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In this article, the construction of nested bases approximations to discretizations of
integral operators with oscillatory kernels is presented. The new method has log-linear
complexity and generalizes the adaptive cross approximation (ACA) method to high-
frequency problems. It allows for a continuous and numerically stable transition from
low to high frequencies.

1 Introduction

In this article, the efficient numerical solution of Helmholtz problems

−∆u− κ2u = 0 in Ωc, (1a)

u+ α∂νu = u0 on Γ := ∂Ω (1b)

used to model acoustics and electromagnetic scattering will be considered. Herein, κ denotes the
wave number and Ωc := R3 \Ω the exterior domain of the obstacle Ω ⊂ R3. The paramter α and the
right-hand side u0 appearing in the impedance condition (1b) are given. A convenient way to solve
exterior problems is the reformulation as an integral equation [10, 13, 12] over the boundary Γ of the
scatterer Ω. The Galerkin discretization leads to large-scale fully populated matrices A ∈ CM×N ,

aij =

∫
Γ

∫
Γ
K(x, y)ϕi(x)ψj(y) dsy dsx, i ∈ I := {1, . . . ,M}, j ∈ J := {1, . . . , N}, (2)

with test and ansatz functions ϕi, ψj , having supports Xi := suppϕi and Yj := suppψj , respectively.
We consider kernel functions K of the form

K(x, y) := f(x, y) exp(2πiκ|x− y|) (3)

with an arbitrary asymptotically smooth (with respect to x and y) function f , i.e., there are constants
cas,1, cas,2 > 0 such that for α,β ∈ N3

|∂αx ∂βy f(x, y)| ≤ cas,1c
p
as,2α!β!

|f(x, y)|
|x− y|p

, p := |α+ β|. (4)

∗This work was supported by the DFG project BE2626/3-1.
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An example is K(x, y) = S(x−y) used in the single layer ansatz, where S(x) = exp(2πiκ|x|)/(4π|x|)
denotes the fundamental solution. Notice that the double layer potential K(x, y) = ∂νyS(x − y) is
of the form (3) only if Γ, i.e. the unit outer normal ν, is sufficiently smooth.

Depending on the application, low or high-frequency problems are to be solved. For low-frequency
problems, i.e. for κdiam Ω ≤ 1, the treecode algorithm [5] and fast multipole methods (FMM)
[30, 22, 21, 23] were introduced to treat A with log-linear complexity. The panel clustering method [28]
is directed towards more general kernel functions. All previous methods rely on degenerate approxi-
mations

K(x, y) ≈
k∑
i=1

ui(x)vi(y), x ∈ X, y ∈ Y, (5)

using a short sum of products of functions ui and vi depending on only one of the two variables x
and y chosen from a pair of domains X × Y which satisfies the far-field condition

ηlow dist(X,Y ) ≥ max{diamX,diamY } (6)

with a given parameter ηlow > 0. Since replacing the kernel function K in the integrals (2) with
degenerate approximations (5) leads to matrices of low rank, a more direct approach to the effi-
cient treatment of matrices (2) are algebraic methods such as mosaic-skeletons [33] and hierarchical
matrices [24, 25]. An efficient and comfortable way to construct low-rank approximations is the
adaptive cross approximation (ACA) method [6]. The advantage of this approach compared with
explicit kernel approximation is that significantly better approximations can be expected due the
quasi-optimal approximation properties; cf. [7]. Furthermore, ACA has the practical advantage that
only few of the original entries of A are used for its approximation. A second class are wavelet com-
pression techniques [1], which lead to sparse and asymptotically well-conditioned approximations of
the coefficient matrix.

It is known that the fundamental solution S (and its derivatives) of any elliptic operator allows for
a degenerate approximation (5) on a pair of domains (X,Y ) satisfying (6); see [7]. This applies to
the Yukawa operator −∆ + κ2 for any κ, because the decay of S benefits from the positive shift κ2.
However, the negative shift −κ2 in the Helmholtz operator introduces oscillations in S. Hence, for
high-frequency Helmholtz problems, i.e. for κdiam Ω > 1, the wave number κ enters the degree of
degeneracy k in (5) in a way that k grows linearly with κ. In addition to this difficulty, the mesh
width h of the discretization has to be chosen such that κh ∼ 1 for a sufficient accuracy of the
solution. We assume that

cκ := κh <
1

4
, h := max{diamXi,diamYj , i ∈ I, j ∈ J} ∼ 1/

√
N,

which implies that κ ∼
√
N ∼

√
M . Notice that the recent formulation [14] allows to avoid the pre-

vious condition and hence leads to significantly smaller N . For high-frequency Helmholtz problems,
one- and two-level versions [31, 32] were presented with complexity O(N3/2) and O(N4/3), respec-
tively. Multi-level algorithms [16, 2] are able to achieve logarithmic-linear complexity. The previous
methods are based on an extensive analytic apparatus that is tailored to the kernel function K. To
overcome the instability of some of the employed expansions at low frequencies, a wideband version
of FMM was presented in [15]. The H2-matrix approach presented in [4] is based on the explicit
kernel expansions used in [2, 31] for two-dimensional problems.

A well-known idea from physical optics is to approximate K(·, y) in a given direction e ∈ S2 by a
plane wave. The desired boundedness of k with respect to κ when approximating

K̂(x, y) := K(x, y) exp(−2πiκ(x− y, e))
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can be achieved if (6) is replaced by a condition which depends on κ and which is directionally
dependent. This is exploited by the fast multipole methods presented in [11, 17, 18, 29]. The aim
of this article is to combine this approach with the ease of use of ACA, i.e., our aim is to construct
approximations to A with complexity kN logN using only few of the original entries of A. In this
sense, this article generalizes ACA (which achieves log-linear complexity only for low-frequencies) to
high-frequency Helmholtz problems. An interesting and important property of the new method is
that it will allow a continuous and numerically stable transition from low to high wave numbers κ
by a generalized far-field condition that fades to the usual condition (6) if the wave number becomes
small.

The remaining part of this article is organized as follows. In Sect. 2, we prove estimates as (4) for K̂
in a cone around e. The desired asymptotic smoothness of K̂ leads to a far-field condition on the pair
of domains (X,Y ) on which such estimates are valid. In Sect. 3, these conditions will be accounted
for by subdividing the matrix indices hierarchically. It will be seen that the number of blocks
resulting from this partitioning is too large to allow for hierarchical matrix approximations with
log-linear complexity. Therefore, nested bases approximations are required, and in Sect 4 directional
H2-matrices will be introduced as a generalization of usual H2-matrices [27] that incorporate a
directional hierarchy. Sect. 5 is devoted to the construction of such directional H2-matrices using
only few of the entries of A. Error estimates for the constructed nested bases are presented and
complexity estimates prove the log-linear overall storage and the log-linear number of operations
required by the new technique. Finally, Sect. 6 presents numerical experiments that validate our
analysis.

2 Directional Asymptotic Smoothness

In [7] it is proved that the singularity function of any elliptic second-order partial differential operator
is asymptotically smooth. The latter property can be used to prove convergence of ACA and hence
the existence of degenerate kernel approximations (5). The wave number κ enters the estimates
on k in (5) through the expression cκ := max{1, κ maxx∈X, y∈Y |x − y|}, which in general becomes
unbounded in the limit κ → ∞. For parts X of the domain of small size, i.e. κdiamX ≤ 1,
satisfying (6), cκ and hence k in (5) are bounded independently of κ. This follows from the fact that
the recursive construction of domains satisfying (6) ensures that (6) is sharp in the sense that there
is a constant q > 1 such that

ηlow dist(X,Y ) ≤ qmin{diamX,diamY }.

Hence, if x ∈ X and y ∈ Y with diamX ≈ diamY , then

max
x∈X, y∈Y

|x− y| ≤ dist(X,Y ) + diamX + diamY ≤
(

q

ηlow
+ 2

)
diamX

and thus

cκ ≤ max{1,
(

q

ηlow
+ 2

)
κdiamX} ≤ q

ηlow
+ 2 (7)

is bounded independently of κ. In the other case κdiamX > 1, we will not be able to prove
asymptotic smoothness with bounded constants. However, a similar property can be proved if the
far-field condition (6) is replaced with a frequency dependent condition and if the corresponding far
field is subdivided into directions.
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For the ease of presentation, K defined in (3) will be investigated as a function of x with fixed y.
Hence, after shifting x to x+ y we consider

K̂(x) = f(x) exp(2πiκ[|x| − (x, e)]),

which can be regarded as K divided by the plane wave exp(2πiκ(x, e)) with some given vector e ∈ S2;
cf. Fig. 2. It will be shown that K̂ is asymptotically smooth with respect to x in a cone around e.
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Figure 1: ReK(x1, x2, 0) and Re K̂(x1, x2, 0) with e = (0, 1, 0)T .

To this end, K̂ will be investigated in the coordinates r := |x| and

ξ := |x| − (x, e).

As a first step, we investigate the derivative of ξ in direction e.

Lemma 1. Let x ∈ R3 such that ϕ := ](x, e) > 0 and 2 4
√

8 sinϕ < 1. Then there is a constant
cas,3 > 0 such that

|∂pe ξ(x)| ≤ cas,3 2p p! |x|1−p(sinϕ)2, p ∈ N.

Proof. We may assume that e = e1 := (1, 0, 0)T . Hence, ϕ = ](x, e1) > 0 and ξ(x) = |x| − x1. In
order to estimate the p-th order derivative of ξ with respect to x1, we define b2 = |x|2−x2

1 = (|x| sinϕ)2

and extend ξ regarded as a function in x1 to

ξ̂(z) :=
√
z2 + b2 − z,

which is holomorphic in Bρ(x1), ρ := |x|/2. Consider z = α+ iβ ∈ Bρ(x1). Then α > 0 and α2 > β2

due to cosϕ > 1/2, and with A := |z2 + b2| =
√
B2 + 4α2β2, B := α2 − β2 + b2, we have

√
z2 + b2 =

√
1

2
(A+B) + i sgn(β)

√
1

2
(A−B).

Due to |
√
x2 ± y2 − |x|| ≤ y2/

√
x2 ± y2 for all x, y ∈ R, it follows that

|1
2

(A+B)− α2| = 1

2
|
√

(α2 + β2 − b2)2 + 4α2b2 − (α2 + β2 − b2)| ≤ 2
b2α2

A

and

|1
2

(A−B)− β2| = 1

2
|
√

(α2 + β2 + b2)2 − 4β2b2 − (α2 + β2 + b2)| ≤ 2
b2β2

A
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Hence,

|
√
z2 + b2 − z|2 = |

√
1

2
(A+B)− α|2 + |

√
1

2
(A−B)− |β||2 ≤ 8b4

A2

(
α4

A+B
+

β4

A−B

)
≤ 8b4

A2

(
α4

2α2 − 4b2α2/A
+

β4

2β2 − 4b2β2/A

)
=

4b4

A2

|z|2

1− 2b2/A
≤ 4b4

A

1

1− 8
√

2(sinϕ)2
,

which follows from |z|2 ≤ A and

A = |z2 + b2| =
√
|z|4 + 2b2(α2 − β2) + b4 ≥

√
|z|4 + b4 ≥ 1√

2
(|z|2 + b2)

≥ 1√
2

((x1 − ρ)2 + b2) ≥ 1√
2

(|x|2 + ρ2 − 2ρ|x|) =
|x|2

4
√

2
=

b2

4
√

2(sinϕ)2
.

From Cauchy’s differentiation formula we obtain

|∂px1ξ(x)| = |ξ̂(p)(x1)| ≤ p!

2π

∫
Bρ(x1)

|ξ̂(z)|
|z − x1|p+1

dz ≤ 2pp!

|x|p−1

8
√

2(sinϕ)2√
1− 8

√
2(sinϕ)2

.

Using the previous estimate on the derivatives of ξ, we are now able to estimate the derivatives
of K̂ in direction e and e⊥ ∈ S2 perpendicular to e. To this end, we exploit (4) and make use of

|∂pvK̂(x)| ≤
∑
i+j=p

(
p

i

)
|∂iv exp(2πiκξ)| |∂jvf(x)|

≤ cas,1p!|K̂(x)|
∑
i+j=p

|∂iv exp(2πiκξ)|
i!

(cas,2

r

)j
, (8)

which holds true for any direction v. Thus, we require an estimate for |∂iv exp(2πiκξ)|. This will be
done in the following two lemmas for the cases v = e and v = e⊥, respectively.

Lemma 2. Let x and ϕ be as in Lemma 1. Let d > 1/κ and define η := κ d2/r, γ := κ d sinϕ. Then

|∂pe K̂(x)| ≤ c p!
(ρ
d

)p
|K̂(x)|, p ∈ N,

where c := 2cas,1 exp(8πcas,3γ) and ρ := max{cas,2, 4}max{γ, η}.

Proof. In order to estimate |∂ie exp(2πiκξ)|, we apply Faà di Bruno’s formula expressed in terms of
Bell polynomials. Using Lemma 1 and κ d > 1, we obtain

|∂ie exp(2πiκξ)| = |
i∑

k=0

∂kξ exp(2πiκξ)
∑

∑
ν jν=k∑
ν νjν=i

i!

j1!j2! . . .

i−k+1∏
`=1

(
∂`eξ(x)

`!

)j`
|

≤ i!
i∑

k=0

(2πκ)k
∑

∑
ν jν=k∑
ν νjν=i

1

j1!j2! . . .

i−k+1∏
`=1

(
cas,3 2`(sinϕ)2

r`−1

)j`
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≤ 2ii!

i∑
k=0

(2πcas,3 κ(sinϕ)2)krk−i
∑

∑
ν jν=k∑
ν νjν=i

1

j1!j2! . . .

=

(
2

κ d2

)i
i!

i∑
k=0

(2πcas,3γ
2)kηi−k

∑
∑
ν jν=k∑
ν νjν=i

1

j1!j2! . . .

<

(
2ρ̃

d

)i
i!

i∑
k=0

(2πcas,3γ)k
∑

∑
ν jν=k∑
ν νjν=i

1

j1!j2! . . .
,

where ρ̃ := max{η, γ} and jν = 0 for all ν > i − k + 1. From the multinomial theorem for j ∈ Nd
and L := i− k + 1 ∑

|j|=k

(
k

j

)
xj = (

L∑
i=1

xi)
k

it follows that

∑
∑
ν jν=k∑
ν νjν=i

1

j1! · · · jL!
=

2k

k!

∑
∑
ν jν=k∑
ν νjν=i

(
k

j

) L∏
`=0

(2−`)j` ≤ 2k

k!
(
L∑
`=0

2−`)k ≤ 4k

k!

and hence |∂ie exp(2πiκξ)| ≤ c̃ i!(2ρ̃/d)i with c̃ := exp(8πcas,3γ). Together with (8) this yields

|∂pe K̂(x)| ≤ c̃ cas,1 p!
|K̂(x)|
dp

∑
i+j=p

(2ρ̃)i
(
cas,2 d

r

)j
≤ c̃ cas,1p!

(
2ρ̃

d

)p
|K̂(x)|

∑
i+j=p

(cas,2

2

)j
≤ 2c̃ cas,1p!

(
max{cas,2, 4}ρ̃

d

)p
|K̂(x)|

due to d/r = η/(κ d) < η ≤ ρ̃ and
∑p

j=0 t
j ≤ 2 tp for t ≥ 2.

Lemma 3. Let d, η, γ as in Lemma 2 such that η, γ < 1. Then

|∂pe⊥K̂(x)| ≤ 2 cas,1p!
(ρ
d

)p
|K̂(x)|,

where ρ := max{12π√
ρ̃
, 2cas,2} ρ̃ and ρ̃ := max{η, γ}.

Proof. First, we claim that ∂ie⊥ exp(2πiκξ) consists of at most 3i summands of the form

g(x) := cg
(2πiκ)n

rn+2m
(x, e⊥)2(n+m)−i exp(2πiκξ),

where n,m ∈ N with 2(m+ n) ≥ i ≥ m+ n and |cg| ≤ 2ii!. This can be seen by induction using

∂e⊥g(x) = cg
(2πiκ)n+1

rn+1+2m
(x, e⊥)2(n+1+m)−(i+1) exp(2πiκξ)

+ (2n+ 2m− i) cg
(2πiκ)n

rm
(x, e⊥)2(n+m)−(i+1) exp(2πiκξ)
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− (n+ 2m) cg
(2πiκ)n

rn+2(m+1)
(x, e⊥)2(n+m+1)−(i+1) exp(2πiκξ).

With c̃ := 4π we estimate

|g(x)|
i!
≤ |cg|

i!

(2πκ)n

rn+2m
|(x, e⊥)|2(n+m)−i ≤ c̃i κn

rn+2m
(r sinϕ)2(n+m)−i ≤ c̃iκ

i−(2m+n)

ri−n

(γ
d

)2(n+m)−i
.

Here, we used that |(x, e⊥)| ≤ r sinϕ = rγ/(κ d). As in the proof of Lemma 2 we have that d/r < η
and hence

di

i!
|g(x)| = c̃i

κi−(2m+n)

ri−n
γ2(n+m)−id2(i−n−m) = c̃iηi−(2m+n)γ2(n+m)−i

(
d

r

)2m

≤ c̃iρ̃2m+n ≤ c̃iρ̃i/2.

The last estimate follows from 2m+ n ≥ i/2. This implies that |∂ie⊥ exp(2πiκξ)| ≤ i!(3c̃/d)i ρ̃i/2 and
together with (8) we get

dp

p!
|∂pe⊥K̂(x)| ≤ cas,1|K̂(x)|

∑
i+j=p

(3c̃)iρ̃i/2
(
cas,2 d

r

)j
≤ cas,1 (cas,2 ρ̃)p|K̂(x)|

∑
i+j=p

(
3c̃

cas,2
√
ρ̃

)i

≤ cas,1 (cas,2 ρ̃)p|K̂(x)|
p∑
i=0

(
ĉ

cas,2

)i
≤ 2 cas,1(ĉ ρ̃)p|K̂(x)|,

where ĉ := max{ 3c̃√
ρ̃
, 2cas,2}.

We return to the general case of estimating the derivatives of K̂(x, y) for x ∈ X and y ∈ Y . The
last two lemmata show that the derivatives of K̂ can be controlled by the parameters η, γ, and d.
Let χ(X) denote the Chebyshev center of X. Using the angle condition

sin](χ(X)− y, e) ≤
γhigh

κdiamX
, y ∈ Y, (9)

and the high-frequency far-field condition

ηhighdist(X,Y ) ≥ κ(diamX)2 (10)

with 0 < γhigh, ηhigh < 1, we obtain for the choice d = diamX and x 7→ x− y that d > 1/κ and

η =
κ d2

r
=
κ(diamX)2

|x− y|
≤ κ(diamX)2

dist(X,Y )
≤ ηhigh.

The following lemma shows that γ = κdiamX sin](x− y, e) is bounded by
γhigh+ηhigh

1−ηhigh .

Lemma 4. Let X and Y satisfy (9) and (10). Then for x ∈ X and y ∈ Y

sin](x− y, e) ≤
γhigh + ηhigh

1− ηhigh

1

κdiamX
.

Proof. Let u× v denote the cross product of u, v ∈ R3. Then

|(x− y)× e| ≤ |x− χ(X)|+ |(χ(X)− y)× e| ≤ diamX + |(χ(X)− y)× e|.

It follows that

sin](x− y, e) =
|(x− y)× e|
|x− y|

≤ |(χ(X)− y)× e|+ diamX

|χ(X)− y| − diamX
.
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Due to ηhigh|χ(X)−y| ≥ κ(diamX)2 ≥ diamX, we obtain that the denominator of the last expression
is bounded from below by (1− ηhigh)|χ(X)− y|. Hence,

sin](x− y, e) ≤ 1

1− ηhigh

|(χ(X)− y)× e|+ diamX

|χ(X)− y|

≤ 1

1− ηhigh

(
γhigh

κdiamX
+

diamX

|χ(X)− y|

)
≤
γhigh + ηhigh

1− ηhigh

1

κdiamX
.

As a consequence of the angle condition (9) and the far-field condition (10) we obtain from Lemma 2
and Lemma 3 for x ∈ X and y ∈ Y

max
{
|∂pe,xK̂(x, y)|, |∂pe⊥,xK̂(x, y)|

}
≤ c p!

( ρ

diamX

)p
|K̂(x, y)|, (11)

where c is independent of κ, the directions e, e⊥ ∈ S2 satisfy (e, e⊥) = 0 and 0 < ρ < 1 for small
enough ηhigh and γhigh.

3 Matrix partitioning

The aim of this section is to partition the set of indices I × J , I = {1, . . . , N} and J = {1, . . . ,M},
of the matrix defined in (2) into sub-blocks t× s, t ⊂ I and s ⊂ J , such that the associated supports

Xt :=
⋃
i∈t
Xi and Ys :=

⋃
j∈s

Yj

satisfy (10) in the high-frequency case κdiamXt > 1 and (6) if κdiamXt ≤ 1.
Before we discuss the matrix partition, let us make some assumptions that are in line with the

usual finite element discretization. The first assumption is that the overlap of the sets Xi, i ∈ I, is
bounded in the sense that there is a constant ν > 0 such that∑

i∈t
µ(Xi) ≤ νµ(Xt), t ⊂ I. (12)

Furthermore, the surface measure µ has the property that there is cΓ > 0 such that

µ(X) ≤ cΓ(diamX)2

for all X ⊂ Γ. The usual way of constructing hierarchical matrix partitions is based on cluster trees;
see [26, 7]. We assume that a binary cluster tree TI for I is constructed such that there are constants
cg, cG > 0 with

2−`/cG ≤ µ(Xt) and (diamXt)
2 ≤ cg2−` (13)

for all t from the `-th level T
(`)
I of TI . We will make use of the notation SI(t) for the set of sons of a

cluster t ∈ TI . The same properties are also assumed for the sets Yj , j ∈ J . Under these assumptions
it follows that the depth L of the cluster trees is of the order L ∼ logN ∼ logM .

Using the trees TI and TJ , a partition P can be constructed as the leaves of a block cluster
tree TI×J , where we define SI×J(t, s) = ∅ for the set of sons of a block t × s if t × s satisfies the
low-frequency far-field condition

κmin{diamXt,diamYs} ≤ 1, (14a)
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ηlow dist(Xt, Ys) ≥ max{diamXt,diamYs} (14b)

or the high-frequency far-field condition

κmin{diamXt, diamYs} > 1, (15a)

ηhigh dist(Xt, Ys) ≥ κmax{(diamXt)
2, (diamYs)

2} (15b)

or min{|t|, |s|} ≤ nmin with some given constants ηlow, ηhigh, nmin > 0. In all other cases, we set
SI×J(t, s) = SI(t) × SJ(s). Notice that for κ = 0 we obtain the usual far-field condition (6).
Furthermore, the transition from the low to the high-frequency regime is continuous in the sense that
for κmin{diamXt, diamYs} = 1 the conditions (14b) and (15b) are equivalent with ηhigh = ηlow.

As usual, we partition the set P into admissible and non-admissible blocks

P = Padm ∪ Pnonadm,

where each t × s ∈ Padm satisfies (14) or (15) and each t × s ∈ Pnonadm is small, i.e. satisfies
min{|t|, |s|} ≤ nmin. In order to distinguish low and high-frequency blocks, we further subdivide

Padm = Plow ∪ Phigh,

where Plow := {t× s ∈ P : t× s satisfies (14)} and Phigh := Padm \ Plow.
The following lemma will be the basis for the complexity analysis of the algorithms presented in

this article. Notice that this lemma analyzes the so-called sparsity constant of hierarchical matrix
partitions introduced in [20] for the far-field condition (6). Since the lemma states that this constant
is unbounded with respect to κ, usual H-matrices are not able to guarantee logarithmic-linear com-
plexity for the high-frequency far-field condition (15b). Therefore, in the next section a variant of
H2-matrices will be introduced.

Lemma 5. Let t ∈ T (`)
I . The set {s ∈ TJ : t× s ∈ Phigh} has cardinality O(2−`κ2).

Proof. The assumptions (12) and (13) guarantee that each set

Nρ := {s ∈ T (`)
J : max

y∈Ys
|χ(Xt)− y| ≤ ρ}, ρ > 0,

contains at most νcGcΓ2`(2ρ)2 clusters s from the same level ` in TJ . This follows from

|Nρ|2−`/cG ≤
∑
s∈Nρ

µ(Ys) ≤ νµ(YNρ) ≤ νcΓ(2ρ)2. (16)

Let s ∈ TJ such that t × s ∈ Phigh. Furthermore, let t∗ and s∗ be the father clusters of t and s,
respectively. Suppose that maxy∈Ys |χ(Xt)− y| ≥ ρ0, where

ρ0 := κ/ηhigh max{(diamXt∗)
2, (diamYs∗)

2}+ diamXt∗ + diamYs∗

Then

dist(Xt∗ , Ys∗) ≥ max
y∈Ys
|χ(Xt)− y| − diamXt∗ − diamYs∗

≥ κ/ηhigh max{(diamXt∗)
2, (diamYs∗)

2}

implies that t∗ × s∗ ∈ Phigh. Hence, Phigh cannot contain t × s, which is a contradiction. It follows
that

max
y∈Ys
|χ(Xt)− y| < ρ0 ≤ (cg2

−(`−1))1/2
(

2 + (cg2
−(`−1))1/2κ/ηhigh

)
.

From (16) we obtain that

|{s ∈ TJ : t× s ∈ Phigh}| ≤ 8νcΓcgcG

(
2 + (cg2

−(`−1))1/2κ/ηhigh

)2
∼ 16νcΓc

2
gcG2−`(κ/ηhigh)2.
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Directional subdivision of high-frequency blocks

In the high-frequency regime, i.e. κmin{diamXt,diamYs} > 1, the matrix block corresponding to
t×s ∈ Phigh cannot be approximated independently of κ unless it is directionally subdivided; see the
discussion in Sect. 2. In view of the angle condition (9), we partition the space R3 recursively into a
hierarchy of unbounded pyramids. The first subdivision partitions R3 into the 6 pyramids defined by
the origin and the faces of the unit cube as the pyramids’ bases. In each of the next steps, a pyramid
is subdivided by dividing its base perpendicular to a largest side of the base into two equally sized
halves. A pyramid Z resulting from ν subdivisions satisfies

sin](x, e) ≤ 2(1−ν)/2 for all x ∈ Z, (17)

where e ∈ S2 denotes the vector pointing from the origin to the center of the base of Z. For a given

cluster t ∈ T (`)
I from the `-th level of TI let νt be the smallest non-negative integer such that

νt ≥ 2(ν0 + log2 κ)− `+ 1, (18)

where ν0 ∈ N is a fixed value which will be specified later on. Denote by E(t) the set of directions
e ∈ S2 associated with all pyramids Ze after νt subdivisions. Then

|E(t)| = 6 · 2νt ∼ κ22−`. (19)

Given e ∈ E(t), we define e′ ∈ E(t′) as the axis of the pyramid Ze′ from which Ze results after
subdivision. Notice that despite t′ ⊂ t we have Ze ⊂ Ze′ . Furthermore, let

Fe(Xt) := De(Xt) ∩ F(Xt), De(X) :=
{
y ∈ R3 : sin](χ(X)− y, e) ≤

γhigh

κdiamX

}
,

be the directional far field of Xt. Here, F(X) := {y ∈ R3 : ηhigh dist(X, y) ≥ κ(diamX)2} denotes
the far field of X ⊂ R3.

The following lemma will be important for the construction of nested bases used for the approxi-
mation. Notice that the directional far fields are nested up to constants.

Lemma 6. Let t′ ∈ SI(t) and e′ be defined as above. Then the directional far field satisfies

Fe(Xt) ⊂ F̃e′(Xt′), F̃e′(Xt′) :=

{
y ∈ Γ : sin](χ(Xt′)− y, e′) ≤

γ̃

κdiamXt′

}
∩ F(Xt′)

with the constant γ̃ := 21−ν0√cg + (γhigh + ηhigh)/(1− ηhigh).

Proof. For y ∈ Fe(Xt) let ζ = χ(Xt′)− y− (χ(Xt′)− y, e)e, ζ ′ := χ(Xt′)− y− (χ(Xt′)− y, e′)e′, and
δ := ζ ′ − ζ. Then

sin](χ(Xt′)− y, e′) =
|ζ ′|

|χ(Xt′)− y|
≤ |ζ|+ |δ|
|χ(Xt′)− y|

= sin](χ(Xt′)− y, e) +
|δ|

|χ(Xt′)− y|

and

|δ| = |(χ(Xt′)− y, e)[e− (e, e′)e′]− (χ(Xt′)− y, e′ − (e, e′)e)e′|
≤ |χ(Xt′)− y|[|e− (e, e′)e′|+ |e′ − (e, e′)e|] ≤ 2|χ(Xt′)− y| sin](e′, e).

Using Lemma 4, we obtain from χ(Xt′) ∈ Xt′ ⊂ Xt

sin](χ(Xt′)− y, e) ≤
γhigh + ηhigh

1− ηhigh

1

κdiamXt
.

10



From e′ ∈ ∂Ze it follows

sin](e′, e) ≤ 2(1−νt)/2 ≤ 2−ν0

κ
2`/2 ≤

2−ν0
√
cg

κdiamXt

due to (17) and (13). We obtain

sin](χ(Xt′)− y, e′) ≤
(
γhigh + ηhigh

1− ηhigh
+ 21−ν0√cg

)
1

κdiamXt
.

The inclusion F(Xt) ⊂ F(Xt′) is obvious due to Xt′ ⊂ Xt.

From the previous proof it can be seen that sin](x, e) ≤ 2−ν0
√
cg

κdiamXt
for all x ∈ Ze. With Lemma 6

it follows that
(χ(Xt) + Ze) ∩ F(Xt) ⊂ Fe′(Xt′) for all e ∈ E(t) (20)

provided that ν0 from (18) is chosen sufficiently large and ηhigh is chosen sufficiently small.
Since high-frequency blocks require special attention, we gather column clusters s which are ad-

missible with t in direction e ∈ E(t) in the (cluster) far field with direction e

Fe(t) :=
⋃
{s ∈ TJ : ∃t̂ ⊃ t such that t̂× s ∈ Phigh} ∩ {j ∈ J : Yj ⊂ Fe(Xt)}.

4 Directional H2-matrices

From Lemma 5 we see that H-matrices are not able to achieve logarithmic linear complexity. There-
fore we employ a nested representation similar to H2-matrices introduced in [27]. To account for the
required directional subdivision, we generalize the concept of nested cluster bases.

Definition 1. A directional cluster basis U for the rank distribution (ket )t∈TI ,e∈E(t) is a family U =

(Ue(t))t∈TI ,e∈E(t) of matrices Ue(t) ∈ Ct×ket . It is called nested if for each t ∈ TI \ L(TI) there are

transfer matrices T t
′t
e ∈ Ck

e′
t′×k

e
t such that for the restriction of the matrix Ue(t) to the rows t′ it

holds that
Ue(t)|t′ = Ue′(t

′)T t
′t
e for all t′ ∈ SI(t). (21)

For estimating the complexity of storing a nested cluster basis U , we assume that ket ≤ k for all
t ∈ TI , e ∈ E(t) with some k ∈ N. It follows from (13) that the depth L ∈ N of TI is of the order
L ∼ log2(κ2). Since the set of leaf clusters L(TI) constitutes a partition of I and according to (19)
for each cluster t ∈ L(TI) at most |E(t)| ∼ κ22−` matrices Ue(t) each with at most k|t| entries have
to be stored, k|I|κ22−L ∼ kN units of storage are required for the leaf matrices Ue(t), t ∈ L(TI).

Using |E(t)| ≤ 2|E(t′)| for t′ ∈ SI(t), we conclude that∑
t∈T (`)

I

|E(t)| =
∑
t∈T (`)

I

|E(t)|
2
|SI(t)| ≤

∑
t′∈T (`+1)

I

|E(t′)|,

and with |L(TI)| ≤ |I|/nmin we can estimate the storage required for the transfer matrices

k2
∑
t∈TI

|E(t)| ≤ k2L
∑

t∈L(TI)

|E(t)| . k2Lκ22−L|L(TI)| .
k2

nmin
N logN.
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Definition 2. A matrix M ∈ CI×J is a directional H2-matrix if Mb is of low rank for all b ∈ Plow

and there are nested directional cluster bases U and V such that for t× s ∈ Phigh

Mts = Ue(t)S(t, s)V H
−e(s) (22)

with coupling matrices S(t, s) ∈ Cket×k
−e
s and e ∈ E(t) such that s ⊂ Fe(t).

The storage cost of the blocks in Pnonadm and Plow is bounded by the storage cost of a hierarchical
matrix, which is known to be O(max{k, nmin}N logN). We estimate the storage required for the

coupling matrices. According to Lemma 5, the number of blocks t×s ∈ Phigh is O(2−`κ2) for t ∈ T (`)
I .

Thus, the coupling matrices require at most

k2
∑
t∈TI

|{s ∈ TJ : t× s ∈ Phigh}| . k2κ2
L−1∑
`=0

∑
t∈T (`)

I

2−` . k2κ2L
∑

t∈L(TI)

2−L

= k2κ22−LL |L(TI)| .
k2

nmin
N logN

units of storage. We obtain that the overall cost for a directional H2-matrix is of the order
O(max{k2/nmin, k, nmin}N logN), which is O(kN logN) if nmin = k.

4.1 Matrix-vector multiplication

Let M ∈ CI×J be a directional H2-matrix. Since its structure is similar to an H2-matrix, the matrix-
vector multiplication y := y + Mx of M by a vector x ∈ CJ can be done via the usual three-phase
algorithm (cf. [27]) which we modified to account for the directions e. The following algorithm is a
consequence of the decomposition

Mx =
∑

t×s∈Pnonadm

Mtsxs +
∑

t×s∈Plow

XtsY
H
ts xs +

∑
t×s∈Phigh

Ue(t)S(t, s)V−e(s)
Hxs

with e ∈ E(t) such that s ⊂ Fe(t).

1. Forward transform
The auxiliary vectors x̂e(s) := Ve(s)

Hxs, e ∈ E(s), are computed for all s ∈ TJ . Exploiting the
nestedness of the cluster bases V (with transfer matrices T̄ s

′s
e ), one has the following recursive

relation

x̂e(s) = Ve(s)
Hxs =

∑
s′∈SJ (s)

(T̄ s
′s
e )HVe′(s

′)Hxs′ =
∑

s′∈SJ (s)

(T̄ s
′s
e )H x̂e′(s

′), e ∈ E(s),

which has to be applied starting from the leaf vectors x̂e(s), e ∈ E(s), s ∈ L(TJ).

2. Far field interaction
The products S(t, s)x̂−e(s) are computed and summed up over all blocks t× s ∈ Phigh:

ŷe(t) :=
∑

s:t×s∈Phigh

S(t, s)x̂−e(s), e ∈ E(t), t ∈ TI .

3. Backward transform
The vectors ŷe(t) are transformed to the target vector y. The nestedness (21) of U yields a
recursion for the computation of y :=

∑
t∈TI

∑
e∈E(t) Ue(t)ŷe(t), which descends TI :

12



(a) Compute ŷe′(t
′) := ŷe′(t

′) + T t
′t
e ŷe(t) for all e ∈ E(t) and all t′ ∈ SI(t);

(b) Compute yt := yt +
∑

e∈E(t) Ue(t)ŷe(t) for all clusters t ∈ L(TI).

4. Low-frequency interaction
For all t× s ∈ Plow compute yt := yt +XtsY

H
ts xs.

5. Near field interaction
For all t× s ∈ Pnonadm compute yt := yt +Mtsxs.

The total number of operations of the latter algorithm is bounded by O(kN logN) for the choice
nmin = k, which can be proven with the same arguments as used for analyzing the storage complexity.

5 Construction of approximations

Our aim is to approximate A ∈ CI×J defined in (2) with a directional H2-matrix. Blocks in Pnonadm

are stored entrywise without approximation. From (7) it follows that K is asymptotically smooth
with constants independent of κ on domains Xt× Ys corresponding to blocks t× s ∈ Plow. It follows
from the convergence analysis in [7] that the adaptive cross approximation

Ats ≈ Atσ(Aτσ)−1Aτs (23)

with appropriately chosen τ ⊂ t and σ ⊂ s, kε := |τ | = |σ| ∼ | log ε|2 independent of κ, can be used
to generate low-rank approximations XtsY

H
ts ≈ Ats, where Xts ∈ Ct×kε and Yts ∈ Cs×kε .

In the rest of this section, we will consider the remaining case t × s ∈ Phigh, i.e. we assume
that (15) is valid. To be able to apply the results from Sect. 2 and prove existence of low-rank
matrix approximations it is required to additionally partition the far field F(Xt) into subsets Fe(Xt)
corresponding to directions e ∈ E(t). Although ACA generates approximations of high quality, the
number of blocks is too large (see Lemma 5) to construct and store the approximations as in the low-
frequency case. To overcome this difficulty, we consider the approximation (see [8] for the application
of this kind of approximation to Laplace-type problems)

Ats ≈ Atσet (Aτtσet )
−1Aτtσs(Aτ−es σs

)−1Aτ−es s, Ys ⊂ Fe(Xt), (24)

instead of (23), which is of type (22) with coupling matrices S(t, s) = Aτtσs . The aim of this section
is to prove error estimates for the special type of low-rank approximation

Ats ≈ Ue(t)S(t, s)V−e(s)
H (25)

with nested bases U and V approximating Atσet (Aτtσet )
−1 and (Aτ−es σs

)−1Aτ−es s, respectively.
A crucial part of the approximation (24) is the construction of what we call proper pivots τt ⊂ t

and σet ⊂ Fe(t), |τt| = |σet |. They have to guarantee that Aτtσet is invertible, and for proving error
estimates they have to be chosen so that

‖Ats −Atσet (Aτtσet )
−1Aτts‖ ≤ cR ε ‖AtJ‖ for all s ⊂ Fe(t)

with some cR > 0; cf. Lemma 9. Hence τt and σet represent t and its far field Fe(t), respectively. We
refer to [8] for a method for choosing τt and σet . Note that it is sufficient to choose σet so that

Yσet ⊂ (χ(Xt) + Ze) ∩ F(Xt). (26)
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In the sequel, ε > 0 denotes a given accuracy that (up to constants) is to be achieved by the
approximations. Let {ζ1, . . . , ζkε} be a basis of the space

Π̂3
pε−1 := {u exp(2πiκ(·, e)) : u ∈ Π3

pε−1},

where kε := dim Π3
pε−1 ∼ p3

ε and pε ∈ N is the smallest number such that pε ≥ | logρ ε| with ρ
from (11).

Assumption 1. Let t ∈ TI . If |t| ≥ kε, we assume that there is τt = {i1, . . . , ikε} ⊂ t such that the
following two conditions are satisfied.

(i) There are coefficients ξi` such that

(ϕi, ζj)L2(Γ) =

kε∑
`=1

ξi`(ϕi` , ζj)L2(Γ), i ∈ t, j = 1, . . . , kε, (27)

and the norm of the matrix Ξ = (ξi`)i` ∈ Ct×kε is bounded by a multiple of 2pε provided that
‖ϕi‖L1(Γ) = 1, i ∈ t,

(ii) each matrix AτtFe(t), e ∈ E(t), has full rank.

In the remaining case |t| < kε, we set τt = t and assume that AtFe(t) has full rank.

Notice that with the previous assumptions it is possible to guarantee that the rows τt used for
the approximation of Ats can be chosen independently of s ⊂ Fe(t). This will be crucial for the
construction of nested bases.

In the following lemma, we prove error estimates for the multivariate tensor product Chebyshev
interpolant IpK̂(·, y) ∈ Π3

p of K̂(·, y) := K(·, y) exp(−2πiκ(· − y, e)) with fixed y ∈ Y .

Lemma 7. Let X,Y ⊂ R3 such that Y ⊂ Fe(X). Then

|K̂(x, y)− Ix,p−1K̂(x, y)| ≤ cI(p)

(
ρ

ρ+ 2

)p
max
x′∈X

|K̂(x′, y)| for all x ∈ X, y ∈ Y,

where cI(p) := 8ecp(1 + ρ)(1 + 2
π log p)3.

Proof. Without loss of generality we may assume that X is contained in a cube Q =
∏3
i=1Qi which

is aligned with e and that Y ⊂ Fe(Q). Notice that this can be achieved by slightly modifying the
constants γhigh, ηhigh. Let K̂i be the function in the i-th argument of K̂(·, y), i = 1, 2, 3. From (11)
we obtain

‖K̂(k)
i ‖Qi,∞ ≤ c k!

(
ρ

diamQi

)k
‖K̂i‖Qi,∞, k ∈ N.

Using [9, Lemma 3.13], this implies

min
q∈Πp−1

‖K̂i − q‖Qi,∞ ≤ c̃ p
(

ρ

ρ+ 2

)p
‖K̂i‖Qi,∞,

where c̃ := 4ec(1 + ρ). With this estimate the proof can be done analogously to Theorem 3.18
in [7].
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Although most of the estimates will hold also in other matrix norms, throughout this article the
maximum absolute column sum

‖A‖ := max
j=1,...,n

m∑
i=1

|aij |

of A ∈ Cm×n will be used if not otherwise indicated.

Lemma 8. Let assumption (i) be valid and let ϕi, ψj, and f in (2) be non-negative. Assume that
cas,2 ηhigh < 1. For t ∈ TI satisfying |t| ≥ kε and e ∈ E(t) there is Ξ ∈ Rt×kε and c1 > 0 such that

‖Ats − ΞAτts‖ ≤ c1ε‖Ats‖

for all s ⊂ J satisfying Ys ⊂ Fe(Xt).

Proof. Due to K(x, y) = exp(2πiκ(x− y, e))K̂(x, y), we can apply Lemma 7 and obtain for x ∈ Xt,
y ∈ Ys that with Tpε(x, y) := exp(2πiκ(x, e))Ix,pε−1K̂(x, y)

|K(x, y)− Tpε(x, y)| = |K̂(x, y)− Ix,pε−1K̂(x, y)| ≤ cI(pε)

(
ρ

ρ+ 2

)pε
max
x′∈Xt

|K̂(x′, y)|.

Without loss of generality we may assume that ‖ϕi‖L1(Γ) = 1. Then assumption (27) is equivalent
with ∫

Γ

(
ϕi(x)−

kε∑
`=1

ξi`ϕi`(x)

)
ζ(x) dsx = 0 for all ζ ∈ Π̂3

pε−1.

Defining the matrix Ξ ∈ Rt×kε with the entries ξi`, from

aij −
kε∑
`=1

ξi`ai`j =

∫
Γ

∫
Γ

(
ϕi(x)−

kε∑
`=1

ξi`ϕi`(x)

)
K(x, y)ψj(y) dsy dsx

=

∫
Γ

∫
Γ

(
ϕi(x)−

kε∑
`=1

ξi`ϕi`(x)

)
[K(x, y)− Tpε(x, y)]ψj(y) dsy dsx,

we see that

|aij −
kε∑
`=1

ξi`ai`j | ≤ c̃
(

ρ

ρ+ 2

)pε
max
x′∈Xt

∫
Γ
|K̂(x′, y)||ψj(y)|dsy

with c̃ := cI(pε)(1 + ‖Ξ‖∞). From the Taylor expansion and the asymptotic smoothness of f it can
be seen that for cas,2 ηhigh < 1

|f(x′, y)| ≤ ĉ |f(x, y)| for all x, x′ ∈ Xt (28)

with a constant ĉ > 0. Estimate (28) and ‖ϕi‖L1(Γ) = 1 imply for y ∈ Ys

max
x′∈Xt

|K̂(x′, y)| = max
x′∈Xt

|f(x′, y)| ≤ ĉ min
x∈Xi

|f(x, y)| ≤ ĉ
∫

Γ
|ϕi(x)||f(x, y)| dsx.

From

|aij | = |e2πiκ[−|ξ(Xi)−ξ(Yj)|]aij | ≥ Re

∫
Γ

∫
Γ
ϕi(x)ψj(y)f(x, y)e2πiκ[|x−y|−|ξ(Xi)−ξ(Yj)|] dsy dsx

=

∫
Γ

∫
Γ
ϕi(x)ψj(y)f(x, y) cos(2πκ[|x− y| − |ξ(Xi)− ξ(Yj)|]) dsy dsx
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≥ c′
∫

Γ

∫
Γ
ϕi(x)ψj(y)f(x, y) dsy dsx

with c′ > 0 independent of κ and h due to

κ[|x− y| − |ξ(Xi)− ξ(Yj)|] ≤ κ[|x− ξ(Xi)|+ |y − ξ(Yj)|] ≤ 2κh ≤ 2cκ <
1

2
,

we obtain exploiting the non-negativity of ϕi, ψj , and f

|aij −
kε∑
`=1

ξi`ai`j | ≤
ĉ c̃

c′

(
ρ

ρ+ 2

)pε
|aij |.

Hence, the matrix Ξ satisfies

‖Ats − ΞAτts‖ ≤
ĉ c̃

c′(ρ+ 2)pε
ρpε‖Ats‖ ≤ c1ε‖Ats‖,

because ĉ cI(pε)
c′(ρ+2)pε (1 + ‖Ξ‖∞) is bounded by a constant c1 from above due to the assumption that

‖Ξ‖∞ is bounded by a multiple of 2pε .

The expression

cS := max{‖(Aτtσet )
−1Aτts‖ : s ⊂ J, Ys ⊂ Fe(Xt), e ∈ E(t), t ∈ TI}

will play a central role in the following error analysis. Note that cS depends on the choice of the
pivots τt, σ

e
t .

Lemma 9. Let Assumption 1 be valid. Then for t ∈ TI and e ∈ E(t) there are proper pivots (τt, σ
e
t ),

|τt| = |σet | = min{kε, |t|}, i.e., for all s ⊂ J satisfying Ys ⊂ Fe(Xt)

‖Ats −Atσet (Aτtσet )
−1Aτts‖ ≤ c2ε‖AtJ‖, (29)

where c2 := c1(1 + cS).

Proof. Since AtFe(t) has full rank, there is σet ⊂ Fe(t), |σet | = |τt| = min{kε, |t|}, such that Aτtσet is
invertible. If |t| < kε, we have τt = t and Atσet (Aτtσet )

−1 = I. Hence, (29) is trivially satisfied. We
may hence assume that |t| ≥ kε. Let Ξ ∈ Rt×kε be as in Lemma 8. We have

Ats −Atσet (Aτtσet )
−1Aτts = {Ats − ΞAτts} −

{
Atσet − ΞAτtσet

}
(Aτtσet )

−1Aτts

and thus

‖Ats −Atσet (Aτtσet )
−1Aτts‖ ≤ ‖Ats − ΞAτts‖+ cS‖Atσet − ΞAτtσet ‖

≤ c1ε(‖Ats‖+ cS‖Atσet ‖) ≤ c2ε‖AtJ‖.

The second last estimate follows from Lemma 8, because Yσet , Ys ⊂ Fe(Xt).

16



5.1 Construction of directional cluster bases

Based on the previous estimates, we are going to construct and analyze nested bases approximations.
The construction of nested bases is usually done by explicit approximation of the kernel function K;
see, for instance, the fast multipole method [32] and the method in [29], which uses interpolation.
In this section, we construct the nested bases via a purely algebraic technique which is based on
the original matrix entries and thus avoids explicit kernel expansions. In this sense, the presented
construction is in the class of kernel independent fast multipole methods; see [3, 34, 17].

We will define a nested basis U consisting of matrices Ue(t) ∈ Ct×kε for each t ∈ TI and e ∈ E(t)
in a recursive manner starting from the leaves. Due to (15a), it is actually sufficient to consider the
sub-tree

T̂I := {t ∈ TI : κdiamXt > 1}

of TI . For its leaf clusters t ∈ L(T̂I) and e ∈ E(t) we set Ue(t) = Btt
e , where for t′ ⊂ t

Bt′t
e := At′σet (Aτtσet )

−1.

Assume that matrices Ue(t
′) have already been constructed for the sons t′ ∈ SI(t) of t ∈ T̂I \ L(T̂I)

and e ∈ E(t′). Then in view of (21) we define for e ∈ E(t)

Ue(t)|t′ := Ue′(t
′)B

τt′ t
e , t′ ∈ SI(t),

where e′ ∈ E(t′) is defined before Lemma 6.

The following lemma estimates the accuracy when expressing Bt′t
e by the product Bt′t′

e′ B
τt′ t
e . As

stated in [8], Bt′t
e may be regarded as the algebraic form of an interpolation operator.

Lemma 10. Let t′ ∈ T̂I satisfy t′ ⊂ t ∈ T̂I \ L(T̂I) and e ∈ E(t). Then for all s ⊂ J satisfying
Ys ⊂ Fe(Xt) it holds that

‖[Bt′t
e −Bt′t′

e′ B
τt′ t
e ]Aτts‖ ≤ c2cSε‖At′J‖.

Proof. It is clear that

[Bt′t
e −Bt′t′

e′ B
τt′ t
e ]Aτts = [At′σet −At′σe′

t′
(A

τt′σ
e′
t′

)−1Aτt′σet ](Aτtσet )
−1Aτts.

Due to (26) and (20), it holds that Yσet ⊂ Fe′(Xt′). Hence, Lemma 9 yields

‖[Bt′t
e −Bt′t′

e′ B
τt′ t
e ]Aτts‖ ≤ c2ε‖At′J‖‖(Aτtσet )

−1Aτts‖.

Theorem 1. Let Assumption 1 be valid. Let t ∈ T̂I and let ` = L(T̂t) denote the depth of the
sub-tree T̂t of T̂I rooted at t ∈ TI . Then for all e ∈ E(t)

‖[Ue(t)−Btt
e ]Aτts‖ ≤ c3ε‖AtJ‖ for all s ⊂ Fe(t),

where

c3 := c1(1 + cS)
(2cS)`

2cS − 1
.
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Proof. From Lemma 10 we have for t ∈ T̂I \ L(T̂I)

‖[Ue(t)−Btt
e ]Aτts‖ ≤

∑
t′∈SI(t)

‖[Ue(t)|t′ −Bt′t
e ]Aτts‖ =

∑
t′∈SI(t)

‖[Ue′(t′)B
τt′ t
e −Bt′t

e ]Aτts‖

≤
∑

t′∈SI(t)

‖[Ue′(t′)−Bt′t′
e′ ]B

τt′ t
e Aτts‖+ ‖[Bt′t

e −Bt′t′
e′ B

τt′ t
e ]Aτts‖

≤
∑

t′∈SI(t)

cS‖[Ue′(t′)−Bt′t′
e′ ]Aτt′σet ‖+ εc2cS‖At′J‖

≤ 2c2cSε‖AtJ‖+ cS
∑

t′∈SI(t)

‖[Ue′(t′)−Bt′t′
e′ ]Aτt′σet ‖.

We set αt′ := ‖[Ue′(t′)−Bt′t′
e′ ]Aτt′σet ‖ for t′ ∈ SI(t). From (26) and (20) we obtain that Yσet ⊂ Fe′(Xt′).

Hence, we can apply the latter inequality recursively replacing s by σet and obtain the recurrence
relation

αt ≤ 2c2cSε‖AtJ‖+ cS
∑

t′∈SI(t)

αt′ , t ∈ TI \ L(TI). (30)

We show that

αt ≤ 2c2cSε
(2cS)`−1 − 1

2cS − 1
‖AtJ‖, t ∈ TI , (31)

where ` = `(t) denotes the depth of the sub-tree T̂t. This estimate is obviously true for leaf clusters
t ∈ L(TI) as αt = 0. Assume that (31) is valid for the sons SI(t) of t ∈ T̂I \ L(T̂I). Then (30) proves

αt ≤ 2c2cSε‖AtJ‖+ cS
∑

t′∈SI(t)

αt′ ≤ 2c2cSε‖AtJ‖+ 2c2c
2
Sε

(2cS)`−2 − 1

2cS − 1

∑
t′∈SI(t)

‖At′J‖

≤ 2c2cSε

(
1 + 2cS

(2cS)`−2 − 1

2cS − 1

)
‖AtJ‖ = 2c2cSε

(2cS)`−1 − 1

2cS − 1
‖AtJ‖.

Hence,

‖[Ue(t)−Btt
e ]Aτts‖ ≤ 2c2cSε‖AtJ‖+ cS

∑
t′∈SI(t)

αt′

≤ 2c2cSε
(2cS)`−1

2cS − 1
‖AtJ‖ ≤ c2ε

(2cS)`

2cS − 1
‖AtJ‖

together with c2 = c1(1 + cS) proves the assertion.

Similar results as for the row clusters t can be obtained for column clusters s ∈ TJ and e ∈ E(s)
provided assumptions analogous to Assumption 1 are made. In particular, this defines clusters σs ⊂ s
and τ es ⊂ F ′e(s), |τ es | = |σs|, where

F ′e(s) :=
⋃
{t ∈ TI : ∃ŝ ⊃ s such that t× ŝ ∈ Phigh} ∩ {i ∈ I : Xi ⊂ Fe(Ys)}.

For s′ ⊂ s we define the begin
Cs
′s
e := (Aτesσs)

−1Aτes s′ .

For leaf clusters s ∈ L(T̂J) and e ∈ E(s) we set Ve(s) = (Csse )H . Assuming that matrices Ve(s
′)

have already been constructed for the sons s′ ∈ SJ(s) of s ∈ T̂J \ L(T̂J) and e ∈ E(s′), we define for
e ∈ E(s)

Ve(t)|s′ := Ve′(s
′)(C

τt′ t
e )T , s′ ∈ SJ(s),
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where e′ ∈ E(s′) is defined before Lemma 6. Due to the analogy, we omit the proofs of the following
error estimates.

Lemma 11. Then for s ∈ TJ and e ∈ E(s) there are proper pivots (τ es , σt), |τ et | = |σt| = min{kε, |s|},
i.e.,

‖Ats −Atσs(Aτesσs)
−1Aτes s‖ ≤ c4ε‖AIs‖

for all t ⊂ I satisfying Xt ⊂ Fe(Ys).

Theorem 2. Let s ∈ T̂J and let ` = L(T̂s) denote the depth of the cluster tree T̂s. Then there is
c5 > 0 such that for all e ∈ E(s)

‖Atσs [Csse − Ve(s)H ]‖ ≤ c5ε‖AIs‖

for all t ⊂ F ′e(s).

Using the previously constructed bases U and V, we employ S(t, s) := Aτtσs in (25) for each
block Ats, t × s ∈ Phigh. In the following theorem, the accuracy of the nested approximation based
on the matrix entries of A is estimated.

Theorem 3. Let all previous assumptions be valid and t × s ∈ Phigh. Then there is e ∈ E(t) such
that s ⊂ Fe(t) and the approximation error is bounded by

‖Ats − Ue(t)S(t, s)V−e(s)
H‖ ≤ [c2 + c3‖Css−e‖]ε‖AtJ‖+ [c4‖Btt

e ‖+ c5‖Ue(t)‖]ε‖AIs‖.

Proof. From s ⊂ Fe(t) it follows that t ⊂ F ′−e(s). We have that

Ats −Btt
e S(t, s)Css−e = Ats −Btt

e Aτts +Btt
e

[
Aτts −AτtσsCss−e

]
.

From Lemma 9 it follows that ‖Ats − Btt
e Aτts‖ ≤ c2ε‖AtJ‖, and from Lemma 11 we have that

‖Aτts −AτtσsCss−e‖ ≤ c4ε‖AIs‖. Therefore,

‖Ats −Btt
e S(t, s)Css−e‖ ≤ ε[c2‖AtJ‖+ c4‖Btt

e ‖‖AIs‖].

Furthermore, Theorems 1 and 2 yield

‖Ue(t)S(t, s)V−e(s)
H −Btt

e S(t, s)Css−e‖
≤ ‖Ue(t)‖‖S(t, s)[Ve(s)

H − Css−e]‖+ ‖[Ue(t)−Btt
e ]S(t, s)‖‖Css−e‖

≤ c5ε‖Ue(t)‖‖AIs‖+ c3ε‖Css−e‖‖AtJ‖,

which proves the assertion.

6 Numerical Results

We consider the sound soft/hard scattering problem (1) imposing either the Dirichlet datum u = uD
(sound soft) or the Neumann trace ∂νu = vN (sound hard) on the boundary Γ. We denote V the
single and K the double-layer-operator with the kernels S(x−y) and ∂νyS(x−y), respectively. Using
Green’s representation formula u = Ku−V(∂νu) in Ωc and the jump relations, we end up with the
integral equation

V(∂νu) = (K− 1

2
I)u on Γ, (32)
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which can be solved either for the unknown ∂νu|Γ in the case of a Dirichlet problem or for the
unknown u|Γ in the Neumann case. The Brakhage-Werner ansatz

u = Kφ− iβVφ in Ωc (33)

with an arbitrary coupling parameter β > 0 uses an unknown density function φ that satisfies the
integral equation

(
1

2
I + K− iβV)φ = uD. (34)

In either case, Galerkin discretization of the integral equations leads to a linear system with matrices
of the form (2) that can be approximated by directional H2-matrices. The solution can then be
obtained via GMRES using the matrix-vector multiplication from Sect. 4.1, which we proved to have
logarithmic-linear complexity.

Approximation of V

As a first step, we validate the logarithmic-linear complexity of the directional H2-matrices (labeled
dirH2-ACA). Moreover, we compare our new approach with the standard H-matrix approximation
via ACA (labeled H-ACA). In the sequel, we focus on the approximation of the single-layer oper-
ator V. Since we assumed κh to be constant, we increase κ with growing number of degrees of
freedom N . By ”acc.” we label the relative error to the full matrix in the Frobenius norm.

Table 1 shows the memory consumption of the approximation of the discretization of V with
piecewise constant ansatz and test functions on the prolate spheroid, i.e. an ellipsoid with ten times

N 6 496 28 108 114 258 469 010 1 905 242
κ 16 32 64 128 256

dirH2-ACA
mem. [MB] 48 198 988 4 754 20 077
compr. [%] 15 3.3 0.99 0.28 0.07

KB/N 7.8 7.4 9.1 10.6 11.0
time [s] 14 66 299 1 372 6 079

acc. 5.9−4 1.3−4 1.5−4 − −

H-ACA
mem. [MB] 47 223 1 327 10 432 −
compr. [%] 14.7 3.7 1.33 0.62 −

KB/N 7.7 8.3 12.2 23.3 −
time [s] 12 66 404 4 803 −

acc. 7.5−3 5.8−3 7.0−2 − −

Table 1: Prolate spheroid: κh ∼ 0.15, ηhigh = 5.

the extension in x-direction. The gain in both time and memory becomes visible for larger N . For
small N , both methods have about the same performance. This is due to fact that directional H2-
matrices adapt to the wave number and fade to usual H-matrices for low frequencies. Due to a
limited amount of storage, the largest example could be computed only for the new approach.

Observe that the achieved error of H-ACA deteriorates for a growing number of waves, whereas
dirH2-ACA is able to achieve the prescribed accuracy. The reason for this behavior is that the
standard matrix partitioning leads to blocks corresponding to domains on which the kernel function
is asymptotically smooth with a large constant. The accuracy for N = 469 010 and N = 1 905 242
was not computed, because the calculation of the difference to a full matrix in Frobenius norm takes
O(N2) time.
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Figure 2: Memory (left) and time (right) on prolate spheroid for dirH2-ACA and H-ACA.

Neumann Problem

We consider the sound hard scattering problem and use piecewise linear ansatz and test functions
for the Galerkin discretization of (32). The approximate Dirichlet datum ũD ≈ u|Γ is obtained
from solving (32) with approximations (ε = 10−4) of the discrete operators V and K of V and K.
We use the Neumann datum vN := ∂νS(· − x0) with an interior point x0 ∈ Ω. In this case,
we are able to compute the L2-error ‖ũD − u‖L2(Γ)/‖u‖L2(Γ) to the exact Dirichlet trace given by
u|Γ = S(· − x0). Tables 2 and 4 show the behavior of the error on the sphere with radius 1 for fixed

N 642 2 562 10 242 40 962 16 3842 655 362
κ 2 4 8 16 32 64

time [s] V 2 12 94 755 4 571 27 247
mem. [MB] V 2 16 105 481 2 145 9 409

KB/N V 3.8 6.6 10.7 12.3 13.7 15.1

time [s] K 2 13 100 811 4 921 29 539
mem. [MB] K 2 16 105 471 2 081 9 187

L2-error 2.6−3 2.1−3 2.0−3 1.9−3 1.9−3 2.0−3

Table 2: dirH2-ACA: L2-error of ũD with κh = 0.19.

κh and fixed κ, respectively. Furthermore, the CPU time and the memory consumption required by
the approximations to V and K is shown and can be seen to behave logarithmic-linear for both fixed
and growing wave numbers. As a reference, we made the same computations also using H-matrices.
The corresponding results are shown in Tables 3 and 5. As before, the advantage of dirH2-ACA
becomes visible for a growing number of waves. It is remarkable, however, that even in the fixed
frequency case the directional approach outperforms H-ACA in terms of memory and computation
time for larger degrees of freedom. For smaller degrees of freedom the performance of H-ACA is only
slightly better.

Visualization of Dirichlet Problem with Brakhage-Werner

We consider the sound soft scattering problem, i.e. we seek a solution u = ui + us of the Helmholtz
equation (1), where ui(x) := exp(iκ(x, e)) with e = (1, 0, 1)T /

√
2 denotes the incident acoustic wave
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N 642 2 562 10 242 40 962 163 842 655 362
κ 2 4 8 16 32 64

time [s] V 2 11 64 464 6 890 −
mem. [MB] V 2 13 80 491 3 150 −

KB/N V 3.1 5.2 8.2 12.6 20.2 −

time [s] K 3 14 77 520 7 050 −
mem. [MB] K 2 12 78 478 3 073 −

L2-error 2.7−3 2.0−3 1.9−3 2.0−3 2.7−3 −

Table 3: H-ACA: L2-error of ũD with κh = 0.19.

N 642 2 562 10 242 40 962 163 842

time [s] V 6 42 75 286 1 613
mem. [MB] V 3 15 66 345 1 613

KB/N V 5.1 6.2 6.7 8.8 11.0

time [s] K 7 47 84 317 1 734
mem. [MB] K 3 15 64 334 1 669

L2-error 1.8−2 4.5−3 1.2−3 3.9−4 2.3−4

Table 4: dirH2-ACA: L2-error of ũD with fixed κ = 6.

and us is the unknown scattered field. The incident wave is reflected on a sound soft obstacle Ω,
which is described by the Dirichlet condition us|Γ = −ui|Γ.

The obstacle is composed of 4 cylindrical spheres with 507 904 panels and 253 960 vertices. We
solve (34) for the unknown density φ with piecewise linear ansatz and test functions. Following [19],
we use the coupling parameter β = κ/2. In a second step, we evaluate the potential (33) on a uniform
discretization of a screen behind the obstacle in order to compute the scattered wave us. Figure 3
shows the resulting pressure field of the total wave |ui + us| for κ = 10 and κ = 40.

Figure 3: Pressure field |us + ui| for κ = 10 and κ = 40.
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