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Abstract

We study the relation between different forms of non-existence of arbitrage and the
characteristics of the stochastic basis under the different filtrations. This is achieved
through the analysis of the properties of the numéraire portfolio. Furthermore, we focus
on the problem of calculating the additional logarithmic utility of the better informed
investor in terms of the Shannon entropy of his additional information. We show that
the expected logarithmic utility increment due to better information equals its Shannon
entropy also in case of a pure jump basis with jumps that are quadratically hedgeable,
and so extend a similar result known for bases consisting of continuous semimartingales.

2010 AMS subject classifications: primary 60 H 30, 91 G 10; secondary 60 G 48, 94
A 17.

Key words and phrases: free lunch; arbitrage; equivalent martingale measure; numéraire
portfolio; special semimartingale; insider trading; asymmetric information; enlargement of fil-
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1 Introduction

One of the fundamental questions in mathematical finance is the existence of arbitrage in the
market. In markets generated by semimartingales, the most common no arbitrage concept,
no free lunch with vanishing risk (NFLVR), is shown, in [7] and [8], to be equivalent with the
existence of an equivalent sigma martingale measure. Under this measure the dynamics of the
market assets S discounted by a risk free bond B are seen to be sigma martingales. A number
of less restrictive concepts of arbitrage have since been introduced, with the latest being the
notion of no unbounded profit with bounded risk (NUPBR), see [11]. From a mathematical
point of view, the requirement of the existence of an equivalent sigma martingale measure
under (NFLVR) is weakened in a (NUPBR) market by the existence of a process W , such
that any possible portfolio in the market that is discounted by W is a supermartingale under
the original market measure. This process is called the numéraire and its existence, as is
shown in [11], is linked to the characteristic triplet of the stochastic basis of the market.
The first aim of this paper is to find and explicit link between the characteristic triplet of the
underlying semimartingales and the different notions of arbitrage in the market. Assuming
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a weak form of the structure condition, first introduced in [14], and under additional (yet
necessary) conditions, we obtain a representation of the underlying semimartingales that
depends on the market price of risk ( or information drift). Under this representation we show
that the existence of arbitrage depends, firstly on the jump structure of the semimartingales
and secondly on the integrability of the process describing the market price of risk.
Having studied this link, we extend our results to markets with asymmetric information.
Furthermore, we study the utility advantage that a better informed investor may have in
terms of the underlying market structure, and interpret it as in [2] by entropy notions such
as the Shannon entropy in the case of logarithmic utility. In contrast to previous work this
is to be achieved in a setting as general as possible, in the sense of [11].

The paper is organised as follows. The market set-up is explained in Section 2. The special
semimartingales playing the role of underlying price dynamics for the market are discussed
in Section 3. The link between characteristics of the underlying semimartingales and the
different notions of arbitrage, i.e. the existence of the numéraire, is studied in Section 4. The
advantages of our analysis is illustrated in the examples of Section 4.1, in which the explicit
form of the numéraire portfolio can be given. With the ensuing descriptions especially of the
related numéraire portfolios, we discuss in Section 5 the structure of the information drift of
an (initially enlarged) filtration G, and therefore the expected logarithmic utility advantage
of the better informed investor. We are able to identify the extra expected logarithmic utility
in a purely discontinuous setting, in which the squares of the jumps are hedgeable, with
the Shannon entropy of the additional information, thereby extending this striking equality
beyond the continuous case, see [3], [1].

Introductory remarks and notation

In the analysis hereafter the notation and results on semimartingales are based on [10].
Let (Ω,F ,F,P) be a complete probability space, where F = {Ft}t∈R+ satisfies the usual
conditions. With P(Rd) we denote the set of Rd valued predictable processes in the given
probability space. For any adapted càdlàg process X we define the jump process ∆X =
X −X−, where X− denotes the left-hand limit of X.
Let π ∈ P(Rd) and Y be a d−dimensional semimartingale, then π · Y =

∫
πdY denotes

the stochastic integral whenever this is well defined. Furthermore, we define the quadratic
covariation process of two semimartingales X,Y as [X,Y ] = XY −X− ·Y −Y− ·X. If X,Y are
locally square integrable martingales, then [X,Y ] is locally integrable and has a predictable
compensator 〈X,Y 〉.
Lastly, for a semimartingale X starting at zero, with E(X) we denote the Dolean-Dade
exponential. The exponential has the form

E(X) = exp

(
X − 1

2
[Xc, Xc]

)
Πs≤· (1 + ∆Xsi) exp (−∆Xs) ,

where Xc denotes the continuous part of the process, and satisfies the integral equation
Z = 1 + Z− · Y .

2 Market set-up

We work in a market characterized by a complete probability space (Ω,F ,F,P), where F =
{Ft}t∈[0,T ] satisfies the usual conditions and the time horizon T is finite. The market consists

of a risk free asset S0 and d risky assets S1, . . . , Sd. With no loss of generality we assume
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that S1, . . . , Sd are strictly positive semimartingales and S0 = 1. Therefore we may state
that for every i there exists a semimartingale Xi, with Xi

0 = 0 and ∆Xi > −1 such that

Si = Si0E(Xi),

with Si0 > 0.
With the d+1 assets of our market we create a portfolio W π, where π denotes the investment
strategy. As in [11], we impose a “credit limit” in order to avoid “doubling strategies”. This
limit is a uniform lower bound on the wealth process W π, which we set equal to zero, i.e. we
impose W π > 0. Furthermore we normalize the initial value W0 = 1.
Let X = (X1, . . . , Xd)∗, π = (π1, . . . , πd), with πi denoting the proportion of the portfolio
value invested in asset i, i = 1, . . . , d, and π0 = 1 −

∑d
i=1 π

i denoting the proportion of
the portfolio invested in the risk free asset. Then the dynamics of the portfolio satisfy the
equation

dW π
t

W π
t

=

d∑
i=1

πit
dSit
Sit

= πtdXt,

hence W π = E(π · X). For the latter to make sense the integral
∫ ·
0 πtdXt has to be well

defined. Furthermore from the credit limit W π has to be positive. For these the set of
admissible portfolios, denoted by W, is defined as

W =
{
W π = E(π ·X)

∣∣∣π ∈ L(X) and π∆X > −1
}
,

with L(X) denoting the set of Rd−valued predictable processes that are integrable with re-
spect to X. Of specific interest are the admissible portfolios that “outperform” any other
portfolio in W. More precisely we focus on the portfolios introduced by the following defini-
tion.

Definition 2.1 (i). An admissible portfolio W π is called the numéraire portfolio, if the
process W ρ

Wπ is a supermartingale for every W ρ ∈ W.

(ii). An admissible portfolio W π is called (relative) growth optimal (GOP), if

E

[
log

(
W ρ
T

W π
T

)]
≤ 0

for all W ρ ∈ W.

(iii). An admissible portfolio W π with E[lnW π] <∞ is called log-utility-optimal portfolio if
E[lnW ρ] ≤ E[lnW π] for every W ρ ∈ W.

The existence and properties of these optimal portfolios is closely related to the existence
of different forms of arbitrage in the market, that are presented in the following definition.

Definition 2.2 [11] We consider the following types of arbitrage.

(i). A portfolio W π ∈ W is said to generate an arbitrage opportunity, if it satisfies P [W π
T ≥

1] = 1 and P [W π
T > 1] > 0. If such a portfolio does not exist, we have no arbitrage(NA).
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(ii). A sequence (W πn)n∈N of admissible portfolios is said to generate an unbounded profit
with bounded risk (UPBR), if the collection of positive random variables (W πn

T )n∈N is
unbounded in probability, i.e. if

lim
m→∞

sup
n∈N

P [W πn
T > m] > 0.

If such a sequence does not exist, we say that there is no unbounded profit with bounded
risk (NUPBR).

(iii). A sequence (W πn)n∈N of admissible portfolios is said to be a free lunch with vanishing
risk (FLVR), if there exist an ε > 0 and an increasing sequence (δn)n∈N with 0 ≤ δn ↑ 1,
such that P [W πn

T > δn] = 1 as well as P [W πn
T > 1 + ε] ≥ ε. If such a sequence does not

exist, we say that there is no free lunch with vanishing risk (NFLVR).

(iv). An admissible portfolio W π is said to generate an unbounded increasing profit if the
wealth process is increasing, i.e., if P [W π

s ≤ W π
t ,∀ 0 ≤ s < t ≤ T ] = 1, and if

P [W π
T > 1] > 0. If such a portfolio does not exist, no unbounded increasing profit

(NUIP) is said to hold.

The connection between the different forms of arbitrage is an interesting subject by itself,
however for our purposes it suffices to consider only their hierarchical ordering. According to
[11] and [7], we can state that (NUIP) is a weaker notion than (NUPBR) and (NA), which in
turn are weaker notions than (NFLVR). Furthermore, (NFLVR) holds if and only if (NUPBR)
and (NA) hold. However there is no apparent connection between (NA) and (NUPBR).

The link between the optimal portfolios and different forms of arbitrage, which has been
studied in the aforementioned papers, has been summarised in [9], from where we have the
following theorem, modulo some changes that fit our notation.

Theorem 2.1 For an Rd-values semimartingale S, the following are equivalent:

(i). S satisfies (NUPBR)

(ii). The numéraire portfolio exists.

(iii). The growth-optimal portfolio exists.

Furthermore, the numéraire and the growth-optimal portfolio are unique and identical.
In the case that sup{E[logW π

T ]|W π ∈ W with E[logW π
T ] < ∞} < ∞, the above statements

are equivalent to

(iv). The log-utility optimal portfolio exists. Furthermore it is unique and identical to the
numéraire growth optimal portfolio.

Remark 2.1 In this section we started by describing the assets in the market as semimartin-
gales. This assumption can be omitted in markets generated by continuous price dynamics
under the condition of finite logarithmic utility. In this setting it is proven by [3] that for
simple buy and hold strategies, finiteness of the logarithmic utility implies that the contin-
uous processes in the market are semimartingales, with no assumption on the existence of
arbitrage. [12] elaborates on this by showing that finite utility not only implies that S is a
semimartingale for any admissible trading strategy, but that it also has a canonical decompo-
sition of the form S = M +α〈M〉, where M is a (local) martingale and α a square integrable

4



predictable process. Furthermore it is proven that there exists a GOP that is given by Wα,
i.e. by investing on S according to the strategy α. Hence from Theorem 2.1 we can conclude
that finiteness of the logarithmic utility in this market implies (NUPBR), or even (NFLVR) if
S satisfies some further technical conditions. However these nice properties do not translate
to the non-continuous setting, as is illustrated in [12] by a counterexample. The authors show
that finiteness of logarithmic utility not only does not imply a decomposition for the process
as stated before, but not even that the semimartingale property of the underlying process S
holds.

3 Semimartingale decomposition

Having introduced the setting of the market, in this section we turn our attention to the
dynamics of the underlying semimartingale. More specifically we introduce new assumption
that allow us to reach an explicit form of the numéraire .

3.1 Market price of risk

We assume that X is a d-dimensional special semimartingale, with the unique representation

X = M + L, (1)

where M = (M1, . . . ,Md)∗ is a d-dimensional local square integrable martingale and L =
(L1, . . . , Ld)∗ is a d-dimensional predictable process with finite variation. Hence [X,X] is
locally integrable, and the predictable process 〈X〉 = 〈M〉 is well defined.
In the case of a market generated by a continuous semimartingale X, the existence of ar-
bitrage is closely linked to the properties of the process L. A number of papers deals with
this subject. In [7] the authors prove that if (NFLVR) holds then X is a semimartingale
and dLit � d〈Xi〉t for 1 ≤ i ≤ d. If theres exists a d−dimensional process α in L2(X) such
that dLt = αtdXt, the market satisfies the structure condition(SC), see [14]. In the case of
continuous semimartingale it has been proven in [9], that (NUPBR) is equivalent to the (SC).
In the more general setting of discontinuous semimartingales, a weaker form of (SC) is neces-
sary for (NUPBR) but not sufficient. This is denoted by (SC’) and differs from (SC), in that
α is assumed to only be a predictable d−dimensional process, see [9]. In order to illustrate
this argument we need to introduce the notion of immediate arbitrage. The definition we
provide is a slight modification of the one in [11], that fits our setting.

Definition 3.1 A strategy ξ is called an immediate arbitrage opportunity, if for all t ∈ [0, T ]
it satisfies

ξtd〈Xc〉t = 0, ξt∆Xt ≥ 0 and ξtdLt ≥ 0 P− a.s.

Immediate arbitrage is the weakest notion of arbitrage and its existence in the market leads
to the violation of (NA) and (NUPBR), and consequently of (NFLVR).
The authors in [7] have proven that the market has no immediate arbitrage iff dLit � d〈Xi〉t.
In the case of discontinuous semimartingales, as is pointed out in [11], Remark 3.13, the
condition dLit � d〈Xi〉t for i = 1, . . . , d, is necessary for the absence of immediate arbitrage,
and hence the absence of (UPBR) and (FLVR), but not sufficient. Therefore we introduce
the following assumption.

Assumption 1 There exists a predictable process α with values in Rd such that dLi =
αid〈Xi〉 for i = 1, . . . , d, i.e. (SC’) is satisfied.
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This assumption provides us with a process that captures the market price of risk. Moreover,
it is not restrictive, since if it fails, there is already immediate arbitrage in the market and
there is not much that we can say about it.

Moving on from the assumption of the existence and predictability of the market price
of risk α, we come to the question of its integrability and its impact on arbitrage in the
market. In the continuous case it is proven, see [3], that (NFLVR) is violated in case α is
not integrable. As the next theorem illustrates, the integrability of α is only relevant, if the
strategy α produces a positive portfolio Wα > 0.

Theorem 3.1 Let α be the market price of risk such that Wα
t > 0 P -a.s. for all t ∈ [0, T ].

Then, if P (
∫ T
0 αsd〈X〉sαs =∞) > 0, (NUPBR) is violated.

Proof
Since there is a positive probability that

∫ T
0 αsd〈X〉sαs = ∞, we have α /∈ L(X). From

Proposition 4.16 in [11] the non-integrability of α implies P (Wα
T = ∞) > 0. This in turn

implies that (NUPBR) is violated. •

Remark 3.1 In the case the . Hence, from the definition of W and the previous theorem,
we conclude that: α ∈ W iff Wα

t > 0 P−a.s. for all t ∈ [0, T ], and α ∈ L2(X). Which implies
that the (SC) holds true.

3.2 Characteristics of the market

Our aim is to study the existence of (UPBR) in the market and explicitly calculate the
numéraire portfolio. For this reason we introduce further assumptions, that provide us with
a more explicit form of the d-dimensional semimartingale X.

Assumption 2 The filtration F = {Ft}t∈[0,T ] is quasi-left continuous .

Assumption 3 The d-dimensional locally square integrable martingale M has the following
representation:

M = M c +H ∗ (µ− η),

where M c is the continuous part of the martingale, µ is a d-dimensional random measure on
R+ × Rd, η is the d-dimensional compensator of µ, H is a d-dimensional predictable process
that is in Gloc(µ)1 and H ∗ µ =

∫ ·
0

∫
Rd H(s, z)µ(ds, dz).

Hence X is a quasi-left continuous semimartingale, with a characteristic triplet (B,C, η),
where dB = αd〈X〉, C = 〈M c,M c〉.
From [10] Proposition II.2.9, the characteristics of X can take the form

C = c ·A (2)

η(dt, dz) = νt(dz)dAt, (3)

where c is a predictable processes in Rd×d and positive definite. A is a d-dimensional contin-
uous predictable process in Rd, with Ai0 = 0 for i = 1, . . . , d and non decreasing paths.

1For a definition see Definition II.1.27 p.72 in [10].
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Hence

d〈X〉t =

(
ct +

∫
R0

H2(t, z)νt(dz)

)
dAt (4)

and

Xt =

∫ t

0
dM c

s +

∫ t

0

∫
R0

H(s, z)(µ(dz, ds)−νs(dz)dAs)+

∫ t

0
αs

(
cs +

∫
R0

H2(s, z)νs(dz)

)
dAs

“Abusing” the notation in what follows, we denote by (α
(
c+H2 · ν

)
, c,H · ν) the “charac-

teristics” of X.

Remark 3.2 The characteristic triplet (B,C, η) of any special semimartingale can be rep-
resented as in the system of equations (2) and (3). The condition of Y being quasi-left
continuous in Assumption 2 is necessary for A to be a continuous process. This condition
is introduced in order to ease the presentation and the analysis in the forthcoming sections,
since the choice of a continuous A provides a tractable version of 〈X〉 as given in (4).

4 Numéraire portfolio.

So far we have introduced a market, the assets of which are driven by special semimartingales.
We have also presented different notions of arbitrage and defined the numéraire portfolio. In
this section we study the relationship between the characteristics of X and the existence
of arbitrage in its various forms. More specifically we are interested in including portfolios
that can potentially violate (NUPBR). For this reason we need to consider a larger class of
portfolios than the admissible ones denoted by W. This class is defined and studied in this
section after some introductory results.

From this point onwards, to simplify notation and computations, we consider a market
consisting of only one risky asset.

The only requirement that is imposed on the considered invest strategies π is the “credit
limit”, i.e. W π > 0 P−a.s. The following definition presents the interval in which these
strategies live.

Definition 4.1 Let t ∈ [0, T ]. Define the max fraction πt and the min fraction πt as

πt = inf{πt|1 + πtH(t, z) > 0, ν − almost everywhere}

πt = sup{π|1 + πtH(t, z) > 0, ν − almost everywhere}.

The limit set of investment strategies Π̃ satisfying the “credit limit” is defined as Π̃ :=
{π|π ∈ P(R) and πt ∈ [πt, πt], t ∈ [0, T ]} and the set of investment strategies π is defined as
Π := {π|π ∈ Π and 0 < 1 + πtH(t, z) <∞ P− a.s., for allt ∈ [0, T ]}.

In the case that π and π are bounded processes the limit set Π̃ coincides with the set of
investment strategies Π. However, since π, π can take values in {±∞} or values that lead to
a zero value portfolio, the set Π is included in Π̃.
Having introduced the space of investment strategies, in order to impose an optimality con-
dition in this class we proceed with the study of the ratio of two portfolios in Π.
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Lemma 4.1 Let X be a semimartingale with characteristics (α
(
c+H2 · ν

)
, c,H · ν), such

that ∆X > −1. Then for π ∈ Π we have

W π = exp(πXc + [ln(1 + πX)] ∗ µ)

× exp

{(
−1

2
π(π − 2α)c+ [απH2 − πH] ∗ ν

)
·A
}
,

and for any ρ ∈ Π

d
W ρ
t

W π
t

=
W ρ
t−

W π
t−

{
(ρt − πt)dXc

t + (ρt − πt)
∫
R0

πtH(t, z)

1 + πtH(t, z)
µ̃(dz, dt)

+ (πt − ρt)
(

(πt − αt)ct +

∫
R0

(
πtH

2(t, z)

1 + πtH(t, z)
− αtH2(t, z)

)
νt(dz)

)
dAt

}
, t ∈ [0, T ].

Proof
For π ∈ Π we have

W π = E(πX)

= exp

(
πX − 1

2
π2〈Xc, Xc〉

)
Πs≤·(1 + π∆Xs) exp(−π∆Xs)

= exp

(
πXc + [πH] ∗ (µ− ν) + απ(c+ [H2] ∗ ν) ·A− 1

2
π2c ·A

)
× exp([ln(1 + πH)] ∗ µ− [πH] ∗ µ)

= exp(πXc + [ln(1 + πH)] ∗ µ)

× exp

{(
−1

2
π(π − 2α)c+ [απH2 − πH] ∗ ν

)
·A
}

For ρ ∈ Π we therefore have

W ρ

W π
= exp

(
(ρ− π)Xc +

[
ln

1 + ρH

1 + πH

]
∗ µ
)

× exp

{(
−1

2
(ρ− π)(ρ+ π − 2α)c+ [(ρ− π)(αH2 −H)] ∗ ν

)
·A
}
.
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Applying Itô’s formula the dynamics of the portfolio are given by

d
W ρ
t

W π
t

=
W ρ
t−

W π
t−

{
(ρt − πt)dXc

t +

∫
R0

(
1 + ρtH(t, z)

1 + πtH(t, z)
− 1

)
µ(dz, dt) +

1

2
(ρt − πt)2ctdAt

− (ρt − πt)
(

1

2
(ρt + πt − 2αt)ctct −

∫
R0

(
αtH

2(t, z)−H(t, z)
)
νt(dz)

)
dAt

}
=

W ρ
t−

W π
t−

{
(ρt − πt)dXc

t +

∫
R0

(ρt − πt)H(t, z)

1 + πtH(t, z)
µ(dz, dt)

+ (ρt − πt)
(

(αt − πt)ct +

∫
R0

(
αtH

2(t, z)−H(t, z)
)
νt(dz)

)
dAt

}
=

W ρ
t−

W π
t−

{
(ρt − πt)dXc

t +

∫
R0

(ρt − πt)H(t, z)

1 + πtH(t, z)
µ̃(dz, dt) + (ρt − πt)(αt − πt)ctdAt

+ (ρt − πt)
∫
R0

(
αtH

2(t, z)−H(t, z) +
H(t, z)

1 + πtH(t, z)

)
νt(dz)dAt

}
=

W ρ
t−

W π
t−

{
(ρt − πt)dXc

t + (ρt − πt)
∫
R0

H(t, z)

1 + πtH(t, z)
µ̃(dz, dt)

+ (πt − ρt)
(

(πt − αt)ct +

∫
R0

(
πtH

2(t, z)

1 + πtH(t, z)
− αtH2(t, z)

)
νt(dz)

)
dAt

}
,

t ∈ [0, T ]. •

Having the explicit form of the ratio W ρ

Wπ , we want to find, if it exists, a portfolio that has
the greatest returns in the market relative to any possible investment strategy in Π. For this
reason the main object of interest from the last lemma is the drift of the ratio process W ρ

Wπ ,
namely

Dt(ρt, πt) = (πt − ρt)
(

(πt − αt)ct +

∫
R0

(
πtH

2(t, z)

1 + πtH(t, z)
− αtH2(t, z)

)
νt(dz)

)
, t ∈ [0, T ].

More specifically, we are interested in the existence of a portfolio W π such that the drift term
is negative for any ρ ∈ Π at any fixed point (t, ω) ∈ [0, T ]× Ω .

Definition 4.2 A portfolio W π is called Π-optimal if π ∈ Π and

Dt(ρt, πt) ≤ 0 P− a.s. for all t ∈ [0, T ] and ρ ∈ Π.

As a example, we study the case when the jump measure is trivial, i.e. νt = 0 P − a.s.
for all t ∈ [0, T ]. Then the drift has the form

Dt(ρt, πt) = (πt − ρt)(πt − αt)ct, t ∈ [0, T ].

Assuming that α ∈ Π, the Π-optimal portfolio clearly is the one that follows the strategy α.
If α ∈ L(X), then Wα is not only the Π-optimal portfolio but also the numéraire. Further-
more, from Remark 3.1 it follows that 1

Wα is a martingale and the density of an equivalent
martingale measure, implying (NFLVR) in the market. Otherwise, from Theorem 3.1 port-
folio Wα takes advantage of arbitrage opportunities in the market, leading to the violation
of (NUPBR).
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In general the jump measure is not trivial, hence we need to study the functions

Et(πt) =

∫
E

(
πtH

2(t, z)

1 + πtH(t, z)
− αtH2(t, z)

)
νt(dz),

and
Ft(πt) = (πt − αt)ct + Et(πt), t ∈ [0, T ].

Both x 7→ Et(x) and x 7→ Ft(x) are increasing functions, a property that is critical for the
analysis in the sequel.

Let Π̃ = Π, i.e. π, π ∈ Π, and fix (ω, t) ∈ Ω× [0, T ]. Then:

1. If 0 < Et(πt) , Et(πt) > 0 holds for any πt ∈ [πt, πt]. Hence the sign of Ft(·) depends
on the market price of risk αt:

(a) If αt < πt, then Ft(πt) > 0 for any πt ∈ [πt, πt]. For the Π−optimal portfolio to
exist we need to have Dt(ρt, πt) < 0 for every ρt ∈ [πt, πt], which makes πt = πt
the Π−optimal strategy. The analysis hereafter follows the same logic.

(b) If πt ≤ αt, since the function Ft(·) is increasing, the following cases are possible:

i. If Ft(πt) > 0, the Π−optimal strategy is πt = πt.

ii. If Ft(πt) < 0, the Π−optimal strategy is πt = πt.

iii. Otherwise, F takes both positive and negative values in πt ∈ [πt, πt], hence
the Π−optimal strategy is the unique solution of the equation Ft(πt) = 0.

2. If Et(πt) ≤ 0 ≤ Et(πt), the drift behaves as follows:

(a) If αt < πt, then Ft(πt) ≥ 0. The sign of Ft(πt) is crucial for the possible scenarios.
Since Ft(·) is an increasing function, there exist two cases

i. If Ft(πt) ≤ 0 ≤ Ft(πt) the equation Ft(πt) = 0 has a solution in [πt, πt], which
is also the Π−optimal strategy.

ii. If Ft(πt) > 0 the Π−optimal strategy is πt.

(b) If πt ≤ αt ≤ πt the conclusion is the same as in (a).i).

(c) If πt < αt, then Ft(πt) ≤ 0. Again the sign of Ft(πt) is crucial. Since Ft(·) is an
increasing function, there exist two cases

i. If Ft(πt) ≤ 0 ≤ Ft(πt) the equation Ft(πt) = 0 has a solution in [πt, πt], which
is also the Π−optimal strategy.

ii. If Ft(πt) < 0 the Π−optimal strategy is πt.

3. Et(πt) < 0.
In this case Et(πt) < 0 for all π ∈ [πt, πt]. Then we have the following cases:

(a) Let αt > πt, then the Π−optimal strategy is given by πt = πt.

(b) πt ≥ αt.
Since the function Ft(·) is increasing, we face the following cases.

i. Let Ft(πt) > 0. Then the Π−optimal strategy is given by πt = πt.

ii. Let Ft(πt) < 0. Then the Π−optimal strategy is πt = πt.

iii. Otherwise, there exist a solution of the equation Ft(πt) = 0.
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Remark 4.1 As is obvious from the previous analysis in the case Π̃ = Π, there exists a
Π−optimal portfolio for any (ω, t) ∈ Ω × [0, T ]. However, this does not imply the existence
of a numéraire in the market. The latter depends on the integrability of the Π−optimal
strategy.

Remark 4.2 In the special case in which π, π ∈ L(X), the optimal strategy belongs to the
set of admissible ones, making the optimal portfolio also the numéraire.

The results of this analysis are summarized in the following theorems, after additional
notation is introduced.
We define the following predictable subsets of Ω× [0, T ]:

I =
{

(t, ω)|Ft(πt) ≤ 0 ≤ Ft(πt)
}

I =
{

(t, ω)|Ft(πt) = 0
}

I =
{

(t, ω)|Ft(πt) = 0
}

The following theorem is the first main result of this paper.

Theorem 4.1 LetX be a special semimartingale with characteristic triplet (α
(
c+H2 · ν

)
, c,H·

ν), π, π ∈ Π ∩ L(X). Then there exist a numéraire portfolio W π
T < ∞, hence (NUPBR) is

satisfied. Moreover,

(i). If Ic has measure T , then the fraction πt invested in the numéraire at time t takes
values in {πt, πt} for all t ∈ [0, T ]. Furthermore, 1

Wπ is a strict supermartingale.

(ii). If I has measure T , then the fraction πt invested in the numéraire at time t is the
solution of Ft(π) = 0 for all t ∈ [0, T ]. Furthermore, 1

Wπ is the density of an equivalent
local martingale measure implying that (NFLVR) is also satisfied.

(iii). Let αt ∈ [πt, πt] for all t ∈ [0, T ]. Then Wα is the numéraire portfolio and

(a) if X is a continuous semimartingale, (NFLVR) is satisfied and 1
Wα is the density

of the equivalent martingale measure;

(b) if E(αt) = 0, P × dt-a.s. , (NFLVR) is satisfied and there exists an equivalent
minimal martingale measure Q, such that dQ

dP = 1
Wα .

Proof
The fact that the numéraire exists and (NUPBR) is satisfied follows from Remarks 4.1 and
4.2.
Part (i) follows from cases 1(a), 1(b),i), 1(b),ii), 2(a),ii), 2(c),ii), 3(a), 3(b),i), 3(b),ii).
Part (ii) follows from the combination of cases 1(b),iii), 2(a),i), 2(b), 2(c),i), 3(b),iii).
Part (iii), (a) follows from the pre-existing analysis. Part(iii), (b) is a combination of part
2,(b), the Remark 3.1 and the definition of the Fölmer-Schweizer minimal martingale measure.
•

The following theorem covers the case in which π and/or π are not integrable.

Theorem 4.2 LetX be a special semimartingale with characteristic triplet (α
(
c+H2 · ν

)
, c,H·

ν) and π, π ∈ Π .

11



(i). If π, π are not in L(X) and Ic or I ∪ I has measure T , then (NUPBR) is violated.

(ii). If π (resp. π) is not in L(X) and I (resp.I) has measure T , then (NUPBR) is violated.

Proof
This follows from Theorem 3.1 and the cases of the analysis of the drift, where π or π is
selected as an optimal strategy. •

The last case that we would like to explore is what happens to the drift of W ρ

Wπ , when Π

is a strict subset of the limit strategy set Π̃. In this case there exist t ∈ [0, T ] such that
limπt→πt(1 + πtH(t, z)) = 0 and/or limπt→πt(1 + πtH(t, z)) = ∞ P−a.s.. The analysis of

when the drift Dt(ρt, πt) is negative for ρ ∈ Π and π ∈ Π̃, follows the same steps as in
the case π ∈ Π, with the only exception being that we now need to study the behaviour of
the limits limπ→πt F (π) and limπ→πt F (π). The conclusions are also the same modulo that
there is no Π−optimal strategy in the case when only in the limit strategies πt, πt the drift
is non-positive. Let us define

J =
{

(t, ω)| lim
π→πt

Ft(πt) ≤ 0 ≤ lim
π→πt

Ft(πt)
}

J =
{

(t, ω)| lim
π→πt

Ft(πt) = 0
}

J =
{

(t, ω)| lim
π→πt

Ft(πt) = 0
}
.

Then we have the following corollary.

Corollary 4.1 LetX be a special semimartingale with characteristic triplet (α
(
c+H2 · ν

)
, c,H·

ν) and π, π ∈ Π̃ .

i). If π, π are not in Π and Ic or I ∪ I has a positive measure, then there exists no
Π−optimal strategy and (NUPBR) is violated.

(ii). If π (resp. π) is not in Π̃ and J (resp.J ) has a positive measure, then there exists no
Π−optimal strategy and (NUPBR) is violated.

Remark 4.3 In the previous analysis we started with the characteristics of the underlying
semimartingales and found an explicit link between them and various forms of arbitrage. The
question could also be reversed, as is in the case of [13], where the authors assume (NFLVR)
and find necessary conditions on the characteristics of the semimartingales.

4.1 Examples

In the following examples we examine the properties of the characteristics of X and their
relationship to arbitrage properties.

Example 4.1 From Karatzas and Kardaras[11] Let us assume that St = E(Nt), where
N is a Poisson process with intensity λ = 1 . The market is characterized by the triplet (1, 0, 1)
and the range of the P̃ i investement strategies is [−1,+∞] for all t ∈ [0, T ]. Furthermore,
the market price of risk is αt = 1 for all t ∈ [0, T ], and we have Et(πt) = −1

1+πt
, where

πt ∈ (−1,+∞). Clearly Et(·) is strictly negative with limπt→+∞Et(πt) = 0. Thus we are in
case (ii) of Corollary 4.1, and we conclude that (NUPBR) is violated.
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Example 4.2 From Becherer [4] This example is a continuous time version of ex. 6 in
[4]. Let St = Πs≤tYs, where t ∈ [0, T ] and Y is lognormally distributed, log Y ∼ N (µ, σ2).
The semimartingale that generates the market is given by

Xt =

∫ t

0

∫
R0

(ez − 1)µ̃(dz, ds) +

(
eµ+

σ2

2 − 1

)
t,

with the characteristic triplet

(
eµ+

σ2

2 − 1, 0,
∫
R0

(ez − 1)ν(dz)

)
, where ν is the density of

the standard normal distribution. It follows that the market price of risk is given by

αt = eµ+
σ2

2 −1

(eσ2−1)eµ+σ2+
(
eµ+

σ2
2 −1

)2 . There is no short sale in the market, hence the range of

the Π-optimal strategies is [0, 1]. Under these assumptions the conditions of Theorem 4.1 are
satisfied. This implies that (NUPBR) is satisfied and a numéraire portfolio exists. Since this

is a pure jump market, we study the properties of Et(·). We have Et(0) = 1 − eµ+
σ2

2 and

Et(1) = e−µ+
σ2

2 − 1, t ∈ [0, T ].

If µ ≤ −σ2

2 , Et(0) > 0 and αt < 0 = πt for all t ∈ [0, T ]. Hence we are in case 1,(i), or case (i)
of Theorem 4.1, which implies that the optimal strategy, which also describes the numéraire,
is given by π· = 0, and the numéraire is a strict supermartingale.

For −σ2

2 ≤ µ ≤ σ2

2 , since Et(0) < 0 < Et(1) for all t ∈ [0, T ] we are in case (ii) of Theorem
4.1, the numéraire portfolio exists and 1

Wπ is a martingale.

For µ ≤ σ2

2 , we are in case 3,(b),ii), since Et(1) < 0 and πt > αt for all t ∈ [0, T ]. This
implies that the Π−optimal strategy is π· = 1 and the numéraire is a strict supermartingale.

Example 4.3 Christensen-Platen[6]
Here we consider a one dimensional version of the setting in [6]. The market asset satisfies
the sde

dSt
St−

=

(
θ2t +

∫
E

ψ2(t, z)

1− ψ(t, z)
ν(dz)

)
dt+ θtdWt

+

∫
E

ψ(t, z)

1− ψ(t, z)
µ̃(dz, dt),

where θ is a predictable and square integrable process, ψ(·, ·) is predictable and ψ(t, z) < 1
a.e.. Furthermore, the Lévy measure ν is finite.

In this case αt =
θ2t+

∫
E

ψ2(t,z)
1−ψ(t,z)

ν(dz)

θ2t+
∫
E

ψ2(t,z)

(1−ψ(t,z))2
ν(dz)

, the characteristics are given by((
θ2t +

∫
E

ψ2(t,z)
1−ψ(t,z)ν(dz)

)
, θ2t ,

∫
E

ψ(t,z)
1−ψ(t,z)ν(dz)

)
, and the range of Π−optimal strategies is

[0, 1]. Then

Ft(πt) = (πt − 1)θ2t +

∫
E

πt
(

ψ(t,z)
1−ψ(t,z)

)2
1 + πt

ψ(t,z)
1−ψ(t,z)

− ψ2(t, z)

1− ψ(t, z)

 ν(dz)

= (πt − 1)
{
θ2t +

∫
E

ψ2(t, z)

1 + (1− πt)ψ(t, z)
ν(dz)

}
.

Hence it is easy to see that we are in case (ii) of Theorem 4.1 , and the numéraire portfolio
is given by πt = 1. In this case 1

Sπ and Sρ

Sπ are local martingales for all ρ ∈ W.
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5 Enlarged filtration

In this section we are interested in identifying the difference in return due to asymmetric
information. The classical approach to this problem compares the logarithmic utilities under
different information structures. To this end, under the assumption of finite logarithmic
utilities, we calculate the additional logarithmic utility of a trader with larger information
flow G than the rest of the market, possessing information described by a smaller filtration
F ⊂ G. Optimal logarithmic utility is linked to the existence of a GOP and in essence to the
existence of a numéraire, see Theorem 2.1. For this reason subsection 5.1 summarizes results
on the link between the the optimal logarithmic utility of the portfolio and the numéraire. In
subsection 5.2 the characteristics of the underlying semimartingale X under G are derived,
the available results on the relationship between the characteristics of X and the existence of
the numéraire portfolio are extended to the setting in the large filtration G. In a final step we
aim at comparing the additional logarithmic utility with the relative entropy of the filtrations.
From [2] we know that in a continuous semimartingale framework the extra logarithmic utility
of an insider is equal to the Shannon entropy of his additional information. This property
also holds true in markets with purely discontinuous semimartingale basis under further
assumptions.

5.1 Log-utility

The description of the logarithmic utility under (NFLVR) involves the set of (local) equivalent
martingale measure, and in the extended framework of (NUPBR) the set of supermartinale
densities. The definition of these sets is taken from [4].

Definition 5.1 1. With M we denote the set of all probability measures Q, such that
Q ∼ P and W ρ is a Q-local martingale for any W ρ ∈ W.

2. The set of all P -supermartingale densities is denoted by

SM := {Z
∣∣Z ≥ 0, Z0 = 1, ZW ρ is a P -supermartingale for all W ρ ∈ W}.

Then the following basic results hold.

Proposition 5.1 Let (NUPBR) be satisfied and u < ∞. Then there exists a numéraire
portfolio W π ∈ W(i.e. a (GOP)), that satisfies

E [logW π] = sup
W ρ∈W

E [logW ρ]

= inf
Z∈SM

E

[
log

1

ZT

]
Furthermore, if (NFLVR) holds, we have

E [logW π] = inf
Q∈M

H(P|Q).

Lemma 5.1 Let (NUPBR) hold and u < ∞. Then the return of the (GOP) for a market
with characteristics (α

(
c+H2 · ν

)
, c,H · ν) is given by

E[logW π
T ] = E

[∫ T

0
−1

2

(
π2t − 2αt

)
ctdAt

]
+ E

[∫
E

(ln(1 + πtH(t, z)) + πtH(t, z)(αtH(t, z)− 1)) νt(dz)dAt

]
.

14



5.2 Asymmetric filtration

To describe the additional logarithmic utility, in this subsection start in the following en-
largement of filtrations setting. Let G be a filtration such that F ⊂ G. We work under
the following assumption concerning the decomposition of the underlying X in the larger
filtration.

Assumption 4 X is a quasi-left-continuous semimartingale under G and has the represen-
tation,

X = N + β · 〈X,X〉,

where N is a local square integrable martingale with respect to the filtration G and β is a
predictable process with respect to G.

In the previous sections, under Assumptions 1 and 2 we have deduced the characteristics of
X with respect to F , studied their relationship with arbitrage properties, and evaluated the
optimal logarithmic utility in Lemma 5.1. To extend this to the enlarged filtration framework
we determine the characteristics of X under G in the following theorem.

Theorem 5.1 Let X be a semimartingale with characteristics (α(c+H2 · ν), ·c,H · ν) with
respect to the filtration F . Let G be a filtration such that F ⊆ G. Then the characteristic
triplet of X under G is given by (β(c+H2 · ν), c,H[1− (α− β)H] · ν).

Proof
From the representations of X under the different filtrations we have

N = M + (α− β) · 〈X,X〉
= M c + [H] ∗ (µ− ν ·A) + (α− β)

(
c ·A+ [H2] ∗ ν ·A

)
= M c + (α− β)c ·A+ [H] ∗ µ− [H (1− (α− β)H)] ∗ ν ·A.

Using orthogonality arguments the result follows. •

From the previous theorem, we conclude that the structure of the jump size with respect
to the original filtration is preserved in the enlarged filtration. Hence the following lemma is
immediate.

Lemma 5.2 The limit set of investment strategies with respect to the filtration G coincides
with the set of limit strategies Π̃ under F .

The lemma implies that also the set of investment strategies under G coincides with the
set of investment strategies Π under F .

Proposition 5.2 Let X be as in Theorem 5.1, such that ∆X > −1. Then for π ∈ Π we
have

W π = exp (πN c + [ln(1 + πH)] ∗ µ)

× exp

{(
−1

2
π(π − 2β)c+ [πH(αH − 1)] ∗ ν

)
·A
}
,
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and for any ρ ∈ Π

dW
ρ

Wπ

W ρ

Wπ

= (π − ρ)

{
(π − β)c+

[
(π + α− β)H2

1 + πH
− αH2

]
∗ ν
}
dA

+ (ρ− π)dN c +

[
(ρ− π)H

1 + πH

]
∗ µ̃G , t ∈ [0, T ].

Proof
For π ∈ Π we have

W π = E(πX)

= exp

(
πN c + [πH] ∗ µ− [πH(1− (α− β)H)] ∗ ν + βπ(c+ [H2] ∗ ν) ·A− 1

2
π2c ·A

)
× exp([ln(1 + πH)] ∗ µ− [πH] ∗ µ)

= exp(πN c + [ln(1 + πX)] ∗ µ)

× exp

{(
−1

2
π(π − 2β)c+ [πH(αH − 1)] ∗ ν

)
·A
}
.

Let ρ ∈ Π. Then

W ρ

W π
= exp

(
(ρ− π)N c +

[
ln

1 + ρH

1 + πH

]
∗ µ
)

× exp

{(
−1

2
(ρ− π)(ρ+ π − 2β)c+ [(ρ− π)H(αH − 1)] ∗ ν

)
A

}
,

and by applying Itô’s rule we have

d
W ρ
t

W π
t

=
W ρ
t−

W π
t−

{
(ρt − πt)dXc

t +

∫
R0

(
1 + ρtH(t, z)

1 + πtH(t, z)
− 1

)
µ(dz, dt) +

1

2
(ρt − πt)2ctdAt

− (ρt − πt)
(

1

2
(ρt + πt − 2βt)ct −

∫
R0

H(t, z) (αtH(t, z)− 1) νt(dz)

)
dAt

}
=

W ρ
t−

W π
t−

{
(ρt − πt)dXc

t +

∫
R0

(ρt − πt)H(t, z)

1 + πtH(t, z)
µ(dz, dt)

+ (ρt − πt)
(

(βt − πt)ct +

∫
R0

H(t, z) (αtH(t, z)− 1) νt(dz)

)
dAt

}
=

W ρ
t−

W π
t−

{
(ρt − πt)dXc

t +

∫
R0

(ρt − πt)H(t, z)

1 + πtH(t, z)
µ̃G(dz, dt) + (ρt − πt)(−πt + βt)ctdAt

+ (ρt − πt)
∫
R0

(
αtH

2(t, z)−H(t, z) +
H(t, z)(1− (αt − βt)H(t, z))

1 + πtH(t, z)

)
νt(dz)dAt

}
=

W ρ
t−

W π
t−

{
(ρt − πt)dXc

t + (ρt − πt)
∫
R0

πtH(t, z)

1 + πtH(t, z)
µ̃G(dz, dt)

+ (πt − ρt)
(

(πt − βt)ct +

∫
R0

(
(πt + αt − βt)H2(t, z)

1 + πtH(t, z)
− αtH2(t, z)

)
νt(dz)

)
dAt

}
.

From Theorem 5.1 we know the characteristics of X under G. Following the same steps
as in Proposition 4 we obtain the desired results. •
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Hence the drift under G is given by

D∗t (ρt) = (πt − ρt)
{

(πt − βt)c+

[
(πt + αt − βt)H2(t, z)

1 + πtH(t, z)
− αtH2(t, z)

]
∗ ν
}
, t ∈ [0, T ].

As in section 4 we introduce the functions

E∗t (πt) =

∫
E

(
(πt + αt − βt)H2(t, z)

1 + πtH(t, z)
− αtH2(t, z)

)
νt(dz),

and
F ∗t (πt) = (πt − βt)ct + E∗t (πt), t ∈ [0, T ].

To proceed with the analysis, we introduce the following assumption.

Assumption 5 The information drifts α, β satisfy 1 + (βt − αt)H(t, z) > 0 P -a.s. for all
t ∈ [0, T ].2

Under this assumption, the functions x 7→ E∗t (x) and x 7→ F ∗t (x) are increasing.
Using the characteristic triplet under G and the properties of the functions E∗t (·), F ∗t (·),
the analysis of the drift is identical with the one under under F , and the results transfer
accordingly. In case the jump measure is trivial, i.e. νt = 0 P − a.s. for all t ∈ [0, T ], the
optimal portfolio is the one that follows strategy β. If β ∈ L(X), then W β is the numéraire,
1
Wβ is a martingale and the density of an equivalent martingale measure, implying (NFLVR)

in the market. Otherwise, the portfolio W β takes advantage of arbitrage opportunities in the
market, leading to the violation of (NUPBR).
Let π, π ∈ Π and fix (ω, t) ∈ Ω× [0, T ]. Then we have

1. if E∗t (πt) and

(a) βt < πt, the optimal strategy is given by πt = πt.

(b) πt ≤ βt, then

i. for F ∗t (πt) > 0 the optimal strategy is described by πt = πt,

ii. for F ∗t (πt) < 0, the optimal strategy is πt = πt,

iii. otherwise, the optimal strategy is the unique solution of the equation F ∗t (πt) =
0.

2. If E∗t (πt) ≤ 0 ≤ E∗t (πt) and

(a) βt < πt, then

i. for F ∗t (πt) ≤ 0 ≤ F ∗t (πt) the optimal strategy is the unique solution of the
equation F ∗t (πt) = 0,

ii. if F ∗t (πt) > 0 the optimal strategy is πt.

(b) πt ≤ βt ≤ πt, the conclusion is the same as in (a),i).

(c) πt < βt, then

i. if F ∗t (πt) ≤ 0 ≤ F ∗t (πt) the optimal strategy is the unique solution of the
equation F ∗t (πt) = 0,

2As will become evident in the next section, Assumption 5 is also necessary for the definition of the entropy
and hence not restrictive.
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ii. if F ∗t (π) < 0 the optimal strategy is πt.

3. If E∗t (πt) < 0 and

(a) βt > πt, the optimal strategy is πt = πt,

(b) πt ≥ βt,

i. for F ∗t (πt) > 0, the optimal strategy is πt = πt,

ii. for F ∗t (πt) < 0,

iii. otherwise, the optimal strategy is the unique solution of the equation F ∗t (πt) =
0.

In analogy to section 4 we define the following predictable subsets of Ω× [0, T ]:

I∗ =
{

(t, ω)|F ∗t (πt) ≤ 0 ≤ F ∗t (πt)
}
,

I∗ =
{

(t, ω)|F ∗t (πt) = 0
}
,

I∗ =
{

(t, ω)|F ∗t (πt) = 0
}
.

J ∗ =
{

(t, ω)| lim
π→πt

F ∗t (πt) ≤ 0 ≤ lim
π→πt

F ∗t (πt)
}
,

J ∗ =
{

(t, ω)| lim
π→πt

F ∗t (πt) = 0
}
,

J ∗ =
{

(t, ω)| lim
π→πt

F ∗t (πt) = 0
}
.

We have the following result about the existence of numéraire portfolios.

Theorem 5.2 Let X be a special semimartingale as in Theorem 5.1.

1. If the market price of risk β satisfies W β
t > 0, P − a.s. for all t ∈ [0, T ], and

P (
∫ T
0 β2sd〈X〉s) > 0 (NUPBR) is violated.

2. If π, π ∈ Π ∩ L(X), there exist a numéraire portfolio W π
T < ∞, hence (NUPBR) is

satisfied. Moreover,

(i) If (I∗)c has measure T , then the fraction πt invested in the numéraire at time t
takes values in {πt, πt} for all t ∈ [0, T ]. Furthermore, 1

Wπ is a strict supermartin-
gale.

(ii) If I∗ has measure T , then the fraction πt invested in the numéraire at time t is the
solution of F ∗t (π) = 0 for all t ∈ [0, T ]. Furthermore, 1

Wπ is a martingale implying
that (NFLVR) is also satisfied.

(iii) Let βt ∈ [πt, πt] for all t ∈ [0, T ]. Then W β is the numéraire portfolio and

(a). if X is a continuous semimartingale, (NFLVR) is satisfied and 1
Wβ is the

density of the equivalent martingale measure.

(b). If E(βt) = 0, P × dt-a.s. , (NFLVR) is satisfied and there exists an equivalent
minimal martingale measure Q, such that dQ

dP = 1
Wβ .
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3. Let π, π ∈ Π

(a). If π, π are not in L(X) and (I∗)c or I∗ ∪ I∗ has positive measure, then (NUPBR)
is violated.

(b). If π (resp. π) is not in L(X) and I∗ (resp.I∗) has a positive measure, then
(NUPBR) is violated.

4. Let π, π ∈ Π̃ .

i). If π, π are not in Π and (J ∗)c or J ∗∪J ∗ has a positive measure, then there exists
no Π−optimal strategy and (NUPBR) is violated.

(ii). If π (resp. π) is not in Π̃ and J ∗ (resp.J ∗) has a positive measure, then there
exists no Π−optimal strategy and (NUPBR) is violated.

Proof
The arguments are equivalent the proofs of Theorem 4.1, Theorem 4.2, Corollary 4.1 and
Theorem 3.1 . •

Proposition 5.3 Let X be a semimartingale with characteristic triplet (α〈X〉, C,Hη) with
respect to a filtration F where (NUPBR) holds, and G a filtration such that (NUPBR) holds
and Ft ⊆ Gt for all t ∈ [0, T ]. Furthermore, if W π and W ρ are the numéraire portfolios under
F and G respectively, the difference in return is given by

uG − uF = E

[∫ T

0

(
−1

2
(πt(πt − 2βt)− ρt(ρt − 2αt))

)
ctdAt

]
+ E

[∫ T

0

(
(πt − ρt)H(t, z)(αtH(t, z)− 1) + ln

1 + πtH(t, z)

1 + ρtH(t, z)

+ (βt − αt)H(t, z) ln(1 + πtH(t, z))) νt(dz)dAt] .

Proof
We have

E[logW π
T ] = E

[∫ T

0
πtN

c
t dt+

∫ T

0

∫
R0

log(1 + πtH(t, z))µ(dz, dt)

]
+ E

[
−
∫ T

0

1

2
πt(πt − 2βt)ctdAt +

∫ T

0

∫
R0

πtH(t, z)(αtH(t, z)− 1)νt(dz)dAt

]
= E

[∫ T

0
πtN

c
t dt+

∫ T

0

∫
R0

log(1 + πtH(t, z))µ̃(dz, dt)

]
+ E

[
−
∫ T

0

1

2
πt(πt − 2βt)ctdAt +

∫ T

0

∫
R0

[πtH(t, z)(αtH(t, z)− 1)νt(dz)dAt

]
+ E

[∫ T

0

∫
R0

(1− (αt − βt)H(t, z)) log(1 + πtH(t, z))νt(dz)dAt

]
= E

[
−
∫ T

0

1

2
π(πt − 2βt)ctdAt

]
+ E

[∫ T

0

∫
R0

βtH(t, z)) log(1 + πtH(t, z))νt(dz)dAt

]
+ E

[∫ T

0

∫
R0

[(αtH(t, z)− 1){πtH(t, z)− log(1 + πtH(t, z))}νt(dz)dAt
]
.

Combining the previous formula with Lemma 5.1, the result follows.
•
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5.3 Entropy

In this section we describe the entropy of the additional information that a larger filtration
provides with respect to a smaller one. To simplify our presentation we assume that G is
obtained by an initial enlargement of F .
Under the Assumption 2 the local semimartingale M generates the filtration (Ft)t∈[0,T ]. Let
(F0

t )t∈[0,T ] be a filtration the σ-algebras of which are countably generated, and under which M
is a local martingale. Assume that (Ft)t∈[0,T ] is the smallest filtration containing (F0

t )t∈[0,T ]
and satisfying the usual conditions. Also, let (G0t )t∈[0,T ] be a filtration with countably gen-
erated σ-algebras, and (Gt)t∈[0,T ] the smallest filtration satisfying the usual conditions and
containing Ft, i.e. Gt ⊃ Ft for all t ≥ 0.
The introduction of the smaller filtrations F0,G0 is a necessary condition for the regularity
of the conditional probability Pt(·, A) given F0

t , where A ∈ G0T , t ∈ [0, T ]. From [2] and [1] it
follows that P·(ω,A) is a (F0

t )-martingale. And by the martingale representation property,
for t ∈ [0, T ], Pt(·, A) has the form

Pt(·, A) = P0(A) +

∫ t

0
γs(·, A)dM c

s +

∫ t

0

∫
R0

δu(z, ·, A)µ̃(dz, dt), (5)

where γ, δ are predictable processes belonging to L2(P ) and L2(P ⊗ η) respectively. To
continue our analysis, we introduce the following assumption.

Assumption 6 For 0 ≤ t ≤ T let γt(ω, ·)|G0t and δt(z, ω, ·)|G0t be signed measures on G0t , such
that

γt(ω, ·)|G0t << Pt(ω, ·)|G0t , P − a.s.,

and

δt(z, ω, ·)|G0t << Pt(ω, ·)|G0t P ⊗ η − a.s.

Theorem 5.3 Under Assumption 6 there exist Ft ⊗ Gt predictable processes

ct(ω, ω
′) =

γt(ω, dω
′)

Pt(ω, dω′)

∣∣∣
G0t

P − a.s.,

and

dt(z, ω, ω
′) =

δt(z, ω, dω
′)

Pt(ω, dω′)

∣∣∣
G0t

P ⊗ π − a.e.

Furthermore ct(ω, ω) = βt(ω)− αt(ω) and dt(z, ω, ω) = (βt(ω)− αt(ω))H(t, z, ω) P -a.s.

Proof
From the beginning of this subsection we know that the information drift for the continuous

part of the semimartingale is given by β − α and that for t ∈ [0, T ]
ηGt (dz,ω)
ηt(dz,ω)

= 1 + (βt(ω) −
αt(ω))H(t, z, ω). Then using the orthogonality of M c and µ the result follows easily from
Lemma 2.3 and Theorem 2.6 in [2], as well as Lemma 2.5 and Theorem 2.6 from [1]. •

The preceding theorem is instrumental in the computation of additional information, that
is introduced in the following.
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Definition 5.2 Let A be a sub-σ-algebra of F and P,Q two probability measures on F .
Then we define the relative entropy of P with respect to Q on the sigma field A by

HA(P ||Q) =
{ ∫ log dP

dQdP, if P � Q,

∞ else.

Moreover, the additional information of A relative to the filtration (Fu) on [s, t], where
0 ≤ s < t ≤ T , is defined by

HA(s, t) =

∫
HA(Pt(ω, ·)||Ps(ω, ·))dP (ω).

The explicit form of HG is provided by the following Lemma.

Lemma 5.3 The additional information of G0t relative to the filtration (Fu) on [s, t] is given
by

HG0t (s, t) = E

[∫ t

s

(βt − αt)2

2
d〈M c〉t

+

∫ t

s

∫
R0

(βt − αt)H(t, z)ν(dz)dAt

+ (1 + (βt − αt)H(t, z)) ln (1 + (βt − αt)H(t, z)) ν(dz)dAt] .

Proof
Using Itô’s rule for semimartingales we get

d lnPt(·, A) =
γt

Pt(·, A)
dM c

t −
γ2t

2Pt(·, A)2
d〈M c〉t

+

∫
R0

[ln(Pt(·, x) + δt(z))− lnPt(·, A)]µ(dz, dt) +

∫
R0

δt(z)

Pt(·, A)
ν(dz)dAt

=
γt

Pt(·, A)
dN c

t +

∫
R0

ln

[
1 +

δt(z)

Pt(·, A)

]
µ̂(dz, dt)

+
γt

Pt(·, A)

(
βt − αt −

γt
2Pt(·, A)

)
d〈M c〉t

+

∫
R0

[
δt(z)

Pt(·, A)
+ (1 + (βt − αt)H(t, z)) ln

(
1 +

δt(z)

Pt(·, A)

)]
ν(dz)dAt.

Since N c and µ̂ are local martingales under (Gt) we have

E

[
Pt(·, A) log

Pt(·, A)

Ps(·, A)

]
= E

[∫ t

s
1A

γt
Pt(·, A)

(
βt − αt −

γt
2Pt(·, A)

)
d〈M c〉t

+

∫ t

s
1A

∫
R0

[
δt(z)

Pt(·, A)
+ (1 + (βt − αt)H(t, z)) ln

(
1 +

δt(z)

Pt(·, A)

)]
ν(dz)dAt

]
.

From Theorem 5.3 we infer

E

[
Pt(·, A) log

Pt(·, A)

Ps(·, A)

]
= E

[∫ t

s
1A

(βt − αt)2

2
d〈M c〉t

+

∫ t

s
1A

∫
R0

(βt − αt)H(t, z)ν(dz)dAt

+ (1 + (βt − αt)H(t, z)) ln (1 + (βt − αt)H(t, z)) ν(dz)dAt] .
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Using the same steps as in the proof of Lemma 5.3 of [2] we reach our result. •

In the case of a continuous market, as explained in [2], the additional information HG(0, T )
equals the expected logarithmic utility increment between the two filtrations, since uG−uF =

E[
∫ T
0

(βt−αt)2
2 dt]. However, in the case of a stochastic basis with both a continuous and a

jump component this is not obvious.

5.4 Purely discontinuous semimartingales

The expected logarithmic utility increment, as was noted before, is not always equal to
the entropy of the additional information. However, as the next theorem shows, in purely
discontinuous markets in which the jumps are hedgeable, the equality holds.

Theorem 5.4 Let X be a quasi-left continuous semimartingale under the filtration F , with
characteristic triplet (αH2 · ν, 0, H · ν), such that 1− αtH(t, z) > 0 P− a.s. for all t ∈ [0, T ]
and α ∈ Π. Then the Π-optimal portfolio strategy is πt = αt

1−αtH(t,z) . Furthermore, for a

filtration G ⊇ F , where X has the characteristic triplet (βH2 · ν, 0, H[1 + (β − α)H] · ν), the
Π-optimal portfolio strategy is given by ρt = βt

1−αtH(t,z) . If α, β ∈ L(X), then

uG − uF = HG(0, T ).

Proof
Given the characteristic triplet under F , from section 4 we have

Ft(πt) = Et(πt) =

∫
E

(
πtH

2(t, z)

1 + πtH(t, z)
− αtH2(t, z)

)
νt(dz).

Clearly Et

(
αt

1−αtH(t,z)

)
= 0 P − a.s. for all t ∈ [0, T ], so we are in case 2. of the analysis.

The optimal portfolio strategy is then given by π = α
1−αH , and W π satisfies

d
1

W π
=
−
∫
R0
αtH(t, z)dµ̃

W π
.

If α ∈ L(X), then W π is a local martingale and is both the numéraire portfolio and the
density of the minimal martingale measure. The expected logarithmic utility of W π is given
by

uF = E[lnW π
T ] = E [−[ln(1 + πH)] ∗ µ̃] + E

[
[παH2 − πH + ln(1 + πH)] ∗ ν

]
= −E

[∫ T

0

∫
R0

[αtH(t, z) + ln (1− αtH(t, z))] ν(dz)dAt

]
.

For a larger filtration G we have

F ∗t (πt) = E∗t (πt) =

∫
E

(
(πt + αt − βt)H2(t, z)

1 + πtH(t, z)
− αtH2(t, z)

)
νt(dz).

From Assumption 5 ρ = β
1−αH is in Π. Furthermore E∗t (ρt) = 0 and

d
1

W ρ
t

=
1

W ρ
t

∫
R0

βtH(t, z)

1 + (βt − αt)H(t, z)
dµ̄.
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If β ∈ L(X) the solution of the previous equation is a local martingale, hence 1
W ρ is the

density of martingale measure, and logarithmic utility given by

uG = E[lnW ρ
T ] = E [[(1 + (β − α)H)(ln(1 + (β − α)H)− ln(1− αH))− βH] ∗ ν] .

Note that∫ T

0

∫
R0

ln(1−αtH(t, z))µ̄−
∫ T

0

∫
R0

ln(1−αtH(t, z))µ̃ =

∫ T

0

∫
R0

(βt−αt) ln(1−αt)H(t, z)ν(dz)dAt.

Hence

E

[∫ T

0

∫
R0

(βt − αt) ln(1− αt)H(t, z)ν(dz)dAt

]
= 0.

We have

uG − uF = E

[∫ T

0

∫
R0

(1 + (β − α)H(t, z)) [ln(1 + (β − α)H(t, z))− ln(1− αH(t, z))] ν(dz)dAt

]
+ E

[∫ T

0

∫
R0

[−(βt − αt)H(t, z) + ln(1− αtH(t, z)] ν(dz)dAt

]
= E

[∫ T

0

∫
R0

{
(1 + (β − α)H(t, z)) ln

(
1 + (β − α)H(t, z)

)
− (βt − αt)H(t, z)

}
ν(dz)dAt

]
.

Hence under these assumptions we recover the result of the continuous market, namely that
the expected logarithmic utility increment is equal to the Shannon entropy of the additional
information. •

Remark 5.1 From 5.3 onwards we have assumed that the filtration G is an initial enlarge-
ment of F . This assumption can be relaxed to include progressive enlargements, as is shown
in [2]. However, this exceeds the scope of this paper.
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