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It turned out the result for the interior space regularity holds for both kinematic and
isotropic hardening. Theorem 2.4 can be formulated now as

Theorem 2.4 (Local regularity in space) Assuming the requirements of Theorem 2.1
(0,&) be again the solution pair of the hardening problems formulated in Section 1. Then
the velocities o, 5 have local fractional derivatives of order 1/2 in space direction, in the
following sense

T—h

sup bt / /|A?d|2+|A?§'|2dxdt§O, i=1,...,n (2.3)
0<h<hg -
0

for any domain Qg such that Qy C Q and hg < dist(9, 08).

The proof only needs a modification - a simplification as a matter of fact - of subsection
5.2.

5.2 Testing the strain velocity

We recall the formulation of the lemma and present the different proof. References to
previous numbers refer to the main text.

Lemma 5.3 Let ¢ be a localization function as introduced in Section 5.1, and let hy > 0
be fizred such that hy < dist (supp(,0). Then

h to—

h
| [ i cwnt - no)a < ci 57
0 t1

with h,t1,ty as in Lemma 5.2 and C' again independent of these parameters.
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Proof. We denote
h to—h

s=[ [ (Vi cEE - o), dtds = '+ 5

0 t

where
h to— h to—
// (Va, CEH(E! — ))dtds—// (Vi, CCE;ALG), dt ds,
h to— h to— (58)

// (Va, C(E; - dtds—// (Vi, CPAG),, dt ds.

Step 1. Estimates for |S!|.
To this end, we integrate by parts in the term S', then use the relation —dive = f, end
up with

h to— h to—
/ / (a¢?, E;Alf) dtds — / / (V¢ Ajo) dtds =: 8+ S"™.

Moving the operator A from f to u¢? yields

h to—h

/ / E; ), dt ds.

1A (4¢P | oo 2y = PID; (4¢P po 22y < C (Nitl| poe (22 + V]| oo (22)) B,

Since

the uniform estimates (3.6), (3.8) together with the assumption f € L>(L?) (cf (1.4))
lead to

S < b [ 1l |07 s ds < Cori,

where Kr is independent of 0 < pu < pg, and 0 < h < hg. A similar argument works for
the summand S, hence, again with (3.6) and (3.8)

h to—h

ERE // Muv¢?), Ej6), dtds

<C h/ ||d||L1(L2)||D; (UJVCQ)HL‘X’(L?) ds < Crp h?.



Step 2. Estimates for |S?|.

To show that this quantity is bounded by Ch?, it is not enough to use Vi € L*>(L?)
together with (2.2), because then we only get the bound C h%?2. Instead we go back to
the solutions of the penalized problem. Unfortunately the presence of the localization
term (2 prohibits to argue with the safe load as in the proof of Theorem 2.1, nevertheless
the estimate for the term |Z| (cf (4.4)) gives already the desired estimate in the case ( = 1.
Recall that the system (3.4) and (3.5) leads to

h ta—h _
/ / Vi, (PA6,),, dtds = / / (Ad, CAJGL) o+ (HE, (CAYE,) , dt ds +
t1
h to—h
/ / (G, CPA6,) o + (Go s CAGE)  dtds =: 82+ Ty, (5.9)
0

where 7g,, was defined in (4.2). Using again "the product-rule” (4.5) we obtain

h to—

SZG - / / CQAASU,“ Asau) + (CQHA;?EM, Aféu)gdtds—i—

h to—

///CQAS A6y 6+ HEy &) dadtds.

Note that lim,, o Sﬁ“ as well as the limits for both summands on the right hand side exist
due to (3.9). The limit of the first integral is bounded by Ch? due to Theorem 2.1 while
for the second integral we get this bound following the same arguments as in the proof of
Theorem 2.1, in particular the arguments after (4.7), hence we have

h to—

] / / (A, C2A35) (HS,CQAfé)thds’: lim [ 527] < OB, (5.10)

Since the limits of the other two terms in the equation (5.9) exist, we obtain that even
lim,,_, 7o, exists. In particular, the representation (5.9) for ¢ = 1 (compare (4.4)) together
with the estimate for |Z| in the proof of Theorem 2.1 then gives

h to—

/ / (Gis 876,) o + (Gap s AJEL),, dt ds

lim < Ch? (5.11)
n—0

To extend this to the case where ( is a proper localization function we use similar calcu-
lations as in Lemma 4.3, in particular the convexity of GG, and Lemma 4.1. For fixed £,



we get

to—h

tg (7o, = limy | [ (G Ao+ (G Al

= lim
n—0

to—h
/ / ¢ (ALG, — (Gt Ao, + Gyt AlE,) ) dudt )

2—h
= lim / / C(A}G, — (Gyy : Atoy, + Gop t AVEL) ) dadt

n—0

< max ¢ BL% /A?Gu — (Gyp: Ao, + Gy, AVE,) dadt

t1 Q

— (¢ hm) //Gm Al + Gy, : Alg) dxdt‘

n—0

h to—
¢) lim ) / / Gl/u AW O'H + (Ggu, Aféu)ﬂdtds ‘S Ch2,
uao

observe, that the third equality and the following inquality are true because the integrand
is non-negative almost everywhere due to the convexity of G, while the last inequality
follows from (5.11). Together with (5.10) this gives the bound for |S?|. O

Now the proof of Theorem 2.4 runs exactly in the same way, if we observe that in the case
of isotropic hardening we only have V1, — Vu but this is sufficient for the arguments
used in (5.15) and (5.16). !

!The revised preprint can be found on the webpage http://www.mathematik.uni-
kassel.de/%T7Especovi/Publications.html
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