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A NOTE ON THE CONSTRUCTION OF L-FOLD SPARSE
TENSOR PRODUCT SPACES

MICHAEL GRIEBEL AND HELMUT HARBRECHT

ABSTRACT. In the present paper, we consider the construction of general sparse
tensor product spaces in arbitrary space dimensions when the single subdomains
are of different dimensionality and the associated ansatz spaces possess different
approximation properties. Our theory extends the results from [9] for the con-
struction of two-fold sparse tensor product space to arbitrary L-fold sparse tensor

product spaces.

1. INTRODUCTION

Many problems in science and engineering lead to problems which are defined on
the tensor product of L domains €21 x {25 X - - - X 07, where §2; € R™. Already for the
simple situation of L = 2, there exists a large amount of problems. This includes for
instance radiosity models and radiative transfer [24] where 2; denotes the spatial
three-dimensional domain of a geometric object under consideration and €2 is the
sphere S?. Then, there are the parabolic problems where €2; is the time interval and
()5 is the spatial domain [5, 12, 13, 21], or various phase space problems, like e.g. the
Boltzmann equation, kinetic equations or the Langevin equation [2], where both 4
and {2y are three-dimensional cubes or the full three-dimensional real space.

Even more applications can be found in case of a general L > 2. For example, non-
Newtonian flow can be modeled by a coupled system which consists of the Navier
Stokes equation for the flow in a three-dimensional geometry described by {2; and of
the Fokker-Planck equation in the 3(L —1)-dimensional configuration space on 2y X
Q3 x---xQp where each domain ; (i > 2) is a sphere. Here L denotes the number of
atoms in a chain-like molecule which constitutes the non-Newtonian behavior of the
flow, for details see [3, 19, 20]. Also the L-th moment of linear elliptic boundary value
problems with stochastic source terms are known to satisfy a deterministic partial
differential equation with the L-fold tensor product of the elliptic operator on the
L-fold product of the physical domain [22, 23]. This approach extends to stochastic
diffusion problems and to more general partial differential equations with stochastic
coefficient functions or with stochastic domains [15, 16, 17]. Another example is
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multiscale homogenization. After unfolding [1, 6, 7], it gives raise to the product of
the macroscopic physical domain with the L — 1 periodic microscopic domains which
correspond to the L — 1 different microscales [18]. Finally, we find the product of L
domains in quantum mechanics for e.g. the electronic Schrodinger equation where
each electron has its associated three-dimensional domain, see e.g. [10, 25, 26].

A naive, conventional discretization would use tensor products of all basis functions
from suitable finite dimensional ansatz spaces V}i), 1 =1,2,..., L which are defined
on each domain separately. This leads to the full tensor product space VJ(I) ® VJ(2) ®
e ® VJ(L). However, in general, the full tensor product space contains way too
many degrees of freedom such that desirable realistic simulations are beyond current
computing capacities. This relates to the well-known curse of dimension which states
that the number of degrees of freedom for an approximation necessary to obtain a
prescribed accuracy grows exponentially with the dimension.

To overcome the curse of dimension, we will focus in this paper on the construction
of sparse tensor product spaces, also known as sparse grids [4, 27]. The starting point

are multilevel decompositions of the ansatz spaces
VO =wleowe...owl? i=12.. L

which can be constructed via hierarchical bases, interpolets or wavelet-like bases.
From this, the regular sparse tensor product space is defined according to

(1.1) ve= p wlewle -ewl

JL
Jitie++in<J

see e.g. [4, 11, 14, 27]. Tts approximation power is nearly as good as that of the
corresponding full tensor product space if the functions to be approximated provide
additional smoothness in terms of bounded mixed derivatives. Note here that the
space (1.1) is optimal with respect to the L?-norm if all domains have the same
dimension, are equipped with the same type of functions and relate to the same
regularity of the function under consideration with respect to its coordinates.

To also cover the more general cases, we will introduce in the following the special

sparse tensor product space
Vo= whew?g...owh
J - J1 J2 JL
alj<J

for an arbitrary vector a = (a1, aa, ..., ar) > 0and j = (ji, jo, - - -, jr) € N§ and we
will discuss various choices of a for respective general situations of local dimensions

and regularities of the L domains.



A NOTE ON THE CONSTRUCTION OF L-FOLD SPARSE TENSOR PRODUCT SPACES 3

For the case L = 2 we already systematically studied in [9] what the most efficient
construction of sparse tensor product spaces is if the spatial dimension of the un-
derlying domains or the polynomial exactness (and thus the approximation power)
of the ansatz spaces differ. In this paper, we will now extend these results to L-fold
tensor product spaces. It will turn out that, in case of smooth functions, there is a
whole range of sparse tensor product spaces which possess the same optimal con-
vergence rate. However, in case of functions with limited regular or mixed Sobolev
smoothness, it will turn out that the sparse tensor product space, which equilibrates
the number of degrees of freedom (see Section 3), is superior to all the other sparse

tensor product spaces under consideration.

The remainder of this paper is organized as follows. In Section 2, we specify the
requirements of the multiscale hierarchies on each subdomain. Then, in Section 3,
we construct general sparse tensor product spaces. In Section 4, we study their
properties. Section 5 is dedicated to the comparison of the cost complexities for
the approximation of functions of different mixed Sobolev smoothness. Finally, in

Section 6, we give some concluding remarks.

Throughout this paper, the notion “essential” in the context of complexity estimates
means “up to logarithmic terms”. Moreover, to avoid the repeated use of generic
but unspecified constants, we denote by C' < D that C' is bounded by a multiple of
D independently of parameters which C' and D may depend on. Obviously, C' = D
is defined as D S C,and C ~ D as C S D and C 2 D.

2. APPROXIMATION ON A SUBDOMAIN

Let Q2 C R™ be a sufficiently smooth, bounded domain. We consider a nested se-
quence of finite dimensional spaces

(2.2) VocVic---CV;C--CL*Q),

which consists of piecewise polynomial ansatz functions V; = span{y;; : k € A;}
(A, denotes a suitable index set), such that dim V; ~ 2" and

(2.3) o) =Jv

We will use the spaces V; for the approximation of functions. To this end, we assume
that the approximation property

(2.4) inf fu—vjllaa@) S 5 ullmsw),  we H(Q),
viEVi
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holds for ¢ < 7, ¢ < s < r uniformly in j. Here we set h; := 277, i.e., h; corresponds
to the width of the mesh associated with the subspace V; on 2. The parameter v > 0
refers to the regularity of the functions which are contained in Vj, i.e.,

v:=sup{s e R:V; C H*(Q)}.
The integer r» > 0 refers to the polynomial exactness, that is the maximal order of
polynomials which are locally contained in the space V;.

We now introduce a wavelet basis associated with the multiscale analysis (2.2) and
(2.3) as follows. The wavelets ¥; := {1, : k € V;}, where V; := A;\ A;_y, are the
bases of the complementary spaces W; of V;_; in V}, i.e.,

Vi=ViaeW;, VianW;={0}, W;=span{¥,;}.

Recursively we obtain
J
Vi=EPw;, W=,
=0
and thus, with

J
U= U U,, Wy :=span{pgy : k € Ao},
=0
we get a wavelet basis in V;. A final requirement is that the infinite collection
U i= ;50 ¥, forms a Riesz basis of L*(Q). Then, there exists also a dual (or
biorthogonal) wavelet basis U = Ujso {Ivlj = {%k : k € V,;} which defines a dual
multiscale analysis of regularity 7 > 0, see e.g. [8] for further details. In particular,
each function f € L?(2) admits the unique representation

(2.5) F=5 S i
j=0 keV,

With the definition of the projections

Q;: L*(Q) = W;, Q;f= Z (f, Jj,k)LQ(Q)wj,ka

kEVj

the atomic decomposition (2.5) gives rise to the multilevel decomposition

F=Y_Qif
j=0

Since for all —y < ¢ <7 also a (properly scaled version of the) wavelet basis ¥ is a
Riesz basis of H9(f2), we especially have

(2.6) 1 o) ~ D NQiflraeys =7 <a <7,
j=0
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see [8]. Finally, for any f € H*(Q) the approximation property (2.4) induces the

estimate

(2.7) 1Q; fllray S 277D\ fllmsy, a<s<r.

3. SPARSE TENSOR PRODUCT SPACES

Consider now L domains 2; C R™ with n; € Nforall: =1,2,..., L. We aim at the
approximation of functions in anisotropic Sobolev spaces

HE(Q) = H*(Q)) @ H2(Q) © H* (1)

where € := Q; x Q9 X -+ - x Q. To this end, we assume to individually have for each
subdomain €);, i = 1,2,..., L, the multiscale analysis

Vo(i) C Vl(i) C VQ(i) C - CL2(SY), Vo(i) = span{q)g-i)}, i=1,2,...,L,
with associated complementary spaces
v =vihew?, vEnw? ={0}, W= span{¥"}.

Furthermore, for all = 1,2,..., L, let us denote the polynomial exactnesses of the
spaces V;-(Z) by r;, and the regularity of the primal and dual wavelet bases by 7; and
i-

In this paper, we study the approximation of functions in the special sparse tensor
product space’

Vo . 1) (2) (L)
(3.8) Vi= P W) ew,) e W,
alj<J
for an arbitrary vector a = (ay, g, ..., ar) > 0 and j = (41,79, ..., j1) € N&. Here

and in the following, inequalities for vectors are to be understood componentwise,

i.e., > 0 means o; >0 for all i = 1,2,..., L. Moreover we set r = (ry,ry,...,7),
¥ =72 570), and ¥ = (31,92, -+, L)

Now, we can formulate the following problem: How must o > 0 be chosen such that,
for given pammetAers -y <q<~vyandq<s<r, a function f € H(Q) can be best
approzimated in VS in the HY(Q)-norm ¢

Natural choices of the parameter a« > 0 are:
'Here and in the following, the summation limits are in general no natural numbers

and must of course be rounded properly. We leave this to the reader to avoid cumbersome
floor/ceil-notations.
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(i.) To equilibrate the accuracy in the involved univariate spaces V};Li, 1=

1,2,..., L, we obtain the condition
o—J(ri—a)/en _ 9=J(r2—a2)/az _ _ 9—J(rL—ar)/ar
This means that we have to choose a; =r; —¢q; foralli =1,2,..., L.
(7.) To equilibrate the number of degrees of freedom in the involved univariate
spaces VJ(;)%, 1=1,2,..., L, we obtain the condition
2Jn1/a1 _ 2Jn2/a2 B 2JTZL/OtL'

This condition is satisfied if a; =n; for alli =1,2,..., L.
(#ii.) Following the idea of an equilibrated cost-benefit rate (see [4]), we get the

condition

2j1(n1+1“1*q1) . 2j2(n2+7‘27q2) . 2jL(TLL+TL7qL) _ 2J-const. for all aTj = J.
For const. =1, we find o; =n; + 1, —q; foralli =1,2,..., L.

In the next section, we will compute for these and other choices the cost and the

error of the approximation in the related sparse tensor product spaces.

4. PROPERTIES OF THE SPARSE TENSOR PRODUCT SPACES

To compute the convergence rate of functions in the sparse tensor product spaces
V¢ with arbitrary a > 0, we first count the degrees of freedom which are contained
in these spaces.

Theorem 4.1. For any o > 0, the dimension of the sparse tensor product space
U (1) (2) (L)
V=P W) ew oW,
alj<J

is proportional to 27 ™ax{m/erna/ez,nifert JR=1 yhere R counts how often the maz-

mum 18 attained.

Proof. We shall use induction to prove this theorem. Consider first the case L = 1.
Due to dim WS ~ 27" it holds

J/au
dim Vg ~ Y "o < g/m/e

Jj1=0

Since R = 1, the desired result follows immediately.
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We now show the induction step L — L+ 1. To this end, we denote the (L + 1)-fold
sparse tensor product space by

\rlosarg) 1 L L+1
(4.9) vipee = @ wle o ew P ewtY

JL+1
aljtar 1<

where, without loss of generality?, we will assume

(4.10) ﬂ:...:%>n3+12711%+22.“2@ and @ZnL“'
aq QR OR+1 AR42 ay, ar, ar4
Obviously, there holds the identity
J/ap 1
{[SavaL+1) - @ EB WJ’(ll) Q- WJ'(LL) ® WJ’(LLJ:rll)

Jr=0 LaTj<J—ari1jr41

4.11
(4.11) Sanas
_ ¥ (L+1)
- @ V?_QL+1jL+1®M/jL+1 :
Jr+1=0

a .
J—apy1in+1

consists of O(Q(J_aHlel)”l/al(J — aq1jr41)%7) degrees of freedom. Hence, since

dim WY~ 2izainiir we get the estimate

According to our induction hypothesis, the sparse tensor product space \Y

JL+1
J/ar 1
: rlasarni) ] n J—a j ni/a . R—1
dim V' < E oir+inr+19(J—artijryi)ni/ Y(J = aps1ipe)
Jjr+1=0

J/ar 1

§2Jn1/011JR*1 Z 9ir+i(nryi—miarii/on)
JL+1=0
Due to the ordering (4.10), we have to distinguish two cases, namely n;/a; >
npi1/aper and ny /oy = npyq/apyr. In the case ny /oy > npyq/api, e, it R < L,

the exponent in the last sum is always negative which immediately implies
(4.12) dim V{®erst) < glni/en pR-1,

In the case ny/a; = npi1/ap. 1, which only happens if R = L, the exponent in the
sum is zero and it follows that

J/arpi1
(4.13) dim ViFer) < gm/e gimt N= g < glm/on gL

Jjr+1=0
The combination of (4.12) and (4.13) yields the desired result in case of L + 1. This
completes the proof. O

2Otherwise, we apply the induction to an appropriate permutation of the spatial

dimensions.
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Next, we consider the approximation power in the sparse tensor product spaces \A/'LO,‘
Obviously, the highest possible rate of convergence is attained in the space H*()
where r = (rq,r9,...,71) is the vector of polynomial exactness of the underlying
full tensor product spaces. Therefore, in the following theorem, we restrict ourselves
without loss of generality to s <r.

Theorem 4.2. Let —y < q <~ and q <s <r and f € H5(Q). Then, the sparse
grid projector

(4.14) Qs HYQ) = VS, Q5f= Y (QVeQPe -oQ)f

alj<J
satisfies
~ — Jmin 51*Q1752*QQ7 ’S
(4.15) I = Q%) fllpagy S 2770w 7SS G P02 £

Here, P counts how often the minimum is attained in the exponent.

Proof. We show the assertion again by induction over L. For the case L = 1, the
tensor product domain Q is a single domain €2, and the projector Q% onto the sparse

grid is simply Z‘]]l/ 5 Q;,’ . Hence, the assertion follows immediately from (2.6) and

(2.7) since

o0

= Q) lmen £ D2 195 e
j1=J/a1+1

o0

S D 2P| f| )

j1=J/a1+1

S 2O
for all f € H* ().

We now assume that the assertion is shown for the product domain 2 = Q; x---xQp,
and the sparse grid projector Qg‘, given by (4.14). This means, the error estimate
(4.15) is valid for any function from H®(€2). To prove the induction step L +— L+1,
we shall assume without loss of generality® that

S1—q1 _SP_CIP<5P+1_QP+1<5P+2_QP+2<. .<5L_QL

aq ap apy1 - apya ar

and
SL — 4L < SL+1 — qr+1

arp Qr4q

30therwise, we apply the induction to an appropriate permutation of the spatial
dimensions.
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The induction step then reads as follows. For any given function
feHE (Q x Qppy) = H(Q) ® H1 Qi) = B () © -+ @ HW Q)
we shall show that the sparse grid projection

Af]a,aL+1) _ Z Q( ) ‘R Q (L+1) H((LQLH)(Q > QL+1) s {/507&L+1)

]L+l
aTjt+ap1jr1<J

satisfies the error estimate

(1 — QSQ’QL+1)fHH(qa'1L+1)(Q><QL+1)

. - - s —q
7]m1n{51 QI752 QQ7 ’L+1 L+1

5 2 ag ag T a4 }J(P**l)/Q

HfHH(S»SLH)(QXQLH)'

Here, the sparse tensor product space \Afsa’aL+1) is defined in (4.9) and P* := P + 1
if (s1 —q1)/on = (sp41 — qr+1)/ap+1 and P* := P otherwise.

Analogously to (4.11), we find the identity

A(ovari1) E (1) (L) (L+1)
J - QJ'1®'“®QJ' ®QJL+1
aTjtar 1L <J
J/ar+1
L+1
§ : QJ QrL4+1JL+1 ®Q]L+1 :
Jjr+1=0

In particular, it holds

J/ar 1
P (L+1)
Z Q?_O‘LJrleJrl ® QjL+1
Jjr+1=0
J/OlL+1 J/aL+1
. ~ (L+1) (L+1)
o Z (I B Q?_O‘LJrl.jLJrl) ® QJL+1 +I® (] o Z QJ'L+1 )
JjrL+1=0 Jr41=0
J/arpi1 00
_ O (L+1) (L+1)
- Z (I - Q?_QLJrleJrl) ® Q]L+1 +1I® Z QjL+1 '
Jjr+1=0 Jr+1=J/ar41+1

Thus, in view of (2.6) and (2.7), since f € H®*2+1)(Q x Qp,,), we find

H [ QaaL+1) f”i{(q,qL+1)(Q><QL+1)

J/ar+1 (
P~y L+1)
S Z )(([ - QJ*OlL+1jL+1) JL+1 >fHH(qu+1)(Q><QL+1)
Jr+1=0
- 2
+ Z H (I ® Q]fjll fHH(q’qL+1)(Q><QL+1)'

Jjr+1=J/ap1+1
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The second norm on the right hand side can be estimated as

(L+1) 2 —94 —
H (I ® QJL-H )fHH(q’qL-H)(QXQLJrl) 5 2 Arsiler qLJrl)Hf||?_1(q,SL+1)(QXQL+1)

—2j - 2
<2 Jr+1(sp41 qLH)Hf||H(5!5L+1)(Q><QL+1)‘

The induction hypotheses (4.15) implies

H <(I - QJ*OlL+1jL+1 )]EHH(Ql LA (QX Q1)

S 2_2(J_QL+UL+1)(81 Q1)/a1('] - &L+1jL+1) HfHH(S QL+1) (2xQpy1)”

By employing in addition (2.7), the first norm on the right hand side of the above
expression can be estimated according to

Ao (L+1)
H ((I - QJ—OtL+1jL+1) ® QjL+1

< 9—2(J—art1jr+1)(s1—q1)/en (J

)fHH<q L1 (QxQp 1)

—1l9- 2jr4+1(5L+1—qr+1) HfH

- 04L+L7L+1) HE L4+ (QxQp 4 1)

—2J(s1— P—16—-2j s — s « « 2
SQ (s1 q1)/a1J 9 Jr+1((SL+1—qr+1)—(s1—q1)ap41/01) Hf” (SSL+1)(Q><QL+1)

Altogether, we thus get

1= Q) e

J/ar+1
< [22J(81Q1)/011JP1 Z 2*2]'L+1((SL+1*QL+1)*(51*¢11)01L+1/011)

Jjr+1=0

[e.9]

+ Z 9=2iL+1(sL41-9L+1) HinI(S!SLH)(QXQLH)'

Jjry1=J/ar1+1

If (s1—q1) /o1 < (Sp+1—qr+1)/arn+1, the exponent in the first sum is always negative
and we obtain

H (I Q(a e )inI(q’qLH)(QXQLH)

(2 2J(s1—q1)/on JP— 1y 272J(SL+1*QL+1)/OZL+1)Hin_I(s,sLJrl)(QXQLJ'_I)

AN

9~ 2J(s1—q1 /041JP IHfHH(SSLJrl)(QXQL-&-I)

If (s1—q1)/a1 = (Sp+1—qr+1)/aps1, which may only happen if P = L, the exponent
in the first sum is always 0, which, due to J/az41 + 1 terms in the sum, leads to

H [ Q(a aL+1 inI(q,qLH)(QXQLH)

S (e g g e O Ry

N

2 2J(Sl q1 /alJLHf||H(ssL+1 (QXQL+1)

This completes the proof. O
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By combining Theorems 4.1 and 4.2 we can express the convergence rate in terms of
the number of degrees of freedom N := dim V§. This gives us the cost complexity
of the approximation of functions in the sparse tensor product spaces V§.

Corollary 4.3. Let —y < q<~,q<s <r, and f € H3(Q). Furthermore, denote
by N :=dim VG the number of degrees of freedom in the sparse tensor product space
V¢ and set

. min{(s; — q1)/ou, (52 — @) /s, ..., (sp —qr)/ar}

b= )
max{ni/ay,ny /s, ... ,ny/ap}

Assume that the minimum in the enumerator is attained P times and the maximum

in the denominator is attained R times. Then, the approximation (4.14) in V¢

possesses the following convergence rate in terms of the degrees of freedom N :

(4.16) IS = Flluag) S N~%(log N) P02 0D || flle ).

Proof. Assume first R = 1. We then have N ~ 2/max{nm/ainz/az..ni/or} que to
Theorem 4.1. Hence, it holds

_ min{(s;j—q1)/a;,(s2—a2)/g,...,(sp—ap)/op} 2—Jmin{sl_q1 s2—ag SL_‘IL}
a1 e T

Nfﬁ — N max{ni/ay,ng/ag,..., nr/ar} ~ ag L ,

which, together with (4.15), yields the desired error estimate (4.16) for R = 1.
If R > 1, then the sparse tensor product space \Afﬁ contains

N ~ 2J max{n1/041,7’L2/0427---7TZL/04L}JR_I

degrees of freedom. Thus, we now have the relation

-8 _ _ _
( N ) N 27Jm1r1{51a1q1 ’52a2q2 ""’SLanL}

JR— 1

Consequently, by taking the logarithm on both sides, we get log(N/J®~1) ~ J, and
since log(N/J=1) <log N, we obtain from (4.15) the estimate

N - P-1)/2
)R_l) (1og N) D72 Fllmecen.

 Fllrsy < [ —
f fJHL(n)N((IOgN

i.e., the desired error estimate (4.16) for R > 1. This completes the proof. 0]

5. DISCUSSION OF THE RESULTS

We now discuss the best choice of the parameter a > 0. To this end, we intend
to approximate a function f € H®(Q2) of maximal smoothness, i.e., we shall apply
Corollary 4.3 in the case s = r. Our first question addresses the highest possible
convergence rate $* which can be achieved in the sparse tensor product spaces {\7?
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Lemma 5.1. [t holds

min{(r1 — q1)/oa, (r2 — @2) /0, ..., (rL —qv)/aL}
max{n;/ay,ng /s, ...,ny/ap}
Sﬁ* ::min{rl_QI7T2_QQ"“7TL_QL}‘

ni ng nr

b=

for all a > 0.

Proof. Choose a@ > 0 arbitrarily but fixed and let k, ¢ € {1,2,..., L} be such that

Tk — gk min{rl_ql Ty — 42 T’L—QL}

g aq ’ Qo Y ay,

and
Ty ny no nr
— =max{§ —, ..., — .
Qy a1 Qg ay,

It thus holds (rx — qx)/ax < (r; — ¢;)/a; and ny/ay > n;/a; for i = 1,2,..., L. In
particular, we find

Ty — o Ti—q o T — G ,
g X TG N LT =12, L,
g Ty ; n; n;

which immediately implies the assertion

. " —q1 T2 — Qg2 L — 4L
£ < min , e
ny ng nr

g

This lemma thus gives an upper bound S* for the convergence rate 5 in Corollary 4.3.
We now show that this rate is essentially achieved for the canonical choices (i.)—(éii.)
of a of Section 3.

(i.) The equilibration of the accuracy in the involved univariate spaces led to the
choice a; = r; — ¢; for all © = 1,2,..., L. According to Corollary 4.3 and since we

consider s = r, we have here

5= min{1,1,...,1}
~ max{ni/(r1 — q1),n2/(r2 — @2), ...,/ (r —qr)}

. 't —q1 T2 — (2 'L —d4dL | o«
= min , A, = [~
ny n2 nr

We thus obtain the rate

If = Frllma) S N7 (log N) 0247 0] £l e .
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(7.) The equilibration of the degrees of freedom in the involved univariate spaces
corresponds to the choice a; = n; for all « = 1,2,..., L. This immediately leads to

~ min{(ry —q1)/n1, (r2 — q2) /2, ..., (rp —qo)/nc}
p= max{1,1,...,1} =F

Hence, the rate of convergence is

If — f]“Hq(Q) < N8B (log N)(P—l)/Q—l—ﬁ*(L—l)HfHHr(Q)'

(#3i.) The equilibration of the cost-benefit rate is given by a; = r; — ¢; + n; for all
i=1,2,...,L. Let k€ {1,2,..., L} such that

Tk — qk :min{ 't —q1 L 'L — 4L }
ng+ Tk — qk ny+ri—aq ng +7rL —qr
Then, it follows
Tk — qk Ty — q;

(5.17) foralli=1,2,...,L,

g+ 7Tk —qr N +7i — ¢
which is equivalent to

T — gk Ty — 4
g n;

foralle=1,2,..., L.

IN

Hence, (5.17) also implies
2 1
N+ 7Tk —qe N+ 75— ¢

V

foralli=1,2,..., L.

It therefore again holds

min{(ry —q)/(m +m —q),...,(rp —qu)/(np +re —q)} — g
max{ni/(n1 +r—q),...,np/(nL +re —qr)}

ﬁ =
and Corollary 4.3 yields

IS = Fllma) S N7 (log N) =02 0| e ).

We can generalize these particular examples as follows. Set
(5.18) a; = n;+(1=N)(r; —¢q) foralli=1,2,... L,

where A € [0, 1] is an arbitrarily chosen parameter. For A = 1 we find a; = n;, for
A =0 we find oy = 1, — ¢, and for A = 1/2 we find oy = (n; + r; — ¢;)/2 which
yields the same sparse tensor product spaces as the choice o; = n; + r; — ¢;. Thus,
the above examples are covered by (5.18).
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For the choice (5.18), it holds for a specific k that

T — Qk _ min { T i }
Ang 4+ (1= AN)(re — qr)  iefr2...Ly | Ang + (1 — A)(r; — ¢;)
if and only if

Nk . n;
it (L= Nk — ) i) { A+ (L= N)(ri = a:) }
Consequently, for all A € [0, 1], we find

5o mineqio 0341 — @)/ (An; + (1 = A)(ri — ;) } _ B
maxXe(1,2,...0317/ (A + (1 = A)(ri — @) } '

Nevertheless, the logarithmic factors in the convergence rate in (4.16) might differ

in the extremal cases A =0 and A = 1.

In the case of L = 2, this construction covers all possible sparse tensor product
spaces {7? which essentially (i.e., except for logarithmic terms) offer the highest
possible convergence rate 3*, see [9]. Note however that in the case L > 2 there
might be other choices which also result in optimal sparse tensor product spaces.

Lemma 5.2. Let k € {1,2,..., L} be such that

T — gk min{rl_% T2 — (42 TL—QL}:B*

Ny no o ong T ng

Then, for all o« > 0 such that
N

7, — o
b qu—kg— foralli=1,2,... L,
Ty —q; Q; n;

(5.19)

it holds that

8= min{(r; —q1)/oq, (r2 — q2) /@, ..., (1L —qr)/aL} — 5"

max{ni/ay,ny /s, ... ,ny/ap}

If (5.19) is not satisfied, then it holds that 5 < (*.

Proof. The condition (5.19) immediately implies the equalities

L — i — G n;
k qk S 7 qi and o S
93 Q; Q; o7

Nk

foralle=1,2,..., L.

Hence,
- omin{(ry —q1)/a, (re — @) /as, ..., (ro —qu) /oLy e —ax
8= - — 3
max{n;/ay,ne/ay, ... ,ny/ap} g

indeed holds. If (5.19) is not satisfied for some specific j € {1,2,..., L}, then it
follows

s =4 Tk — 4k N Ny
I < or — < L.
Q; (053 Q. Q5
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Therefore, we obtain
_ min{(r; — q1)/ax, (ro — @)/, ..., (r —qu)/ar} *
p= # B
max{n/aq,ns/ay, ... ,ny/ap}

which, in view of Lemma 5.1, shows g < *. 0

)

6. CONCLUSION

The analysis in Section 5 reveals that all sparse tensor product spaces \Afg with
« satisfying the criterion (5.19) produce essentially the optimal convergence rate
is to be approximated. However, if the function to be approximated is only in H%(2)
with q < s < r, then the highest possible convergence rate is
= min Si — i)/ f.

p ie{l,Q,...,L}{( i )/mi}
To achieve this rate, the criterion (5.19) for the choice of & > 0 has to be modified
according to
N

Sp — o
Bk QT g alli=1,2,. . L.
Si — @ Q; n;

As a consequence, to obtain for all @ < s < r the highest possible rate in \7?, one
has to choose a; = n; for all i = 1,2,..., L, i.e., one has to equilibrate the degrees
of freedom in the involved univariate spaces VJ(;)%

REFERENCES

[1] G. Allaire and M. Briane. Multiscale convergence and reiterated homogenisation.
Proc. Roy. Soc. Edinburgh Sect. A, 126(2):297-342, 1996.

[2] R. Balescu. Statistical dynamics, matter out of equilibrium. Imperial College Press,
Imperial College, London, 1997.

(3] J.W. Barrett, D. Knezevic, and E. Siili. Kinetic models of dilute polymers: Analy-
sis, approximation and computation. 11th School on Mathematical Theory in Fluid
Mechanics 22-29 May 2009, Kacov, Czech Republic Necas Center for Mathematical
Modeling, Prague, 2009.

[4] H-J. Bungartz and M. Griebel. Sparse grids. Acta Numer., 13:147-269, 2004.

[5] N. Chegini and R. Stevenson. Adaptive wavelet schemes for parabolic problems.
Sparse matrices and numerical results. STAM J. Numer. Anal., 49:182-212, 2011.

[6] D. Cioranescu, A. Damlamian, and G. Griso. The periodic unfolding method in ho-
mogenization. SIAM J. Math. Anal., 40(4):1585-1620, 2008.

[7] D. Cioranescu, A. Damlamian, P. Donato, G. Griso, and R. Zaki. The periodic un-
folding method in domains with holes. SIAM J. Math. Anal., 44:718-760, 2012.

[8] W. Dahmen. Wavelet and multiscale methods for operator equations. Acta Numer.,
6:55-228, 1997.



16

[9]

[10]

MICHAEL GRIEBEL AND HELMUT HARBRECHT

M. Griebel and H. Harbrecht. On the construction of sparse tensor product spaces.
Math. Comp., to appear.

M. Griebel and J. Hamaekers. Tensor product multiscale many-particle spaces with
finite-order weights for the electronic Schrédinger equation. Z. Phys. Chem., 224:527—
543, 2010.

M. Griebel and S. Knapek. Optimized general sparse grid approximation spaces for
operator equations. Math. Comp., 78(268):2223-2257, 20009.

M. Griebel and D. Oeltz. A sparse grid space-time discretization scheme for parabolic
problems. Computing, 81(1):1-34, 2007.

M. Griebel, D. Oeltz, and P. Vassilevski. Space-Time Approximation with Sparse
Grids SIAM J. Sci. Comput. 28:701-727, 2006.

M. Griebel, P. Oswald, and T. Schiekofer. Sparse grids for boundary integral equa-
tions. Numer. Math., 83(2):279-312, 1999.

H. Harbrecht and J. Li. A fast deterministic method for stochastic elliptic interface
problems based on low-rank approximation. Research Report No. 2011-24, Seminar
fiir Angewandte Mathematik, ETH Ziirich (2011).

H. Harbrecht, M. Peters and M. Siebenmorgen. Combination technique based k-th
moment analysis of elliptic problems with random diffusion. Preprint No. 2011-2,
Mathematisches Institut, Universitat Basel, Switzerland (2011).

H. Harbrecht, R. Schneider, and C. Schwab. Sparse second moment analysis for elliptic
problems in stochastic domains. Numer. Math., 109:167-188, 2008.

V.H. Hoang and C. Schwab. High-dimensional finite elements for elliptic problems
with multiple scales. SIAM Multiscale Model. Simul., 3:168-194, 2005.

C. Le Bris and T. Lelievre. Multiscale modelling of complex fluids: A mathematical
initiation. In Multiscale Modeling and Simulation in Science, Lecture Notes in Com-
putational Science and Engineering, vol. 66, Springer, Berlin, pages 49-138, 2009.
A. Lozinski, R.G. Owens, and T.N. Phillips. The Langevin and Fokker-Planck equa-
tions in polymer rheology. In R. Glowinski (ed.) Handbook of Numerical Analysis
XVI/XVII, Elsevier North-Holland, 2010.

C. Schwab and R. Stevenson. Space-time adaptive wavelet methods for parabolic
evolution problems. Math. Comp., 78(267):1293-1318, 2009.

C. Schwab and R.-A. Todor. Sparse finite elements for elliptic problems with stochas-
tic loading. Numer. Math., 95(4):707-734, 2003.

C. Schwab and R.-A. Todor. Sparse finite elements for stochastic elliptic problems.
Higher order moments. Computing, 71:43-63, 2003.

G. Widmer, R. Hiptmair, and C. Schwab. Sparse adaptive finite elements for radiative
transfer. J. Comput. Phys., 227(12):6071-6105, 2008.

H. Yserentant. Sparse grid spaces for the numerical solution of the electronic
Schrodinger equation. Numer. Math., 101:381-389, 2005.

A. Zeiser. Wavelet approximation in weighted Sobolev spaces of mixed order with ap-
plications to the electronic Schrédinger equation. Constr. Approx., 35:293-322, 2012.



A NOTE ON THE CONSTRUCTION OF L-FOLD SPARSE TENSOR PRODUCT SPACES 17

[27] C. Zenger. Sparse grids. In Parallel algorithms for partial differential equations (Kiel,
1990), volume 31 of Notes Numer. Fluid Mech., pages 241-251. Vieweg, Braunschweig,
1991.

MICHAEL GRIEBEL, INSTITUT FUR NUMERISCHE SIMULATION, UNIVERSITAT BONN,
WEGELERSTR. 6, 53115 BONN, GERMANY

E-mail address: griebel@ins.uni-bonn.de

HELMUT HARBRECHT, MATHEMATISCHES INSTITUT, UNIVERSITAT BASEL, RHEINSPRUNG
21, 4051 BASEL, SWITZERLAND

E-mail address: helmut.harbrecht@unibas.ch



Bestellungen nimmt entgegen:

Sonderforschungsbereich 611
der Universitat Bonn
Endenicher Allee 60

D - 53115 Bonn

Telefon: 0228/73 4882
Telefax: 0228/73 7864
E-Mail: astrid.avila.aguilera@ins.uni-bonn.de http://www.sfb611.iam.uni-bonn.de/

511.

512.

513.

514.

515.

516.

517.

518.

519.

520.

521.

522.

523.

524.

Verzeichnis der erschienenen Preprints ab No. 511
Olischlager, Nadine; Rumpf, Martin: A Nested Variational Time Discretization
for Parametric Wollmore Flow

Franken, Martina; Rumpf, Martin; Wirth, Benedikt: A Nested Minimization Approach
of Willmore Type Functionals Based on Phase Fields

Basile, Giada: From a Kinetic Equation to a Diffusion under an Anomalous Scaling

Frehse, Jens; Specovius-Neugebauer, Maria: Fractional Interior Differentiability of the
Stress Velocities to Elastic Plastic Problems with Hardening

Imkeller, Peter; Petrou, Evangelia: The Numéraire Portfolio, Asymmetric Information and
Entropy

Chen, An; Petrou, Evangelia; Suchanecki, Michael: Rainbow over Paris
Petrou, Evangelia: Explicit Hedging Strategies for Lévy Markets via Malliavin Calculus

Arguin, Louis-Pierre; Bovier, Anton; Kistler, Nicola: An Ergodic Theorem for the Frontier of
Branching Brownian Motion

Bovier, Anton; Gayrard, Véronique; Svejda, Adéla: Convergence to Extremal Processes in
Random Environments and Extremal Ageing in SK Models

Ferrari, Patrik L.; Vet8, Bélint: Non-colliding Brownian Bridges and the Asymmetric
Tacnode Process

Griebel, Michael; Hullmann, Alexander: An Efficient Sparse Grid Galerkin Approach for
the Numerical Valuation of Basket Options under Kou’s Jump-Diffusion Model;
erscheint in: Sparse Grids and its Applications

Muller, Werner: The Asymptotics of the Ray-Singer Analytic Torsion of Hyperbolic
3-Manifolds; erscheint in: Metric and Differential Geometry Progress in
Mathematics, Birkhduser

Mdiller, Werner; Vertman, Boris: The Metric Anomaly of Analytic Torsion on Manifolds with
Concial Singularities

Griebel, Michael; Bohn, Bastian: An Adaptive Sparse Grid Approach for Time Series
Prediction; erscheint in: Sparse Grids and its Applications



525.

526.

527.

528.

529.

530.

531.

Maller, Werner; Pfaff, Jonathan: On the Asymptotics of the Ray-Singer Analytic Torsion
for Compact Hyperbolic Manifolds

Kurzke, Matthias; Melcher, Christof; Moser, Roger; Spirn, Daniel: Vortex Dynamics in the
Presence of Excess Energy for the Landau-Lifshitz-Gilbert Equation

Borodin, Alexei; Corwin, lvan; Ferrari, Patrik: Free Energy Fluctuations for Directed
Polymers in Random Media in 1+1 Dimension

Conti, Sergio; Dolzmann, Georg; Miiller, Stefan: Korn’s Second Inequality and Geometric
Rigidity with Mixed Growth Conditions

Buliek, Miroslav; Frehse, Jens; Steinhauer, Mark: Everywhere C® — Estimates for a Class
of Nonlinear Elliptic Sytems with Critical Growth

Frehse, Jens; Specovius-Neugebauer, Maria: Addendum to the Preprint 514; Fractional
Interior Differentiability of the Stress Velocities to Elastic Problems with Hardening

Griebel, Michael; Harbrecht, Helmut: A Note on the Construction of L-Fold Sparse Tensor
Product Spaces



