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KORN’S SECOND INEQUALITY AND GEOMETRIC RIGIDITY WITH
MIXED GROWTH CONDITIONS

SERGIO CONTI, GEORG DOLZMANN, AND STEFAN MULLER

ABSTRACT. Geometric rigidity states that a gradient field which is LP-close to the set of proper
rotations is necessarily LP-close to a fixed rotation, and is one key estimate in nonlinear elas-
ticity. In several applications, as for example in the theory of plasticity, energy densities with
mixed growth appear. We show here that geometric rigidity holds also in L” + L? and in
LP? interpolation spaces. As a first step we prove the corresponding linear inequality, which
generalizes Korn’s inequality to these spaces.

1. INTRODUCTION

Since Korn’s original contributions [16, 17, 18], Korn’s inequality has played a central role in
the analysis of boundary value problems in linear elasticity. In its basic form, Korn’s inequality
asserts the following. Suppose that 2 C R" is a bounded, connected, Lipschitz domain and that
u € HY(Q;R™). Then there exists a skew-symmetric matrix S such that ||Du — S|z < c||Eul|z.
That is, the L?-norm of the skew-symmetric part of Du is dominated by the L?-norm of the
symmetric part, after a suitable constant S has been subtracted. Numerous generalizations to
different boundary conditions, growth conditions and unbounded domains have been given in
the literature, see, e.g., [7, 10, 15] and the references therein.

In view of the fundamental importance of Korn’s inequality in linear elasticity, it is not
surprising that a suitable nonlinear version, which is often referred to as geometric rigidity,
plays a central role in models in nonlinear elasticity. In their basic form, these estimates assert
that for a deformation v € H'(£2;R™) the distance of Du to a suitably chosen proper rotation
Q € SO(n) is dominated in L? by the distance function of Du to SO(n). The proof [8] is
based on the fact that the nonlinear estimate can be related to the linear one since the tangent
space to the smooth manifold SO(n) at the identity matrix is given by the linear space of all
skew-symmetric matrices.

In fact, geometric rigidity results are the cornerstone of rigorous derivations of two-dimensional
plate and shell theories from three-dimensional models in the framework of nonlinear elastic-
ity theory. The quantitative version by Friesecke, James and Miiller [8] generalized previous
work [12, 13, 22, 14] and allowed for the first time the derivation of limiting theories as the
thickness of the three-dimensional structure tends to zero without a priori assumptions on the
deformations in various scaling regimes [8, 9].

More recently, the analysis of variational models for the elastic and plastic behavior of single
crystals has led to the question of whether analogous estimates can be established under mixed
growth conditions. In this paper we generalize both Korn’s inequality and the corresponding
nonlinear estimate to this setting. Our main result is the following.
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Theorem 1.1. Let  C R™ be a bounded and connected domain with Lipschitz boundary. Sup-
pose that 1 < p < q¢ < oo and that u € WHH(QR™), f € LP(Q) and g € LY(Q) are given
with

(1.1) dist(Du,SO(n)) = f+g a.e. in Q.

Then there exist a constant ¢, matriz fields F € LP(Q;R™™ ™), G € L1(Q;R™ ™), and a proper
rotation @@ € SO(n) such that

Du=Q+F+G a.e. in €},

and

(1.2) [l r@rnxny < cll fllze) |Gl a(mnxny < cllgllLa) -

The constant ¢ depends only on n, p, q, and € but not on u, f, g

The case p = 2 and g = 0 was established in [8, Th. 3.1], the generalization to p € (1,00)
follows from the same proof with minor changes, see [3, Sect. 2.4]. This version with mixed
growth conditions was first stated without proof in [9, Prop. 5] and has already been used in [1]
to study nonlinear models with weak coerciveness and in [23] to study models of geometrically
necessary dislocations in finite elastoplasticity. Our result implies a statement on equiintegra-
bility (see Corollary 4.2), which has been used in [9] to show strong convergence of minimizing
sequences. We believe that the generalization of Korn’s inequality which is the basis for the
proof presented here and is stated in Theorem 2.1 below, is of independent interest. In Section
4 we briefly discuss how the present results imply estimates in Lorentz LP? spaces, present the
statement on equiintegrability of sequences and generalize to more than two exponents.

Notation. We use standard notation for Lebesgue and Sobolev spaces and omit in the notation
of their norms the domain and the range if they are clear from the context. We use |E| for the
Lebesgue measure of a measurable set £ C R". For u: {2 — R" we define the symmetric part of
the deformation gradient as Eu = (Du+ Dul)/2. We denote the trace of a matrix A € R"*" by
Tr A and the inner product between to vectors a, b € R" and two matrices A, B € R*" by a- b
and A : B = Tr AT B, respectively. The distance dist(-,SO(n)) is the usual Euclidean distance.
We use the convention that constants may change from line to line as long as they depend only
on n, p, ¢ and ). Finally we use the fact that an estimate of the norm of a matrix field implies
a decomposition of the matrix field with estimates. More precisely, if A: @ — R™*" satisfies
|A| < f4+g with f € LP(Q), g € LY(Q) and f,g > 0, then

I
(1.3) A= i X{f+gz0} A o, + X{f+groy A=F+G

with || F|l, < ||f]l, and ||Gl|q < |lgllg- If f and g are not nonnegative, we replace them first by
their absolute values.

2. LINEAR ESTIMATE: KORN’S INEQUALITY

We start by the generalization of Korn’s inequality to the case of mixed growth. This result
will also be the key ingredient into the proof of Theorem 1.1.

Theorem 2.1. Let  C R™ be a bounded and connected domain with Lipschitz boundary. Sup-
pose that 1 < p < q¢ < oo and that uw € WHL(Q;R™), f € LP(;R™™), g € LI(Q;R™™) are
given with

1
(2.1) Eu = §(Du + DuT) =f+g a.e. in Q.

Then there exists a constant ¢, matriz fields F € LP(Q;R™™ ™), G € LY(Q;R™ ™), and a skew-
symmetric matriz S € R™", that is, S + ST =0, such that

(2.2) Du=S+F+d a.e. in €,
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and

(2.3) 1] r) < cllfllr) 1GllLae) < cllgllzao) -
The constant depends only on n, p, q, and 2.

Proof. Korn’s second inequality in LP states that for every bounded connected Lipschitz set €2
and every p € (1,00) there is constant ¢(£2,p) such that for every u € WHP(Q;R") there exists
a skew-symmetric matrix S € R™*" with

(2.4) [Duw = S|lp < (€, p)[| Eullp,

see, e.g., [26], [20] or [15, Theorem 8] for a proof.
From this we can easily prove the assertion in the case ||g||za() < || fl|zr(0). Indeed, Holder’s
inequality implies

1Eull ey < N fllze) + l9llr@) < N fllze) + cllgllna) < (e + DI fllr@)
and the assertion holds with /' = Du — S and G = 0. We may thus assume that

(2.5) 1 fllzr ) < l9llzac) -

The proof relies on a covering argument together with a local estimate which is based on splitting
1 into a harmonic part and a remainder.

Step 1: A representation of Au. We begin with an expression for Awu in terms of Fu which
is frequently used in proofs of Korn’s inequality, see, e.g., [15]. Suppose that U C R" is open
and that v € VV&;;(U;R”). Let ¢ € C°(U;R™). Multiplication of the identity Du : D¢ + Du :

(D¢)" = 2Eu : D¢ with u and integration yields
—/ uA¢dy:/ Du : Dqsdy:/(QEu : D¢ — Du: (D¢)") dy .
U U U

Partial integration transforms the last term into [, u - div((D¢)")dy = [, u- Ddivedy =
— fU divu div ¢ dy, and since divu = Tr Du = Tr Eu we conclude that

(2.6) —/ ulA¢pdy = / (2Eu : D¢ — (Tr Eu) div (b) dy,
U U
that is, Au = 2div Eu — D(Tr Eu) in U the sense of distributions.

Step 2: Construction of a finite cover of Q. We choose for every € € an r, > 0 such that
B(z,ry) C Q. For every z € 09 we fix an r, > 0 with the following properties. There exist
orthonormal vectors vy, ...,v, € R"™ which determine a coordinate system in R™ and a Lipschitz
function ¢,: R"~! — R such that ¢,(0) = 0 and

B(a:,rx) maQ = {x+Z€ZUZ 6 € B(O,T‘I),é_n = %(fl, 767171)}’

i=1

n
Ba,ra) NQ = {x+> &uit £ € B(0,72),&n < ¢u(&r, .. & 1)},
i=1
that is, the boundary is a Lipschitz graph and the domain lies on one side of the graph. Such
a choice of a coordinate system and a Lipschitz function is possible since 2 has a Lipschitz
boundary.
We denote by L a uniform Lipschitz constant for all the functions ¢, x € 92 (this exists since
OS2 is compact). Let v = 1/(2v1 + L?). By construction, { B(x,77r:/2)},.q is an open cover of
Q. Since Q is compact we may choose a finite subcover (B(zg,v7¢/2))e=o....ms of Q. Moreover,

the finitely many balls By = B(xy,yre/2) satisfy
(2.7) a=min{|B;NB;NQ|:4,j€{0,....M},B,NB;NQ#0} >0.

All constants are allowed to depend on the smallest radius of the balls in the covering.

-----
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Step 3: Interior estimate. Let N = N(z) denote the fundamental solution for the Laplace
operator —A. For any ¢ € C°(R") and i, j € {1,...,n} the function D;N %1 = N % D;y
satisfies N * D;jip € L{ (R™) and the partial derivative with respect to x; can be represented by

loc
D;(N # D) () = (L) (@) — 2 ()
where

(Tij9) () = lim [/RR\B(O , DiD;N(y)i(z —y)dy| -

e—0

Classical results on singular integrals [24, Theorem 2 in Section 3.2] ensure that the limit on the
right-hand side exists in L? for all p € (1,00) and that the operator Tj; can be extended to a
bounded operator from LP(R™) to itself. In particular there exists a constant A, which depends
only on p such that

1T fllp < Apllfll,  for all f € LP(R™).

Analogously we define for a vector field ¢ € C°(R"™;R™) the function uy = > | D;N * e
which is a weak solution of the equation —Awu = dive in R™. Again, this definition can be
extended by approximation to vector fields f € LP(R™;R"™) and one obtains the corresponding
function uy = Y1, D;N * f@ which satisfies uy € LL_(R™), || Dug|, < A4,/ f|l, and which is a
weak solution of —Awu = div f in the sense that

(2.8) /n urApdr = /R" f-D¢dx for all ¢ € C°(R™).

After these preparations we proceed with the local estimate. Fix a ball B(zy, ), £ € {0,..., M},
with 2y € Q and define in view of (2.1) and (2.6) the vector field uy = (u}l) e u}n)) by

(2.9) ugf) == DN % ((2fi5 = 6i5(Tx )X B(apry)) -
j=1

Analogously we set

ul) = =" DN = ((29i5 — 6i5(Tx 9)) X Bwere))
=1

Then |[Duy||, < Ap| fllp and ||[Dugl|, < Apllg|l,- Moreover, uy and uy are locally weak solutions
of (2.8) in the sense that we have for all ¢ € C°(B(zy,r)) the identities

- /R ) Agdr = /R n;@fﬁ—a@-j(ﬂf))Djsbdx
and
—/ u;“AQsdx:/ > (2gij — 6:5(Trg)) D¢ dar .

In view of (2.1) and (2.6) we see that the function w = u—us—u, defines a harmonic distribution
on B(xg,r¢) which can be identified with a smooth harmonic function by Weyl’s lemma. By
Sobolev’s embedding theorem and Caccioppoli estimates for harmonic functions we infer for the
harmonic function Fw that
| Ew|[La(B(agre/2) < SB[ Lo(B(agry)) = cllBw — Bup — Eug|l 1o(B(ay.re))
< cllf + gller ) + ellDusllesee, ) + el Dugllioe,,r)
< AlflleBere) T lgllLaBare) -
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In this estimate the constant may depend on r and hence on €. By Korn’s inequality in L7 (see
(2.4)) applied to the set B(xy,re/2) there is a skew-symmetric matrix Sy € R"*" such that

[Dw — Sell La(Bares2)) < B[ La(Bapre2)) -
Setting F' = Duy and G' = Duy + Dw — Sy we conclude
Du=F+G+ 5 a.e. in B(xg,17/2)
with
PNl 2o (Bares2)) < lflrBaery) s NGllLaBaery2) < llglLaBeer) + lfllLrBere)) -
The additional term in the estimate for G will be replaced in the global estimate by (2.5).

Step 4: Local estimate at the boundary. Fix a ball B(xg, 1), £ € {0,..., M}, with 2y € 9Q. By
construction, B(xz¢, 1) satisfies the hypotheses of the extension theorem (Theorem A.1 below)

and therefore u, f and g have extensions u, f~ and g which are defined on Q U B(xy, yr,) with
Eu = f+ g a.e. on B(xg,vry). Moreover, these functions satisfy the estimates (A.2). We define
uy and U4 as in Step 3 and proceed as before to obtain Sy, F', G such that

Dﬂ:ﬁ’—l-é-i—Sg, a.e. in B(xzg,yre/2)
and
IF | Lo B2y < lFlieBenre) < clflzoBaerons)
IG La(Bs /2y < T LaBenre) + o))
< ellgllzaBaerone) Tl f e (B@erone) -
We define F and G to be the restrictions of F and G to B(xy, yre/2) N Q.

Step 5: Global estimate. Let S;, F;, G;, 1 = 0,...,M, be the matrices and fields in the balls
B(z;,~r;/2) which were constructed in Steps 3 and 4, respectively. In order to prove the asser-
tion, we need to verify that we may choose Sy globally in Q. Therefore we estimate |S; — S;|. If
B; N Bj NQ # (), then recalling (2.7) we obtain

alS; — Sj S/ |Si — Sj|dy
BiNB;NQ

Sé}d&—IMMyﬁ/ 1S; — Duldy < ¢ fll oy + cllgll o
M

5N

Since € is connected and the subcover consists of finite number of balls, we infer

[Si = Sol < el flloey + ellglLooy

for all i = 1,..., M where ¢ depends only on p, ¢, n and 2. We define inductively a family A;,
1=0,..., M, of pairwise disjoint and measurable sets by Ag = By N and

i—1
AZ:(BZ\UA])QQ, 1 >1,
j=0
which covers €2 up to a set of measure zero and set

M M
F =) Fixa,, G =) (Gi+ 58— So)xa, -
=0 i=0

We obtain the decomposition (2.2) and the corresponding estimates, i.e.,
Du—Sy=F+G, |[Fl@ <clfller@)y: 1Gllraq) < cllgllizaq) +cllfllze@) -

The assertion follows from (2.5). The proof is now complete. O
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3. NONLINEAR ESTIMATE: GEOMETRIC RIGIDITY AND PROOF OF THEOREM 1.1

In this section we prove Theorem 1.1. We start from the case that u is globally Lipschitz
continuous. The general case will be reduced to this situation via a truncation argument which
provides a Lipschitz constant which depends only on n and 2.

Lemma 3.1. Theorem 1.1 holds under the additional assumption that there exits a constant
M > n so that |Du| < M a.e. The constant in the estimates (1.2) depends on M.

Proof. The proof is based on a suitable linearization at the identity. In order to control the
higher order terms we first assume that ¢ is not much larger than p. In the following, all
constants may depend on n, p, g, M, and €.

We may assume that 0 < f,g < 2M. Indeed, if this is not the case we replace f and g
by f' = min{|f],2M} and ¢’ = min{|g|,2M}, respectively, and estimate dist(Du,SO(n)) <
min{f + g, [Dul + v/n} < min{[f|+ [g|, M + v/n} < f' + 4.

Step 1. Small q. Assume first that ¢ < 2p. We observe that the assumption |f| < 2M implies

I fllg < c\|f||£/q. By the rigidity estimate in L9, see [8, Th. 3.1] and [3, Sect. 2.4], there exists a
@ € SO(n) such that in view of (1.1)

(3.1) 1Du = Qllq < elldist(Du, SO()llg < ellfllg + cllglly < el FI5+ellglly

If || fII5 < [lgll2, then the assertion follows with F' = 0 and G = Du — Q. We may thus assume
that

(3.2) 1115 > Nl

and compose u with a rotation so that @@ = Id. We expand the distance to SO(n) in the identity
matrix and obtain the pointwise estimate

(3.3) |Eu —1d| < edist(Du, SO(n)) + ¢/Du —1d|>  a.e. in Q.
Observe that in view of the L® bound on |Du| and the condition g < 2p

(3.4) H|Du—1d|2||§=/ |Du —1d|?P dx < c/ |Du —1d|7dx,
Q Q

and that (3.4), (3.1), and (3.2) imply
[1Du —1dP?[[; < el fII5 +cllglly < cll F115-

Let f=f+ |Du —1d|?, g = g. By the foregoing estimate, Hpr < ¢|fllp, and (3.3) gives
|Bu—1d| < cf +3.

The assertion follows now from Theorem 2.1. Indeed, there exists a skew-symmetric matrix
S and matrix fields F' and G such that Du —Id = S + F + G with HFHp < chHp < c[|fllp

and ||G|ly < ¢lldllqy = cllgll; Let Q@ € SO(n) be a proper rotation such that [Id + S — Q| =
dist(Id + S,SO(n)). Then

1d + S — Q| < [1d + S — Du| + dist(Du, SO(n)) < |F| + |G| + |f] + |g] -

Combining Wlth the previous estimates we obtain [Id +S — Q| < ¢[|f[lp + c[lgllq- I [[fll» < llgllq
we set F=F, G = G+Q—Id S, otherwise F' = F+Q—Id S, G = G.
Step 2: Large q. Let
Ar={(p,q) € (1,00)% : 2*p < ¢ < 2"*1p}.
We shall prove by induction on k € N the following assertion. For every (p,q) € Ay and every

u as in the statement there exist a rotation Q € SO(n) and matrix fields F' € LP(Q; R"*") and
G € L1(Q;R™™ ") such that Du = Q + F + G a.e.,

(3.5) [FllLe) < crllflley,  I1GllLa@) < ckllgliLay,
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and
(3.6) [FI<M+vn, |GI<M++n,
where the constant ¢; depends only on n, p, ¢, M, k and €. Notice that it suffices to prove (3.5),
then (3.6) follows. Indeed, let A ={x € Q: |F| > M + /n} and B = {z € Q: |G| > M + /n}.
Then it suffices to replace F' and G by

F' = xo\aF + xa(Du —Q), G' = xa\(auB)G + xp\a(Du - Q),
respectively.

The case k£ = 0 has been verified in Step 1. Suppose thus that the assertion has been proven
for k > 0 and that (p,q) € Agy1. Then (2p,q) € A and by assumption there exist a rotation @
and matrix fields F' and G which satisfy Du = @ + F + G and the estimate (3.5), that is,

(3.7) 1Fll2p < ellfllzp < ell £1ly/2 1Gllg < cllgllq -
As above, we may assume that @@ = Id and use the Taylor series (3.3) to obtain the estimates
|Eu —Id| < cf + cg + c|F|* + ¢|G|? a.e. in
and in view of (3.6) and (3.7)
HEP 1o = 1F13, < el £l G llg < €ellGllg < ellglly -

Therefore the assertion follows from Theorem 2.1 with f = f + [F|2, § = g + |G| O
In order to prove Theorem 1.1 we make use of a well-known truncation result.

Theorem 3.2. Let Q C R” be a bounded Lipschitz domain, m > 1. Then there is a constant
c1 = c1(Q) > 1 such that for all u € WHL(Q;R™) and all X > 0 there exists a measurable set
E C Q) such that:

(i) w is ey A\-Lipschitz on E ;
(i) Q\E| <2 |Du| dz.
{|Du|>\}
Proof. This result corresponds essentially to Proposition A.1 in [8] and follows from the same
proof. The techniques are analogous to the proof in the case 0 = R™ in Section 6.6.3 in [4]. O
Proof of Theorem 1.1. Suppose first that ||g||; < ||f|lp- Then by (1.1)
[dist(Du, SO(n))lp < llgllp + [l fllp < cllgllg + 11y < e+ DIfllp

and the result follows from the geometric rigidity estimates in LP with ' = Du — @ and G =0
for a suitable @ € SO(n).

We may thus assume that ||g|l; > || f||p- In order to apply Lemma 3.1 we choose in Theorem 3.2
A = 2n and obtain a measurable set E such that w is Lipschitz continuous on F with Lipschitz
constant M = 2nc;. Let ups be a Lipschitz-extension of u|g to Q with the same Lipschitz
constant which exists according to Kirszbraun’s Theorem [5, Section 2.10.43]. Then uj; is
M-Lipschitz and upy; = v on E. We define

fu = fand gy = g+ 2Mxo\p if (| £I5 < llg]l2
and

fu = f+2Mxo\p and gy = g if [|g]|7 < || fI5
and assert that

(3.8) dist(Dups, SO(n)) < far + g ace. in Q.

For almost every x € E we have Duy; = Du, fyy = f and gy = g, hence (3.8) holds. For almost
every x € 2\ E we have

dist(Dups, SO(n))(x) < |M| + v/n < 2M < 2Mxo\g(x) < (fu + gum) () -
This proves (3.8).
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We now assert that

(3.9) [farllp < COQP)Ifllp» and [lgarlly < C(2,9)llgllg -
To see this we first estimate |Q \ F|. We have for A € R"*" with |A| > 2n
|A| < v/n+dist(A4,SO(n)) < 2dist(A,SO(n)) .
Therefore
|Du| < max{4f,4g} if |Du| > A = 2n.
Together with Theorem 3.2(ii) this yields

0\ El <2 |Duldz
A J{Du>Ay

C1

‘1 Afdz + Cl/ 4g da
A J{arsay {492A}
4 c
1/fmi+,/ g%dz < c (IIFI15+ llgll?) -

IE ([ f1lp < llgllg then [[2Mxq\plg < (2M)92¢]g]|g and therefore [[garlly < cllglly- The other case
is analogous. This concludes the proof of (3.9).

It follows from (3.8), (3.9) and Lemma 3.1 that there exist an R € SO(n) and matrix fields
Fyr, Gy such that

(3.10)  Dum = R=Fu +Gum, [[Fullp < cllfallp < cllfllps 1Gamllg < cllgarlly < cllgllg -

Now |Du — Duyps| < |Du| + M < dist(Du,SO(n)) + /n + M almost everywhere on Q and
Du = Duys almost everywhere on E. Thus |Du — Duy| < far + gy and |[Du — R| < far +
|Far| + |Gar| + g and the assertion follows from (3.9), (3.10) and (1.3). O

IN

4. APPLICATIONS AND EXTENSIONS

4.1. Estimates in Lorentz spaces. As an application of our estimates in Section 3 we present
rigidity results in the Lorentz spaces LP? for p € (1,00), ¢ € [1,00], see [21, 11, 2, 19, 25]. For
q = oo they coincide with the weak LP spaces. The Lorentz space LP9(2) is equal to the real
interpolation space which is constructed with the K-functional,

LP(Q) = (LM (Q), L™(Q),,

where the K functional is given by
K(w,t) = inf {|[fllp, +tlgllp, : w=f+g, f el gelP}

and

1 1-60 0

— _I_ .

p b2

1/q
,—(/ <t%«mwﬁ“> ,
(0,00) t

(4.1) 1<p<py<o0,1<qg<oo,0e(0,1),

The norm is given for ¢ < co by

in the special case ¢ = oo by

w00 = supt K (w, ).
t>0

We remark that different choices of 6, pq, po which satisfy (4.1) give equivalent norms. In this
framework we obtain the following result.
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Corollary 4.1. Suppose that p € (1,00), q € [1,00]. Then there ezists a constant ¢ which
only depends on p, n and Q0 such that the following assertion is true. If u € WH1(Q;R™) with
dist(Du, SO(n)) € LP94(Q;R™ ™), then there exists a rotation @ € SO(n) such that

[Du = Qllp,q < cf|dist(Du, SO(n))|lp,q -

Proof. Fix any triple 6, p1, p2 with 1 < p; < p2 < oo which satisfies (4.1) and set w =
dist(Du,SO(n)). By assumption, K (w,t) < oo for almost all ¢. Hence there exists for almost
all £ > 0 a decomposition w = f; + g; with f; € LP1(Q), g: € LP?(Q2) and

K(w,t) = || fellp, + tllgellp, -
In view of the rigidity estimate in LP' + LP2 Theorem 1.1, there exist a rotation Q; € SO(n)
and matrix fields F; € LP*(Q; R™™), Gy € LP2(Q; R™™ ™) with
Du=Qi+F+Ge, |Elp <clfillps NGillpe < cllgtllps -
We define

1 1 1
F{:Ft—m‘/QFtda:, G;:Gt—m’/Qthx, R:‘Q’/QDudm

and obtain
Du:R—FFt/"’_G;v HFt/le S2HFt||1017 HG;HM §2”Gt||p2'
Therefore for almost all ¢ > 0 one has

Du=R+ Ft/ + G:tv HFt/”pl +tHG:€Hp2 < CHfthl =+ CtHgtHPQ = CK(wvt)v

which implies K(Du — R,t) < cK(w,t) for almost all ¢. We stress that the constant does not
depend on t but only on p1, p2, 2. We conclude that

[ Du — RHp,q < CHw”p,q .

From dist(R,SO(n)) < dist(Du,SO(n)) + |Du — R| we obtain that there is a rotation @ with
|Q — R| < c||w]|p,q, and conclude

[1Du = Qllpg < [Du— Rljpq+ 1Q = Rllpq < cl[dist(Du, SO(n))]|p,q -
This concludes the proof. Il

4.2. Equiintegrability. As a second application of our work we show that equiintegrability
of the distance from the set of rotations implies equiintegrability of the distance from a fixed
rotation. A sequence fi € LP(Q), k € N, is LP-equiintegrable if for every € > 0 there is a § > 0
such that for all measurable sets E C  with |E| < 6 one has [, |fr|? dz < e for all k € N. For
bounded sets €2 C R™ this is equivalent to the fact that

(4.2) lim sup/ |fx|P dz =0,
T00 keN J{|fi>T}

see for example [6, Theorem 2.29, page 151] for a proof.
The following statement generalizes the assertion in [9, page 221] concerning the interplay of
equiintegrability and rigidity.

Corollary 4.2. Let  C R" be a connected and bounded Lipschitz set. Consider a sequence of
positive numbers n;, € (0,00) and a sequence of functions u, € WHP(Q;R™). Assume that the
sequence

di, = ng diSt(Duk, SO(n))

is LP-equiintegrable. Then there are rotations Qy € SO(n) such that
2z = Mk (Dug, — Q)

is LP-equiintegrable.
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The corresponding linear result can be proven exactly in the same way, using Theorem 2.1
instead of Theorem 1.1. We further remark that for bounded sequences (7)) the statement
follows immediately from the boundedness of SO(n), the interesting case is 1, — 0.

Proof. We shall use the characterization of equiintegrability given in (4.2). Pick some ¢ > 0.
Then there is T, such that
/ dz dae <e
{dk>Tg}
for all k. We define
fr = dist(Duy, SO(n)) X {4, >1.} and g = dist(Dug, SO(n))x{a,<1.}

and observe that ||ny fx|lb < € and ||kgk |l < Tr. We fix some ¢ € (p, 00), for example ¢ = p+1,
and estimate
Imegrlly < T27P(dgllh < MTIP,

where M = supy, ||dk||h. Notice that M < oo, since LP-equiintegrable sequences are bounded in
LP.
By Theorem 1.1 applied to each uy there are rotations Q) and fields Fj, GG} such that
Dup = Qi + Fi, + Gr,  |IeFllh < clnefellh < ce, lmGrlld < cllnrgrlld -
We set By, = {ng|Gx| > L.} for some L. > 0 to be chosen later, estimate its measure
1 c
E, S/ kG| de < — lnkgwlld
B < g3 [ G ds < Fylmal

and the LP norm on Ej, via

e Gell 2o () < 1Bkl e Grell a5y, -
We conclude that

_ c Tq—P
| mGur de < 1B gl < -l < b
K, L: L¢

We finally choose L. = T/ el/ (q_p), so that the last fraction is smaller than ¢ and obtain for
2z = Me(Dug — Q) = i Fy + Gy, setting By = {|zx| > 2L},

/ |z |P dz = / |2k |P dz —l—/ |2k |P dz
E EN{|Fe|> |G|} EL0{|Fr|<|Grl}

< 2P|y Fy || + 2p/ IkGr|P dz < ce + cMe.
Therefore for all ¢ > 2L, and all £ we have f{|2k|>t} |zi|P dz < ¢(14+M)e, and (4.2) is proven. [

7
k
Ex

4.3. Multiple exponents. In this section we generalize our results to the case of more than
two exponents. We first establish the linear estimate which is parallel to Theorem 2.1 and then
indicate how this estimate implies the corresponding nonlinear estimate.

Theorem 4.3. Let  C R™ be a bounded and connected domain with Lipschitz boundary. Sup-
pose that 1 < p; < pa < ... < py <00, N > 1, and that u € WHH(Q;R"™), f, € LPa(Q;R™™),
a=1,...,N, are given with

N
FEu= %(Du—l—DuT) = zjlfa a.e. in €.
a=

Then there exists a constant ¢, matriz fields F, € LP>(Q;R™™), a = 1,...,N, and a skew-
symmetric matriz S € R™™ such that
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and
[ Fallzra ) < cllfallzra@y, a=1,...,N.
The constant depends only on n, €, p1,p2,...,PN-

Proof. We follow the scheme of the proof of Theorem 2.1. By induction we can assume that
the statement has been proven for N — 1 exponents with N > 3, the assertion for N = 2 is the
statement in Theorem 2.1. If || fo||p. > || fat1llpass forsomea € {1,..., N—1}, then we eliminate

the exponent a+1, define fo = fa+ fat1, observe || fallpo < [[fallpa +cll fat1llpass < cllfallp, and
apply the statement to the remaining N — 1 exponents and the corresponding N — 1 functions

J1, for oo o5 fam1s far fat2, -5 N

Therefore we may assume that

[fallpa < [[fatillpays for all a € {1,..., N}.

Steps 1 and 2 in the proof of Theorem 2.1 are unchanged. In Step 3 we define vector fields
uq associated to the matrix fields f, as in (2.9). Then ||Dug|p, < Ap.llfallp., the function

N . . .
w=1u— ), . U, is harmonic, and satisfies

N
1Ewll on (Baris2)) < lBW] Lo (Bl =l Bu =Y Etall 1oy (p(ay re

a=1

N N N
<> fall o (Blapre)) T € > 1Dt poe (Bl < €D I fall Loa (Blagre)) -
a=1 a=1 a=1

We apply Korn’s inequality in LPN to the ball B(xy,r¢), and obtain the analogous decomposition
of Du together with the estimates. An extension theorem corresponding to Theorem A.1 holds
with N terms and with the same proof, Steps 4 and 5 can be concluded as before with minor
notational changes. O

We now turn to the nonlinear estimate.

Theorem 4.4. Let  C R™ be a bounded and connected domain with Lipschitz boundary. Sup-
pose that 1 < p; < pa < ... < py < o0 and that u € WHH(Q;R?), f, € LP2(Q), a=1,2,...,N
are given with

N
dist(Du, SO(n)) = Z fa a.e. in ).
a=1

Then there exist a constant ¢, matric fields F, € LP>(Q;R™ ™) and a rotation @ € SO(n) such
that

N
Du:Q—i—ZFa a.e. in ),
a=1
and
(4.3) | FallLra (@rnxny < cllfallpra), a=1,2,...N.
The constant ¢ depends only on n, p1,p2,...,pn and Q but not on u and fi, fo,..., fn.

As above, we start from the case that u is Lipschitz.

Lemma 4.5. Theorem 4.4 holds under the additional assumption that there exists a constant
M > n so that |Du| < M a.e. The constant in the estimate (4.3) depends on M.

Proof. As above, we may assume 0 < f, < 2M, and proceed by induction on N.
Step 1: py < 2p1. We first reduce to the case

(44) ||fa||pa > ||fa+1||pa+1 o = 1727 s 7N —1.

Pa Pa+1"’
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If this does not hold for some @, we set foi1 = fo—+ far1, estimate || for1][22" < ¢l faralbot +

cll fallbe < el fas1l[btt, and apply the result with the remaining N — 1 exponents.
By the rigidity in LPN there is Q € SO(n) with

|[Du — QBN < c|[dist(Du, SO(n))|[EN < CZ I fallEN < el 15!,

PN —

where we used (4.4) and || fo|[PY < (2M)PN~Pe|| f,||b>. We reduce to the case Q = Id, expand
and estimate

[[Du—1d?||" = / |Du — 1d|?Pt da < (2M)?P17PN / |Du — Id[PY da < | f1]B! .
Q Q

We set fl = f1+|Du—1d|?, ]?a = fo for a > 2. Since |[Fu—1d| <), fa we can conclude using
the linear estimate.
Step 2. We define
Ar ={(p1,p2, ... pn) € (1,00)" : pa < pay1 for all @ and 2¥py < py < 28Hp}

and proceed by induction on k. Assume (p1,...,pn) € Apr1. We define ¢1 = 2p1, o =
min{2p,,pn} for 2 < a < N, gy = py. Then (q1,...,qn) € Ax. Notice that, for all o, g, > pa
hence || fo|/d2 < (2M )49~ pa||fa|| We apply the estimate for the exponents (qi,...,qn), and
the same functions fi,..., fn, and obtain Du = Q + ), F,, with

IFallgs < cllfall < el fallps

We reduce to the case = Id and estimate

N N
|Bu—1d[<cY fated |Fal*.
a=1 a=1

We estimate, since ¢, < 2p,, for all «,
211pa 2pa o o
I Fal*[Be = | Fallope < cllFallde < cllfallpe
and conclude with the linear estimate as above. O

Proof of Theorem 4.4. As in the proof of Theorem 4.3, we may assume || fo|lp. < || fast1llpas:-
We choose A = 2n and define uys as in the proof of Theorem 1.1. Let 5 € {1,..., N} be such
that || f5llps > || fallbe for all a. We define

f5' = f5 +2Mxa\p and f3! = fo for o # .
As in the proof of Theorem 1.1, we show that dist(Duyr, SO(n)) < 3, fM and that HféVIHpﬁ <
cl|fsllps- We apply Lemma 4.5 and conclude as in the proof of Theorem 1.1. O
APPENDIX A. EXTENSION

The subsequent extension theorem for functions with mixed growth follows immediately from
the L2-version in [20]. We include a sketch of the proof for the convenience of the reader.

Theorem A.1. Let ¢ € Lip(R"L:R) be a Lipschitz function with ©(0) = 0 and Lipschitz
constant L, let R > 0 and set Q = B(0,R) N {(z',z,) € R* ! x R: x,, < p(2')}. Suppose that
1 <p<q<ooand that u € WHH(Q; R™) with

(A.1) Du+Du' = f+g,

where f € LP(Q;R™") and g € LI(Q;R™™). Then there exists forr = R/(2v/1 + L?) a function
w € WHL(B(0,7); R™), and matriz fields f, g such that w = u, f f,g=9gonQNB(0,r) and

Dw+Duw" =f+7 on B(0,r)
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with

(A.2) I fllzeB0r)) < el fllzrBo,R)NQ) > 191l a(B0,r)) < ellgllzaso,R)N) -
The constant ¢ depends only on n, p, q, Q but not on u, f, g.

Proof. Let 6 € C%(B(0, R) \ Q) be a function such that
2dist(x, Q) < d(x) < Cdist(z, )
and
(A.3) |D%3(z)] < 6 7 1l(z), aeN,
see, e.g., [24]. Fix a function ¢ € C*(R) with
2 2
(A.4) / PN dr =1, / Ap(A) d = 0.
1 1
We set w =wu on Q and for x € B(0,7) \ © we define
2
w(x) = / Y(A) [u(x — Ad(z)epn) — ADO(x)up(z — Ad(x)e,)] dA.
1

For ease of notation we omit the arguments in the following calculations and write § = 6(z) and
u = u(x — Ad(x)e,) with the same convention for their derivatives. By the chain rule

2
Duw(z) = / $(A) [Du(ld = Ae,, © DS) — AD§ @ Duy(Id — Aey, @ DS) — Aup, D*5] dA
1

- /1 i ¥(A) [Du— ADpu ® DS — ADS @ Duy, + A* Dy DS @ DS — Aup, D?5| dA.
Then the symmetric part of the gradient is given by
Ew(z) = /1 i V(\) [Bu — MEue,) ® D§ — AD§ @ (Euey) + A2 (Bu)nn DS © DS — Aup, D3] dA.
In the last term we write
up(z — No(x)en) = up(x — d(x)ey,) + /1)\ Dypun(x — s6(x)ey)d(x) ds.

In view of the second property in (A.4) the weighted integral of u,(x — d(x)e,) is equal to zero,
and the other term only depends on (Eu)y,. We recall (A.1) and define for x € B(0,7) \

_ 2
fla) = / GO [F(& — Ad()en) — A(f(z — A(@)en)en) @ Do(x)] dA
2
- / BN \DS(2) © (F(z — Ad(2)en)en)] dA
2
+ /1 W(A) [N fan(z — A5(2)e,) DS(2) @ DS ()] dA

2 A
- / PN / Fon( — $8(2)en)8(x) ds D26(z) dA,
1 1

and use the analogous definition for g in x € B(0,r)\ Q. On B(0,7) N we set f=fandg=g.
It remains to show that
I fllzeBone) < cllfllze)s  19llzaBomne) < cllglliLao)

with a constant which only depends on n, p, ¢ and 2. The calculation is identical to the proof
of the estimate for the extension in [20, Lemma 4] . O
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