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CONVERGENCE TO EXTREMAL PROCESSES IN RANDOM
ENVIRONMENTS AND EXTREMAL AGEING IN SK MODELS

ANTON BOVIER, VÉRONIQUE GAYRARD, AND ADÉLA ŠVEJDA

ABSTRACT. This paper extends recent results on aging in mean field spin glasses on short
time scales, obtained by Ben Arous and Gün [2] in law with respect to the environment, to
results that hold almost surely, respectively in probability, with respect to the environment.
It is based on the methods put forward in [8, 9] and naturally complements [6].

1. INTRODUCTION AND MAIN RESULTS

Spin glasses have, for the last decades, presented some of the most interesting chal-
lenges to probability theory. Even mean-field models have prompted a 1000 page mono-
graph [16, 17] by one of the most eminent probabilists of our time. Despite of these efforts
and remarkable and unexpected progress, a full understanding of equilibrium problem, i.e.
a full description of the asymptotic geometry of the Gibbs measures, is still outstanding.
In this situation it is somewhat surprising that certain properties of their dynamics have
been prone to rigorous analysis, at least for some limited choices of the dynamics. The
reason for this is that interesting aspects of the dynamics occur on time-scales that are far
shorter than the those of equilibration, and experiments made with spin glasses usually test
the behaviour of the probe on such time scales. Indeed, equilibration is expected to take
so long as to become inaccessible to real experiments. The physically interesting issue is
thus that of ageing [4, 5], a property of time-time correlation functions that characterizes
the slow decay to equilibrium characteristic for these systems.

The mathematical analysis has revealed an universal mechanism behind this phenom-
enon: the convergence of the clock-process, that relates the physical time to the num-
ber of “moves” of the process, to an α-stable subordinator (increasing Lévy process)
under proper rescaling. The parameter α can be thought of as an effective temperature
that depends both on the physical temperature and the time scale considered. This has
been proven for p-spin Sherrington-Kirkpatrick (SK) models for time scales of the order
exp(βγn) (where n is the number of sites in the system with 0 < γ < min

(
β, ζ(p)

)
,

where ζ(p) is an increasing function of p such that ζ(3) > 0 and limp↑∞ ζ(p) = 2 ln 2.
Such a result was obtained first in [1] in law with respect to the random environment, and
was later extended in [6] to almost sure (resp. in probability, for p = 3, 4) results. The
progress in the latter paper was possible to a fresh view on the convergence of clock pro-
cesses, introduced and illustrated in two papers [8, 9] that takes the clock process as a sum
of dependent random variables with a random distribution, and then employs conveniently
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suited convergence criteria, obtained by Durrett and Resnick [7] a long time ago, to prove
convergence. This will be explained in more detail below.

The conditions on the admissible time scales in these results have two reasons. First,
it emerges that α = γ/β, so one of the conditions is simply that α ∈ (0, 1). The upper
bound γ < ζ(p) ensures that there will be no strong long-distance correlations, meaning
that the systems has not had time to discover the full correlation structure of the random
environment. This condition is thus the stricter the smaller p is, since correlations become
weaker as p increases.

A natural questions to ask is what happens on time-scales that are sub-exponential in
the volume n? This question was first addressed in a recent paper by Ben Arous and Gün
[2]. This situation would correspond formally to α = 0, but 0-stable subordinators do
not exists, so some new phenomenon has to appear. Indeed, they showed that the limiting
objects appearing here are the so-called extremal processes. In the theory of sums of heavy
tailed random variables this idea goes back to Kasahara [10] who showed that by applying
non-linear transformations to the sums of αn-stable r.v.’s with αn ↓ 0, extremal processes
arise as limit processes. This program was implemented to clock processes by Ben Arous
and Gün using the approach of [1] to handle the problems of dependence of the random
variables involved. As a consequence, their results are again in law with respect to the
random environment. An interesting aspect of this work was that, due to the very short
time scales considered, the case p = 2, i.e. the original SK model, is also covered.

In the present paper we show that by proceeding along the line of [6], one can extend the
results of Ben Arous and Gün to quenched results, holding for given random environments
almost surely (if p > 4) resp. in probability (if 2 ≤ p ≤ 4). In fact, the result we present
for the SK models is an application of an abstract result we establish, and that can be
applied to a wide class of models.

Before stating our results, we begin by a concise description of the class of models we
consider.

1.1. Markov jump processes in random environments. Let us describe the general
setting of Markov jump processes in random environments that we consider here. Let
Gn(Vn,Ln) be a sequence of loop-free graphs with set of vertices Vn and set of edges Ln.
The random environment is a family of positive random variables, τn(x), x ∈ Vn, defined
on a common probability space (Ω,F ,P). Note that in the most interesting situations the
τn’s are correlated random variables.

On Vn we consider a discrete time Markov chain Jn with initial distribution µn, tran-
sition probabilities pn(x, y), and transition graph Gn(Vn,Ln). The law of Jn is a priori
random on the probability space of the environment. We assume that Jn is reversible and
admits a unique invariant measure πn.

The process we are interested in, Xn, is defined as a time change of Jn. To this end we
set

λn(x) ≡ Cπn(x)/τn(x), (1.1)

where C > 0 is a model dependent constant, and define the clock process

S̃n(k) =
k−1∑
i=0

λ−1
n (Jn(i))en,i, k ∈ N , (1.2)
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where {en,i : i ∈ N0, n ∈ N} is an i.i.d. array of mean 1 exponential random variables,
independent of Jn. The continuous time process Xn is then given by

Xn(t) = Jn(k), if S̃n(k) ≤ t < S̃n(k + 1) for some k ∈ N, t > 0 . (1.3)

One verifies readily that Xn is a continuous time Markov jump process with infinitesimal
generator

λn(x, y) ≡ λn(x)pn(x, y), (1.4)

and invariant measure that assigns to x ∈ Vn the mass τn(x).
To fix notation we denote by FJ and FX the σ-algebras generated by the variables Jn

and Xn, respectively. We write Pπn for the law of the process Jn, conditional on F , i.e.
for fixed realizations of the random environment. Likewise we call Pµn the law of Xn

conditional on F .
In [8, 9] and [6], the main aim was to find criteria when there are constants, an, cn,

satisfying an, cn ↑ ∞, as n→∞, and such that the process

Sn(t) ≡ c−1
n S̃n(bantc) = c−1

n

bantc−1∑
i=0

λ−1
n (Jn(i))en,i, t > 0, (1.5)

converges in a suitable sense to a stable subordinator. The constants cn are the time scale
on which we observe the continuous time Markov process Xn, while an is the number of
steps the jump chain Jn makes during that time. In order to get convergence to an α-stable
subordinator, for α ∈ (0, 1), one typically requires that the λ−1’s observed on the time
scales cn have a regularly varying tail distribution with index −α. In this paper we ask
when there are constants, an, cn, αn, satisfying an, cn ↑ ∞ and αn ↓ 0 respectively, as
n → ∞, and such that the process (Sn)αn converges in a suitable sense to an extremal
process.

1.2. Main Theorems. We now state three theorems, beginning with an abstract one that
we next specialize to the setting of Section 1.1. Specifically, consider a triangular array
of positive random variables, Zn,i, defined on a probability space (Ω,F ,P). Let αn and
an be sequences such that αn ↓ 0 and an ↑ ∞ as n → ∞, respectively. Our first theorem
gives conditions that ensure that the sequence of processes (Sn)αn , where Sn(0) = 0 and

Sn(t) ≡
bantc∑
i=1

Zn,i, t > 0, (1.6)

converges to an extremal process.

Theorem 1.1. Let ν be a sigma-finite measure on (R+,B(R+)) such that ν(0,∞) =
∞. Assume that there exist sequences an, αn such that for all continuity points x of the
distribution function of ν, for all t > 0, in P-probability,

lim
n→∞

bantc∑
i=1

P
(
Zαn
n,i > x|Fn,i−1

)
= tν(x,∞), (1.7)

and

lim
n→∞

bantc∑
i=1

[
P
(
Zαn
n,i > x|Fn,i−1

)]2
= 0, (1.8)
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where Fn,i denotes the σ-algebra generated by the random variables Zn,j, j ≤ i. If,
moreover, for all t > 0

lim sup
n→∞

(bantc∑
i=1

E1Zn,i≤δ1/αnδ
−1/αnZn,i

)αn

<∞, ∀ δ > 0 , (1.9)

then, as n→∞,
(Sn)αn

J1=⇒Mν , (1.10)
where Mν is an extremal process with one-dimensional distribution function F (x) =
exp(−ν(x,∞)). Convergence holds weakly on the space D([0,∞)) equipped with the
Skorokhod J1-topology.

In the sequel we denote by J1=⇒ weak convergence in D([0,∞)) equipped with the
Skorokhod J1-topology.

In order to use Theorem 1.1 in the Markov jump process setting of Section 1.1, we
specify Zn,i. In doing this we will be guided by the knowledge acquired in earlier works
[8], [9], [6]: introducing a new scale θn we take Zn,i to be a block sum of length θn, i.e. we
set

Zn,i ≡
iθn∑

j=(i−1)θn+1

c−1
n λ−1

n (Jn(j))en,j . (1.11)

The rôle of θn is to de-correlate the variables Zn,i under the law Pµn . In models with
uncorrelated environments and where the probability of revisiting points is small, one
may hope to take θn = 1. When the environment is correlated and the chain Jn is rapidly
mixing, one may try to choose θn � an in such a way that, the variables Zn,i are close to
independent. These two situations were encountered in the random hopping dynamics of
the Random Energy Model in [9], and the p-spin models in [6] respectively. Theorem 1.2
below specializes Theorem 1.1 to these Zn,i’s.

For y ∈ Vn and u > 0 let

Qu
n(y) ≡ Py

(
θn∑
j=1

λ−1
n (Jn(j))en,j > cnu

1/αn

)
(1.12)

be the tail distribution of the blocked jumps of Xn, when Xn starts in y. Furthermore, for
kn(t) ≡ bbantc/θnc, t > 0, and u > 0 define

νJ,tn (u,∞) ≡
kn(t)∑
i=1

∑
y∈Vn

pn(Jn(θni), y)Qu
n(y) , (1.13)

(σJ,tn )2(u,∞) ≡
kn(t)∑
i=1

[∑
y∈Vn

pn(Jn(θni), y)Qu
n(y)

]2

. (1.14)

Using this notation, we rewrite Conditions (1.7)-(1.9). Note thatQu
n(y) is a random vari-

able on the probability space (Ω,F ,P), and so are the quantities νJ,tn (u,∞) and σJ,tn (u,∞).
The conditions below are stated for fixed realization of the random environment as well as
for given sequences an, cn, θn, and αn such that an, cn ↑ ∞, and αn ↓ 0 as n→∞.
Condition (1) Let ν be a σ-finite measure on (0,∞) with ν(0,∞) =∞ and such that for
all t > 0 and all u > 0

lim
n→∞

Pµn

(∣∣νJ,tn (u,∞)− tν(u,∞)
∣∣ > ε

)
= 0 , ∀ε > 0 . (1.15)
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Condition (2) For all u > 0 and all t > 0,

lim
n→∞

Pµn

(
(σJ,tn )2(u,∞) > ε

)
= 0 , ∀ε > 0 . (1.16)

Condition (3) For all t > 0 and all δ > 0

lim sup
n→∞

(bantc∑
i=1

Eµn1{λ−1
n (Jn(i))en,i≤δ1/αncn}(cnδ

1/αn)−1λ−1
n (Jn(i))en,i

)αn

<∞ . (1.17)

Condition (0) For all v > 0,

lim
n→∞

∑
x∈Vn

µn(x)e−v
1/αncnλn(x) = 0 . (1.18)

For t > 0 set(
Sbn(t)

)αn ≡ (kn(t)∑
i=1

(
θni∑

j=θn(i−1)+1

c−1
n λ−1

n (Jn(j))en,j

)
+ c−1

n λ−1
n (Jn(0))en,0

)αn

. (1.19)

Theorem 1.2. If for a given initial distribution µn and given sequences an, cn, θn, and αn,
Conditions (0)-(3) are satisfied P-a.s., respectively in P-probability, then(

Sbn
)αn J1=⇒Mν , (1.20)

where convergence holds P-a.s., respectively in P-probability.

Remark. Theorem 1.2 tells us that the blocked clock process (Sbn)αnconverges to Mν

weakly in D([0,∞)) equipped with the Skorokhod J1-topology. This implies that the
clock process (Sn)αn converges to the same limit in the weaker M1-topology (see [6] for
further discussion).

Remark. The extra Condition (0) serves to guarantee that the last term in (1.19) is asymp-
totically negligible.

Finally, following [6], we specialize Conditions (1)-(3) under the assumption that the
chain Jn obeys a mixing condition (see Condition (2-1) below). Conditions (1)-(2) of
Theorem 1.2 are then reduced to laws of large numbers for the random variables Qu

n(y).
Again we state these conditions for fixed realization of the random environment and given
sequences an, cn, θn, and αn.
Condition (1-1) Let Jn be a periodic Markov chain with period q. There exists a positive
decreasing sequence ρn, satisfying ρn ↓ 0 as n → ∞, such that, for all pairs x, y ∈ Vn,
and all i ≥ 0,

q−1∑
k=0

Pπn (Jn(i+ θn + k) = y, Jn(0) = x) ≤ (1 + ρn)πn(x)πn(y) . (1.21)

Condition (2-1) There exists a σ-finite measure ν with ν(0,∞) =∞ and such that

νtn(u,∞) ≡ kn(t)
∑
x∈Vn

πn(x)Qu
n(x)→ tν(u,∞) , (1.22)

and

(σtn)2(u,∞) ≡ kn(t)
∑
x∈Vn

∑
x′∈Vn

πn(x)p(2)
n (x, x′)Qu

n(x)Qu
n(x′)→ 0 . (1.23)

where p(2)
n (x, x′) =

∑
y∈Vn pn(x, y)pn(y, x′) are the 2-step transition probabilities.
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Condition (3-1) For all t > 0 and δ > 0

lim sup
n→∞

(
bantcEπn1{λ−1

n (Jn(1))en,1≤cnδ1/αn}c
−1
n δ−1/αnλ−1

n (Jn(1))en,1

)αn
<∞ . (1.24)

Theorem 1.3. Let µn = πn. If for given sequences an, cn, θn � an, and αn, Conditions
(1-1)-(3-1) and (0) are satisfied P-a.s., respectively in P-probability, then (Sbn)αn

J1=⇒Mν ,
P-a.s., respectively in P-probability.

1.3. Application to the p-spin SK model. In this section we illustrate the power of The-
orem 1.3 by applying it to the p-spin SK models, including the SK model itself, i.e. p ≥ 2.
The underlying graph Vn is the hypercube Σn = {−1, 1}n. The Hamiltonian of the p-spin
SK model is a Gaussian process, Hn, on Σn with zero mean and covariance

EHn(x)Hn(x′) = nRn(x, x′)p, (1.25)

where Rn(x, x′) ≡ 1− 2 dist(x,x′)
n

and dist(·, ·) is the graph distance on Σn,

dist(x, x′) ≡ 1

2

n∑
i=1

|xi − x′i|. (1.26)

The random environment, τn(x), is defined in terms of Hn through

τn(x) ≡ exp(βHn(x)), (1.27)

where β ∈ R+ is the inverse temperature. The Markov chain, Jn, is chosen as the simple
random walk on Σn, i.e.

pn(x, x′) =

{
1
n
, if dist(x, x′) = 1,

0, else.
(1.28)

This chain has unique invariant measure πn(x) = 2−n. Finally, choosing C = 2n in (1.1),
the mean holding times, λ−1

n (x), reduce to λ−1
n (x) = τn(x). This defines the so-called

random hopping dynamics.
In the theorem below the inverse temperature β is to be chosen as a sequence (βn)n∈N

that either diverges or converges to a strictly positive limit.

Theorem 1.4. Let ν be given by ν(u,∞) ≡ Kpu
−1 for u ∈ (0,∞) and Kp = 2p. Let

γn, βn be such that γn = n−c for c ∈
(
0, 1

2

)
, βn ≥ β0 for some β0 > 0, and γnβn ≤ O(1).

Set αn ≡ γn/βn. Define the jump scales an and time scales cn via

an =
√

2πn γ−1
n e

1
2
γ2nn (1.29)

cn = eγnβnn . (1.30)

Then
(
Sbn
)αn J1=⇒ Mν . Convergence holds P-a.s. for p > 5 and in P-probability for

p = 2, 3, 4. For p = 5 it holds P-a.s. if c ∈
(
0, 1

4

)
and in P-probability else.

Remark. Theorem 1.4 immediately implies that (Sn)αn
M1=⇒ Mν on D([0,∞)) equipped

with the weaker M1- topology.

In [2] an analogous result is proven in law with respect to the environment, for similar
conditions on the sequence γn and fixed β.

Let us comment on the conditions on γn and βn in Theorem 1.4. They guarantee that
αn ↓ 0 as n → ∞, and that both sequences an and cn diverge as n → ∞. Note here that
different choices of the sequence βn correspond to different time scales cn. If βn → β > 0
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as n → ∞ then cn is sub-exponential in n, while in the case of diverging βn, cn can be
as large as exponential in O(n). Finally these conditions guarantee that the rescaled tail
distribution of the τn’s, on time scale cn, is regularly varying with index −αn.

We use Theorem 1.4 to derive the limiting behavior of the time correlation function
Cεn(t, s) which, for t > 0, s > 0, and ε ∈ (0, 1) is given by

Cεn(t, s) ≡ Pπn (Aεn(t, s)) , (1.31)

where Aεn(t, s) ≡
{
Rn

(
Xn(t1/αncn), Xn((t+ s)1/αncn)

)
≥ 1− ε

}
.

Theorem 1.5. Under the assumptions of Theorem 1.4,

lim
n→∞

Cεn(t, s) =
t

t+ s
, ∀ε ∈ (0, 1), t, s > 0. (1.32)

Convergence holds P-a.s. for p > 5 and in P-probability for p = 2, 3, 4. For p = 5 it holds
P-a.s. if c ∈

(
0, 1

4

)
and in P-probability else.

Theorem 1.5 establishes extremal aging as defined in [2]. Here, de-correlation takes
place on time intervals of the form [t1/αn , (t+ s)1/αn ], while in normal aging it takes place
on time intervals of the form [t, t+ s].

The remainder of the paper is organized as follows. We prove the results of Section 1.2
in Section 2. Section 3 is devoted to the proofs of the statements of Section 1.3. Finally,
an additional lemma is proven in the Appendix.

2. PROOFS OF THE MAIN THEOREMS

Now we come to the proofs of the theorems of Section 1.2. The proof of Theorem
1.1 hinges on the property that extremal processes can be constructed from Poisson point
processes. Namely, if ξ′ =

∑
k∈N δ{t′k,x′k} is a Poisson point process on (0,∞) × (0,∞)

with mean measure dt× dν ′, where ν ′ is a σ-finite measure such that ν ′(0,∞) =∞, then

M(t) ≡ sup{x′k : t′k ≤ t}, t > 0, (2.1)

is an extremal process with 1-dimensional marginal

Ft(u) = e−tν
′(u,∞). (2.2)

(See e.g. [15], Chapter 4.3.). This was used in [7] to derive convergence of maxima of
random variables to extremal processes from an underlying Poisson point process conver-
gence. Our proof exploits similar ideas and the key fact that the 1/αn-norm converges to
the sup norm as αn ↓ 0.

Proof of Theorem 1.1. Consider the sequence of point processes defined on (0,∞)×(0,∞)
through

ξn ≡
∑
k∈N

δ{k/an,Zαnn,k}. (2.3)

By Theorem 3.1 of [7], Conditions (1.7) and (1.8) immediately imply that ξn
J1=⇒ ξ, where

ξ is a Poisson point process with intensity measure dt× dν.
The remainder of the proof can be summarized as follows. In the first step we construct

(Sn(t))αn from ξn by taking the αthn power of the sum over all points Zn,k up to time bantc.
To this end we introduce a truncation threshold δ and split the ordinates of ξn into

Zαn
n,k = Zαn

n,k1Z
αn
n,k≤δ + Zαn

n,k1Z
αn
n,k>δ

. (2.4)
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Applying a summation mapping to Zαn
n,k1Z

αn
n,k>δ

, we show that the resulting process con-
verges to the supremum mapping of a truncated version of ξ. More precisely, let δ > 0.
Denote byMp the space of point measures on (0,∞) × (0,∞). For n ∈ N let T δn be the
functional onMp, whose value at m =

∑
k∈N δ{tk,jk} is

(T δnm)(t) =
(∑

tk≤t j
1/αn
k 1{jk>δ}

)αn
, t > 0. (2.5)

Let T δ be the functional onMp given by

(T δm)(t) = sup
{
jk1{jk>δ} : tk ≤ t

}
, t > 0 . (2.6)

We show that T δnξn
J1=⇒ T δξ as n→∞.

In the second step we prove that the small terms, as δ → 0 and n→∞, do not contribute
to (Sn)αn , i.e. that for ε > 0

lim
δ→0

lim sup
n→∞

P
(
ρ∞
(
T δnξn, S

αn
n

)
> ε
)

= 0 , (2.7)

where ρ∞ denotes the Skorokhod metric on D([0,∞)). Moreover, observe that T δξ J1=⇒
M as δ → 0. Then, by Theorem 4.2 from [3], the assertion of Theorem 1.1 follows.
Step 1: To prove that T δnξn

J1=⇒ T δξ as n → ∞ we use a continuous mapping theo-
rem, namely Theorem 5.5 from [3]. Since the mappings T δn and T δ are measurable, it is
sufficient to show that the set

E =
{
m ∈Mp : ∃ (mn)n∈N s.t. mn

v→ m but T δnmn�
��J1=⇒ T δm

}
, (2.8)

where v→ denotes vague convergence inMp, is a null set with respect to the distribution
of ξ. For the Poisson point process ξ it is enough to show that Pξ (Ec ∩ D) = 1, where

D ≡ {m ∈Mp : m ((0, t]× [j,∞)) <∞ ∀t, j > 0} . (2.9)

Let CT δ ≡
{
t > 0 : Pξ

({
m : T δm (t) = T δm (t−)

})
= 1
}

be the set of continuity points
of ξ. By definition of the Skorokhod metric, we consider m ∈ D, a, b ∈ CT δ , and (mn)n∈N
such that mn

v→ m and show that

lim
n→∞

ρ[a,b]

(
T δnmn, T

δm
)

= 0 , (2.10)

where ρ[a,b] denotes the Skorokhod metric on [a, b]. Since m ∈ D, there exist continuity
points x, y ofm such thatm((a, b)×(δ,∞)) = m((a, b)×(x, y)) <∞. Then, Lemma 2.1
from [13] yields that mn also has this property for large enough n. Moreover, the points
of mn in (a, b) × (x, y) converge to the ones of m (cf. Lemma I.14 in [14]). Finally, we
use that αn ↓ 0 as n→∞ and thus T δn can be viewed as the 1/αn-norm, which converges
as n→∞ to the sup-norm T δ. Therefore, T δnξn

J1=⇒ T δξ as n→∞.
Step 2: We prove (2.7) by showing that the assertion holds true for the Skorokhod metric
on D([0, k]) for every k ∈ N. Assume without loss of generality that k = 1. Let ε > 0.
We have that

P
(
sup0≤t≤1

∣∣T δnξn (t)− Sαnn (t)
∣∣ > ε

)
= P

(
sup0≤t≤1

∣∣∣(∑bantci=1 Zn,i1Zn,i>δ1/αn
)αn
−
(∑bantc

i=1 Zn,i

)αn∣∣∣ > ε
)
. (2.11)

Since for n large enough αn < 1, we know by Jensen’s inequality that∣∣∣(∑bantci=1 Zn,i1Zn,i>δ1/αn
)αn
−
(∑bantc

i=1 Zn,i

)αn∣∣∣ ≤ ∣∣∣∑bantci=1 Zn,i1Zn,i≤δ1/αn

∣∣∣αn , (2.12)
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and therefore

(2.11) ≤ P
(

sup0≤t≤1

∣∣∣∑bantci=1 Zn,i1Zn,i≤δ1/αn

∣∣∣αn > ε
)
. (2.13)

All summands are non-negative. Hence the supremum is attained for t = 1. Applying a
first order Chebychev and Jensen’s inequality, we obtain that (2.13) is bounded above by

ε−1
(∑an

i=1 E1Zn,i≤δ1/αnZn,i
)αn

= δ
ε

(∑an
i=1 E1Zn,i≤δ1/αnδ

−1/αnZn,i

)αn
. (2.14)

By (1.9) the sum is bounded in n and hence, as δ → 0, (2.14) tends to zero. This concludes
the proof of Theorem 1.1. �

Proof of Theorem 1.2. Throughout we fix a realisation ω ∈ Ω of the random environment
but do not make this explicit in the notation. We set

Ŝbn(t) ≡ Sbn(t)− c−1
n λ−1

n (Jn(0))en,0, t > 0. (2.15)

(Sbn(t))αn differs from (Ŝbn(t))αn by one term. All terms in (Sbn(t))αn are non-negative and
therefore we conclude by Jensen’s inequality that, for n large enough,

Ŝbn(t)αn ≤ Sbn(t)αn ≤ Ŝbn(t)αn +
(
c−1
n λ−1

n (Jn(0))en,0
)αn

. (2.16)

By Condition (0) the contribution of the term (c−1
n λ−1

n (Jn(0))en,0)
αn is negligible. Thus

we must show that under Conditions (1)-(3), (Ŝbn)αn
J1=⇒ Mν . Recall that kn(t) ≡

bbantc/θnc and that for i ≥ 1,

Zn,i ≡
∑θni

j=θn(i−1)+1 c
−1
n λ−1

n (Jn(j))en,j. (2.17)

We apply Theorem 1.1 to the Zn,i’s. It is shown in the proof of Theorem 1.2 in [6] that
Conditions (1) and (2) imply (1.7) and (1.8). It remains to prove that Condition (3) yields
(1.9). Note that for all i ≥ 1 and all (i− 1)θn + 1 ≤ j ≤ iθn

1{
∑iθn
j=(i−1)θn+1

λ−1
n (Jn(j))en,j≤cnδ1/αn} ≤ 1{λ−1

n (Jn(j))en,j≤cnδ1/αn} . (2.18)

Using (2.18), we observe that (1.9) is in particular satisfied if for every δ > 0 and t > 0

lim sup
n→∞

(bantc∑
i=1

Eµn1{λ−1
n (Jn(j))en,j≤cnδ1/αn}δ

−1/αnc−1
n λ−1

n (Jn(j))en,j

)αn
<∞ , (2.19)

which is nothing but Condition (3). The proof of Theorem 1.2 is done. �

Finally, having Theorem 1.2 and the results from [6], Theorem 1.3 is deduced readily.

Proof of Theorem 1.3. Let µn be the invariant measure πn of the jump chain Jn. By Propo-
sition 2.1 of [6] we know that Conditions (0), (1-1), and (2-1) imply Conditions (0)-(2)
of Theorem 1.2. Moreover, since µn = πn, Condition (3-1) is Condition (3). Thus, the
conditions of Theorem 1.2 are satisfied under the assumptions of Theorem 1.3 and this
yields the claim. �
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3. APPLICATION TO THE p SPIN SK MODEL

This section is devoted to the proof of Theorem 1.4. We show that the conditions of
Theorem 1.3 are satisfied for the particular choices of the sequences an, cn, and αn.

The following lemma from [9] (Proposition 3.1) tells us how to choose the block length
θn.

Lemma 3.1. Let Pπn be the law of the simple random walk on Σn started in the uniform
distribution. Let θn = 3 ln 2

2
n2. Then, for any x, y ∈ Σn, and any i ≥ 0,∣∣∣∣∣

1∑
k=0

Pπn (Jn(θn + i+ k) = y, Jn(0) = x)− 2πn(x)πn(y)

∣∣∣∣∣ ≤ 2−3n+1. (3.1)

This implies that Condition (1-1) holds true for θn = 3 ln 2
2
n2.

The proof of Condition (2-1) comes in three parts. We first show that Eνtn(u,∞) con-
verges to tν(u,∞). Next we prove that P-almost surely, respectively in P-probability, the
limit of νtn(u,∞) concentrates for every u > 0 and every t > 0 around its expectation.
Lastly we verify that the second part of (2-1) is satisfied in the same convergence mode
with respect to the random environment.

3.1. Convergence of Eνtn(u,∞).

Proposition 3.2. For every u > 0 and t > 0

lim
n→∞

Eνtn(u,∞) = νt(u,∞) ≡ Kptu
−1 . (3.2)

The proof of Proposition 3.2 centers on the following key proposition

Proposition 3.3. Let for t > 0 and an arbitrary sequence un,

ν̄tn(un,∞) = kn(t) Pπn
(

max
i=1,...,θn

λ−1
n (Jn(i))en,i > u1/αn

n cn

)
. (3.3)

Then, for every u > 0 and t > 0,

lim
n→∞

E ν̄tn(u,∞) = νt(u,∞) . (3.4)

The same holds true when u is replaced by un = u θ−αnn .

Proof of Proposition 3.2. By definition, νtn(u,∞) is given by

νtn(u,∞) = kn(t) Pπn
( θn∑
i=1

λ−1
n (Jn(i))en,i > u1/αn

n cn

)
. (3.5)

The assertion of Proposition 3.2 is then deduced from Proposition 3.3 using the upper and
lower bounds

ν̄tn(u,∞) ≤ νtn(u,∞) ≤ ν̄tn(uθ−αnn ,∞) . (3.6)

�

The proof of Proposition 3.3, which is postponed to the end of this section, relies on
three Lemmata. In Lemma 3.4 we show that (3.4) holds true if we replace the underlying
Gaussian process by a simpler Gaussian process H1. Lemma 3.5 yields (3.4) for the
maximum over a properly chosen random subset of indices of H1. We use Lemma 3.7 to
conclude the proof of Proposition 3.3.
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We start by introducing a Gaussian process H1. Let vn be a sequence of integers, where
each member is of order nω for ω ∈

(
c+ 1

2
, 1
)
. Then, H1 is a centered Gaussian process

defined on the probability space (Ω,F ,P) with covariance structure

∆1
i,j =

{
1− 2pn−1|i− j|, if bi/vnc = bj/vnc,
0, else.

(3.7)

For a given process U = {Ui, i ∈ N} on (Ω,F ,P) and an index set I define

Fn(un, U, I) ≡ P
(

maxi∈I e
√
nβnUi > u

1/αn
n cn

)
, (3.8)

and

Gn(un, U, I) ≡ Pπn
(

maxi∈I e
√
nβnUien,i > u

1/αn
n cn

∣∣∣FJ) . (3.9)

Lemma 3.4. For every u > 0 and t > 0

lim
n→∞

kn(t)EGn(u,H1, [θn]) = νt(u,∞), (3.10)

where [k] ≡ {1, . . . , k} for k ∈ N. The same holds true when u is replaced by un =
u θ−αnn .

We prove Proposition 3.3 and Lemmata 3.4, 3.5, and 3.7 for fixed u > 0 only. To
show that the claims also hold for un = uθ−αnn , it is a simple rerun of their proofs, using
θ−αnn ↑ 1 as n→∞.

Proof. It is shown in Proposition 2.1 of [2] that, by setting the exponentially distributed
random variables to 1 in (3.9), we get for every u > 0 that

lim
n→∞

anv
−1
n Fn(u,H1, [vn]) = ν(u,∞) . (3.11)

Assume for simplicity that θn is a multiple of vn. Note that blocks of H1 of length vn are
independent and identically distributed. Thus,

kn(t)Fn(u,H1, [θn]) = kn(t)
(

1−
(
1− Fn(u,H1, [vn])

)θn/vn)
∼ kn(t)θnv

−1
n Fn(u,H1, [vn])

n→∞−→ νt(u,∞) . (3.12)

To show that kn(t)EGn(u,H1, [θn]) also converges to νt(u,∞) as n → ∞ we use same
arguments as in (3.12) and prove that anv−1

n EGn(u,H1, [vn]) → ν(u,∞) as n → ∞.
Using Fubini we have that

an
vn

EGn(u,H1, [vn]) =
an
vn

∫ ∞
cnu1/αn

dz

∫ ∞
0

dy
fmaxi∈[vn] en,i(y)

y
fmaxi∈[vn] e

βn
√
nH1(i)(

z
y
)

=
an
vn

∫ ∞
0

dyfmaxi∈[vn] en,i(y)Fn(u y−αn , H1, [vn]) , (3.13)

where fZ(·) denotes the density function of Z. Since we want to use computations from
the proof of Proposition 2.1 in [2], it is essential that the integration area over y is bounded
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from below and above. We bound (3.13) from above by

(3.13) ≤ anv
−1
n P

(
max

i=1,...,vn
en,i ≤ e−nv

−1−δ
n

)
(3.14)

+ anv
−1
n

∫ env
−1/2−δ
n

e−nv
−1−δ
n

dyfmaxi∈[vn] en,i(y)Fn(u t−αn , H1, [vn]) (3.15)

+ anv
−1
n P

(
max

i=1,...,vn
en,i > env

−1/2−δ
n

)
, (3.16)

where δ > 0 is chosen in such a way that nv−1−δ
n diverges and vδnγ

2
n ↓ 0 as n → ∞, i.e.

δ < min
{

2c, 1−ω
ω

}
. Then,

(3.14) = anv
−1
n

(
1− exp

(
−e−nv

−1−δ
n

))vn
≤ ane

−nv−δn = o
(
e−nv

−δ
n (1−γ2nvδn)

)
, (3.17)

i.e. (3.14) vanishes as n→∞. Similarly,

(3.16) = anv
−1
n

(
1−

(
1− exp

(
−e−nv

−1/2−δ
n

))vn)
= o
(
eγ

2
nn−env

−1/2−δ
n

)
n→∞−→ 0 . (3.18)

As in equation (2.31) in [2] we see that (3.15) is given by∫ env
−1/2−δ
n

e−nv
−1−δ
n

dy
fmaxi∈[vn] en,i(y)

γ2
nvn

vn∑
k=1

∫
D
′′
k

da2 · · · davn
∫ ∞

log(uy−αn )

da1
e−hk(a1,...,avn )

(2π)
vn−1

2

, (3.19)

where for k ∈ {1, . . . , vn}

hk(a1, . . . , avn) = a1 − a21C1

γ2nn
− 1

2

∑vn
i=2 a

2
i + (a2+...+ak−ak+1−...−avn )a1C2

γnn
, (3.20)

for some constants C1, C2 > 0 and a sequence of sets D′′k ⊆ Rvn−1 such that

γ−2
n v−1

n

vn∑
k=1

∫
D
′′
k

da2 · · · davn(2π)−vn/2−1/2e−
1
2

∑vn
i=2 a

2
i
n→∞−→ Kp . (3.21)

The aim is to separate a1 from a2, . . . , avn in (3.20). We bound the mixed terms in e−hk up
to an exponentially small error by 1. This can be done using a large deviation argument
for |a2 + . . .+avn| together with the fact that | log y| ∈

[
nv−1−δ

n , nv
−1/2−δ
n

]
. Computations

yield that, up to a multiplicative error that tends to 1 as n → ∞ exponentially fast, (3.15)
is bounded from above by∫ ∞

e−nv
−1−δ
n

dyfmaxi∈[vn] en,i(y)yαn u−1Kp ≤ ν(u,∞)

∫ ∞
0

dyfmaxi∈[vn] en,i(y)yαn . (3.22)

Moreover by Jensen’s inequality,

(3.19) ≤ ν(u,∞)
(
Eπn max

i∈[vn]
en,i

)αn
= ν(u,∞)

(∫ ∞
0

dy P
(

max
i∈[vn]

en,i > y
))αn

= ν(u,∞)
(∫ ∞

0

dy
(

1−
(
1− e−y

)vn))αn
≤ ν(u,∞)vαnn , (3.23)

which, as n→∞, converges to ν(u,∞).
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To conclude the proof of (3.10), we bound (3.13) from below by

(3.13) ≥ an
vn

∫ ∞
0

dyfen,1(y)Fn(u y−αn , H1, [vn]) . (3.24)

To show that the right hand side of (3.24) is greater than or equal to ν(u,∞), one proceeds
as before. �

In the following we form a random subset of [θn] in such a way that on the one hand,
with high probability, it contains the maximum of eβn

√
nH1(i) over all i ∈ [θn] . On the

other hand it should be a sparse enough subset of [θn] so that we are able to de-correlate
the random landscape and deal with the SK model. This dilution idea is taken from [2].

If the maximum of eβn
√
nH1(i) crosses the level cnu1/αn , then it will typically be much

higher so that, due to strong correlation, at least γ−2
n of its direct neighbors will be above

the same level. To see this, we consider Laplace transforms. Set for v > 0

F̂n(v,H1, θn) ≡
∫∞

0
dz e−zvP

(
δn
∑θn

i=1 1eβ
√
nH1(i)>cnu1/αn

> z
)
, (3.25)

where δn ∈ [0, 1] for every n ∈ N. We have that

F̂n(v,H1, θn) = 1
v

(
1− E exp

(
−δn

∑θn
i=1 1eβn

√
nH1(i)>cnu1/αn

))
= 1

v

(
1−

(
E exp

(
−δn

∑vn
i=1 1eβn

√
nH1(i)>cnu1/αn

))θn/vn)
. (3.26)

From [2], Proposition 1.3, we deduce that for the choice δn = γ2
nρn, where ρn is any

diverging sequence of order O(log n),

limn→∞ anv
−1
n

(
1− E exp

(
−δn

∑vn
i=1 1eβn

√
nH1(i)>cnu1/αn

))
= ν(u,∞) . (3.27)

Therefore we have for the same choice of δn that

kn(t)F̂n(v,H1, θn)→ tv−1ν(u,∞) . (3.28)

From this we conclude that if the maximum is above the level cnu1/αn then immediately
O(γ−2

n ) are above this level. More precisely, we obtain

Lemma 3.5. Let ρn be as described above. Let {ξn,i : i ∈ N, n ∈ N} be an array
of row-wise independent and identically distributed Bernoulli random variables such that
P(ξn,i = 1) = 1−P(ξn,i = 0) = γ2

nρn, and such that {ξn,i : i ∈ N, n ∈ N} is independent
of everything else. Set

Ik = {i ∈ {1, . . . , k} : ξn,i = 1} . (3.29)
Then, for every u > 0 and t > 0

lim
n→∞

kn(t)EGn(u,H1, Iθn) = νt(u,∞) . (3.30)

The same holds true when u is replaced by un = u θ−αnn .

Proof. It is shown in Lemma 2.3 of [2] that

lim
n→∞

anv
−1
n Fn(u,H1, Ivn) = ν(u,∞) . (3.31)

Since the random variables ξn,i are independent, the claim of Lemma 3.5 is deduced by
the same arguments as in (3.12). �

To conclude the proof of Proposition 3.3, we use a Gaussian comparison result. The
following lemma is an adaptation of Theorem 4.2.1of [11].
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Lemma 3.6. Let H0 and H1 be Gaussian processes with mean 0 and covariance matrix
∆0 = (∆0

ij) and ∆1 = (∆1
ij), respectively. Set ∆m ≡

(
∆m
ij

)
=
(
max{∆0

ij,∆
1
ij}
)

and
∆h ≡ h∆0 + (1− h)∆1, for h ∈ [0, 1]. Then, for s ∈ R,

P(maxi∈I H
0(i) ≤ s)− P(maxi∈I H

1(i) ≤ s)

≤
∑

i,j∈I(∆
0
ij −∆1

ij)
+ exp

(
− s2

1+∆m
ij

) ∫ 1

0
dh(1− (∆h

ij)
2)−

1
2 , (3.32)

where (x)+ ≡ max{0, x}.

We use Lemma 3.6 to prove that

Lemma 3.7. Let H0 be given by H0(i) = n−1/2Hn(Jn(i)), i ∈ N. For every u > 0 and
t > 0

lim
n→∞

kn(t)Eπn|EGn(u,H0, θn)− EGn(u,H1, θn)| = 0. (3.33)

The same holds true when u is replaced by un = uθ−αn .

Proof. The proof is in the same spirit as that of Proposition 3.1 in [2]. Together with
Lemma 3.5, it is sufficient to show that

kn(t)Eπn(EGn(u,H1, [θn])− EGn(u,H0, [θn]))+ → 0 (3.34)

and
kn(t)Eπn|EGn(u,H1, Iθn)− EGn(u,H0, Iθn)| → 0 . (3.35)

We do this by an application of Lemma 3.6. Let ŝn be given by

ŝn = 1√
nβn

(
log cn + βn

γn
log u−maxi∈[θn] log en,i

)
. (3.36)

Then we obtain by Lemma 3.6 that

(3.34)

= kn(t)Eπn

(
EEπn

[
1maxi∈[θn]H

1(i)≤ŝn − 1maxi∈[θn]H
0(i)≤ŝn | FJ

])+

≤ kn(t)Eπn
∑

i,j∈[θn](∆
1
ij −∆0

ij)
+Eπne−ŝ

2
n(1+∆m

ij )−1 ∫ 1

0
dh(1− (∆h

ij)
2)−

1
2 .(3.37)

To remove the exponentially distributed random variables en,i in (3.37), let Bn = {1 ≤
maxi∈[θn] ei ≤ n}. We have for sn = (n1/2βn)−1

(
log cn + βn

γn
log u− log n

)
that

Eπn
(
1Bn exp

(
−ŝ2

n(1 + ∆m
ij )
−1
))
≤ exp

(
−s2

n(1 + ∆m
ij )
−1
)
. (3.38)

One can check that kn(t)P(Bc
n) ↓ 0. Moreover, by definition of sn, there exists for every

u > 0 a constant C <∞ such that for n large enough

(3.34) ≤ Ckn(t)Eπn
∑

i,j∈[θn](∆
1
ij −∆0

ij)
+e−γ

2
nn(1+∆m

ij )−1 ∫ 1

0
dh(1− (∆h

ij)
2)−

1
2 . (3.39)

Likewise we deal with (3.35). The terms in (3.35) are non-zero if and only if i, j ∈ Iθn .
By assumption, the probability of this event is (γ2

nρn)2. Hence, (3.35) is bounded above
by

Ckn(t)(γ2
nρn)2Eπn

∑
i,j∈[θn] |∆0

ij −∆1
ij|e−γ

2
nn(1+∆m

ij )−1 ∫ 1

0
dh(1− (∆h

ij)
2)−

1
2 . (3.40)

We divide the summands in (3.39) and (3.40) respectively into two parts: pairs of i, j such
that bi/vnc 6= bj/vnc and those such that bi/vnc = bj/vnc. If bi/vnc 6= bj/vnc then
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we have by definition of H1 that ∆1
ij = 0. For i, j such that bi/vnc = bj/vnc, we have

∆1
ij ≤ ∆0

ij . In view of this, we get after some computations that

(3.39) ≤ Ckn(t)Eπn

[∑θn
bi/vnc6=bj/vnc(∆

0
ij)
−e−γ

2
nn
]
, (3.41)

and

(3.40) ≤ Ckn(t)γ4
nρ

2
nEπn

[∑θn
bi/vnc6=bj/vnc |∆

0
ij|e−γ

2
nn(1+∆0

ij)
−1

+
∑θn
bi/vnc=bj/vnc |∆

0
ij −∆1

ij|e−γ
2n(1+∆0

ij)
−1

(1− (∆0
ij)

2)−
1
2

]
. (3.42)

Since (∆0
ij)
− = O(n) we know by definition of an and θn that

(3.41) ≤ Cθnn
3/2α−1

n e−
1
2
γ2nn , (3.43)

which tends to zero as n→∞. Thus (3.34) holds true.
To conclude the proof of (3.35) we use Lemma 4.1 from the appendix. We get that

(3.40) is bounded above by

C̄tan
∑n

d=0 e
−γ2nn(1+d)−1

(
d2

vnn
1d≤vn + exp(ηγ2n min{d,n−d})

vnγ2n

)
, (3.44)

for some C̄ <∞ and η <∞. With the same arguments as in the proof of (3.3) in [2], we
obtain that (3.44) tends to zero as n→∞. �

Proof of Proposition 3.3. Observe that∣∣Eν̄tn(u,∞)− νt(u,∞)
∣∣ =

∣∣kn(t)EπnEGn(u,H0, [θn])− νt(u,∞)
∣∣ , (3.45)

which is bounded above by

kn(t)Eπn
∣∣EGn(u,H0, [θn])− EGn(u,H1, [θn])

∣∣+
∣∣kn(t)EGn(u,H1, [θn])− νt(u,∞)

∣∣ .
(3.46)

By Lemma 3.4 and Lemma 3.7, both terms vanish as n→∞ and Proposition 3.3 follows.
�

3.2. Concentration of νtn(u,∞). To verify the first part of Condition (1-1) we control the
fluctuation of νtn(u,∞) around its mean.

Proposition 3.8. For every u > 0 and t > 0 there exists C = C(p, t, u) <∞, such that

E
(
ν̄tn(u,∞)− Eν̄tn(u,∞)

)2 ≤ Cγ−2
n n1−p/2 . (3.47)

The same holds true when u is replaced by un = uθ−αnn . In particular, for p > 5 and
c ∈ (0, 1

2
) or p = 5 and c < 1

4
, the first part of Condition (1-1) holds for every u > 0 and

t > 0, P-a.s.

Proof. Let
{
e′n,i : i ∈ N, n ∈ N

}
and J ′n be independent copies of {en,i : i ∈ N, n ∈ N}

and Jn respectively. Write

Ḡn(u,H0, [θn]) ≡ Pπn
(

maxi∈[θn] e
βnHn(Jn(i))en,i ≤ cnu

1/αn
∣∣FJ)

Ḡn(u,H0′ , [θn]) ≡ Pπ′n
(

maxi∈[θn] e
βnHn(J ′n(i))e′n,i ≤ cnu

1/αn
∣∣FJ ′) . (3.48)

Then, as in (3.21) in [6],

E
(
EπnḠn(u,H0, [θn])

)2
= EEπnḠn(u,H0, [θn])Eπ′nḠn(u,H0′ , [θn])

= EπnEπ′nEḠn(u, V 0, [2θn]) , (3.49)
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where V 0 is a Gaussian process defined by

V 0(i) =

{
n−1/2Hn(Jn(i)), if 1 ≤ i ≤ θn,

n−1/2Hn(J ′n(i)), if θn + 1 ≤ i ≤ 2θn .
(3.50)

To further express
(
EEπnḠn(u,H0, [θn])

)2, let V 1 be a centered Gaussian process with
covariance matrix

∆1
ij =

{
∆0
ij, if max{i, j} ≤ θn, or min{i, j} ≥ θn,

0, else,
(3.51)

where ∆0 = (∆0
ij) denotes the covariance matrix of V 0. Then, as in (3.23) in [6],(

EEπnḠn(u,H0, [θn])
)2

= EπnEπ′nEḠn(u, V 1, [2θn]) . (3.52)

As in the proof of Lemma 3.7 we use Lemma 3.6 to obtain that

k2
n(t)E

(
EπnḠn(u,H0, [θn])− EEπnḠn(u,H0, [θn])

)2

≤ 2k2
n(t)

∑
1≤i≤θn

θn+1≤j≤2θn

EπnEπ′n∆0
ije
−γ2nn(1+∆0

ij)
−1

. (3.53)

It is shown in (3.29) of [6] that

EπnEπ′n1∆0
ij=(mn )

p = 2−n
(

n

(n−m)/2

)
, for m ∈ {0, . . . , n}. (3.54)

From this, and with the definition of an, we have that

(3.53) ≤ 2t2a2
n

n∑
m=0

2−n
(

n

(n−m)/2

)(m
n

)p
exp

(
γ2
nn

1 + (m
n

)p

)

≤ 2t2γ−2
n

n∑
m=0

2−nn

(
n

(n−m)/2

)(m
n

)p
exp

(
γ2
nn

(m
n

)p

1 + (m
n

)p

)

= 2t2γ−2
n

n∑
d=0

2−nn

(
n

d

)(
1− 2d

n

)p
exp

(
γ2
nn

(1− 2d
n

)p

1 + (1− 2d
n

)p

)

≤ 2t2γ−2
n

n∑
d=0

n1/2

(
n

d

)(
1− 2d

n

)p
+

exp
(
nΥn,p

(
d
n

))
Jn
(
d
n

)
, (3.55)

where for u ∈ (0, 1) we set Υn,p(u) = γ2
n − I(u) − γ2

n(1 + |1 − 2u|p)−1 and Jn(u) =
2−n
(

n
bnuc

)√
πnenI(u) for I(u) = u log u + (1 − u) log(1 − u) + log 2. Note that (3.55)

has the same form as (3.28) in [1]. Following the strategy of [1], we show that there exist
δ, δ′ > 0 and c > 0 such that

Υn,p ≤

{
−c
(
u− 1

2

)2
, ifu ∈ (1

2
− δ, 1

2
+ δ),

−δ′, else.
(3.56)

Since γn = n−c this can be done, independently of p, as in [2] (cf. (3.19) and (3.20)).
Finally, together with the calculations from (3.28) in [1] we obtain that

E
(
ν̄tn(u,∞)− Eν̄tn(u,∞)

)2 ≤ Cγ−2
n n1−p/2. (3.57)

The same arguments and calculations are used to prove that (3.47) also holds when u
is replaced by un = uθ−αnn . Let p > 5 and c ∈ (0, 1

2
) or p = 5 and c < 1

4
. Then,
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by Borel-Cantelli Lemma, for every u > 0 and t > 0 there exists a set Ω(u, t) with
P(Ω(u, t)) = 1 such that on Ω(u, t), for every ε > 0 and n large enough, we have that
|ν̄tn(u,∞)− νt(u,∞)| < ε and |ν̄tn(un,∞)− νt(u,∞)| < ε. From this we conclude that,
on Ω(u, t) and for n large enough,

νt(u,∞)− ε ≤ νtn(u,∞) ≤ νt(un,∞) + ε, (3.58)

i.e. Condition (1-1) is satisfied, for every u > 0 and t > 0, P-a.s. �

Proposition 3.9. Let p = 2, 3, 4 and c ∈ (0, 1
2
) or p = 5 and c > 1

4
. Then, the first part of

Condition (1-1) holds in P-probability for every u > 0 and t > 0.

Proof. For every ε > 0, we bound P (|νtn(u,∞)− E(νtn(u,∞))| > ε) from above by

P
(
|νtn(u,∞)− kn(t)EπnGn(u,H0, Iθn)| > ε/3

)
(3.59)

+ P
(
kn(t)|EπnGn(u,H0, Iθn)− EEπnGn(u,H0, Iθn)| > ε/3

)
(3.60)

+ 1{|E(νtn(u,∞))−kn(t)EEπnGn(u,H0,Iθn )|>ε/3}. (3.61)

Observe that by a first order Chebychev inequality,

(3.59) ≤ |Eνtn(u,∞)− kn(t)EEπnGn(u,H0, Iθn)|. (3.62)

By Lemmata 3.4, 3.5, and 3.7, (3.62) tends to zero as n → ∞. For the same reason,
(3.61) is equal to zero for large enough n. To bound (3.60), we calculate the variance
of kn(t)EπnGn(u,H0, Iθn). As in the proof of Proposition 3.8 we use Lemma 3.6, but
take into account that there can only be contributions to the left hand side of (3.32) if
i, j ∈ Iθn . This gives us the additional factor (γ2

nρn)
2 in (3.53). Therefore the variance

of kn(t)EπnGn(u,H0, Iθn) is bounded above by C(γnρn)2n1−p/2 which, for all p ≥ 2,
vanishes as n→∞. Hence, we have proved Proposition 3.9. �

3.3. Second part of Condition (2-1). We proceed as in Section 3.4 in [6] to verify the
second part of Condition (2-1) . With the same notation as in (1.12), we define for u > 0
and t > 0

η̃tn(u) ≡ kn(t)n−1
∑
x∈Σn

(Qu
n(x))2 , (3.63)

ηtn(u) ≡ kn(t)
∑
x∈Σn

∑
x′∈Σn

µn(x, x′)Qu
n(x)Qu

n(x′) , (3.64)

where µn(·, ·) is the uniform distribution on pairs (x, x′) ∈ Σ2
n that are at distance 2 apart,

i.e.

µn(x, x′) =

{
2−n 2

n(n−1)
, if dist(x, x′) = 2,

0, else.
(3.65)

We prove that the expectations of both (3.63) and (3.64) tend to zero. First and second
order Chebychev inequalities then yield that the second part of Condition (2-1) holds in
P-probability, respectively P-a.s.

Lemma 3.10. For every u > 0 and t > 0

lim
n→∞

Eη̃tn(u) = lim
n→∞

Eηtn(u) = 0 . (3.66)
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Proof. We show that limn→∞ Eηtn(u) = 0. The assertion for η̃tn(u) is proved similarly. Let

Q̄u
n(x) ≡ Px

(∑θn
j=1 λ

−1
n (Jn(j))en,j ≤ cnu

1/αn
)
. (3.67)

Rewrite (3.59) in the following way

kn(t)
∑

x∈Σn

∑
x′∈Σn

µn(x, x′)
(
1− Q̄u

n(x)
) (

1− Q̄u
n(x′)

)
= kn(t)

[
1−

∑
(x,x′)∈Σ2

n
µn(x, x′)

(
Q̄u
n(x) + Q̄u

n(x′)− Q̄u
n(x)Q̄u

n(x′)
)]

= kn(t)
[
1− 2

∑
x∈Σn

πn(x)Q̄u
n(x) +

∑
(x,x′)∈Σ2

n
Q̄u
n(x)Q̄u

n(x′)
]
. (3.68)

To shorten notation, write

Ku
n ≡ Pπn

(
maxi∈{θn,...,θn} e

√
nβnH0(i)en,i > cnu

1/αn

∣∣∣FJ) =
∑

x∈Σn
2−nKu

n(x), (3.69)

where θn ≡ 2n log n and

Ku
n(x) ≡ Px

(
maxi∈{θn,...,θn} e

√
nβnH0(i)en,i > cnu

1/αn

∣∣∣FJ). (3.70)

Using the bound Q̄u
n(x) ≤ Ex(1 − Ku

n(x)) ≡ ExK̄u
n(x), x ∈ Σn, and taking expectation

with respect to the random environment we obtain that

Eηtn(u) ≤ kn(t)− 2
(
kn(t)− Eνtn(u,∞)

)
(3.71)

+ kn(t)
∑

(x,x′)∈Σ2
n
µn(x, x′)E

[
ExK̄u

n(x)Ex′K̄u
n(x′)

]
. (3.72)

For Ḡu
n ≡ Pπn

(
maxi∈[θn] e

√
nβnH0(i)en,i ≤ cnu

1/αn
)

observe that

(3.71) ≤ kn(t)− 2kn(t)EḠu
n. (3.73)

We add and subtract EEπn(1−Ku
n) ≡ EEπnK̄u

n as well as∑
(x,x′)∈Σ2

n
µn(x, x′)EExK̄u

n(x)Ex′K̄u
n(x′). (3.74)

Re-arranging the terms and using the bound from (3.73) we see that Eηtn(u) is bounded
from above by

2kn(t)
(
EK̄u

n − EḠu
n

)
(3.75)

+ kn(t)
∑
x,x′

µn(x, x′)EExKu
n(x)EEx′Ku

n(x′) (3.76)

+ kn(t)
∑
x,x′

µn(x, x′)
(
E
[
ExK̄u

n(x)Ex′K̄u
n(x′)

]
− EExK̄u

n(x)EEx′K̄u
n(x′)

)
.(3.77)

From Proposition 3.3 we conclude that (3.75) and (3.76) are of orderO
(

logn
n

)
andO (θna

−1
n )

respectively. To control (3.77) we use the normal comparison theorem (Lemma 3.6) for
the processes V 0 and V 1 as in Proposition 3.8. However, due to the fact that we are
looking at the chain after θ̄n steps, the comparison is simplified. More precisely, let
An ≡

{
∀θ̄n ≤ i ≤ θn : dist(Jn(i), J ′n(i)) > n(1− ρ(n))

}
⊂ FJ × FJ ′ , where ρ(n) is

of the order of
√
n−1 log n. Then, on An, by Lemma 3.6 and the estimates from (3.35),

E
[
K̄u
n(x)K̄u

n(x′)
]
− EK̄u

n(x)EK̄u
n(x′) ≤ 2γ−2

n

∑
1≤i≤θn

θn+1≤j≤2θn

∆0
ije
−γ2nn(1+∆0

ij)
−1 ≤ O(θ2

na
−2
n ).

(3.78)
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Moreover, on Acn,

E
[
K̄u
n(x)K̄u

n(x′)
]
− EK̄u

n(x)EK̄u
n(x′) ≤ O(a−1

n ). (3.79)

But in Lemma 3.7 from [6] it is shown that for a specific choice of ρ(n) and every x ∈ Σn

P (An| dist(Jn(0), J ′n(0)) = 2) ≥ 1− n−8

Px (Acn) ≤ n−4. (3.80)

Therefore we obtain that limn→∞ Eηtn(u) = 0. �

Remark. Lemma 3.10 immediately implies that the second part of Condition (2-1) holds in
P-probability. To show that it is satisfied P-almost surely for p > 5 and c ∈ (0, 1

2
) or p = 5

and c < 1
4

it suffices to control the variance of (3.75). We use the same concentration
results as in Proposition 3.8 to obtain that the variance of kn(t)(K̄u

n − Ḡu
n), which is given

by

k2
n(t)

[
E
(
K̄u
n − EK̄u

n

)2
+ E

(
Ḡu
n − EḠu

n

)2 − 2
(
EḠu

nK̄
u
n − EḠu

nEK̄u
n

)]
, (3.81)

is bounded from above by Cγ−2
n n1−p/2.

3.4. Condition (3-1). We show that Condition (3-1) is P- a.s. satisfied for every δ > 0.

Lemma 3.11. It holds P-a.s. that

lim sup
n→∞

(
an
(
cnδ

1/αn
)−1 Eπnλ−1

n (Jn(1))en,11λ−1
n (Jn(1))en,1≤cnδ1/αn

)αn
<∞, ∀δ > 0.

(3.82)

Proof. We begin by proving that for every δ > 0, for n large enough,
an

cnδ1/αn
EπnEλ−1

n (Jn(1))en,11λ−1
n (Jn(1))en,1≤cnδ1/αn =

∑
x∈Σn

2−nEYn,δ(x)

≤ 4(δγnβn)−1, (3.83)

where Yn,δ(x) ≡ an
(
cnδ

1/αn
)−1

λ−1
n (x)en,11λ−1

n (x)en,1≤cnδ1/αn , for x ∈ Σn.
For x ∈ Σn we have that

EYn,δ(x) = an(cnδ
1/αn)−1(2π)−1/2

∫ ∞
0

dy

∫ yn

−∞
dz ye−y−

z2

2
+βn
√
nz

= an(cnδ
1/αn)−1(2π)−1/2

∫ ∞
0

dy

∫ ∞
βn
√
n−yn

dz ye−y+
β2nn

2
− z

2

2 , (3.84)

where yn ≡ (
√
nβn)−1

(
log cn + βn

γn
log δ − log y

)
for y > 0. In order to use estimates on

Gaussian integrals, we divide the integration area over y into y ≤ n2 and y > n2.
For y > n2, there exists a constant C ′ > 0 such that

(2π)−1/2an(cnδ
1/αn)−1

∫ ∞
n2

dy

∫ yn

−∞
dz ye−y−

z2

2
+βn
√
nz ≤ C ′ann

4e−n
2

, (3.85)

which vanishes as n→∞.
Let y ≤ n2. By definition of cn we have βn

√
n−yn =

√
nβn

(
1− γn

βn
− log δ

γnβnn
+ log y

β2
nn

)
.

Since αn ↓ 0 as n → ∞, it follows that for n large enough βn
√
n − yn > 0. But then,

since P(Z > z) ≤ (
√

2π)−1z−1e−z
2/2 for any z > 0 and Z being a standard Gaussian,∫ n2

0

dy

∫ ∞
−yn+βn

√
n

dz ye−y+
β2nn

2
− z

2

2 ≤
∫ n2

0

dy
ye−y

βn
√
n− yn

e
β2nn

2
− (βn

√
n−yn)2

2 . (3.86)



CONVERGENCE TO EXTREMAL PROCESSES 20

Plugging in the definition of an and cn, (3.85) and (3.86) yield that, for n large enough, up
to a multiplicative error that tends to 1 as n→∞ exponentially fast,

(3.84) ≤
∫ n2

0
dy yαne−y(γnβnδ)

−1
(

1− γn
βn
− log δ

nγnβn
+ log y

β2
nn

)−1

e2 log δ logn(nγnβn)−1

≤ 2

∫ n2

0

dy yαne−y(γnβnδ)
−1

≤ 2Γ
(

1 + γn
βn

)
(γnβnδ)

−1 , (3.87)

where Γ(·) denotes the gamma function. Since Γ(1 + αn) ≤ 2 for αn ≤ 1, the claim of
(3.83) holds true for every δ > 0 for n large enough.

Lemma 3.10 from [6] yields that for every δ > 0 there exists κ > 0 such that

E (EπnYn,δ)
2 − (EEπnYn,δ)

2 ≤ a2
n

(
cnδ

1/αn
)−2

n1−p/2 ≤ e−n
κ

, (3.88)

where EπnYn,δ ≡
∑

x∈Σn
2−nYn,δ(x). By Borel-Cantelli Lemma for every δ > 0 there

exists a set Ω(δ) with P(Ω(δ)) = 1 such that on Ω(δ), for every ε > 0 there exists n′ ∈ N
such that

EπnYn,δ ≤ 4 (γnβnδ)
−1 + ε, ∀n ≥ n′. (3.89)

Setting Ωτ ≡
⋂
δ∈Q∩(0,∞)) Ω(δ), we have P(Ωτ ) = 1.

Let δ > 0 and ε > 0. We can always find δ′ ∈ Q such that δ ≤ δ′ ≤ 2δ. Note that Yn,δ
is increasing in δ. Moreover, by (3.89) there exists n′ = n′(δ′, ε) such that on Ωτ and for
n ≥ n′

(EπnYn,δ)
αn ≤ (EπnYn,δ′)

αn ≤
(

4 (γnβnδ
′)
−1

+ ε
)αn
≤ 4 (γnβnδ

′)
−αn . (3.90)

Since (γnβn)−αn ↓ 1 as n→∞, we obtain the assertion of Lemma 3.11. �

3.5. Proof of Theorem 1.4. We are now ready to conclude the proof of Theorem 1.4.
First let p > 5 and γn = n−c for c ∈

(
0, 1

2

)
, or p = 5 and c > 1

4
. Then we know by

Propositions 3.3 and 3.8 that for every u > 0 there exists a set Ω(u) with P(Ω(u)) = 1 and
such that on Ω(u)

lim
n→∞

νtn(u,∞) = Kptu
−1, ∀t > 0. (3.91)

The mapping that maps u to νtn(u,∞) is decreasing on (0,∞) and its limit, u−1, is contin-
uous on the same interval. Therefore, setting Ωτ

1 =
⋂
u∈(0,∞)∩Q Ω(u), we have P(Ωτ

1) = 1
and (3.91) holds true for every u > 0 on Ωτ

1 . By Section 3.3 there also exists a subset Ωτ
2

with full measure and such that the second part of Condition (2-1) holds on Ωτ
2 .

Condition (3-1) holds P-a.s. by Lemma 3.11. Finally, we are left with the verification
of Condition (0) for the invariant measure πn(x) = 2−n, x ∈ Σn. For v > 0, we have that∑

x∈Σn

2−ne−v
αncnλn(x) =

∑
x∈Σn

2−nPπn
(
λ−1
n (x)en,1 > cnv

αn
)
. (3.92)

By similar calculations as in (3.87), we see that, for n large enough and x ∈ Σn,

EPπn
(
λ−1
n (x)en,1 > cnv

αn
)
∼ a−1

n γ2
nv
−1, (3.93)

which tends to zero as n→∞. By a first order Chebychev inequality we conclude that for
every v > 0 Condition (0) is satisfied P-a.s. As before, by monotonicity and continuity,
this implies that Condition (0) holds P-a.s. for every v > 0. Therefore, Theorem 1.4 holds
in this case.
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For p = 2, 3, 4 and c ∈
(
0, 1

2

)
or p = 5 and c ≥ 1

4
, we know from Propositions 3.3,

3.8, and Section 3.3 that Condition (2-1) is satisfied in P-probability, whereas Condition
(0) and (3-1) hold P-a.s. This concludes the proof of Theorem 1.4.

3.6. Proof of Theorem 1.5. We use Theorem 1.4 to prove the claim of Theorem 1.5.
By the same arguments as in the proof of Theorem 1.5 in [6], we obtain that for t > 0,

s > 0, and ε ∈ (0, 1) the correlation function Cεn(t, s) can, with very high probability and
P- a.s., be approximated by

Cεn(t, s) = (1− o(1)) Pπn(Rn ∩ (tαn , (t+ s)αn) = ∅)
= (1− o(1)) Pπn(Rαn ∩ (t, t+ s) = ∅), (3.94)

whereRn is the range of the blocked clock process Sbn andRαn is the range of
(
Sbn
)αn . By

Theorem 1.4 we know that
(
Sbn
)αn J1=⇒ Mν , P-a.s. for p > 5 if c ∈ (0, 1

2
), p = 5 if c < 1

4
,

and in P-probability else. By Proposition 4.8 in [15] we know that the range of Mν is the
range of a Poisson point process ξ′ with intensity measure ν ′(u,∞) = log u − logKp.
Thus, writingRM for the range of Mν , we get that

P(RM ∩ (t, t+ s) = ∅) = P(ξ′(t, t+ s) = 0) = e−ν
′(t,t+s) = t

t+s
. (3.95)

The claim of Theorem 1.5 follows.

4. APPENDIX

In the appendix we state and prove a lemma that is needed in the proof of Lemma 3.7.

Lemma 4.1. Let Dij = dist(Jn(i), Jn(j)) and ∆0
d = (1 − 2dn−1)p. For any η > 0 there

exists a constant C̄ <∞ such that for n large enough and d ∈ {0, . . . , n}

kn(t)
∑θn
bi/vnc=bj/vncEπn1Dij=d|∆

0
d −∆1

ij| ≤ C̄tan
d2

vnn
1d≤vn , (4.1)

kn(t)
∑θn
bi/vnc6=bj/vncEπn1Dij=d ≤ C̄t

an exp(ηγ2n min{d,n−d})
vnγ2n

. (4.2)

Proof. We use ideas from Section 3 in [1] and Section 4 in [2] and write the distance
process Dij = dist(Jn(i), Jn(j)) as the Ehrenfest chain Qn = {Qn(k) : k ∈ N}, which
is a birth-death process with state space {0, . . . , n} and transition probabilities pk,k−1 =
1 − pk,k+1 = k

n
for k ∈ {0, . . . , n}. Denote by Pk the law and Ek the expectation of Qn

starting in k. Let moreover Td = inf{k ∈ N : Qn(k) = d}. By the Markov property of
Jn, we have under P0, in distribution, that

dist(Jn(0), Jn(k))
d
= dist(Jn(j), Jn(j + k))

d
= Qn(k) , ∀j, k ≥ 0. (4.3)

Recall for the proof of (4.1) that if bi/vnc = bj/vnc, we have that ∆1
ij ≤ ∆0

i,j . More-
over, since for such i, j necessarily |i − j| ≤ vn we have that Dij ≤ vn. Thus, let
d ∈ {1, . . . , vn}. By Lemma 4.2 in [1] we deduce that there exists a constant C < ∞,
independent of d, such that

kn(t)
∑θn
bi/vnc=bj/vncEπn1Dij=d ≤ Ctan . (4.4)

Moreover,(
∆0
d −∆1

ij

)
=
(
1− 2d

n

)p − (1− 2p|i−j|
n

)
= 2p

n
(|i− j| − d) +O

(
d2

n2

)
. (4.5)



CONVERGENCE TO EXTREMAL PROCESSES 22

Therefore the main contributions in (4.1) are of the form∑θn
bi/vnc=bj/vnc (|i− j| − d)Eπn1Dij=d = vn

∑bθn/vnc
i=1

∑i+vn
j=i+1 (j − i− d)Eπn1Dij=d

= vn
∑bθn/vnc

i=1

∑vn
j=1 E01Qn(j)=d (j − d). (4.6)

Setting Z ≡
∑vn

j=1 1Qn(j)=d (j − d), (4.6) is nothing but θnE0Z. It is shown in [2] (page
31-32) that there exists a constant C <∞, independent of d, such that

E0Z ≤ CE0 (Td − d)1Td<vn

≤ C (E0Td − dP0 (Td < vn)) ≤ C
(
E0Td − d

(
1− v−1

n E0Td
))

, (4.7)

where the last inequality is obtained by a first order Chebychev inequality. To calculate
E0Td we use the following classical formulas (see e.g. [12], Chapter 2.5)

E0Td =
∑d

l=1El−1Tl, where (4.8)

El−1Tl = 1
pl,l−1

∏l
i=1

pi,i−1

pi−1,i

(
1 +

∑l−1
j=1

∏j
k=1

pk,k−1

pk−1,k

)
. (4.9)

Plugging in the transition probabilities we obtain that for all l ≤ d,

El−1Tl = n
l

(∏l
i=1

i
n−i+1

+
∑l−1

j=1

∏l
k=j+1

k
n−k+1

)
= n

l

∑l−1
j=0

∏l
k=j+1

k
n−k+1

. (4.10)

For any l ≤ d and 0 ≤ j ≤ l − 1 we have that
n
l

∏l
k=j+1

k
n−k+1

≤ n
d

∏l
k=j+1

d
n−d . (4.11)

In view of (4.8) we get that

E0Td ≤
∑d

l=1
1

1−2dn−1

(
1−

(
d

n−d

)l) ≤ d
(1−2dn−1)

. (4.12)

But then, since d
n
↓ 0 as n→∞ and d ≤ vn, there exists a constant C ′ <∞, independent

of d, such that
E0Z ≤ C ′ d

2

vn
. (4.13)

Together with (4.4) and (4.5) this concludes the proof of (4.1).
For the proof of (4.2) we distinguish several cases. If ‖d‖ ≡ min{d, n − d} >

(log n)1+εγ−2
n for some fixed ε > 0 then the claim of (4.2) is deduced from the bound

kn(t)
∑θn
bi/vnc6=bj/vncEπn1Dij=d ≤ antθn � ant

eη‖d‖γ
2
n

vnγ2n
. (4.14)

Assume next that ‖d‖ ≤ (log n)1+εγ−2
n . It is shown in [2], (page 35-36), that in this case

one can neglect values of d such that d ≥ n
2
. Thus, let d ≤ (log n)1+εγ−2

n . Note that

kn(t)
∑θn
bi/vnc6=bj/vncEπn1Dij=d ≤ kn(t)

∑θn
k=0

∑θn
m=jk

Eπn1Dk,k+m=d , (4.15)

where jk = inf{i ∈ N : bk/vnc 6= b(k + i)/vnc}.
We further distinguish the cases jk ≤ 2d and jk > 2d. If jk ≤ 2d then, setting Zjk(d) ≡∑θn
m=jk

1Dk,k+m=d, we haveZjk(d) ≤ Z0(d). It is shown on page 685 in [1] that there exists
C < ∞, independent of d, such that E0Z0(d) ≤ C. Since moreover |{k ∈ {1, . . . , θn} :
jk ≤ 2d}| ≤ 2dθn

vn
, we know that for every η > 0 there exists C ′ <∞ such that

kn(t)
∑θn

k=0

∑θn
m=jk

Eπn1Dij=d ≤ Ctand
vn
≤ C ′tane

ηγ2n‖d‖

vnγ2n
. (4.16)
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Let jk > 2d, i.e. in particular Zjk(d) ≤ Z2d(d). By the Markov property and by Lemma
4.2 in [1] we obtain that there exists C <∞ such that

E0Z2d(d) ≤ P0(Td ∈ (2d, θn))
(

1 + Ed

(∑θn
k=1 1Qn(k)=d

))
≤ CP0(Td ∈ (2d, θn)).

(4.17)
The probability that Q gets from 0 to d after 2d steps is bounded by the probability that it
takes at least d steps to the left, i.e.

P0(Td ∈ (2d, θn)) ≤
(

2d
d

) (
d
n

)d ≤ 2d
(

4d
n

)d � d
vn
. (4.18)

The claim follows as in (4.16). This concludes the proof of (4.2). �
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