
Fractional Interior Differentiability of the Stress 
Velocities to Elastic Plastic Problems with Hardening 

 
 

Jens Frehse, Maria Specovius-Neugebauer 
 
 
 

no. 514 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Diese Arbeit ist mit Unterstützung des von der Deutschen Forschungs-

gemeinschaft getragenen Sonderforschungsbereichs 611 an der Universität 

Bonn entstanden und als Manuskript vervielfältigt worden. 

Bonn, Januar 2012 
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In memoriam Enrico Magenes

Abstract

We consider the classical variational inequalities modeling elastic plastic prob-
lems with kinematic and isotropic hardening. For kinematic hardening, it is shown
that the stress and strain velocities have interior fractional derivatives of order
1/2 − δ in L2 in space and time direction. For isotropic hardening, related weaker
results hold.

Sunto
In questo articolo consideriamo un modello classico di deformazione elastoplastica
con incrudimento cinematico e mostriamo che le derivate temporali del tensore degli
sforzi, del tensore delle deformazioni e delle variabili interne possiedono derivate
frazionarie di ordine 1/2− δ in L2 in tutte le direzioni, nell’intero dominio spaziale,
globalmente nel tempo.

La derivata frazionaria degli sforzi in direzione del tempo, cioe’ del parametro
di carico, esiste fino al bordo anche nel caso di incrudimento isotropo.

Key words Plasticity with hardening, isotropic and kinematic hardening, von Mises yield
criterion, regularity of solutions.

MSC (2000) 74C05, 35B65, 35K85

1 Introduction

Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary ∂Ω. The domain Ω represents
a solid body which undergoes an elastic plastic deformation, hence the case n = 3 is the
natural application, however, the study of arbitrary dimensions n ≥ 2 gives additional
mathematical insight. Our aim is to prove a new regularity result for a classical varia-
tional inequality which models elastic plastic deformation with isotropic and kinematic
hardening.

∗Institut of Applied Mathematics, University of Bonn
†Fachbereich Mathematik und Naturwissenschaften, University of Kassel
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Let us first fix some general notation. For n × n-matrices τ, σ, the scalar product σ : τ ,
Euclidean norm |σ|, the trace trσ and the deviator σD are given by:

σ : τ =
n∑

i,k=1

σikτik, |σ| = (σ : σ)1/2, trσ =
∑
i

σii, σD = σ − trσ

n
I,

where I is the unit matrix. By Rn×n
sym , we denote the set of all symmetric n × n matrices

τ ∈ Rn×n.

Under the influence of a volume force with density f(t, x) and an external loading p =
p(t, x) there appear stresses σ(t, x) ∈ Rn×n

sym , where x ∈ Ω or x ∈ ∂Ω. The parameter
t ∈ [0, T ] is a so called loading parameter, but with some abuse of notation is often
referred to as ’time’-variable. Assuming that the body is clamped in a region Γ ⊂ ∂Ω,
the balance of forces implies

− div σ = f in Ω, ν · σ = p on ∂Ω \ Γ, (1.1)

where ν = ν(x) is the outer unit normal vector at x ∈ ∂Ω. For the formulation of the
classical hardening problem we need a set of hardening variables ξ = ξ(t, x), which is but
a scalar function for isotropic hardening, or a symmetric tensor function -the so-called
back stress- in the case of kinematic hardening. In addition we have a yield condition
specified to

|σD| − ξ ≤ κ (’isotropic hardening’), or (1.2)

|σD − ξD| ≤ κ (’kinematic hardening’), (1.3)

respectively, where κ > 0 is a given constant.

In general the yield condition is formulated as

F (σ; ξ) ≤ 0

with a convex function F , but we confine us to the so called von-Mises-yield-condition
(1.2) or (1.3). The problem is completed with constitutive laws, namely a stress-strain
relation and a hardening law which describes the evolution of ξ, they are indicated in the
formulae (1.17) and (1.18) below.

The proper mathematical formulation as a variational inequality involves some well known
function spaces: The symbol Lq(Ω), with 1 ≤ q ≤ ∞, denotes the usual Lebesgue-space,
where we do not distinguish between scalar-, vector- , or tensor-valued functions as long
as no confusion arises. In all cases we indicate the L2(Ω)-scalar product with brackets
( · , · )Ω. For T > 0 and a given Banach space X (which is always a function space in
the sequel), the symbol Lq(0, T ;X) stands for the Bochner space of measurable and q-
summable functions defined on the interval [0, T ] with values in X. For X = Lq(Ω), we
frequently shorten the notation to Lp(Lq), if no confusion arises. The space of functions
in L2(Ω) with derivatives up to order m ∈ N is denoted by Hm(Ω), furthermore

H1
Γ(Ω) = {ϕ ∈ H1(Ω,Rn) | ϕ|Γ = 0}

the boundary condition has to be understood in the sense of traces, of course. The part
Γ ⊂ ∂Ω is either void or a relatively open subset.
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For convenience, we assume that the volume force density f , the external loading p and
the initial value σ0 fulfil the following regularity assumptions:

f, ḟ ∈ L∞(0, T ;L∞(Ω)), f̈ ∈ L1(0, T ;L2), (1.4)

p, ṗ ∈ L∞(0, T ;L∞(∂Ω)), p̈ ∈ L1(0, T ;L2(∂Ω)), (1.5)

here the dot indicates the derivative with respect to the ’time’ variable t.

Definition 1.1 (Admissible stresses and hardening variables) K(t) is the set of
all pairs (τ, η) with the following properties:

τ ∈ L2(Ω;Rn×n
sym ), η ∈ L2(Ω,Rm) (1.6)

where τ fulfills the balance of forces in the weak form:

(τ,∇ϕ)Ω = (f, ϕ)Ω +

∫
∂Ω

pϕ do for all ϕ ∈ H1
Γ(Ω). (1.7)

In the case of isotropic hardening we have m = 1 and:

η ∈ L2(Ω;R), |τD| − η ≤ κ, (1.8)

in the case of kinematic hardening we have m = n(n+ 1)/2 1 and:

η ∈ L2(Ω;Rn×n
sym ), |τD − ηD| ≤ κ. (1.9)

We assume that the hardening variables start at zero, that is ξ(0) = 0, while for the initial
value σ0 of the stresses and the pair (σ0, 0) we require

σ0 ∈ H2(Ω), (σ0, 0) ∈ K(0). (1.10)

Finally, we need the so called compliance tensor or inverse elasticity tensor A = (aνµik ), a
given symmetric tensor of rank four, and the hardening tensor H ∈ Rm×m. We assume
that A and H satisfy the usual ellipticity condition

τ : Aτ ≥ c0|τ |2, Hη · η ≥ c1|η|2 (1.11)

for all τ ∈ Rn×n
sym , η ∈ Rm, respectively, with constants c0, c1 > 0. In order to limit the

technical details we formally consider only the case of constant A and H here, however,
all the results remain true if the entries of A and H are Lipschitz continuous functions on
Ω, since this generalization will cause only pollution terms in the proofs. The tensors A
and H have to fulfill the condition (1.11) uniformly in x in this case. Note that in the case
of isotropic harding the term H is just a scalar function with H(x) ≥ c1 > 0 uniformly
on Ω.
With this notation the classical variational inequality for isotropic or, respectively, kine-
matic hardening is the following

1In order to have a unified notation also in the calculations needed lateron we identify ξ with a vector
of Rn(n+1)/2
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Hardening Problem: Let σ0 be a given initial stress, such that (σ, 0) ∈ K(0). Find
σ ∈ L∞(L2), ξ ∈ L∞(L2) such that

σ̇ ∈ L2(L2), ξ̇ ∈ L2(L2) (1.12)

(σ(t), ξ(t)) := (σ(t, ·), ξ(t, ·)) ∈ K(t), t ∈ [0, T ] (1.13)

σ(0) = σ0, ξ(0) = 0 (1.14)

(Aσ̇, σ − τ) + (Hξ̇, ξ − η) ≤ 0 a.e. in [0, T ] for all (τ, η) ∈ K(t). (1.15)

This problem has a unique solution [9]. The inequality (1.15) contains the constitutive
law, under additional regularity conditions it is equivalent to an a.e. point-wise equation
provided that the so called safe load condition holds:

Definition 1.2 (Safe load condition) There exist σ̂ ∈ L∞(L2), ξ̂ ∈ L∞(L2) with

˙̂σ ∈ L∞(L2), ¨̂σ ∈ L1(L2),
˙̂
ξ ∈ L∞(L2) (1.16)

(σ̂(0), 0) ∈ K(0), ξ̂|t=0 = 0

(σ̂(t, .), ξ̂(t, .)) ∈ K(t),

and there exists a δ > 0 such that

|σ̂D| − ξ ≤ κ− δ or |σ̂D − ξ̂D| ≤ κ− δ, respectively.

By a theorem of Johnson [9] it is known that there exists a displacement

u ∈ L∞(0, T ;H1,2
Γ (Ω,Rn)) with u̇ ∈ L∞(0, T ;H1,2

Γ (Ω,Rn))

and a multiplier
λ̇ ∈ L∞(0, T ;L2(Ω,R))

such that in the case of isotropic hardening, a.e. in [0, T ]× Ω{
1
2
(∇u̇+∇u̇T) = Aσ̇ + λ̇σD|σD|−1

0 = Hξ̇ − λ̇
(1.17)

and in the case of kinematic hardening{
1
2
(∇u̇+∇u̇T) = Aσ̇ + λ̇(σD − ξD)|σD − ξD|−1

0 = Hξ̇ − λ̇(σD − ξD)|σD − ξD|−1.
(1.18)

The multiplier function λ̇ satisfies λ̇ ≥ 0 a.e. and

λ̇(|σD| − κ− ξ) = 0

in the case of isotropic hardening or

λ̇(|σD − ξD| − κ) = 0,
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respectively, in the case of kinematic hardening. This implies that λ̇ = 0 if |σD| = 0
in the case of isotropic hardening, and λ̇ = 0 if |σD − ξD| = 0 in the case of kinematic
hardening, so (1.17) und (1.18) can be defined. Vice versa, from (1.17) and (1.18) one
recovers the variational inequality (cf. [3] for a simple proof concerning the construction
of λ). Equation (1.17) and (1.18) have the advantage, that they are defined point-wise
and that the deformation velocity u̇ appears explicitly.

Concerning interior regularity of the solution (σ, ξ) and the displacements the following
results are known: If f is sufficiently regular, that is

f ∈ L∞(H1
loc), (1.19)

then in the case of kinematic hardening [13]:

σ ∈ L∞(0, T ;H1
loc), ξ ∈ L∞(0, T ;H1

loc), u ∈ L∞(0, T ;H2
loc)

In the case of isotropic hardening the L∞(H1
loc)-property is known only for σ and ξ cf.

[13], while the L∞(H1
loc)-property for ∇u is an interesting open problem. In [4] it was

shown that ∇u ∈ L∞(L6
loc), if n = 3. Up to now there are no regularity results for σ̇, ξ̇,

besides a result of [5], where the inclusion σ̇, ξ̇ ∈ L∞(L2+2δ) for small δ > 0 is proved.
For more general models describing elastic-plastic deformation with hardening see also
[1, 2, 7]. These papers use the so called primal formulation, i.e the principal unknowns
are the displacements rather than the stresses. Our main result states that in [0, T ]×Ω0,
Ω0 ⊂⊂ Ω, the functions σ̇, ξ̇ have fractional derivatives in time and space direction of
order 1

2
− δ, δ > 0. In the kinematic case we obtain this regularity property also for ∇u̇,

in the isotropic case we reach only ∇u̇ ∈ L 8
3
−δ1(L

8
3
−δ1), n = 3, for all δ1 > 0 (cf Remark

4.4, [6]).

For the result in time direction, the method of the proof is related to a recent paper [6] of
the authors about the Prandtl-Reuss problem, where fractional differentiability of order
1
2
− δ1 was achieved for the stress velocities. The ideas of this paper can be adapted to

gain a similar result in the setting with hardening, as it is considered here, however, the
method to achieve also the fractional differentiability of order 1

2
−δ1 with respect to space

direction needs an additional consideration. This is the purpose of our paper.

A counterexample of D. Knees [10] indicates that our regularity result is optimal.

2 The main results

We formulate the main results, starting with the regularity in time: The stress velocities
σ̇ and the time derivatives ξ̇ of the hardening variables ξ have fractional derivatives of
order 1

2
in time direction, in a weak sense. This result holds up to the boundary ∂Ω, for

arbitrary dimension n, and both for kinematic and isotropic hardening. We recall the
notation of difference operators: Let ei denote the i-th unit vector, for any w = w(t, x),
and s > 0 we put

∆s
tw(t, x) = w(t+ h, x)− w(t, x), ∆s

iw(t, x) = w(t, x+ sei)− w(t, x). (2.1)
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Theorem 2.1 (Regularity in time) Let the data f , p and σ0 fulfill the regularity as-
sumptions (1.4), (1.5) and (1.10), assume that the ellipticity condition (1.11) for the
tensors A and H and further the safe load condition (cf. Def. 1.2) are satisfied. Then
for the solution σ, ξ of the hardening problem introduced in Section 1, there holds the
estimate

h−2

h∫
0

T−h∫
0

∫
Ω

[
|∆s

t σ̇|2 + |∆s
t ξ̇|2
]
dx dt ds ≤ C (2.2)

uniformly for 0 < h < h0.

Remark 2.2 The inequality (2.2) is a weak version of the Nikolskii - space property

sup
0<h<h0

1

h

T−h∫
0

∫
Ω

[
|∆s

t σ̇|2 + |∆s
t ξ̇|2
]
dx dt ≤ C,

(which we do not prove), see the discussion in [6]. Theorem 2.1 implies that the Fourier-
coefficients cm = cm(x) of ξ̇, σ̇ in time-direction (cf. the proof of Lemma 5.3 for the
definition) gain the following summability property [6, Lemma A.1 ]

∞∑
m=−∞

m1−δ
∫
Ω

|cm(x)|2dy ≤ Cδ for all δ > 0.

In the case of kinematic hardening, Theorem 2.1 implies the fractional differentiability in
time for the strain velocities:

Theorem 2.3 Assume the requirements of Theorem 2.1 are met and the pair (σ, ξ) is the
solution to the problem with kinematic hardening. Then the corresponding displacement
field u satisfies the estimate

h−2

T−h∫
0

h∫
0

∫
Ω

|∆s
t∇u̇|2 dx ds dt ≤ C (2.3)

with a constant independent of 0 < h ≤ h0.

Using the result for the time we can also prove that the velocities σ̇, ξ̇ of the stresses and
the hardening parameters have fractional derivatives of order 1

2
− δ in space direction,

where δ > 0 can be arbitrarily small. The derivatives have to be taken in the weak sense
as outlined in Theorem 2.4 below. However, we have to assume that the strain velocities
∇u̇ have fractional derivatives of order 1

2
in time direction in the sense of Theorem 2.3,

that is we require that (2.3) is valid. In the kinematic case this is just the result of
Theorem 2.3, while in the isotropic case the estimate (2.3) is not known yet.

Theorem 2.4 (Local regularity in space) Assume that in addition to the requirements
of Theorem 2.1 the regularity estimate (2.3) holds true for the solution pair (σ, ξ) of the
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hardening problem formulated in Section 1. Then for any δ > 0, the velocities σ̇, ξ̇ have
local fractional derivatives of order 1/2− δ in space direction, in the following sense

sup
0≤h≤h0

1

h1−δ

T−h∫
0

∫
Ω0

|∆h
i σ̇|2 + |∆h

i ξ̇|2 dx dt ≤ C, i = 1, . . . , n (2.4)

for any domain Ω0 such that Ω0 ⊂ Ω and h0 ≤ dist(∂Ω, ∂Ω0).

Remark 2.5 (Possible generalizations) Apart from passing to Lipschitz continuous
entries in the tensors A and H - as already mentioned in Section 1 it is also possible to
consider more general flow rules for the hardening variables ξ. For example, one my add
in (1.17), (1.18) globally Lipschitz continuous functions g(t, x, σ, ξ). Terms of this type
create pollution terms which can be treated via Gronwalls inequality. However, we are
mostly interested in in the classical case as in Johnson [8], mainly because they present
the essential mathematical difficulties.

3 Penalty approximation

The hardening problem (1.12) can be approximated in several ways via penalty approx-
imations. In this paper we follow the approach in [3, 4, 5]. We introduce the penalty
potentials

Giso
µ (σ, ξ) =

1

2
µ−1[|σD| − (κ+ ξ)]2+

in the case of isotropic hardening, and

Gkin
µ (σ, ξ) =

1

2
µ−1[|σD − ξD| − κ]2+

in the case of kinematic hardening, where for any real valued function φ the expression
[φ]+ = max(φ, 0) is the positive part, and µ = 0 a small parameter. Then we obtain

Giso
1µ (σ, ξ) :=

∂

∂σ
Giso
µ (σ, ξ) = µ−1[|σD| − (κ+ ξ)]+σD|σD|−1

Giso
2µ (σ, ξ) :=

∂

∂ξ
Giso
µ (σ, ξ) = −µ−1[|σD| − (κ+ ξ)]+,

and in particular the (point-wise) relation

|Giso
1µ | = |Giso

2µ |. (3.1)

For kinematic hardening we have

Gkin
1µ (σ, ξ) :=

∂

∂σ
Gµ(σ, ξ) = µ−1[|σD − ξD| − κ]+(σD − ξD)|σD − ξD|−1

Gkin
2µ (σ, ξ) :=

∂

∂ξ
Gµ(σ, ξ) = −µ−1[|σD − ξD| − κ]+(σD − ξD)|σD − ξD|−1,
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that is
Gkin

1µ = −Gkin
2µ (3.2)

Note that for |σD| = 0 or |σD − ξD| = 0, the terms G···jµ can be continuously extended by
0; for Giso

2µ this follows from ξ ≥ 0.

Due to our conventions in notation, the mathematical formulations of the penalty problem
in the kinematic and the isotropic look the same, thus in the following we simply write
Gjµ instead of Gkin

1µ or Giso
1µ , if the arguments run parallel. We formulate the penalty

approximation of the hardening problem:

Definition 3.1 (Penalty problem) Find σµ, ξµ ∈ L∞(0, T ;L2(Ω)) such that σ̇µ, ξ̇µ ∈
L∞(0, T ;L2(Ω)), the pairs (σµ, ξµ) fulfill the initial condition (1.14) and the balance of
forces (1.7) in the weak form for almost every t, further

(Aσ̇µ +G1µ(σµ, ξµ), τ)Ω = 0 (3.3)

for all τ ∈ L2(Ω,Rn×n
sym ) which satisfy (τ,∇ϕ)Ω = 0 for all ϕ ∈ H1

Γ(Ω;Rn),

Hξ̇µ +G2µ(σµ, ξµ) = 0 (3.4)

By the L2-Helmholtz decomposition theorem for symmetric tensors we may replace (3.3)
by the point-wise equation

1

2
(∇v +∇vT) = Aσ̇ +G1µ(σ, ξ) (3.5)

with the so called deformation velocity v = u̇, v ∈ H1
Γ(Ω,Rn).

It is well known (see the discussion and references in [3]) that the penalty problem has
a unique solution (σµ, ξµ). Moreover, we have the following estimates independent of
µ ∈ (0, µ0], provided that the safe load condition holds:

‖σµ‖L∞(L2) + ‖σ̇µ‖L∞(L2) + ‖uµ‖L∞(L2) + ‖u̇µ‖L∞(L2) ≤ C, (3.6)

‖ξµ‖L∞(L2) + ‖ξ̇µ‖L∞(L2) ≤ C, (3.7)

‖∇u̇µ‖L∞(L2) ≤ C (3.8)

The estimates (3.6), (3.7) have been worked out with a related penalty term in [9]. It is
a routie matter to adapt this proof to our case. An alternative reference is [12]. By an
argument of Johnson [9] (’Johnson’s trick’), involving the relations (3.1) and (3.2), one
has (3.8). Compared to the Prandtl-Reuss law, which corresponds to ξ = 0, where only
an L∞(L1)-estimate is available, the estimate (3.8) makes the analysis much easier and
gives better regularity results.

By monotonicity methods we have the convergence (see, e.g. [12]) σµ → σ, ξµ → ξ
strongly in L2(L2) while ∇u̇µ ⇀ ∇u̇, as µ→ 0. Here (σ, ξ) is the solution of the original
hardening problem. In [5, Sec. 3] it was shown that even

σ̇µ → σ, ξ̇µ → ξ strongly in L2(L2), (3.9)
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which implies also ∇u̇µ → ∇u̇ in the kinematic case. For the proof it is essential to know
that (in the case of isotropic hardening)

Giso
1µ ⇀ λ̇

σD
|σD|

, Giso
2µ ⇀ −λ̇

weakly in L2, with a function λ̇ ∈ L∞(L2) enjoying the properties

λ̇ ≥ 0, λ̇ = 0 if |σD| − ξ < κ.

This result was proved in [3], the case of kinematic hardening runs in a completely anal-
ogous way. Using the multiplier λ̇, the constitutive equation can be written in the form
(1.17).

Furthermore, there are local uniform estimates

‖∇σµ‖L∞(L2(Ω0)) + ‖∇ξµ‖L∞(L2(Ω0)) ≤ CΩ0 , Ω0 ⊂⊂ Ω, (3.10)

cf. [13, 12]. In addition, in the case of kinematic hardening, one has uµ ∈ L∞(H2
loc) and

‖uµ‖L∞(H2(Ω0)) ≤ CΩ0 , Ω0 ⊂⊂ Ω, µ→ 0. (3.11)

It is an interesting open problem to obtain (3.11) also in the case of isotropic hardening.
In [4], the authors were only able to prove ∇u ∈ L∞(L6

loc), n = 3, in the latter case.
Finally, it is known [5] that

σ̇ ∈ L∞(L2+2δ), ξ̇ ∈ L∞(L2+2δ), ∇u̇ ∈ L∞(L2+2δ), (3.12)

for some small δ > 0.

4 The regularity in time

4.1 Auxiliary estimates

The proofs of the regularity results involve various auxiliary results for the penalty terms.
We start with the proof that for almost every t, the penalty potential tends to 0 in L1(Ω),
as µ→ 0.

Lemma 4.1 Let σµ, ξµ be the solution of the penalty problem 3.1, where the data f , p
and σ0 fulfill the regularity assumptions (1.4), (1.5) and (1.10). Then

T∫
0

∫
Ω

Gµ(σµ(t, x), ξµ(t, x)) dx dt→ 0 as µ→ 0,

in particular there exists a sequence µn → 0 such that 2∫
Ω

Gµn(σµn(t, x), ξµn(t, x)) dx→ 0 as n→∞ for a.e. t ∈ [0, T ].

2In the following we omit the explicit mentioning of a subsequence in order to keep the proofs as
simple as possible.
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Proof. We only give the details in the case of kinematic hardening, the isotropic case
can be done in an analogous way. Using the pair (σµ − σ, ξµ − ξ) as test functions in the
relations (3.3) and (3.4) of the penalty problem and observing (3.2), we obtain

0 =

T∫
0

(Aσ̇µ, σµ − σ)Ω + (Hξ̇µ, ξµ − ξ)Ω dt

+

T∫
0

∫
Ω

µ−1[|σµD − ξµD| − κ]+
σµD − ξµD
|σµD − ξµD|

(σµD − σD − ξµD + ξD) dx dt =: I1 + I2.

We have

I1 =
1

2

T∫
0

∂

∂t
(A(σµ − σ), σµ − σ)Ω +

T∫
0

(Aσ̇, σµ − σ)Ω dt+

1

2

T∫
0

∂

∂t
(H(ξµ − ξ), ξµ − ξ)Ω +

T∫
0

(Hξ̇, ξµ − ξ)Ω dt

=
1

2

(
(A(σµ − σ), σµ − σ)Ω + (H(ξµ − ξ), ξµ − ξ)Ω

)∣∣∣
t=T

+ o(1),

because the remaining integrals tend to 0 as µ→∞ due to the weak convergence of σµ,
ξµ. Note the first term on the right-hand side is nonnegative thanks to the positivity
condition (1.11). The integrand of I2 can be treated as follows:

µ−1[σµD − ξµD| − κ]+

(
|σµD − ξµD| −

σµD − ξµD
|σµD − ξµD|

(σD − ξD)

)
≥ µ−1[σµD − ξµD| − κ]+ (|σµD − ξµD| − |σD − ξD|)
≥ µ−1[σµD − ξµD| − κ]+(|σµD − ξµD| − κ) = 2Gkin

µ ≥ 0,

the last inequality holds, since |σD − ξD| ≤ κ. Hence we have

0 ≤
T∫

0

∫
Ω

Gkin
µ dx dt ≤ −K + o(1),

from which the assertion follows. 2

Now we establish estimates involving difference quotients. In addition to the notation
(2.1) we use the expressions

Iw(t, x) = w(t, x), Eh
t w(t, x) = w(t+ h, x), Dh

t w(t, x) =
1

h
∆h
tw(t, x), hence

∆h
tw(t, x) = (Eh

t − I)w(t, x) = hDtw(t, x).

The uniform L∞(H1)- and H1(L2)-estimates (3.6)– (3.8) imply certain estimates of the
penalty term, which we want to fix. Recall that Gjµ is either Gkin

jµ or Giso
jµ .
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Lemma 4.2 Assume the hypotheses of Lemma 4.1, then

P0 :=

T−h∫
0

(
Dh
tG1µ(σµ, ξµ), Dh

t σµ
)

Ω
+
(
Dh
tG2µ(σµ, ξµ), Dh

t ξµ
)

Ω
dt ≤ C

uniformly for 0 < h < h0, 0 < µ < µ0.

Proof. During this proof, we drop the index µ and simply write σ, ξ and u. We apply
the operation Dh

t to (3.5) and (3.4) and use Dh
t σ and Dh

t ξ, respectively, as a test function.
Then we obtain

1

2

T−h∫
0

∂

∂t

(
Dh
t σ,AD

h
t σ
)

Ω
+
∂

∂t

(
Dh
t ξ,HD

h
t ξ
)

Ω
dt + P0 =

T−h∫
0

(
Dh
t∇u̇, Dh

t σ
)

Ω
dt

=

T−h∫
0

(
Dh
t∇u̇, Dh

t

(
σ − σ̂)

)
Ω
dt+

T−h∫
0

(
Dh
t∇u̇, Dh

t σ̂
)

Ω
dt =: I3 + I4,

(4.1)

where σ̂ is defined in the definition 1.2 of the safe load condition. Since u̇ ∈ L∞(H1
Γ(Ω))

we have Dh
t u̇(t) ∈ H1

Γ(Ω) for almost every t, hence the first integrand vanishes for almost
every t ∈ [0, T−h], since both σ and σ̂ fulfill the balance of forces (1.7). We can transform
the term I4 with the help of (1.7), too, then we integrate by parts with respect to t and
obtain

I4 =

T−h∫
0

(
Dh
t u̇, D

h
t f
)

Ω
dt+

T−h∫
0

∫
∂Ω

Dh
t u̇ ·Dh

t p do dt

= −
T−h∫
0

(
Dh
t u,D

h
t ḟ
)

Ω
dt +

(
Dh
t u,D

h
t f
)

Ω

∣∣∣T−h
0

−
T−h∫
0

∫
∂Ω

Dh
t u ·Dh

t ṗ0 do dt +

∫
∂Ω

Dh
t u ·Dh

t p0 do
∣∣∣T−h
0

.

After a possible redefinition on a set of measure zero (in time) we have for all t ∈ [0, T−h].

‖Dh
t u(t)‖L2(Ω) ≤ ‖u̇‖L∞(0,T ;L2(Ω)) ≤ C

due to (3.6). To estimate of the boundary integrals we need the trace theorem [11] in
addition:

‖Dh
t u(t)‖L2(∂Ω) ≤ ‖u̇‖L∞(0,T ;L2(∂Ω)) ≤ ‖∇u̇‖L∞(0,T ;L2(Ω)) ≤ C

11



due to (3.8). Using the assumptions on the data we see that all terms in I4 are bounded,
thus (4.1) leads to

P0 +
1

2

((
Dh
t σ,AD

h
t σ
)

Ω
+

1

2
(Dh

t ξ,HD
h
t ξ
)

Ω

)∣∣∣
t=T−h

≤ C +
1

2

((
Dh
t σ,AD

h
t σ
)

Ω
+

1

2

(
Dh
t ξ,HD

h
t ξ
)

Ω

)∣∣∣
t=0

≤ C
(

1 + h−1

h∫
0

∫
Ω

|σ̇|2 + |ξ̇|2 dx dt
)
≤ C

again since σ̇ and ξ̇ are bounded in L∞(L2). This finishes the proof of Lemma 4.2. 2

The following lemma serves as an auxiliary tool to control the quantity

lim
µ→0

h−2

h∫
0

T−h∫
0

(∆s
t σ̇µ, Aσ̇µ)Ω + (∆s

t ξ̇µ, Hξ̇µ)Ω dt ds,

which is needed in the proof of Theorem 2.1 to estimate the fractional derivative of σ̇
and ξ̇ in time direction. The proof as well as the arguments for lemma 4.3 below run
analogously to the proof of a corresponding result concerning the Prandtl-Reuss law [6].

Lemma 4.3 Let Gjµ(t, x) = Gjµ(σµ(t, x), ξµ(t, x)), then

T0(t1, t2) =: lim sup
µ→0

h∫
0

t2−h∫
t1

(G1µ,∆
s
t σ̇µ)Ω + (G2µ,∆

s
t ξ̇µ)Ω dt ds ≤ 0

a.e. with respect to t1, t2 ∈ [0, T ], such that 0 ≤ t1 ≤ t2 − h ≤ T − h.

Proof. We split

T0µ :=

h∫
0

t2−h∫
t1

(
G1µ,∆

s
t σ̇µ
)

Ω
+
(
G2µ,∆

s
t ξ̇µ
)

Ω
dt ds (4.2)

=

h∫
0

t2−h∫
t1

(
G1µ, E

s
t σ̇µ
)

Ω
+
(
G2µ, E

s
t ξ̇µ
)

Ω
dt ds−

h∫
0

t2−h∫
t1

∫
Ω

∂

∂t
Gµ dx dt ds

=: I5 +

h∫
0

∫
Ω

Gµ dx
∣∣∣t2−h
t1

ds = I5 + h

∫
Ω

Gµ dx
∣∣∣t2−h
t1

The last term tends to zero as µ→ 0 due to Lemma 4.1, a.e. for t1, t2 ∈ [0, T ], t2−h ≥ t1.

For the first term we use the identities
h∫
0

Es
t σ̇µ ds = ∆h

t σµ,
h∫
0

Es
t ξ̇µ ds = ∆h

t ξµ, hence

I5 =

t2−h∫
t1

(G1µ,∆
h
t σµ)Ω + (G2µ,∆

h
t ξµ)Ω dt.

12



Due to the convexity of Gµ we have

G1µ : ∆h
t σµ +G2µ ·∆h

t ξµ ≤ ∆h
tGµ

and hence

I5 ≤
t2−h∫
t1

∫
Ω

∆h
tGµ dx dt.

For fixed h > 0, the latter term tends to 0 a.e. with respect to t1, t2 ∈ [0, T ], as µ → 0,
here we used Lemma 4.1 again. This proves Lemma 4.3. 2

4.2 Proof of Theorem 2.1

Our approach here is very similar to the arguments used in [6]. Due to the strong con-
vergence (3.9) of σ̇µ and ξ̇µ, we have for any fixed h:

h∫
0

T−h∫
0

∫
Ω

|∆s
t σ̇|2 + |∆s

t ξ̇|2 dx dt ds = lim
µ→0

h∫
0

T−h∫
0

∫
Ω

|∆s
t σ̇µ|2 + |∆s

t ξ̇µ|2 dx dt ds. (4.3)

In order to control the term on the right-hand side we choose
h∫
0

∆s
t σ̇µds and

h∫
0

∆s
t ξ̇µds as

test-functions in (3.5) and (3.4), then using the notation T0µ = T0µ(t1, t2) from (4.2), we
obtain

t2−h∫
t1

h∫
0

(Aσ̇µ,∆
s
t σ̇µ)Ω ds dt +

t2−h∫
t1

h∫
0

(Hξ̇µ,∆
s
t ξ̇µ)Ω ds dt + T0µ

=

t2−h∫
t1

h∫
0

(∇u̇µ,∆s
t σ̇µ)Ω ds dt =: I. (4.4)

Next we recall an elementary identity, which holds for τ(t) ∈ Rn×n
sym , and any symmetric

tensor A,

Aτ : ∆s
tτ = −1

2
A∆s

tτ : ∆s
tτ +

1

2
∆s
t(Aτ : τ), (4.5)

if τ and A are scalar functions, this is even simpler. Relation (4.5) turns (4.4) into

L(σ̇µ, ξ̇µ) =:

t2−h∫
t1

h∫
0

(A∆s
t σ̇µ,∆

s
t σ̇µ)Ω + (H∆s

t ξ̇µ,∆
s
t ξ̇µ)Ω ds dt

=

t2−h∫
t1

h∫
0

∫
Ω

∆s
t(Aσ̇µ : σ̇µ) + ∆s

t(Hξ̇µ : ξ̇µ) dx ds dt + 2T0µ − 2I := Rµ

13



Since L defines a lower semi-continuous functional with respect to the L2(L2)-norm, the
weak convergence of (σ̇µ, ξ̇µ) implies

L(σ̇, ξ̇) ≤ lim inf
µ→0

L(σ̇µ, ξ̇µ),

note, that here even the limit exists since we have the strong convergence (3.9). Due to
the positivity conditions for A and H (and Fubini’s theorem) we get

lim
µ→0

h∫
0

t2−h∫
t1

∫
Ω

|∆s
t σ̇µ|2 + |∆s

t ξ̇µ|2 dx dt ds ≤ C0 lim
µ→0
L(σ̇µ, ξ̇µ), (4.6)

hence the assertion (2.2) is true, if we show

lim sup
µ→0

Rµ ≤ Ch2. (4.7)

To estimate the first summand of Rµ, we put

ϕ(t) =

∫
Ω

Aσ̇µ : σ̇µ +Hξ̇µ : ξ̇µ dx

and use the following argument

∣∣∣ t2−h∫
t1

h∫
0

∆s
tϕ(t) ds dt

∣∣∣ =
∣∣∣ h∫

0

t2−h+s∫
t2−h

ϕ(t) dt ds−
h∫

0

t1+s∫
t1

ϕ(t) dt ds
∣∣∣ ≤ 2‖ϕ‖L∞ h2,

due to the bounds (3.6) for ‖σ̇µ‖L∞(L2) and (3.7) for ‖ξ̇µ‖L∞(L2). Note that the constant
here is also independent from t1 and t2. Using the safe load from Definition 1.2 we rewrite
the term I (cf. (4.4)):

I =

t2−h∫
t1

h∫
0

(
∇u̇µ,∆s

t(σ̇µ − ˙̂σ)
)

Ω
ds dt+

t2−h∫
t1

h∫
0

(
∇u̇µ,∆s

t
˙̂σ
)

Ω
ds dt

=

h∫
0

t2−h∫
t1

(
∇u̇µ,∆s

t
˙̂σ
)

Ω
dt ds,

since div(σ̇µ − ˙̂σ) = 0 (and by using Fubini’s theorem). Unlike in the proof for the
Prandtl Reuss case we may already use the bound ‖∇u̇µ‖L∞(L2) ≤ CT , together with the
assumption (1.16) for σ̂ this implies

|I| ≤
h∫

0

T−h∫
0

‖∇u̇µ‖L2(Ω)‖Ds
t

˙̂σds‖L2(Ω) dt ds

≤ ‖∇u̇µ‖L∞(L2) h

h∫
0

T∫
0

‖¨̂σ‖L2(Ω) dt ds ≤ C(T )h2
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where C(T ) is independent of µ ≤ µ0 and h < T , and of t1 and t2, of course. From
Lemma 4.3 we get then (4.7) for almost all t1 and t2, where C is independent of h and
t1, t2. Since the integrals in (4.6) depend continuously on t1 and t2, we can pass to the
limit t1 → 0, and t2 → T , which finishes the proof. 2

4.3 Proof of Theorem 2.3

Using the penalty equations (3.5) and (3.4) together with (3.2), we obtain in the case of
kinematic hardening

1

2
(∇uµ + (∇uµ)>) = Aσ̇µ +Hξ̇µ.

Hence Theorem 2.3 follows from Theorem 2.1 and Korn’s inequality. 2

5 The regularity in space direction

5.1 Auxiliary inequalities for the penalty terms

In the next lemma we derive a local bound for the spatial difference quotients of the
penalty term similar to Lemma 4.2. Since we prove only local regularity in space direction
we fix a localization function ζ with compact support in Ω such that ∇ζ is Lipschitz
continuous. We use difference and shift operators similar as in Section 4. Let ej be the
j-th unit-vector in Rn, and h > 0. Apart from the notation ∆h

i introduced in (2.1) we
use also

Eh
j w(t, x) = w(t, x+ hej), Dh

j =
1

h
∆h
j .

Lemma 5.1 Let (σµ, ξµ) be the solution to the penalty problem introduced in Section 3,
then the following estimate holds

Pj :=

T∫
0

(
Dh
jG1µ(σµ, ξµ), ζ2Dh

j σµ
)

Ω
+
(
Dh
jG2µ(σµ, ξµ), ζ2Dh

j ξµ
)

Ω
dt ≤ C

uniformly for 0 < µ < µ0 and 0 < h < h0, where h0 < dist (supp ζ, ∂Ω).

Proof. This proof contains also the arguments for the H1
loc-regularity of σ. Just like in

the proof of Lemma 4.2 we drop the index µ here. We apply the operation Dh
j to (3.5),

(3.4), and then, similar as in the proof of Lemma 4.2, test the first relation with ζ2Dh
j σ

and the second with ζ2Dh
j ξ, then for any T1 ≤ T we have

1

2

T1∫
0

∂

∂t
(Dh

j σ, ζ
2ADh

j σ)Ω +
∂

∂t
(Dh

j ξ, ζ
2HDh

j ξ)Ω dt+ Pj =

T1∫
0

(Dh
j∇u̇, ζ2Dh

j σ)Ω dt. (5.1)
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We integrate by parts in the right-hand side and use − div σ = f , which leads to

T1∫
0

(Dh
j∇u̇, ζ2Dh

j σ)Ω dt = −
T∫

0

(Dh
j u̇, ζ

2f)Ω dt− 2

T∫
0

(Dh
j u̇, ζ∇ζDh

j σ)Ω dt =: I1 + I2. (5.2)

Since we have the uniform bound (3.8) for ‖∇u̇‖L∞(L2(supp ζ)) as µ → 0, we obtain also
‖Dh

j u̇‖L∞(L2(supp ζ)) ≤ C, uniformly in 0 < µ < µ0, 0 < h < h0. Therefore the term I1

turns out to be bounded due to the regularity assumptions for f . Using this argument
once more, Hölder’s and Young’s inequalities imply

|I2| ≤ Cζ
(
1 +

T∫
0

∫
Ω

ζ2|Dh
j σ|2 dx dt

)
. (5.3)

Now we evaluate the left-hand side of (5.1). Since ξ(0) = 0, we have

1

2

T∫
0

∂

∂t
(Dh

j σ, ζ
2ADh

j σ)Ω +
∂

∂t
(Dh

j ξ, ζ
2HDh

j ξ)Ω dt

=
1

2

(
(Dh

j σA, ζ
2Dh

j σ)Ω + (Dh
j ξ, ζ

2HDh
j ξ)Ω

)∣∣∣
t=T1
− (Dh

j σ
0A, ζ2Dh

j σ
0)Ω

The convexity of the penalty potential implies Pj ≥ 0, hence the bounds for I1 and (5.3)
for I2 together with the positivity of A and H lead to the inequality∫

Ω

ζ2|Dh
j σ(T1)|2 dx ≤ (Dh

j σ, ζ
2ADh

j σ)Ω

∣∣∣
t=T1

+ (Dh
j ξ, ζ

2HDh
j ξ)Ω

∣∣∣
t=T1

+ 2Pj

≤ C
(
1 +

∫
Ω

|Dh
j σ0|2ζ2dx+

T1∫
0

∫
Ω

ζ2|Dh
j σ|2 dx dt

)
.

Since σ0 ∈ H1(Ω), now Gronwall’s inequality implies that |I2| is bounded independent of
µ, but this implies also the desired bound for Pj. 2

We also need a result corresponding to Lemma 4.3 for difference quotients of σ̇µ in space
direction. We recall that(

Es
tE

h
i − I

)
w(t, x) = w(t+ s, x+ hei)− w(t, x).

Lemma 5.2 Fix h0 > 0 such that suppEh
i ζ ⊂ Ω for any h with 0 ≤ h ≤ h0. Then there

exists a constant C̃ > 0, independent of h, t1, and t2 such that

lim sup
µ→0

h∫
0

t2−h∫
t1

∫
Ω

[
G1µ : (Es

tE
h
i − I)σ̇µ + G2µ : (Es

tE
h
i − I)ξ̇µ

]
ζ2 dx dt ds ≤ C̃h2,

for almost every t1, t2 such that 0 ≤ t1 ≤ t2 − h ≤ T − h.
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Proof. We set

Tiµ = Tiµ(t1, t2) =

h∫
0

t2−h∫
t1

∫
Ω

[
G1µ : (Es

tE
h
i − I)σ̇µ + G2µ : (Es

tE
h
i − I)ξ̇µ

]
ζ2 dx dt ds

and decompose Tiµ = T 1
iµ − T 2

iµ where

T 1
iµ =

h∫
0

t2−h∫
t1

∫
Ω

[
G1µ : Es

tE
h
i σ̇µ + G2µ : Es

tE
h
i ξ̇µ

]
ζ2 dx dt ds,

T 2
iµ =

h∫
0

t2−h∫
t1

∫
Ω

(
G1µ : σ̇µ +G2µ : ξ̇µ

)
ζ2 dx dt ds

=

h∫
0

t2−h∫
t1

∫
Ω

d

dt
Gµζ

2 dx dt ds = h

∫
Ω

Gµζ
2 dx

∣∣∣t2−h
t1

Lemma 4.1 implies

lim
µ→0
T 2
iµ = 0 a.e. with respect to t1, t2, (5.4)

such that 0 ≤ t1 ≤ t2−h ≤ T −h. To analyze T 1
iµ we perform the integration with respect

to s, then we add and subtract the terms G1µ : σµ and G2µ : ξµ in order to achieve an
additional splitting:

T 1
iµ =

t2−h∫
t1

∫
Ω

[
G1µ : (Eh

t E
h
i σµ − Eh

i σµ) + G2µ : (Eh
t E

h
i ξµ − Eh

i ξµ)
]
ζ2 dx dt

=

t2−h∫
t1

∫
Ω

[
G1µ : (Eh

t E
h
i σµ − σµ) + G2µ : (Eh

t E
h
i ξµ − ξµ)

]
ζ2 dx dt

− h
t2−h∫
t1

∫
Ω

[
G1µ : Dh

i σµ + G2µ : Dh
i ξµ
]
ζ2 dx dt =: T 1a

iµ + T 1b
iµ .

We first will get rid of T 1b
iµ and rewrite

T 1b
iµ =− h

t2−h∫
t1

∫
Ω

[
Eh
i G1µ : Dh

i σµ + Eh
i G2µD

h
i ξµ
]
ζ2 dx dt +

+ h2

t2−h∫
t1

∫
Ω

[
Dh
i G1µ : Dh

i σµ +Dh
i G2µD

h
i ξµ
]
ζ2 dx dt

17



Since the last integral is bounded according to Lemma 5.1 we conclude

T 1b
iµ ≤ C̃ h2 − h

t2−h∫
t1

∫
Ω

[
Eh
i G1µ : Dh

i σµ + Eh
i G2µD

h
i ξµ
]
ζ2 dx dt

Now we exploit the convexity of Gµ again, which leads to

−
(
Eh
i G1µ : Dh

i σµ + Eh
i G2µD

h
i ξµ
)
≤ h−1

(
Gµ − Eh

i Gµ

)
= − Dh

i Gµ

This implies

T 1b
iµ ≤ C̃h2 − h

t2−h∫
t1

∫
Ω

Dh
i Gµζ

2 dx,

here the last summand tends to zero as µ→ 0 due to Lemma 4.1. Thus we arrive at

lim sup
µ→∞

T 1b
iµ ≤ C̃ h2 (5.5)

A similar argument works for T 1a
iµ : From the convexity of Gµ we get

T 1a
iµ ≤

t2−h∫
t1

∫
Ω

[Eh
t E

h
i Gµ −Gµ]ζ2 dx dt. (5.6)

while the right-hand side term tends to zero as µ→ 0, h fixed, a.e. with respect to t1, t2,
again due to Lemma 4.1. Collecting (5.4), (5.5), (5.6), we arrive at lim

µ→∞
Tiµ ≤ C̃ h2 a.e.

which is the statement of Lemma 5.2. 2

5.2 Testing the strain velocity

We have to prepare one additional auxiliary estimate for the regularity result in space
direction.

Lemma 5.3 Let ζ be a localization function as in Lemma 5.1, and let h0 > 0 be fixed
such that h0 < dist (supp ζ, ∂Ω). Then

hδ−2

h∫
0

T−h∫
0

(
∇u̇ , ζ2(Es

tE
h
i − I)σ̇

)
Ω
dt ds ≤ C (5.7)

uniformly in h ∈ (0, h0].

Proof. Step 1. We denote

S =

h∫
0

T−h∫
0

(
∇u̇ , ζ2(Es

tE
h
i − I)σ̇

)
Ω
dt ds = S1 + S2,
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where

S1 : =

h∫
0

T−h∫
0

(
∇u̇ , ζ2Es

t (E
h
i − I)σ̇

)
Ω
dt ds =

h∫
0

T−h∫
0

(
∇u̇ , ζ2Es

t∆
h
i σ̇
)

Ω
dt ds,

S2 : =

h∫
0

T−h∫
0

(
∇u̇ , ζ2(Es

t − I)σ̇
)

Ω
dt ds =

h∫
0

T−h∫
0

(
∇u̇ , ζ2∆s

t σ̇
)

Ω
dt ds.

(5.8)

In the next two steps we will show, that the first term can be estimated uniformly even
with a factor h−2, while for the second term we can only reach hδ−2|S2| ≤ C .

Step 2. Estimates for |S1|.
To this end, we integrate by parts in the term S1, then use the relation − div σ = f , end
up with

S1 = −
h∫

0

T−h∫
0

(
u̇ζ2 , Es

t∆
h
i ḟ
)

Ω
dt ds−

h∫
0

T−h∫
0

(
u̇∇ζ2 , ∆s

t σ̇
)

Ω
dt ds =: S11 + S12.

Moving the operator ∆h
i from ḟ to u̇ζ2 yields

S11 = −
h∫

0

T−h∫
0

(
∆−hi (u̇ζ2) , Es

t ḟ
)

Ω
dt ds.

Since

‖∆−hi (u̇ζ2)‖L∞(L2) = h‖D−hj
(
u̇ζ2)‖L∞(L2) ≤ C

(
‖u̇‖L∞(L2) + ‖∇u̇‖L∞(L2)

)
h,

the uniform estimates (3.6), (3.8) together with the assumption ḟ ∈ L∞(L2) (cf (1.4))
lead to

|S11| ≤ h

h∫
0

‖ḟ‖L1(L2)‖D−hi (u̇ζ2)‖L∞(L2) ds ≤ CTh
2,

where KT is independent of 0 < µ ≤ µ0, and 0 < h ≤ h0. A similar argument works for
the summand S12, hence, again with (3.6) and (3.8),

|S12| =

∣∣∣∣∣∣
h∫

0

T−h∫
0

(
∆−hi (u̇∇ζ2) , Es

t σ̇
)

Ω
dt ds

∣∣∣∣∣∣
≤ C h

h∫
0

‖σ̇‖L1(L2)‖D−hi (u̇∇ζ2)‖L∞(L2) ds ≤ CT h
2.

Step 3. Estimates for |S2|.
To show that this quantity is bounded by Ch2−δ, it is not enough to use ∇u̇ ∈ L∞(L2)
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together with (2.2), because then we are left with the term h1/2−δ. Instead we need to
exploit (2.2) and (2.3), which will be done via Fourier analysis. To this end we extend
the functions ζ2∇u̇ and σ̇ by zero to the symmetric time interval [−2T, 2T ], that is for
t ∈ [−2T, 2T ], we set

y(t, ·) =

{
ζ2(·)∇u̇(t, ·), t ∈ [0, T ]

0 else
, z(t, ·) =

{
σ̇(t, ·), t ∈ [0, T ]

0 else
.

Then both y and z have jumps at t = 0 and t = T . However, since we know that
∇u̇ ∈ L∞(L2), σ̇ ∈ L∞(L2), we obtain even

h∫
0

2T∫
−2T

∫
Ω

|∆s
ty|2 + |∆s

tz|2 dx dt ds =

h∫
0

0∫
−s

∫
Ω

|Es
t y|2 + |Es

t z|2 dx dt ds

+

h∫
0

T−h∫
0

∫
Ω

|∆s
ty|2 + |∆s

tz|2 dx dt ds+

h∫
0

T∫
T−h

∫
Ω

|∆s
ty|2 + |∆s

tz|2 dx dt ds

≤ C

 h∫
0

T−h∫
0

∫
Ω

|∆s
ty|2 + |∆s

tz|2 dx dt ds+ 3h2(‖∇u̇‖2
L∞(L2) + ‖σ̇‖2

L∞(L2))

 .

The same splitting leads to

S2 =

h∫
0

T−h∫
0

(
y,∆s

tz
)

Ω
dt ds

=

h∫
0

2T∫
−2T

(
y,∆s

tz
)

Ω
dt ds−

 h∫
0

0∫
−s

(
y, Es

t z
)

Ω
dt ds+

h∫
0

T∫
T−h

(
y,∆s

tz
)

Ω
dt ds


=: S3 + Irem, (5.9)

where again |Irem| ≤ C h2 independent of h. Now let bm, cm ∈ L2(Ω) be the Fourier
coefficients of y and z, respectively, that is

y(t, x) =
∞∑

m=−∞

bm(x) exp(
imπ

2T
t), z(t, x) =

∞∑
m=−∞

cm(x) exp(
imπ

2T
t).

In [6, Lemma A.1] it was shown that

∞∑
m=−∞

‖bm‖2
L2(Ω)m

1−δ ≤ C(T ) sup
0<h≤h0

h−2

h∫
0

2T∫
−2T

‖∆s
ty‖L2(Ω) dt ds, (5.10)
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the same inequality holds with bm replaced by cm, and y by z, of course. The term S3

can be estimated as follows:

|S3| ≤
∣∣∣ ∞∑
m=−∞

(bm, cm
)

Ω

∣∣∣ h∫
0

| exp(
imπ

2T
s)− 1| ds

≤
∞∑

m=−∞

‖bm‖L2(Ω)‖cm‖L2(Ω)

h∫
0

(
2− 2 cos(

mπ

2T
s)
)1/2

ds. (5.11)

Furthermore, elementary calculations lead to

hδ−1
(
2− 2 cos(

mπ

2T
s)
)1/2

= hδ−1
∣∣ sin(

mπ

2T
s)
∣∣ =

m1−δ

(mh)1−δ

∣∣ sin(
mπ

2T
s)
∣∣ ≤ Cm1−δ,

where C = C(T ) is independent of h. Indeed, for hm ≥ T we can use | sin · · · | ≤ 1, while
for hm ≤ T we have

(mh)δ−1
∣∣ sin(

mπ

2T
s)
∣∣ ≤ (mh)δ−1

∣∣ sin(
mπ

2T
h)
∣∣ ≤ (mh)δ ≤ T δ,

since 0 ≤ s ≤ h. Now from (5.11) and (5.10) it follows

hδ−2|S3| ≤ C
∞∑

m=−∞

‖bm‖L2(Ω) ‖cm‖L2(Ω) m
1−δ

≤ C
(

sup
h
h−2

h∫
0

T−h∫
0

∫
Ω

|∆s
t∇u̇|2 dx dt ds

)1/2(
sup
h
h−2

h∫
0

T−h∫
0

∫
Ω

|∆s
t σ̇|2 dx dt ds

)1/2

which is bounded independent of h due to Theorem 2.1 and 2.3 (or rather by assumption
in the case of isotropic hardening).

5.3 Proof of Theorem 2.4

We use the test function ζ2(Es
tE

h
i −I)σ̇µ in (3.3) and test the relation (3.4) with ζ2(Es

tE
h
i −

I)ξ̇µ. We sum the relations and integrate from t = t1 to t = t2 − h, this yields

h∫
0

t2−h∫
t1

(
Aσ̇µ, ζ

2(Es
tE

h
i − I)σ̇µ

)
Ω

+
(
Hξ̇µ, ζ

2(Es
tE

h
i − I)ξ̇µ

)
Ω
dt ds+ Tiµ(t1, t2) =

h∫
0

t2−h∫
t1

(
∇u̇µ, ζ2(Es

tE
h
i − I)σ̇µ

)
Ω
dt ds =: Sµ(t1, t2), (5.12)

where Tiµ is the quantity coming from the penalty term and has the same meaning as
in Lemma 5.2. Similar as in (4.5), for symmetric tensors A (with constant entries) and
τ = τ(t, x) we have the relation

Aτ : (Es
tE

h
i − I)τ =

1

2
(Es

tE
h
i − I)(Aτ : τ)− 1

2
A(Es

tE
h
i − I)τ : (Es

tE
h
i − I)τ. (5.13)
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Put

Rµ(t1, t2) :=
1

2

h∫
0

t2−h∫
t1

∫
Ω

[
(Es

tE
h
i − I)(Aσ̇µ : σµ) + (Es

tE
h
i − I)(Hξ̇µ : ξ̇µ)

]
ζ2 dx dt ds,

then (5.13) turns (5.12) into

Lµ(t1, t2) :=

h∫
0

t2−h∫
t1

(A(Es
tE

h
i − I)σ̇µ, ζ

2(Es
tE

h
i − I)σ̇µ)Ω + (H(Es

tE
h
i − I)ξ̇µ, ζ

2(Es
tE

h
i − I)ξ̇µ)Ω dt ds

= Rµ(t1, t2) + Tiµ(t1, t2)− Sµ(t1, t2). (5.14)

Due to the strong convergence 3 σ̇µ → σ̇, ξ̇µ → ξ̇ and ∇u̇µ → ∇u̇ in L2(L2) we obtain for
any fixed h with 0 < h ≤ h0:

lim
µ→0
Lµ(t1, t2) =: L(t1, t2) = (5.15)

1

2

h∫
0

t2−h∫
t1

(A(Es
tE

h
i − I)σ̇, ζ2(Es

tE
h
i − I)σ̇)Ω + (H(Es

tE
h
i − I)ξ̇, ζ2(Es

tE
h
i − I)ξ̇)Ω dt ds,

lim
µ→0
Sµ(t1, t2) =: S(t1, t2) =

h∫
0

t2−h∫
t1

(∇u̇, ζ2(Es
tE

h
i − I)σ̇)Ω dt ds (5.16)

for all t1, t2 with 0 ≤ t1 < t2 − h ≤ T − h. To estimate the term Rµ(t1, t2), we use the
following argument: If ω ∈ L∞(L1), then for all t1, t2 such that 0 ≤ t1 ≤ t2 − h ≤ T − h
it follows ∣∣ t2−h∫

t1

∫
Ω

ζ2(Es
tE

h
i − I)ω dx dt

∣∣ ≤ Ch‖ω‖L∞(L1). (5.17)

Indeed, rewriting the integral we find

∣∣ t2−h∫
t1

∫
Ω

ζ2(Es
tE

h
i − I)ω dx dt

∣∣ =
∣∣ t2−h∫
t1

∫
Ω

ζ2(Es
t − I)Eh

i ω + ζ2(Eh
i − I)ω dx dt

∣∣
≤
∣∣ t2−h+s∫
t1+s

∫
Ω

ζ2Eh
i ω dx dt−

t2−h∫
t1

∫
Ω

ζ2Eh
i ω dx dt

∣∣+
∣∣ t2−h∫
t1

∫
Ω

ζ2(Eh
i − I)ω dx dt

∣∣
≤
∣∣ t1+s∫
t1

∫
Ω

ζ2Eh
i ω dx dt|+

∣∣ t2−h+s∫
t2−h

∫
Ω

ζ2Eh
i ω dx dt

∣∣+
∣∣ t2−h∫
t1

∫
Ω

ζ2(Eh
i − I)ω dx dt

∣∣
≤ C h ‖ω‖L∞(L1),

3Like in the proof of Theorem 2.1, in the first term it suffices to use the weak convergence and lower
semi-continuity.
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here we also used |(Eh
i − I)ζ| ≤ c h.

Hence, taking also the integration over s into account, it follows

|Rµ(t1, t2)| ≤ C h2 (‖σ̇µ‖2
L∞(L2) + ‖ξ̇µ‖2

L∞(L2)),

where C is independent of µ and h. With Lemma 5.2 it follows now for almost all t1, t2,
such that 0 ≤ t1 ≤ t2 − h ≤ T − h:

L(t1, t2) ≤ lim sup
µ→0

Tiµ(t1, t2) + lim sup
µ→0

|Rµ(t1, t2)| − S(t1, t2) ≤ Ch2 − S(t1, t2),

where the constant depends neither on h nor on t1, t2. Since L and S depend continuously
on t1 and t2, we obtain

L(0, T ) ≤ Ch2 + |S(0, T )|. (5.18)

Due to the positivity assumptions on A and H we have

L(0, T ) ≥ C

h∫
0

T−h∫
0

∫
Ω

(
|(Es

tE
h
i − I)σ̇|2 + |(Es

tE
h
i − I)ξ̇|2

)
ζ2 dx dt ds.

Now we apply the argument

|(Es
tE

h
i − I)σ̇|2 = |(Es

tE
h
i − Eh

i + Eh
i − I)σ̇|2 ≥ 7

8
|∆h

i σ̇|2 −
1

8
|∆s

tE
h
i σ̇|2,

|(Es
tE

h
i − I)ξ̇|2 ≥ 7

8
|∆h

i ξ̇
2|2 − 1

8
|∆s

tE
h
i ξ̇|2.

We combine this with (5.18), use the translation invariance of integrals and arrive at

h∫
0

T−h∫
0

∫
Ω

(|∆h
i σ̇|2 + |∆h

i ξ̇|2)ζ2 dx dt ds = h

T−h∫
0

∫
Ω

(|∆h
i σ̇|2 + |∆h

i ξ̇|2)ζ2 dx dt

≤ ch2 + |S(0, T )|+ C̃

h∫
0

T−h∫
0

∫
Ω

(|∆s
t σ̇|2 + |∆s

t ξ̇|2)ζ2 dx dt ds.

Finally we multiply this inequality by hδ−2, then the assertion follows from Lemma 5.3
and Theorem 2.1. 2
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