Using standard adjoint calculus based on the integral equation (2), in §2.3.

2.2 Extraction Approach

In this section, we describe the formulation of adjoint equations for (7) via the extraction
technique of Schwab and Wendland [29].
Solution of (4) via (2) allows the calculation of the shape derivative

ϕ̂ := v|Γφ = Dϕ[φ]δφ

via
Aϕ̂ = −Vψ̂, ψ̂ := −∂n

∂φ
δφ · ∇u− δφ · ∇2u · n.

Thus, the objective function derivative can be computed as

〈DϕJ(ϕ[φ], ψ[φ];φ)Dϕ[φ], δφ〉Φ∗×Φ

=〈−DϕJ(ϕ[φ], ψ[φ];φ),A−1Vψ̂〉H−1/2(Γφ)×H1/2(Γφ)

=〈−A−∗DϕJ(ϕ[φ], ψ[φ];φ)︸ ︷︷ ︸
=:p̂

,Vψ̂〉H−1/2(Γφ)×H1/2(Γφ),

where p̂ ∈ H−1/2(Γφ) solves the adjoint equation

A∗p̂ = −DϕJ(ϕ[φ], ψ[φ];φ) in H−1/2(Γφ). (8)

As mentioned in §2.1, application of

〈p̂,Vψ̂〉H−1/2(Γφ)×H1/2(Γφ) = 〈V∗p̂, ψ̂〉H1/2(Γφ)×H−1/2(Γφ)

can be performed weakly via [30, (3.12)], so as to avoid calculation of ∇2u|Γφ . The
gradient ∇u|Γφ is still required, and the non-tangential part is already available as the
given Neumann data ψ. The tangential part ∇Γφu can be computed using the extraction
technique described in detail by Schwab and Wendland [29]. Formally, the idea is simply
to differentiate the integral equation (2) with respect to local coordinates ν = 1, 2:

Aϕν = −Vψν −A(ν)ϕ− V(ν)ψ. (9)

This requires the solution of two integral equations (for the two tangential components)
of the same type as (2).
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2.3 Standard Adjoint Calculus

Here, we formulate adjoint equations for (2) using the following constraint functional.
Let ϕ[φ] be the solution to

c(φ, ϕ) := A[φ]ϕ+ V [φ]ψ[φ] = 0 in H1/2(Γφ).

Using the implicit function theorem, we have

Dφc(φ, ϕ[φ]) +Dϕc(φ, ϕ[φ])Dϕ[φ] = 0.

Thus, the objective function derivative can be computed via

〈DϕJ(ϕ[φ],ψ[φ];φ)Dϕ[φ], δφ〉Φ∗×Φ

=〈−DϕJ(ϕ[φ], ψ[φ];φ), Dϕc(φ, ϕ[φ])−1Dφc(ϕ[φ], φ)δφ〉H−1/2(Γφ)×H1/2(Γφ)

=〈−Dϕc(φ, ϕ[φ])−∗DϕJ(ϕ[φ], ψ[φ];φ)︸ ︷︷ ︸
=:p

, Dφc(ϕ[φ], φ)δφ〉H−1/2(Γφ)×H1/2(Γφ),

where p ∈ H−1/2(Γφ) solves the adjoint equation

Dϕc(φ, ϕ[φ])∗︸ ︷︷ ︸
=A∗

p = −DϕJ(ϕ[φ], ψ[φ];φ) in H−1/2(Γφ). (10)

As one would expect, (10) is the same as (8): what differs is the manner in which the
two approaches account for the operator shape derivatives.

This approach does not require computation of ∇Γφu. However, it does need the
Fréchet derivative Dφc of the boundary integral operators K,V . These Fréchet deriva-
tives are shown to exist in [25, 26]. For numerical methods, this compares favorably with
the additional linear system solves required in the method of §2.2, so long as fast ap-
proximation methods for tensor discretizations of the Fréchet derivatives DφK and DφV
are available. Our algorithm for this approximation is described in §3.

2.4 Comparison

For Dirichlet problems, characterization of the shape derivative via (5) has obvious
advantages: it is necessary neither to use the extraction approach (since the required
boundary data is already available), nor to approximate the Fréchet derivative of the
integral operators. We compare the two approaches (§2.2, 2.3) for the Neumann prob-
lem (1).

The extraction approach §2.2 requires calculation of the boundary data ∇Γφu, but it
has the advantage that these quantities can be computed accurately using standard inte-
gral equations: the right-hand side of (9) involves tangential derivatives of the boundary
integral operators on the surface, but the left-hand side involves only the operator A, so
the same solution procedure can be used for these equations as for the state equation (2).
The downside is that in addition to solving (2), the solution of two additional integral
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equations is required. It also provides little practical advantage from the point of view
of implementation, as the same kernels and surface integration required for the Fréchet
derivative Dφc are also required in the right-hand side of (9).
The approach of §2.3 on the other hand, does not require the solution of additional

integral equations. It can also be easily extended to coupled systems, where the PDE
in the external domain that is being solved via boundary integral equations is coupled
to a PDE on a bounded domain, possibly with different physics, to be solved via FEM:
it avoids the analytical work of coming up with a coupled system of PDE to replace the
characterization (4) of the shape derivative. However, in order to use this approach, we
need fast approximation of the tensor discretizations ∇K, ∇V of the Fréchet deriva-
tives DφK, DφV . Our ACA-based approach to this approximation is described in §3.

3 Adaptive Cross Approximation

We will consider a Galerkin approximation of a boundary integral operator

〈B[φ]u, v〉 :=

∫∫
Γφ

κ(x, y)u(y)v(x) dsy dsx

over Γφ with generic kernel κ : R3 × R3 → R. Treatment of complex-valued kernels
does not require any modification to our algorithm. The integrals are written over the
reference domain Γ via the mapping

χ := I + φ : Γ→ Γφ.

This necessitates the use of the Jacobian factors
√
ax,
√
ay; see, e.g., [7] for details.

Hence, B reads

〈B[φ]u, v〉 :=

∫∫
Γ

κ(χ(x), χ(y))u(χ(y))v(χ(x))
√
ay
√
ax dy dx. (11)

Using the assumptions of §2.1 [25, 26], the Fréchet derivative of B in the direction δφ
can be computed via

〈DφB[φ, δφ]u, v〉 =

∫∫
Γ

(
[∂1κ(χ(x), χ(y))δφ(x) + ∂2κ(χ(x), χ(y))δφ(y)]+

κ(χ(x), χ(y))

[
Dφ

√
ax√

ax
δφ(x) +

Dφ

√
ay√

ay
δφ(y)

])
u(χ(y))v(χ(x))

√
ay
√
ax dy dx. (12)

In order to discretize (11) and (12), we will introduce the local basis functions

%i, i ∈ {1, 2, . . . ,M}, ξj, j ∈ {1, 2, . . . , N}, Υl, l ∈ {1, 2, . . . , P}.
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The functions %i, ξj are used for the finite element spaces, whereas the Υl are used to
specify the shape function φ via

φ(x) =
P∑
l=1

Υl(x)φl.

Note that the functions Υl are scalar-valued, whereas the φl are vector-valued coefficients.
The entries of the Galerkin matrix B ∈ RM×N corresponding to B appear

Bij =

∫∫
Γ

κ(χ(x), χ(y))ξj(y)%i(x)
√
ay
√
ax dy dx. (13)

Direct calculation of this matrix requires O(MN) operations, but this can of course be
accelerated using methods such as the adaptive cross approximation; see §3.2. To this
end, Γ×Γ has to be partitioned into sub-domains Γ1×Γ2 ⊂ Γ×Γ that are geometrically
well-separated, i.e.,

η dist(Γ1,Γ2) ≥ min{diamΓ1, diamΓ2} (14)

with some parameter η > 0. The blocks of B corresponding to Γ1 × Γ2 are called
admissible. The partitioning of Γ × Γ can be done via the algorithms presented in [4].
As a result, large patches Γ1×Γ2 will satisfy (14). Patches for which (14) is not valid are
small, and the corresponding blocks are treated without approximation. The resulting
matrix is a hierarchical matrix [18, 19].

In order to discretize (12), it is necessary to index the components of the vectors φl.
The total number of shape parameters is 3P , since each φl has three Cartesian com-
ponents. We index the shape parameters via k = 1, . . . , 3P , corresponding to basis
functions Υlk , and Cartesian components qk. Further, denote by eq, q = 1, 2, or 3, the
Cartesian basis vectors. The result is the tensor ∇Bijk, which is the derivative of Bij

with respect to shape parameter k:

∇Bijk =

∫∫
Γ

(
[∂1κ(χ(x), χ(y))Υlk(x)eqk + ∂2κ(χ(x), χ(y))Υlk(y)eqk ]+

κ(χ(x), χ(y))

[
Dφ

√
ax√

ax
Υlk(x)eqk +

Dφ

√
ay√

ay
Υlk(y)eqk

])
ξj(y)%i(x)

√
ay
√
ax dy dx. (15)

Note that since the integrals (13), (15) can be computed over supp(%i)×supp(ξj) instead
of Γ × Γ, the only contributing shape parameters φl are those for which supp(%i) ∩
supp(Υl) 6= ∅ or supp(ξj) ∩ supp(Υl) 6= ∅.
Since the number of Υl with which e.g., a particular %i shares support, is of constant

order, ∇B ∈ RM×N×3P has O(MN) non-zero entries. Next, we describe its structure,
and propose our ACA algorithm for its approximation.

9



M

N

m

n

∇B

3P

∇B1
∇B2

p1

p2

Figure 1: Extraction from ∇B of admissible blocks ∇B1 ∈ Rm×n×p1 and ∇B2 ∈
Rm×n×p2 . A key feature of the algorithm is that the shape parameter in-
dices (the third way) of ∇B1 are associated with the rows, while the shape
parameter indices of ∇B2 are associated with the columns.

3.1 Structure of the tensor

We select an admissible block of the tensor∇B corresponding to surface patches Γ1,Γ2 ⊂
Γ that satisfy (14). The decomposition into such pairs can be done using the
same hierarchical decomposition of the surface used to approximate the matrix
(13). Let {%i1 , . . . , %im} be the subset of {%1, . . . , %M} with support in Γ1, and{

Υlk : k ∈ {k1
1, k

1
2, . . . , k

1
p1
}
}

be the subset of {Υ1, . . . ,ΥP} with support in Γ1.
Likewise, let {ξj1 , . . . , ξjn} be the subset of {ξ1, . . . , ξN} with support in Γ2, and{

Υlk : k ∈ {k2
1, k

2
2, . . . , k

2
p2
}
}
be the subset of {Υ1, . . . ,ΥP} with support in Γ2. This

leads to tensor blocks ∇B1 ∈ Rm×n×p1 , and ∇B2 ∈ Rm×n×p2 , with entries

∇B1
rst = ∇Birjsk1t

, ∇B2
rst = ∇Birjsk2t

.

The key to approximating these tensor blocks is to consider their sparsity structure,
which is determined a priori by the mesh connectivity pattern. Since the shape param-
eters of ∇B1 are associated with the rows, the matrices ∇B1

:s:, s = 1, . . . , n, have the
same sparsity pattern for each s. More precisely, entry ∇B1

rst is non-zero whenever

supp(%ir) ∩ supp(Υl
k1t

) 6= ∅.

Thus, ∇B1 can be stored as a dense matrix of size m1×n, where m1 ∼ m is the number
of non-zero entries in ∇B1

:s:. Likewise, the matrices ∇B2
r::, r = 1, . . . ,m, have the same

sparsity pattern for each r, i.e., ∇B2
rst is non-zero whenever

supp(ξjs) ∩ supp(Υl
k2t

) 6= ∅,

and so ∇B2 can be stored as a dense matrix of size m×n2, where n2 ∼ n is the number
of non-zero entries in ∇B2

r::. Thus, ∇B1 and ∇B2 can be approximated using a standard
matrix adaptive cross approximation.
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3.2 ACA Algorithm

Due to the structure of the tensors ∇B1 and ∇B2, we may confine ourselves to dense
matrices C ∈ Rm×n. If C corresponds to a non-admissible pair of domains Γ1×Γ2, then
all the entries of C are stored without approximation. For admissible pairs, the adaptive
cross approximation (ACA) [3] constructs sequences of vectors uk := ûk/(ûk)ik ∈ Rm

and vk ∈ Rn via the following recursion

ûk := C:jk −
k−1∑
`=1

(v`)jku` and vk := Cik: −
k−1∑
`=1

(u`)ikv`.

The row index ik can be chosen as the index of the maximum entry in modulus of ûk,
i.e.

0 6= |(ûk)ik | ≥ |(ûk)i| for all i = 1, . . . ,m;

for the choice of the column index jk see [4]. In particular, this means that only k
columns C:j` and rows Ci`:, ` = 1, . . . , k, of the matrix C have to be computed for its
approximation.
The required rank of the approximation k to satisfy a prescribed accuracy ε can be

found from inspecting the norms of uk and vk, i.e., the recursion is stopped if

‖uk+1‖2‖vk+1‖2 ≤ ε‖UV T‖F ,

where U := [u1, . . . , uk], V := [v1, . . . , vk] define the approximation

UV T ≈ C. (16)

The number of operations required to construct UV T is of the order k2(m + n), while
the storage required for UV T is of the order k(m+n). Possible redundancies among the
vectors u`, v`, ` = 1, . . . , k, can be removed by orthogonalization.
Since the approximation resulting from ACA can be proved to be as good (up to

constants) as the approximation in any other system of functions (e.g. polynomials,
spherical harmonics, etc.), the low-rank approximation UV T can be regarded as quasi-
optimal. Hence, exponential convergence of the method can be proved if, e.g., the kernel
function is asymptotically smooth, i.e., if it satisfies

|∂αxκ(x, y)| ≤ c γp p! |x− y|−(s+p) for all α ∈ N3
0,

where p = |α| and c, γ, s > 0 are constants, with respect to x or y; see [4]. Notice that
the arising kernel functions κ in B satisfy this property. The following arguments show
that also the kernel function of the shape derivative DφB[φ, δφ] satisfies this prerequisite
of ACA. Rewriting (12), we can decompose DφB[φ, δφ] into the sum of two integral
operators (to simplify the notation, we take φ = 0)

〈DφB[φ = 0, δφ]u, v〉 =

∫∫
Γ

κ1(x, y)u(y)v(x) dsy dsx +

∫∫
Γ

κ2(x, y)u(y)v(x) dsy dsx
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with kernel functions

κ1(x, y) :=
(
∂1κ(x, y) + κ(x, y)Dφ

√
ax
)
δφ(x),

κ2(x, y) :=
(
∂2κ(x, y) + κ(x, y)Dφ

√
ay
)
δφ(y).

Furthermore, if u, v, δφ are linear combinations of basis functions associated with ∇B1,
we may assume that

supp(v) ∩ supp(δφ) 6= ∅,
which due to (14) implies that supp(u) ∩ supp(δφ) = ∅, and hence that∫∫

Γ1×Γ2

κ2(x, y)u(y)v(x) dsy dsx = 0.

Similarly, if u, v, δφ are linear combinations of basis functions associated with ∇B2, the
integral over κ1 vanishes. Notice that κ1 inherits the smoothness properties of κ with
respect to y, while κ2 inherits them with respect to x. Hence, ∇B1 and ∇B2 may
be regarded as sub-blocks of discretizations of integral operators with asymptotically
smooth kernel functions with respect to either y or x. This guarantees exponential
convergence of ACA (i.e. k ∼ | log ε|2) when applied to the blocks of the matrix generated
from (15), as well as to blocks of the standard BEM matrix generated from (13).

Treating each block of the matrix B ∈ RM×N defined in (13) this way, the to-
tal number of operations for the construction of an approximation is of the or-
der k2(M + N) log (M +N) and the total amount of storage required is of the or-
der k(M +N) log (M +N); cf. [4].
Since the sub-blocks of the tensor ∇B ∈ RM×N×3P defined in (15) have the structure

explained in §3.1, each of the blocks ∇B1 ∈ Rm×n×p1 and ∇B2 ∈ Rm×n×p2 can be
regarded as a matrix block C ∈ Rm̂×n̂ with m̂ ∼ m and n̂ ∼ n. Therefore, the complexity
for treating each block of the tensor ∇B is of the same order as the complexity for
approximating each block of B. Since B and ∇B are partitioned the same way, the
storage complexity for ∇B is also of the order k(M + N) log (M +N) and the number
of operations is of the order k2(M +N) log (M +N).

3.3 Numerical Example

Figure 2 shows numerical results for the approximation of the single-layer potential ma-
trix V on a sphere using N piecewise-constant basis functions, and of the corresponding
shape derivative tensor ∇V with error tolerance ε = 10−4, using AHMED [2] on an
AMD Opteron 2222 system with four cores.

Both V and ∇V are approximated to a fixed accuracy with complexity of or-
der N log(N) in storage and time. Relative to V , there is an increase in the amount
of computing time required to approximate ∇V by a constant factor of ∼ 4. This is
due to the added cost associated with evaluation of the tensor kernel, and to the larger
amount of data that must be processed. The same would also be true of evaluation of
the right-hand side in (9).
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N full compressed ratio time
996 3.79 MB 1.97 MB 52.10% 0.65 s
2776 29.41 MB 7.12 MB 24.20% 1.08 s
5932 134.26 MB 18.38 MB 13.69% 2.19 s
11286 485.94 MB 40.63 MB 8.36% 3.80 s
32352 3992.78 MB 141.98 MB 3.56% 12.42 s
130766 65230.9 MB 715.75 MB 1.10% 55.70 s

N full compressed ratio time
996 68.12 MB 14.53 MB 21.33% 0.89 s
2776 529.14 MB 46.80 MB 8.84% 2.84 s
5932 2416.21 MB 117.38 MB 4.86% 6.77 s
11286 8746.06 MB 251.17 MB 2.87% 14.23 s
32352 71867.9 MB 852.40 MB 1.19% 46.51 s
130766 1174150 MB 4141.34 MB 0.35% 224.20 s
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Figure 2: Memory usage and time required for approximation of V and ∇V for the
Laplace problem with AHMED, and ε = 10−4.
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4 Optimization Example

As a numerical example, we will consider the free surface problem addressed by Eppler
and Harbrecht in [10]. The model problem is a Laplace equation with Neumann bound-
ary data determined by known current sources, and the goal is to determine, via shape
optimization, the free surface of a liquid metal bubble in a magnetic field produced by
the current sources.

Eppler and Harbrecht assume a star-shaped domain, with a smooth boundary de-
scribed by spherical harmonics. Due to the nature of the objective function, they are
able to avoid using a characterization such as (4) to compute derivatives of the state.
However, they must still compute tangential derivatives of the state on the surface,
which is feasible due to the smoothness of their basis functions. Using the adjoint ap-
proach described in §2.3 allows us to consider general boundary shapes with different
topologies, and to avoid computing tangential derivatives of the state entirely: we apply
adjoint equations to the gradient of [10, (1.17)] rather than computing [10, (1.18)].

The state problem is to find the scalar potential u via

−∆u = 0 in Ω+, (17a)
∂u

∂n
= −(∇× A) · n on Γ, (17b)

u = O(1/|x|) as |x| → ∞, (17c)

where the vector potential A is determined via integration over the current distribution ~j
via

A(x) =
µ

4π

∫
R3

~j(y)

|x− y|
dy. (18)

The magnetic field is given by

B = ∇× A+∇u.

Equilibrium conditions can be formulated as an optimization problem for the boundary
shape, by minimization of the total energy stored in the magnetic field, the surface
tension, and the gravitational potential; see [10] for further details. Boundary data of
the Neumann problem (17) can be expressed as a solution to the boundary integral
equation (2), which was discretized using piecewise-linear Galerkin boundary elements,
treating the boundary integral operator 1

2
I − K as a mapping L2(Γ) → L2(Γ); see [28,

§3.8]. All quantities in the objective function and their derivatives can also be formulated
in terms of boundary integrals, so that calculations need only be performed on the
boundary.

The mesh was generated using Gmsh [15]. Approximation of the BEM matrices
and tensors was done with AHMED [2]. Optimization was done using the interior-
point solver Ipopt [31]. Since the optimization variables are the individual mesh nodes,
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Figure 3: Above from left to right, the optimized shapes, respectively without and with
gravity, reproducing the results of [10, Fig. 4]. Below: an optimized torus, with
gravity, using only the bottom loop, but with an added infinite wire through
the center.
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smoothness constraints were needed, as is typical for elliptic shape optimization prob-
lems. We used bounds on the tangential derivatives of the surface displacement φ,
computed using the discrete curvature estimation algorithm of [27].

Optimization results are shown in figure 3. In order to produce results similar to those
of Eppler and Harbrecht, [10], we scaled the constants A,B associated with the relative
strength of the surface tension and gravitational potential by a factor of (8π)−2: our best
guess is that they omitted the factor µ/(4π) in their implementation of (18). Using a
mesh of 2776 triangles for the sphere and a stopping tolerance of 10−5, the optimization
problem with gravity required 53 minutes on an AMD Opteron 2222 system with four
cores. Without gravity, the tolerance 10−5 was too large, and with a tolerance of 10−6,
it stopped after 96 minutes. The times required are competitive with those reported by
Eppler and Harbrecht despite the fact that their approach does not require any tensor
approximations. However, the generality of our approach allows us also to consider the
torus example shown at the bottom of figure 3: with 9072 triangles and a stopping
tolerance of 10−5, this calculation took 9 hours, 38 minutes. With a stopping tolerance
of 2 · 10−5, it would require only about 3 hours.

We emphasize that this example problem is chosen for its relative simplicity, and
because it can be formulated using the same integral equations as in §2.3. Full practical
benefits of our approach will be realized when characterizations such as (4) cannot be
avoided, and for coupled problems with Neumann data, such as in structural acoustics.
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