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A NOTE ON THE CONSTRUCTION OF L-FOLD SPARSE

TENSOR PRODUCT SPACES

MICHAEL GRIEBEL AND HELMUT HARBRECHT

Abstract. In the present paper, we consider the construction of general sparse

tensor product spaces in arbitrary space dimensions when the single subdomains

are of different dimensionality and the associated ansatz spaces possess different

approximation properties. Our theory extends the results from [9] for the con-

struction of two-fold sparse tensor product space to arbitrary L-fold sparse tensor

product spaces.

1. Introduction

Many problems in science and engineering lead to problems which are defined on

the tensor product of L domains Ω1×Ω2×· · ·×ΩL where Ωi ∈ Rni . Already for the

simple situation of L = 2, there exists a large amount of problems. This includes for

instance radiosity models and radiative transfer [24] where Ω1 denotes the spatial

three-dimensional domain of a geometric object under consideration and Ω2 is the

sphere S2. Then, there are the parabolic problems where Ω1 is the time interval and

Ω2 is the spatial domain [5, 12, 13, 21], or various phase space problems, like e.g. the

Boltzmann equation, kinetic equations or the Langevin equation [2], where both Ω1

and Ω2 are three-dimensional cubes or the full three-dimensional real space.

Even more applications can be found in case of a general L > 2. For example, non-

Newtonian flow can be modeled by a coupled system which consists of the Navier

Stokes equation for the flow in a three-dimensional geometry described by Ω1 and of

the Fokker-Planck equation in the 3(L−1)-dimensional configuration space on Ω2×

Ω3×· · ·×ΩL where each domain Ωi (i ≥ 2) is a sphere. Here L denotes the number of

atoms in a chain-like molecule which constitutes the non-Newtonian behavior of the

flow, for details see [3, 19, 20]. Also the L-th moment of linear elliptic boundary value

problems with stochastic source terms are known to satisfy a deterministic partial

differential equation with the L-fold tensor product of the elliptic operator on the

L-fold product of the physical domain [22, 23]. This approach extends to stochastic

diffusion problems and to more general partial differential equations with stochastic

coefficient functions or with stochastic domains [15, 16, 17]. Another example is
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multiscale homogenization. After unfolding [1, 6, 7], it gives raise to the product of

the macroscopic physical domain with the L−1 periodic microscopic domains which

correspond to the L− 1 different microscales [18]. Finally, we find the product of L

domains in quantum mechanics for e.g. the electronic Schrödinger equation where

each electron has its associated three-dimensional domain, see e.g. [10, 25, 26].

A naive, conventional discretization would use tensor products of all basis functions

from suitable finite dimensional ansatz spaces V
(i)
J , i = 1, 2, . . . , L which are defined

on each domain separately. This leads to the full tensor product space V
(1)
J ⊗ V

(2)
J ⊗

· · · ⊗ V
(L)
J . However, in general, the full tensor product space contains way too

many degrees of freedom such that desirable realistic simulations are beyond current

computing capacities. This relates to the well-known curse of dimension which states

that the number of degrees of freedom for an approximation necessary to obtain a

prescribed accuracy grows exponentially with the dimension.

To overcome the curse of dimension, we will focus in this paper on the construction

of sparse tensor product spaces, also known as sparse grids [4, 27]. The starting point

are multilevel decompositions of the ansatz spaces

V
(i)
J = W

(i)
0 ⊕W

(i)
1 ⊕ · · · ⊕W

(i)
J , i = 1, 2, . . . , L,

which can be constructed via hierarchical bases, interpolets or wavelet-like bases.

From this, the regular sparse tensor product space is defined according to

(1.1) V̂ reg
J =

⊕

j1+j2+···+jL≤J

W
(1)
j1

⊗W
(2)
j2

⊗ · · · ⊗W
(L)
jL
,

see e.g. [4, 11, 14, 27]. Its approximation power is nearly as good as that of the

corresponding full tensor product space if the functions to be approximated provide

additional smoothness in terms of bounded mixed derivatives. Note here that the

space (1.1) is optimal with respect to the L2-norm if all domains have the same

dimension, are equipped with the same type of functions and relate to the same

regularity of the function under consideration with respect to its coordinates.

To also cover the more general cases, we will introduce in the following the special

sparse tensor product space

V̂α

J :=
⊕

α
T j≤J

W
(1)
j1

⊗W
(2)
j2

⊗ · · · ⊗W
(L)
jL

for an arbitrary vector α = (α1, α2, . . . , αL) > 0 and j = (j1, j2, . . . , jL) ∈ NL
0 and we

will discuss various choices of α for respective general situations of local dimensions

and regularities of the L domains.
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For the case L = 2 we already systematically studied in [9] what the most efficient

construction of sparse tensor product spaces is if the spatial dimension of the un-

derlying domains or the polynomial exactness (and thus the approximation power)

of the ansatz spaces differ. In this paper, we will now extend these results to L-fold

tensor product spaces. It will turn out that, in case of smooth functions, there is a

whole range of sparse tensor product spaces which possess the same optimal con-

vergence rate. However, in case of functions with limited regular or mixed Sobolev

smoothness, it will turn out that the sparse tensor product space, which equilibrates

the number of degrees of freedom (see Section 3), is superior to all the other sparse

tensor product spaces under consideration.

The remainder of this paper is organized as follows. In Section 2, we specify the

requirements of the multiscale hierarchies on each subdomain. Then, in Section 3,

we construct general sparse tensor product spaces. In Section 4, we study their

properties. Section 5 is dedicated to the comparison of the cost complexities for

the approximation of functions of different mixed Sobolev smoothness. Finally, in

Section 6, we give some concluding remarks.

Throughout this paper, the notion “essential” in the context of complexity estimates

means “up to logarithmic terms”. Moreover, to avoid the repeated use of generic

but unspecified constants, we denote by C . D that C is bounded by a multiple of

D independently of parameters which C and D may depend on. Obviously, C & D

is defined as D . C, and C ∼ D as C . D and C & D.

2. Approximation on a subdomain

Let Ω ⊂ Rn be a sufficiently smooth, bounded domain. We consider a nested se-

quence of finite dimensional spaces

(2.2) V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ · · · ⊂ L2(Ω),

which consists of piecewise polynomial ansatz functions Vj = span{ϕj,k : k ∈ ∆j}

(∆j denotes a suitable index set), such that dimVj ∼ 2jn and

(2.3) L2(Ω) =
⋃

j∈N0

Vj.

We will use the spaces Vj for the approximation of functions. To this end, we assume

that the approximation property

(2.4) inf
vj∈Vj

‖u− vj‖Hq(Ω) . hs−q
j ‖u‖Hs(Ω), u ∈ Hs(Ω),
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holds for q < γ, q ≤ s ≤ r uniformly in j. Here we set hj := 2−j, i.e., hj corresponds

to the width of the mesh associated with the subspace Vj on Ω. The parameter γ > 0

refers to the regularity of the functions which are contained in Vj , i.e.,

γ := sup{s ∈ R : Vj ⊂ Hs(Ω)}.

The integer r > 0 refers to the polynomial exactness, that is the maximal order of

polynomials which are locally contained in the space Vj .

We now introduce a wavelet basis associated with the multiscale analysis (2.2) and

(2.3) as follows. The wavelets Ψj := {ψj,k : k ∈ ∇j}, where ∇j := ∆j \∆j−1, are the

bases of the complementary spaces Wj of Vj−1 in Vj, i.e.,

Vj = Vj−1 ⊕Wj , Vj−1 ∩Wj = {0}, Wj = span{Ψj}.

Recursively we obtain

VJ =
J⊕

j=0

Wj , W0 := V0,

and thus, with

ΨJ :=

J⋃

j=0

Ψj, Ψ0 := span{ϕ0,k : k ∈ ∆0},

we get a wavelet basis in VJ . A final requirement is that the infinite collection

Ψ :=
⋃

j≥0Ψj forms a Riesz basis of L2(Ω). Then, there exists also a dual (or

biorthogonal) wavelet basis Ψ̃ =
⋃

j≥0 Ψ̃j = {ψ̃j,k : k ∈ ∇j} which defines a dual

multiscale analysis of regularity γ̃ > 0, see e.g. [8] for further details. In particular,

each function f ∈ L2(Ω) admits the unique representation

(2.5) f =
∞∑

j=0

∑

k∈∇j

(f, ψ̃j,k)L2(Ω)ψj,k.

With the definition of the projections

Qj : L
2(Ω) → Wj, Qjf =

∑

k∈∇j

(f, ψ̃j,k)L2(Ω)ψj,k,

the atomic decomposition (2.5) gives rise to the multilevel decomposition

f =

∞∑

j=0

Qjf.

Since for all −γ < q < γ̃ also a (properly scaled version of the) wavelet basis Ψ is a

Riesz basis of Hq(Ω), we especially have

(2.6) ‖f‖2Hq(Ω) ∼

∞∑

j=0

‖Qjf‖
2
Hq(Ω), −γ < q < γ̃,
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see [8]. Finally, for any f ∈ Hs(Ω) the approximation property (2.4) induces the

estimate

(2.7) ‖Qjf‖Hq(Ω) . 2−j(s−q)‖f‖Hs(Ω), q ≤ s ≤ r.

3. Sparse tensor product spaces

Consider now L domains Ωi ⊂ Rni with ni ∈ N for all i = 1, 2, . . . , L. We aim at the

approximation of functions in anisotropic Sobolev spaces

Hs(Ω) := Hs1(Ω1)⊗Hs2(Ω2)⊗HsL(ΩL)

where Ω := Ω1×Ω2×· · ·×ΩL. To this end, we assume to individually have for each

subdomain Ωi, i = 1, 2, . . . , L, the multiscale analysis

V
(i)
0 ⊂ V

(i)
1 ⊂ V

(i)
2 ⊂ · · · ⊂ L2(Ωi), V

(i)
0 = span{Φ

(i)
j }, i = 1, 2, . . . , L,

with associated complementary spaces

V
(i)
j = V

(i)
j−1 ⊕W

(i)
j , V

(i)
j−1 ∩W

(i)
j = {0}, W

(i)
j = span{Ψ

(i)
j }.

Furthermore, for all i = 1, 2, . . . , L, let us denote the polynomial exactnesses of the

spaces V
(i)
j by ri, and the regularity of the primal and dual wavelet bases by γi and

γ̃i.

In this paper, we study the approximation of functions in the special sparse tensor

product space1

(3.8) V̂α

J :=
⊕

α
T j≤J

W
(1)
j1

⊗W
(2)
j2

⊗ · · · ⊗W
(L)
jL

for an arbitrary vector α = (α1, α2, . . . , αL) > 0 and j = (j1, j2, . . . , jL) ∈ NL
0 . Here

and in the following, inequalities for vectors are to be understood componentwise,

i.e., α > 0 means αi > 0 for all i = 1, 2, . . . , L. Moreover we set r = (r1, r2, . . . , rL),

γ = (γ1, γ2, . . . , γL), and γ̃ = (γ̃1, γ̃2, . . . , γ̃L).

Now, we can formulate the following problem: How must α > 0 be chosen such that,

for given parameters −γ̃ < q < γ and q < s ≤ r, a function f ∈ Hs(Ω) can be best

approximated in V̂α

J in the Hq(Ω)-norm ?

Natural choices of the parameter α > 0 are:

1Here and in the following, the summation limits are in general no natural numbers

and must of course be rounded properly. We leave this to the reader to avoid cumbersome

floor/ceil-notations.
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(i.) To equilibrate the accuracy in the involved univariate spaces V
(i)
J/αi

, i =

1, 2, . . . , L, we obtain the condition

2−J(r1−q1)/α1 = 2−J(r2−q2)/α2 = · · · = 2−J(rL−qL)/αL .

This means that we have to choose αi = ri − qi for all i = 1, 2, . . . , L.

(ii.) To equilibrate the number of degrees of freedom in the involved univariate

spaces V
(i)
J/αi

, i = 1, 2, . . . , L, we obtain the condition

2Jn1/α1 = 2Jn2/α2 = · · · = 2JnL/αL .

This condition is satisfied if αi = ni for all i = 1, 2, . . . , L.

(iii.) Following the idea of an equilibrated cost-benefit rate (see [4]), we get the

condition

2j1(n1+r1−q1) · 2j2(n2+r2−q2) · · · 2jL(nL+rL−qL) = 2J ·const. for all αT j = J.

For const. = 1, we find αi = ni + ri − qi for all i = 1, 2, . . . , L.

In the next section, we will compute for these and other choices the cost and the

error of the approximation in the related sparse tensor product spaces.

4. Properties of the sparse tensor product spaces

To compute the convergence rate of functions in the sparse tensor product spaces

V̂α

J with arbitrary α ≥ 0, we first count the degrees of freedom which are contained

in these spaces.

Theorem 4.1. For any α > 0, the dimension of the sparse tensor product space

V̂α

J =
⊕

α
T j≤J

W
(1)
j1

⊗W
(2)
j2

⊗ · · · ⊗W
(L)
jL

is proportional to 2J max{n1/α1,n2/α2,...,nL/αL}JR−1, where R counts how often the max-

imum is attained.

Proof. We shall use induction to prove this theorem. Consider first the case L = 1.

Due to dimW
(1)
j1

∼ 2j1n1, it holds

dim V̂α

J ∼

J/α1∑

j1=0

2j1n1 . 2Jn1/α1 .

Since R = 1, the desired result follows immediately.
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We now show the induction step L 7→ L+1. To this end, we denote the (L+1)-fold

sparse tensor product space by

(4.9) V̂
(α,αL+1)
J =

⊕

α
T j+αL+1jL+1≤J

W
(1)
j1

⊗ · · · ⊗W
(L)
jL

⊗W
(L+1)
jL+1

,

where, without loss of generality2, we will assume

(4.10)
n1

α1
= · · · =

nR

αR
>
nR+1

αR+1
≥
nR+2

αR+2
≥ · · · ≥

nL

αL
and

nL

αL
≥
nL+1

αL+1
.

Obviously, there holds the identity

(4.11)

V̂
(α,αL+1)
J =

J/αL+1⊕

jL=0

[
⊕

α
T j≤J−αL+1jL+1

W
(1)
j1

⊗ · · · ⊗W
(L)
jL

]
⊗W

(L+1)
jL+1

=

J/αL+1⊕

jL+1=0

V̂α

J−αL+1jL+1
⊗W

(L+1)
jL+1

.

According to our induction hypothesis, the sparse tensor product space V̂α

J−αL+1jL+1

consists of O
(
2(J−αL+1jL+1)n1/α1(J −αL+1jL+1)

R−1
)
degrees of freedom. Hence, since

dimW
(L+1)
jL+1

∼ 2jL+1nL+1 , we get the estimate

dim V̂
(α,αL+1)
J .

J/αL+1∑

jL+1=0

2jL+1nL+12(J−αL+1jL+1)n1/α1(J − αL+1jL+1)
R−1

. 2Jn1/α1JR−1

J/αL+1∑

jL+1=0

2jL+1(nL+1−n1αL+1/α1).

Due to the ordering (4.10), we have to distinguish two cases, namely n1/α1 >

nL+1/αL+1 and n1/α1 = nL+1/αL+1. In the case n1/α1 > nL+1/αL+1, i.e., if R < L,

the exponent in the last sum is always negative which immediately implies

(4.12) dim V̂
(α,αL+1)
J . 2Jn1/α1JR−1.

In the case n1/α1 = nL+1/αL+1, which only happens if R = L, the exponent in the

sum is zero and it follows that

(4.13) dim V̂
(α,αL+1)
J . 2Jn1/α1JL−1

J/αL+1∑

jL+1=0

1 . 2Jn1/α1JL.

The combination of (4.12) and (4.13) yields the desired result in case of L+1. This

completes the proof. �

2Otherwise, we apply the induction to an appropriate permutation of the spatial

dimensions.
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Next, we consider the approximation power in the sparse tensor product spaces V̂α

J .

Obviously, the highest possible rate of convergence is attained in the space Hr(Ω)

where r = (r1, r2, . . . , rL) is the vector of polynomial exactness of the underlying

full tensor product spaces. Therefore, in the following theorem, we restrict ourselves

without loss of generality to s ≤ r.

Theorem 4.2. Let −γ̃ < q < γ and q < s ≤ r and f ∈ Hs(Ω). Then, the sparse

grid projector

(4.14) Q̂α

J : Hq(Ω) → V̂α

J , Q̂α

J f =
∑

α
T j≤J

(
Q

(1)
j1

⊗Q
(2)
j2

⊗ · · · ⊗Q
(L)
jL

)
f

satisfies

(4.15) ‖(I − Q̂α

J )f‖Hq(Ω) . 2
−J min{

s1−q1
α1

,
s2−q2

α2
,...,

sL−qL
αL

}
J (P−1)/2‖f‖Hs(Ω).

Here, P counts how often the minimum is attained in the exponent.

Proof. We show the assertion again by induction over L. For the case L = 1, the

tensor product domain Ω is a single domain Ω1 and the projector Q̂α

J onto the sparse

grid is simply
∑J/α1

j1=0 Q
(1)
j1
. Hence, the assertion follows immediately from (2.6) and

(2.7) since

∥∥(I − Q̂α1
J

)
f
∥∥2

Hq1 (Ω1)
.

∞∑

j1=J/α1+1

∥∥Q(1)
j1
f
∥∥2

Hq1 (Ω1)

.

∞∑

j1=J/α1+1

2−2j1(s1−q1)‖f‖2Hs1 (Ω1)

. 2−2J(s1−q1)/α1‖f‖2Hs1 (Ω1)

for all f ∈ Hs1(Ω1).

We now assume that the assertion is shown for the product domainΩ = Ω1×· · ·×ΩL

and the sparse grid projector Q̂α

J , given by (4.14). This means, the error estimate

(4.15) is valid for any function from Hs(Ω). To prove the induction step L 7→ L+1,

we shall assume without loss of generality3 that

s1 − q1
α1

= · · · =
sP − qP
αP

<
sP+1 − qP+1

αP+1
≤
sP+2 − qP+2

αP+2
≤ · · · ≤

sL − qL
αL

and
sL − qL
αL

≤
sL+1 − qL+1

αL+1
.

3Otherwise, we apply the induction to an appropriate permutation of the spatial

dimensions.
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The induction step then reads as follows. For any given function

f ∈ H(s,sL+1)(Ω× ΩL+1) := Hs(Ω)⊗HsL+1(ΩL+1) = Hs1(Ω1)⊗ · · · ⊗HsL+1(ΩL+1),

we shall show that the sparse grid projection

Q̂
(α,αL+1)
J =

∑

α
T j+αL+1jL+1≤J

Q
(1)
j1

⊗ · · · ⊗Q
(L+1)
jL+1

: H(q,qL+1)(Ω× ΩL+1) → V̂
(α,αL+1)
J

satisfies the error estimate

‖(I − Q̂
(α,αL+1)
J f‖

H
(q,qL+1)(Ω×ΩL+1)

. 2
−J min{

s1−q1
α1

,
s2−q2

α2
,...,

sL+1−qL+1
αL+1

}
J (P ?−1)/2‖f‖

H
(s,sL+1)(Ω×ΩL+1)

.

Here, the sparse tensor product space V̂
(α,αL+1)
J is defined in (4.9) and P ? := P + 1

if (s1 − q1)/α1 = (sL+1 − qL+1)/αL+1 and P ? := P otherwise.

Analogously to (4.11), we find the identity

Q̂
(α,αL+1)
J =

∑

α
T j+αL+1jL+1≤J

Q
(1)
j1

⊗ · · · ⊗Q
(L)
jL

⊗Q
(L+1)
jL+1

=

J/αL+1∑

jL+1=0

Q̂α

J−αL+1jL+1
⊗Q

(L+1)
jL+1

.

In particular, it holds

I −

J/αL+1∑

jL+1=0

Q̂α

J−αL+1jL+1
⊗Q

(L+1)
jL+1

=

J/αL+1∑

jL+1=0

(
I − Q̂α

J−αL+1jL+1

)
⊗Q

(L+1)
jL+1

+ I ⊗

(
I −

J/αL+1∑

jL+1=0

Q
(L+1)
jL+1

)

=

J/αL+1∑

jL+1=0

(
I − Q̂α

J−αL+1jL+1

)
⊗Q

(L+1)
jL+1

+ I ⊗

∞∑

jL+1=J/αL+1+1

Q
(L+1)
jL+1

.

Thus, in view of (2.6) and (2.7), since f ∈ H(s,sL+1)(Ω× ΩL+1), we find

∥∥(I − Q̂
(α,αL+1)
J

)
f
∥∥2

H
(q,qL+1)(Ω×ΩL+1)

.

J/αL+1∑

jL+1=0

∥∥∥
((
I − Q̂α

J−αL+1jL+1

)
⊗Q

(L+1)
jL+1

)
f
∥∥∥
2

H
(q,qL+1)(Ω×ΩL+1)

+

∞∑

jL+1=J/αL+1+1

∥∥(I ⊗Q
(L+1)
jL+1

)
f
∥∥2

H
(q,qL+1)(Ω×ΩL+1)

.
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The second norm on the right hand side can be estimated as
∥∥(I ⊗Q

(L+1)
jL+1

)
f
∥∥2

H
(q,qL+1)(Ω×ΩL+1)

. 2−2jL+1(sL+1−qL+1)‖f‖2
H

(q,sL+1)(Ω×ΩL+1)

. 2−2jL+1(sL+1−qL+1)‖f‖2
H

(s,sL+1)(Ω×ΩL+1)
.

The induction hypotheses (4.15) implies
∥∥∥
((
I − Q̂α

J−αL+1jL+1

)
⊗ I

)
f
∥∥∥
2

H
(q,qL+1)(Ω×ΩL+1)

. 2−2(J−αL+1jL+1)(s1−q1)/α1(J − αL+1jL+1)
P−1‖f‖2

H
(s,qL+1)(Ω×ΩL+1)

.

By employing in addition (2.7), the first norm on the right hand side of the above

expression can be estimated according to
∥∥∥
((
I − Q̂α

J−αL+1jL+1

)
⊗Q

(L+1)
jL+1

)
f
∥∥∥
2

H
(q,qL+1)(Ω×ΩL+1)

. 2−2(J−αL+1jL+1)(s1−q1)/α1(J − αL+1jL+1)
P−12−2jL+1(sL+1−qL+1)‖f‖2

H
(s,sL+1)(Ω×ΩL+1)

. 2−2J(s1−q1)/α1JP−12−2jL+1((sL+1−qL+1)−(s1−q1)αL+1/α1)‖f‖2
H

(s,sL+1)(Ω×ΩL+1)
.

Altogether, we thus get
∥∥(I − Q̂

(α,αL+1)
J

)
f
∥∥2

H
(q,qL+1)(Ω×ΩL+1)

.

[
2−2J(s1−q1)/α1JP−1

J/αL+1∑

jL+1=0

2−2jL+1((sL+1−qL+1)−(s1−q1)αL+1/α1)

+

∞∑

jL+1=J/αL+1+1

2−2jL+1(sL+1−qL+1)

]
‖f‖2

H
(s,sL+1)(Ω×ΩL+1)

.

If (s1−q1)/α1 < (sL+1−qL+1)/αL+1, the exponent in the first sum is always negative

and we obtain
∥∥(I − Q̂

(α,αL+1)
J

)
f
∥∥2

H
(q,qL+1)(Ω×ΩL+1)

.
(
2−2J(s1−q1)/α1JP−1 + 2−2J(sL+1−qL+1)/αL+1

)
‖f‖2

H
(s,sL+1)(Ω×ΩL+1)

. 2−2J(s1−q1)/α1JP−1‖f‖2
H

(s,sL+1)(Ω×ΩL+1)
.

If (s1−q1)/α1 = (sL+1−qL+1)/αL+1, which may only happen if P = L, the exponent

in the first sum is always 0, which, due to J/αL+1 + 1 terms in the sum, leads to
∥∥(I − Q̂

(α,αL+1)
J

)
f
∥∥2

H
(q,qL+1)(Ω×ΩL+1)

.
(
22J(s1−q1)/α1JL + 2−2J(sL+1−qL+1)/αL+1

)
‖f‖2

H
(s,sL+1)(Ω×ΩL+1)

. 2−2J(s1−q1)/α1JL‖f‖2
H

(s,sL+1)(Ω×ΩL+1)
.

This completes the proof. �
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By combining Theorems 4.1 and 4.2 we can express the convergence rate in terms of

the number of degrees of freedom N := dim V̂α

J . This gives us the cost complexity

of the approximation of functions in the sparse tensor product spaces V̂α

J .

Corollary 4.3. Let −γ̃ < q < γ, q < s ≤ r, and f ∈ Hs(Ω). Furthermore, denote

by N := dim V̂α

J the number of degrees of freedom in the sparse tensor product space

V̂α

J and set

β :=
min{(s1 − q1)/α1, (s2 − q2)/α2, . . . , (sL − qL)/αL}

max{n1/α1, n2/α2, . . . , nL/αL}
.

Assume that the minimum in the enumerator is attained P times and the maximum

in the denominator is attained R times. Then, the approximation (4.14) in V̂α

J

possesses the following convergence rate in terms of the degrees of freedom N :

(4.16) ‖f − f̂J‖Hq(Ω) . N−β(logN)(P−1)/2+β(R−1)‖f‖Hs(Ω).

Proof. Assume first R = 1. We then have N ∼ 2J max{n1/α1,n2/α2,...,nL/αL} due to

Theorem 4.1. Hence, it holds

N−β = N
−

min{(s1−q1)/α1,(s2−q2)/α2,...,(sL−qL)/αL}

max{n1/α1,n2/α2,...,nL/αL} ∼ 2
−J min{

s1−q1
α1

,
s2−q2

α2
,...,

sL−qL
αL

}
,

which, together with (4.15), yields the desired error estimate (4.16) for R = 1.

If R > 1, then the sparse tensor product space V̂α

J contains

N ∼ 2J max{n1/α1,n2/α2,...,nL/αL}JR−1

degrees of freedom. Thus, we now have the relation
(

N

JR−1

)−β

∼ 2
−J min{

s1−q1
α1

,
s2−q2

α2
,...,

sL−qL
αL

}
.

Consequently, by taking the logarithm on both sides, we get log(N/JR−1) ∼ J , and

since log(N/JR−1) ≤ logN , we obtain from (4.15) the estimate

‖f − f̂J‖L2(Ω) .

(
N

(logN)R−1

)−β

(logN)(P−1)/2‖f‖Hs(Ω),

i.e., the desired error estimate (4.16) for R > 1. This completes the proof. �

5. Discussion of the results

We now discuss the best choice of the parameter α > 0. To this end, we intend

to approximate a function f ∈ Hs(Ω) of maximal smoothness, i.e., we shall apply

Corollary 4.3 in the case s = r. Our first question addresses the highest possible

convergence rate β? which can be achieved in the sparse tensor product spaces V̂α

J .
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Lemma 5.1. It holds

β =
min{(r1 − q1)/α1, (r2 − q2)/α2, . . . , (rL − qL)/αL}

max{n1/α1, n2/α2, . . . , nL/αL}

≤ β? := min

{
r1 − q1
n1

,
r2 − q2
n2

, . . . ,
rL − qL
nL

}
.

for all α > 0.

Proof. Choose α > 0 arbitrarily but fixed and let k, ` ∈ {1, 2, . . . , L} be such that

rk − qk
αk

= min

{
r1 − q1
α1

,
r2 − q2
α2

, . . . ,
rL − qL
αL

}

and
n`

α`
= max

{
n1

α1
,
n2

α2
, . . . ,

nL

αL

}
.

It thus holds (rk − qk)/αk ≤ (ri − qi)/αi and n`/α` ≥ ni/αi for i = 1, 2, . . . , L. In

particular, we find

β =
rk − qk
αk

·
α`

n`
≤
ri − qi
αi

·
αi

ni
=
ri − qi
ni

for all i = 1, 2, . . . , L,

which immediately implies the assertion

β ≤ min

{
r1 − q1
n1

,
r2 − q2
n2

, . . . ,
rL − qL
nL

}
.

�

This lemma thus gives an upper bound β? for the convergence rate β in Corollary 4.3.

We now show that this rate is essentially achieved for the canonical choices (i.)–(iii.)

of α of Section 3.

(i.) The equilibration of the accuracy in the involved univariate spaces led to the

choice αi = ri − qi for all i = 1, 2, . . . , L. According to Corollary 4.3 and since we

consider s = r, we have here

β =
min{1, 1, . . . , 1}

max{n1/(r1 − q1), n2/(r2 − q2), . . . , nL/(rL − qL)}

= min

{
r1 − q1
n1

,
r2 − q2
n2

, . . . ,
rL − qL
nL

}
= β?.

We thus obtain the rate

‖f − f̂J‖Hq(Ω) . N−β?

(logN)(L−1)/2+β?(R−1)‖f‖Hr(Ω).
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(ii.) The equilibration of the degrees of freedom in the involved univariate spaces

corresponds to the choice αi = ni for all i = 1, 2, . . . , L. This immediately leads to

β =
min{(r1 − q1)/n1, (r2 − q2)/n2, . . . , (rL − qL)/nL}

max{1, 1, . . . , 1}
= β?.

Hence, the rate of convergence is

‖f − f̂J‖Hq(Ω) . N−β?

(logN)(P−1)/2+β?(L−1)‖f‖Hr(Ω).

(iii.) The equilibration of the cost-benefit rate is given by αi = ri − qi + ni for all

i = 1, 2, . . . , L. Let k ∈ {1, 2, . . . , L} such that

rk − qk
nk + rk − qk

= min

{
r1 − q1

n1 + r1 − q1
, . . . ,

rL − qL
nL + rL − qL

}
.

Then, it follows

(5.17)
rk − qk

nk + rk − qk
≤

ri − qi
ni + ri − qi

for all i = 1, 2, . . . , L,

which is equivalent to

rk − qk
nk

≤
ri − qi
ni

for all i = 1, 2, . . . , L.

Hence, (5.17) also implies

nk

nk + rk − qk
≥

ni

ni + ri − qi
for all i = 1, 2, . . . , L.

It therefore again holds

β =
min{(r1 − q1)/(n1 + r1 − q1), . . . , (rL − qL)/(nL + rL − qL)}

max{n1/(n1 + r1 − q1), . . . , nL/(nL + rL − qL)}
= β?

and Corollary 4.3 yields

‖f − f̂J‖Hq(Ω) . N−β?

(logN)(P−1)/2+β?(R−1)‖f‖Hr(Ω).

We can generalize these particular examples as follows. Set

(5.18) αi = λni + (1− λ)(ri − qi) for all i = 1, 2, . . . , L,

where λ ∈ [0, 1] is an arbitrarily chosen parameter. For λ = 1 we find αi = ni, for

λ = 0 we find αi = ri − qi, and for λ = 1/2 we find αi = (ni + ri − qi)/2 which

yields the same sparse tensor product spaces as the choice αi = ni + ri − qi. Thus,

the above examples are covered by (5.18).
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For the choice (5.18), it holds for a specific k that

rk − qk
λnk + (1− λ)(rk − qk)

= min
i∈{1,2,...,L}

{
ri − qi

λni + (1− λ)(ri − qi)

}

if and only if

nk

λnk + (1− λ)(rk − qk)
= max

i∈{1,2,...,L}

{
ni

λni + (1− λ)(ri − qi)

}
.

Consequently, for all λ ∈ [0, 1], we find

β =
mini∈{1,2,...,L}{(ri − qi)/(λni + (1− λ)(ri − qi))}

maxi∈{1,2,...,L}{ni/(λni + (1− λ)(ri − qi))}
= β?.

Nevertheless, the logarithmic factors in the convergence rate in (4.16) might differ

in the extremal cases λ = 0 and λ = 1.

In the case of L = 2, this construction covers all possible sparse tensor product

spaces V̂α

J which essentially (i.e., except for logarithmic terms) offer the highest

possible convergence rate β?, see [9]. Note however that in the case L > 2 there

might be other choices which also result in optimal sparse tensor product spaces.

Lemma 5.2. Let k ∈ {1, 2, . . . , L} be such that

rk − qk
nk

= min

{
r1 − q1
n1

,
r2 − q2
n2

, . . . ,
rL − qL
nL

}
= β?.

Then, for all α > 0 such that

(5.19)
rk − qk
ri − qi

≤
αk

αi
≤
nk

ni
for all i = 1, 2, . . . , L,

it holds that

β =
min{(r1 − q1)/α1, (r2 − q2)/α2, . . . , (rL − qL)/αL}

max{n1/α1, n2/α2, . . . , nL/αL}
= β?.

If (5.19) is not satisfied, then it holds that β < β?.

Proof. The condition (5.19) immediately implies the equalities

rk − qk
αk

≤
ri − qi
αi

and
ni

αi

≤
nk

αk

for all i = 1, 2, . . . , L.

Hence,

β =
min{(r1 − q1)/α1, (r2 − q2)/α2, . . . , (rL − qL)/αL}

max{n1/α1, n2/α2, . . . , nL/αL}
=
rk − qk
nk

= β?

indeed holds. If (5.19) is not satisfied for some specific j ∈ {1, 2, . . . , L}, then it

follows
rj − qj
αj

<
rk − qk
αk

or
nk

αk
<
nj

αj
.
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Therefore, we obtain

β =
min{(r1 − q1)/α1, (r2 − q2)/α2, . . . , (rL − qL)/αL}

max{n1/α1, n2/α2, . . . , nL/αL}
6= β?,

which, in view of Lemma 5.1, shows β < β?. �

6. Conclusion

The analysis in Section 5 reveals that all sparse tensor product spaces V̂α

J with

α satisfying the criterion (5.19) produce essentially the optimal convergence rate

β? = mini∈{1,2,...,L}{(ri−qi)/ni} when a function f ∈ Hr(Ω) of maximal smoothness

is to be approximated. However, if the function to be approximated is only in Hs(Ω)

with q < s < r, then the highest possible convergence rate is

β = min
i∈{1,2,...,L}

{(si − qi)/ni}.

To achieve this rate, the criterion (5.19) for the choice of α > 0 has to be modified

according to
sk − qk
si − qi

≤
αk

αi

≤
nk

ni

for all i = 1, 2, . . . , L.

As a consequence, to obtain for all q < s ≤ r the highest possible rate in V̂α

J , one

has to choose αi = ni for all i = 1, 2, . . . , L, i.e., one has to equilibrate the degrees

of freedom in the involved univariate spaces V
(i)
J/αi

.
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