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ANALYTIC TORSION VERSUS REIDEMEISTER TORSION ON
HYPERBOLIC 3-MANIFOLDS WITH CUSPS

JONATHAN PFAFF

ABSTRACT. For a non-compact hyperbolic 3-manifold with cusps we prove an explicit for-
mula that relates the regularized analytic torsion associated to the even symmetric powers
of the standard representation of SLy(C) to the corresponding Reidemeister torsion. Our
proof rests on an expression of the analytic torsion in terms of special values of Ruelle
zeta functions as well as on recent work of Pere Menal-Ferrer and Joan Porti.

1. INTRODUCTION

Let X be a hyperbolic manifold with cusps of odd dimension d. Then X is not compact
but has finite volume. In a previous publication [MP2] we have introduced the analytic
torsion T'x (p) with coefficients in the flat vector bundle E, which is obtained by restricting
a finite-dimensional complex representation p of G := Spin(d, 1) to the fundamental group
[' € G of X. The analytic torsion is an invariant associated to the discrete and the
continuous spectrum of the flat Hodge-Laplacians acting on the E,-valued p-forms on X.
The aim of this paper is to relate the analytic torsion to the corresponding Reidemeister
torsion invariants, which are of combinatorial nature, for the case that X is 3-dimensional.

In order to motivate our results, let us first recall the situation on a closed odd—dirgensional
Riemannian manifold (M, g). Let I" denote the fundamental group of M and let M be the
universal covering space of M. Let p be a finite-dimensional representation of I' on a com-
plex vector space V,. Moreover assume that p is unimodular, which means that p satisfies

|det p(v)| = 1 for all v € I'. Let E, := M x,V, be the associated flat vector bundle over
M. Pick a Hermitian fibre metric h in E,. Then the analytic torsion Th;(p) € Rt is a
spectral invariant of F, which depends on the metrics on M and E,. It is defined as a
weighted product over the zeta-determinants of the Hodge-Laplace operators which act on
the E,-valued p-forms on M, see [Mii2, section 2|. There exists a combinatorial counter-
part of the analytic torsion, the so called Reidemeister torsion. The latter is constructed
in a combinatorial way out of a smooth triangulation of M. It depends on a choice of
bases in the homology groups H, (M, E,) of M with coefficients in the local system defined
by p. However, via the Hodge-DeRham isomorphism and Poincaré duality, the metrics
g and h canonically define such bases. In this way one obtains a combinatorial invariant
Ta(p; h), the Reidemeister torsion associated to (M, g) and the Hermitian vector bundle
(E,, h), see [Mii2, section 1, section 2]. Now the analytic torsion and the Reidemeister
torsion are equal, i.e. one has T/ (p; h) = Tas(p; h). For the case that p is unitary, this was

proved independently by Cheeger [Che] and Miiller [Miil]. The extension to unimodular
1
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representations is due to Miiller [Mii2] and has also been obtained independently and in a
more general setting by Bismut and Zhang [BZ].

The aim of the present article is to find a suitable generalization of the aforementioned
theorems to the specific non-compact situation of a hyperbolic 3-manifold X with cusps. If
G = SLy(C), K := SU(2), then X := G//K can be identified with the hyperbolic 3-space
and there exists a discrete, torsion free subgroup I' of G such that X =T \)? . One can
identify I' with the fundamental group of X. Throughout this paper, we assume that I"
satisfies a certain condition, which is formulated in equation (2.1) below. Let p be an
irreducible finite-dimensional complex representation of G. Restrict p to I' and let E,
be the associated flat vector-bundle over X. One can equip E, with a canonical metric,
called admissible metric. The associated Laplace operator A,(p) on E,-valued p-forms has
a continuous spectrum and therefore, the heat operator exp(—tA,(p)) is not trace class.
So the usual zeta function regularization can not be used to define the analytic torsion.
However, picking up the concept of the b-trace of Melrose [Me], employed by Park in a
similar context [Pa], in [MP2] we introduced the regularized trace Trye, (e7*47(?)) of the
operators e~*4»(P) and in this way we defined the analytic torsion T’x (p) on the non-compact
manifold X. These definitions will be reviewed in section 4 below.

For m € N we let p(m) denote the 2m-th symmetric power of the standard represen-
tation of SLy(C). Let X be the Borel-Serre compactifcation of X. We recall that X is a
compact smooth manifold with boundary and that X is diffeomorphic to the interior of
X. Moreover, X and X are homotopy-equivalent. Thus, every representation p := p(m)
of G also defines a flat vector bundle E, over X. Now by our assumption (2.1) on I' and
[MePol, Proposition 2.8], the cohomology H*(X, p) never vanishes. Thus in order to define
the Reidemeister torsion of Fp, one needs to fix bases in the homology H. (X, p). However,
by [MP2, Lemma 7.3] the bundle E, is L?-acyclic and thus the metrics on X and E, do not
give such bases. This fact is a significant difference to the situation on a closed manifold
described above and causes additional difficulties. To overcome this problem, we use the
normalized Reidemeister torsion which was introduced by Menal-Ferrer and Porti [MePo2].
Recall that the boundary of X is a disjoint union of finitely many tori 7;. For each i fix a
non-trivial cycle 6; € Hy(T;; Z). By our assumption on the group I, it follows from [MePo2,
Proposition 2.2] that the {6;} can be used do define a base in the homology H.(X;p(m))
for each m € {N. Denote the corresponding Reidemeister torsion by 7x(p(m); {6;}). Then
by [MePo2, Proposition 2.2] for each m € N with m > 2 the quotient

_ Imx(p(m); {6:})]
-y T = e )16
is independent of the choice of the {;}. As explained in [MePo2, section 1, section 2],
it is also independent of a given spin-structure on X. The number Tx(p(m)) is called
normalized Reidemeister torsion of X associated to p(m). In analogy to (1.1), for m € N
with m > 2 we define the normalized analytic torsion 72"(p(m)) by

an _ Tx(p(m))
T (p(m)) == Te(o(@)
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We remark that our parametrization of the representations p(m) differs from the one used
by Menal-Ferrer and Porti in [MePo2] but is consistent with the notation of [MP1], [MP2]
and [Pf]. Our main result can now be stated in the following theorem.

Theorem 1.1. Let X be a hyperbolic 3-manifold with cusps and assume that its funda-
mental group I' satisfies (2.1). For m € N, m > 2 define
1
D 1 eV (R e AL Y (R VR ST/ B
c(m) =
| Vim+1)2+m2—32+m+1 \/(m+1)22+m2+m+1

Let k(X) be the number of cusps of X. Then for m € N, m > 2 one has
c(m)

T(otm) = (L) 7ot

We first remark that neither the normalized Reidemeister torsion nor the normalized
analytic torsion are trivial. In fact, each of them is exponentially growing as m — oo.
This follows for example from Theorem 1.2 below or from the more general results of
[MP2]. The constants ¢(m) are a defect caused by the non-compactness of the manifold.
They appear via the contribution of a certain non invariant distribution to the geometric
side of the Selberg trace formula.

Menal-Ferrer and Porti expressed the normalized Reidemeister torsion in terms of special
values of Ruelle zeta functions [MePo2, Theorem 5.8]. This relation generalizes a result
obtained by Miiller for closed hyperbolic 3-manifolds, [Mii2, equation 8.7, equation 8.§]
and is proved via a Dehn-approximation of X by closed hyperbolic 3-manfiolds. We will
prove an analogous formula for the normalized analytic torsion. Let A be the standard
R-split torus of G and let M be the centralizer of A in K as in section 2. For k € %Z we let
ok be the representation of M with highest weight kes as in section 2. Then we define the
Ruelle zeta function R(s,oy) as in equation (3.1). The infinite product in (3.1) converges
for s € C with Re(s) > 2. We will prove the following theorem.

Theorem 1.2. Let X be as in Theorem 1.1. Then for m € N, m > 3 one has
Tx(p(m)) c(m) K(X) 1 m
Te(r(2) - 2 exp | —— vol (X)(m(m + 1) — 6) H \R(k,o%)|,

w k=3

where the constants c(p(m)) and c(p(2)) are as in Theorem 1.1. Similarly, for each m > 1
there exist constants c(m + 1/2), defined in (7.2) below, such that for m > 2 one has

m

TXT(:;((TZ(;)%)) _ (C@é %>)”(X) exp (—%vol (X)(m{m +2) - 3)> 11

If one combines the first statement of the previous Theorem with the corresponding
result of Menal-Ferrer and Porti [MePo2, Theorem 5.8], Theorem 1.1 follows immediately.
We note that one can not combine Theorem 1.2 and the corresponding result [MePo2,
Theorem 5.8] of Menal-Ferrer and Porti to deduce an analog of Theorem 1.1 for the rep-
resentations p(m + 1/2), m € N, m > 2. The problem is that in this case the normalized

1
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Reidemeister torsion and the Ruelle zeta functions occuring in [MePo2, Theorem 5.8] are
defined with respect to an acylic spin-structure of X. In the setting of the present article,
this means that one replaces the group I' C G by a suitable group IV C G which has the
same image in PSLy(C) as I'. Clearly, for each k € N the Ruelle zeta functions R(s, o)
remain the same under this change of the group I' since each representation oy, k € N
descends to a representation of PM, the image of M in PSLy(C). However, this is no
longer the case for the representations oy, k € %N — N. Furthermore, Theorem 1.2 can not
be applied to a group I" corresponding to an acyclic spin-structure of X since by [MePol,
Lemma 2.4] such a group never satisfies the assumption (2.1). This assmuption is yet
needed for our compuations involving the Selberg trace formula and in order to apply the
results about the meromorphic continuation of the zeta functions obtained in [P{].

We shall now explain our method to prove Theorem 1.2. In this theorem the special
values of the Ruelle zeta functions are taken in their domain of convergence. Nevertheless,
its proof is based on an investigation of the behaviour around 0 of the Ruelle zeta function
R,y associated to p(m), which is defined in (3.2), and its relation to the analytic torsion.
A priori, the Ruelle zeta function R, is defined only for s € C with Re(s) > 2. However,
as a special case of our results obtained in [Pf], it follows that R,(,,) admits a meromorphic
continuation to the entire complex plane. The main technical result of the present paper
is now the following proposition.

Proposition 1.3. Let X and ¢(m), m € N be as in Theorem 1.1. Then
Tx(p(m))"

() SO iy (R () Ry (5) LT 9)

C(m+1:0)s=0 Cm:m+1-—s)
Here we have put p(m)gy := p(m) o 0. Moreover, the functions C(k : s) are meromorphic
functions of s which are constructed out of the scattering determinant associated to the
representation o of M with highest weight kes and a certain K-type. They are defined in
section 6. Form € %N, a similar formula holds.

(D(s —1))729).

Due to the presence of the scattering term and the I'-factor, Proposition 1.3 does not
imply that the Ruelle zeta function R,y is regular at 0. However, from Proposition 1.3
one can deduce Theorem 1.2 which is much more explicit.

On closed oriented odd-dimensional hyperbolic manifolds, the behaviour of the Ruelle
zeta functions at 0 associated to a unitary representation of I' was related to the corre-
sponding analytic torsion by Fried [Fr]. Brocker [Br] and Wotzke [Wo] generalized his
results to inclued representations of I' which arise as restrictions of certain representations
of G. For odd-dimensional hyperbolic manifolds with cusps and for unitary representations
of I', Park studied the relation between the behaviour of the Ruelle zeta function at 0 and
the analytic torsion [Pa]. However, his results can not be applied here since the represen-
tations p(m) are not unitary. Moreover the paper [Pa] decisively uses the results of the
carlier paper of Gon and Park [GP] on Selberg and Ruelle zeta functions and the results of
this paper do not imply that the Ruelle zeta function R, admits a meromorphic contin-
uation to C. In the 3-dimensional case, the paper [GP] only covers the Selberg and Ruelle
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zeta functions associated to the fundamental representations oy, o1 of M and it is unclear
whether the methods of Gon and Park can be applied to other representations of M since
among other things they use a special type of a Paley-Wiener theorem which presently
exists only for the fundamental representations of K. The proof of our main results is
however based on the meromorphic continuation of the Ruelle and Selberg zeta functions
associated to any representation oy, k € %Z as well as on their relation to geometric dif-
ferential operators on X. These results have been established in our preceding paper [Pf]
in the more general context of odd-dimensional hyperbolic manifolds with cusps.

We want to point out that, as well as in the preceding paper [Pf], a lot of the methods
used in the present article had been developed by Bunke and Olbrich [BO] for the closed
case and are generalized here to the non-compact situation. This generalization is made
possible by the work of Hoffmann who proved an invariant trace formula [Ho2| and who
determined the Fourier transform of the associated weighted orbital integral [Hol].

To prove Proposition 1.3, we express the analytic torsion T'x(p(m)) as a weighted prod-
uct of graded determinants associated to differential operators A(o) for certain o € M.
Here the A(o) are of Laplace type and act on graded locally homogeneous vector bun-
dles E(o) over X. By the same argument as in the closed case [Wo], [Mui2] the product
R(m)(8) Rp(m), () can be expressed as a weighted product of Selberg zeta functions S(s, o)

with shifted arguments for the same set of representations o € M. To relate the analytic
torsion to the Ruelle zeta function, we prove a determinant formula which expresses the
Selberg zeta function S(s, o) by the graded determinant of A(c) + s*. The prove is based
on an explicit evaluation of the Laplace-Mellin transform of each term occuring on the geo-
metric side of the Selberg trace formula applied to a particular test function h7. However,
in contrast to the closed case, the determinant formula can only be applied to s € C with
Re(s) and Re(s?) sufficiently large. Thus to complete the proof of Proposition 1.3, we also
need to establish a functional equation for the symmetric Selberg zeta functions. Via the
functional equations the scattering terms appear in Proposition 1.3.

This paper is organized as follows. In section 2 we fix notations and recall some basic
facts about hyperbolic 3-manifolds with cusps. In section 3 we briefly recall the definition
of the Ruelle and Selberg zeta functions. The definition of the regularized traces and the
analytic torsion are reviewed in section 4. In sections 5 and 6 we establish the determinant
formula respectively the functional equations of the symmetric Selberg zeta functions. The
proof of our main results is completed in the final section 7.

Acknowledgement. This paper contains parts of the author’s PhD thesis. He would
like to thank his supervisor Prof. Werner Miiller for his constant support and for helpful
suggestions.

2. HYPERBOLIC 3-MANIFOLDS WITH CUSPS

Let H? denote the hyperbolic 3-space equipped with the hyperbolic metric of constant
curvature —1. Let G = SLy(C), regarded as a real Lie group, and let K = SU(2). Then
K is a maximal compact subgroup of G. The groups G and K can be identified with
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the groups Spin(3,1) and Spin(3) and there is a canonical isomorphism H* = G/K. The
quotient G/K will also be denoted by X in the sequel. Let g and ¢ be the Lie algebras
of G and K. We let 6 be the standard Cartan involution of g. The lift of § to G will be
denoted by the same latter. Let g = € @ p be the corresponding Cartan decomposition.
Then the Killing form B of g defines an inner product on p. We consider the inner product
(-,-) on p which is given by %;B' The tangent space of X at 1K can be identified with p

and therefore the inner product (-,-) defines an invariant metric on X. This metric is the
metric of constant curvature —1.

Now we let I" be a discrete, torsion-free subgroup of G with VOI(F\G) < oo and we
let X = F\X We equip X with the Riemannian metric induced from X. Let B be a
fixed set of representatives of I'-nonequivalent proper cuspidal parabolic subgroups of G.
Then ‘B is finite. Throughout this paper we assume that for every P € 8 with Langlands
decomposition P = MpApNp one has

(2.1) I'NP=TnNNp.

This condition is satisfied for example if ' is “neat”, which means that the group generated
by the eigenvalues of any v € I' contains no roots of unity # 1. It also holds for many
groups I' which are of arithmetic significance. Let x(X) := #9. The geometric shape
of X can be described as follows, see for example [MP2]. There exists a ¥ > 0 and for
every Y > Y, a compact manifold X (Y) with smooth boundary such that X admits a
decomposition as

(2.2) X=X({Y)U || Fpy

reyp
with X(Y) mevy = 8X(Y) = 8Fpﬂy and pry(\legy = @ if P 75 P’. Here the Fp7y are the
cusps of X. They satisfy Fpy = [V, 00) x T?, where T? denotes the flat 2-torus. Moreover
the restriction of the metric of X to Fpy is given as a warped product y—2dy* + y2go,

where gy denotes the suitably normalized standard flat metric of 72.
We let Py := M AN be the standard parabolic subgroup of G. Then we have

({2 ) ocnamboas {(5 ) oaer}iwo (3 1) ccc).

By m, a and n we denote the Lie algebras of M, A and N. Then § := a @ m is a Cartan
subalgebra of g and m is a Cartan subalgebra of &. We let e; € a* denote the restricted root
which is implicit in the choice of n and we fix es € im* such that positive roots A (gc, bc)
can be defined by A*(gc, he) := {e1 + e2,e1 — e}, see [MP1, section 2|]. We let H; € a be
such that e, (H;) = 1.

By M and K we denote the equlvalence classes of finite-dimensional irreducible repre-
sentations of M respectively K. For v € K , 0 € M we denote the multiplicity of o in vy,
by [v: 0]. Every representation in M is one-dimensional and the elements of M will be
parametrized as oy, k € %Z. Here o), denotes the representation of M with highest weight

kes. For | € %N we let 1, be the representation of K with highest weight le,. Then K is
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parametrized by the elements v, [ € %N. Our parametrization is different from the one
used in [Mii3] but consistent with the notation of [MP1], [MP2]. For k € 1Z we define a

representation wooy of M by wyoy, := o_y, see [MP1, section 2]. The representation rings
of M and K will be denoted by R(M) respectively R(K'). Then the following lemma holds.

Lemma 2.1. Let v = vy, | € N. Then for o € M one has viol=1ifoc =04 k €Z,
k| <1 and [v: o] = 0 otherwise. Let o = oy, k € Z —{0}. Forv € K, v = v let
my (o) = 1. For v = vy let m,(0) = —1. Finally, for v & {v, Vjg—1} let my(o) = 0.
Then in R(M) one has o + woo =Y, My (0)V| a1

Proof. This follows from [Mii3, equations 4.1, 4.2], taking the different parametrizations
into account. 0

For m € 1N we let p(m) denote the 2m-th symmetric power of the standard representa-
tion of G = SLy(C) over V() := Sym®” C2. Then in the notations of [MP1], [MP2], p(m)
corresponds to the representation with highest weight A(p(m)) := me; + mes. By [MP1,
equation 2.9] we have p(m) # p(m)y for each m, where py := po @ for a representation p of
G. For ¢ =0,1,2 let p, : MA — GL(A.) be the g-th exterior power of the adjoint rep-
resentation of MA onng. For A € Cand a € A, a =exp(Y), Y € awelet £(a) := (¥,
Then the restriction p(m)|ya of p(m) to M A has the following property.

Lemma 2.2. In the representation ring of M A one has
2
Z(—l)qquq ® p(m)|ma = 0m @ Emi1 — Omit @ &m + 0-m @ E_(ms1) — T—(ms1) ® Em.
q=0
Proof. This Lemma is a special case of [MP1, Corollary 2.6]. It can also be checked by a
direct computation. O

Remark 2.3. If for k € {0, 1} the representations o, € M and the Ap(m),x € R are as in
[MP2, section 8], then o,m),0 = Om, Apemy0 = M+ 1 and opum) 1 = Omig1, Apm)1 = M.

3. SELBERG AND RUELLE ZETA FUNCTIONS

In this section we briefly recall the definition and some properties of the Selberg and
Ruelle zeta functions. For further details we refer to [Pf, section 3.
We let C(I')s denote the semisimple conjugacy classes of I'. If v € I' is semisimple and
nontrivial, there exists a unique £(y) > 0 and a m, € M, which is unique up to conjugation
in M, such that v is conjugate to exp (¢(y)H;)m.. The number ¢(y) is the length of the
closed geodesic associated to the conjugacy class [y]. Moreover the centralizer Z(vy) of «y in
I" is an infinite cyclic group. The conjugacy class [y] is called prime if v is a generator of
Z () or equivalently if the closed geodesic corresponding to [y] is a prime geodesic. Now
for o € M the Selberg zeta function Z(s, o) is defined as

Z(s,o)= J]  [Idet (1d—o(m,)® S* Ad(m, exp(£(y)Hy))lze 1),
[y}[e]C(r)s—[l] k=0
7] prime
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By [Pf, section 3] the infinite product converges for Re(s) > 2 and by [Pf, Theorem 1] the
function Z(s, o) admits a meromorphic continuation to C.
Next for ¢ € M we define the twisted Ruelle zeta function R(s, o) by

(3.1) R(s,0) = H det (Id —U(mv)e_saw).
1ECT)s—1]
7] prime
The infinite product in (3.1) converges absolutely for Re(s) > 2, see [Pf, section 3]. Fur-
thermore, if p is a finite-dimensional irreducible complex representation of GG, we define the
associated Ruelle zeta function R,(s) by

(3.2) R,(s) = H det (Id —p(y)e*).
[(v€CT)s—[1]
] prime

This inifinite product converges absolutely for Re(s) sufficiently large, see [Pf, section 3].
By [Pf, Corollary 1.2] the functions R, (s) and R,(s) have a meromorphic continuation to
C. We will also consider symmetric Selberg and Ruelle zeta functions. For o the trivial
representation of M we let S(s,0) := Z(s,0) and Ry (s,0) := R(s,0). If o is non-trivial,
we let S(s,0) = Z(s,0)Z(s,wpo) and Reym(s,0) = R(s,0)R(s, we0).

4. THE RECULARIZED TRACE AND THE REGULARIZED DETERMINANT

In this section we define the regularized trace and the regularized analytic torsion. For
further details we refer the reader to section 4 and section 5 of [MP2].

Let us first introduce the differential operators we consider. For a finite-dimensional
unitary representation v of K over V, let El, = (G x, V, be the associated homogeneous
vector bundle over X. Let E, := F\E,, be the corresponding locally homogeneous vector
bundle over X. We equip E',, with the G-invariant metric induced from the metric on V.
This metric pushes down to a metric on E,. The smooth sections of El, can be canonically
identified with the space

(4.1) C®(G,v)={f:G—=V,: feC™ flgk)=v(k"f(g9), Vg€ G, Vk € K}.

We define the space L?(G,v) in the same way. Let ﬁ,, be the differential operator on El,
which acts on C*°(G,v) by —Q. Then by the arguments of [MP2, section 4] the operator
;L, with domain the compactly supported functions in C*°(G,v) is essentially selfadjoint
on L*(G,v) and bounded from below. Its selfajoint closure will be denoted by A, too.
There exists a smooth End(V},)-valued function Hy which belongs to all Harish-Chandra-
Schwarz spaces and which satisfies HY (k~'gk’) = v(k)™' o H'(g) o v(K') for all k, k' € K
an for all g € G such that e~ acts on L?(G,v) as a convolution operator with kernel
HY . see [MP2, equation 4.7]. If C>°(I'\G, v) are the I'-left-invariant functions in C*(G, v),
then the smooth sections of E, can be identified with C*°(I'\G, v). Similarly, the square-
integrable sections of E, can be identified with the I-left-invariant elements L?(T'\G,v)
of L*(G,v). Let A, be the differential operator on E, which acts as —Q on C*(T'\G,v).
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Then A, with domain the compactly supported elements in C*(I'\G, v) is again bounded
from below and essentially selfadjoint on L*(I'\G, ) and its closure will be denoted by the
same symbol. Let A\, o < A1 < ... be the sequence of eigenvalues of A,, counted with
multiplicity. One can easily extend Theorem 1.1 of [Do] and its proof to the operators A,
and thus there exists a constant C' > 0 such that for each A > 0 one has

(4.2) #{j: Ay <A} < C(1+ A)2.

Now consider the heat-semigroup e~*4 of A, acting on L*(I'\G,v). The operator e *4~
is an integral operator on L*(T'\G,r) with smooth kernel H”(t;x,2’) defined in [MP2,
equation 4.8]. Let h”(t;x,2') := Tr H"(t;x,2'). The operator e~ is not trace class and
h¥(t;x, x) is not integrable over X. However, it follows from the Mass-Selberg relations
that with respect to the decomposition (2.2) the integral of h¥(¢;x,x) over X(Y) has an
asymptotic expansion in Y as Y — oo and, following ideas of Melrose, one can take the
finite part in this expansion as a definition of the regularized trace Tryeq(e™*4*) of e~
Explicitly, one obtains

Tryeg ( e—tAu) _ Z e i 4 Z etc(g)w
J

4
JEM;U:U}OU
[v:o]#0
1 —t()\Q—c(o)) ~ . d ~ .
(4.3) ~ i Z e Tr { C(o,v, —z)\)d—C(a,u,M) dA,
T oeM R -
[v:o]#0

see [MP2, equation 5.2, definition 5.1]. Here the first sum on the right hand side of (4.3)
converges absolutely by (4.2) and all integrals converge absolutely by the arguments of
[MP2, section 5]. The functions C(c, v, z) are meromorphic functions of z with values in
the endomorphisms of a finite-dimensional vector-space, which are regular and invertible
on iR. They are constructed out of the constant term-matrices, also called scattering
matrices, associated to the Eisenstein series, see [MP2, section 3, section 5]. The constants
c(o) are defined by ¢(0;) :=j* — 1, j € 3Z.

The key fact which makes the regularized trace accessible to computations is that the
right hand side of (4.3) equals the spectral side of the Selberg trace formula applied to the
function hy := Tr H}. The spectral side of the trace formula consists of a sum of tempered
distributions. We shall now define these distributions in the form in which they will be
used for the subsequent computations. For further details we refer to [MP2, section 6]. If
o€ M, \eC, we let T, be the principal-series representation of G as in [MP2, section
2.7]. Then 7, is unitary iff A is real. The global character of 7, , will be denoted by ©, .
Let o be a K-finite Schwarz function. The identity and the hyperbolic term are defined by

I(@) = vol(X) 37 /R O () P (NN H(a) = /F S aleya)de.

oeN \G yer,—1
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Here P, is the Plancherel polynomial. Explicitly, for k£ € %Z one has

1
(44) ng (Z) = H(kQ - 22),
see [MP1], [Mii3]. Moreover, Ty are the semisimple elements of T'. Next for each ¢ in M
we define a meromorphic function (o, \) as in [MP2, Theorem 6.2] and we define the
constant C'(I') as in [MP2, page 22]. Then the distributions Z and 7" are defined as

I(a) = % > /R O ()&, ~N)dX:  T(a) = % > /R O A ()dA

oceM ceM

Finally let Jp, p, (0, 2) be the Knapp-Stein intertwining operator defined as in [MP2, equa-
tion 6.6]. Then Jpp (0,2) is a meromorphic function of z € C which is regular and
invertible on R — {0}. Let H. be the half-circle from —e to € in the lower half-plane,
oriented counter-clockwise. Let D, be the path which is the union of (—oo, —¢|, H, and
[e,00). Then the distribution .J is defined by

(45 Ja)=-3 1K) [ (Jpo.pow,<>—1%Jpo|po<a,<m,<<a>) ac.

< 4y
oceM

By the Selberg trace formula, one can express the regularized trace as
(4.6) Troeg(e™4) = I(hy) + H(hY) + T(h{) + Z(hy) + J (hy),

see [MP2, Theorem 6.1, Theorem 6.2].

Next we introduce the spectral zeta function associated to A, + s for certain s € C. If
A, € R is the smallest eigenvalue of A,, we define b(v) € R by

(4.7) b(v) := max {{c(o): ceM: [v:o]#0}U {—)\V}} :
where the constants ¢(o) are as above.

Proposition 4.1. Let s € C with Re(s) > b(v). Then for Re(z) > & the integral

(s, 2) ::/ =1 Trreg(e_t(A”“))dt
0

converges absolutely and &, is holomorphic on {(s,z) € C x C: Re(s) > b(r): Re(z) >
4% . Moreover, &,(s,z) has a continuation to a holomorphic function on {(s,z) € C x
C: Re(s) > b(v): z # —j,z # 3/2 — j,j € No}. For every s € C with Re(s) > b(v) the
function z — &,(s, z) is a meromorphic function on C with an at most simple pole at z = 0
and its residue at z = 0 is independent of s.

Proof. By (4.3) there exists a constant C' such that ‘Tl"reg e*t(A”J“s)‘ < Qe MRe(s)=b)  Thus
the integral [ ¢*! Tryep e~ "4 *)dt converges absolutely for all {(z,s) € C x C: Re(s) >
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b(v)} and is holomorphic there. Expanding e™* in a power series, it follows from [MP2,
Proposition 6.9] that one has an asymptotic expansion

(4.8) Trre ¢4 Y " ay ()72 + > by(s) 2 logt + > cj(s)t!
7=0 7=0 7=0

as t — +0 which holds locally uniformly in s. Here the coefficients a;(s), b;(s) and ¢;(s)
depend holomorphically on s and by [MP2, Proposition 6.9] and the fact that d = 3 is
odd it follows that cy(s) is independent of s. Thus the Proposition follows from standard
methods which are described for example in [Gi]. O

Now we can define the regularized determinant proceeding as on a closed manifold. By
Proposition 4.1, for s € C with Re(s) > b(v) the function &,(s, z)/T'(z) is regular at z = 0.
Thus for s € C with Re(s) > b(v) we define the determinant of A, + s by

)

det(A, + s) := exp (

This definition generalizes the definition of the zeta-regularized determinant of a positive
elliptic differential operator on a closed manifold. We remark that one can easily show
that —b(r) equals the infimum of the spectrum of A,. This fact puts the definition of b(v)
into a natural context. However it will not be used here.

We finally turn to the definition of the analytic torsion. For further details we refer to
[MP2, section 7]. Let p be a finite-dimensional irreducible complex representation of G
which is not invariant under 6. Let E} be the flat vector bundle associated to the restriction
of ptoI'. Then E;) is canonically isomorphic to the locally homogeneous vector bundle £,
associated to p|x. For p =0,...,3 we define v,(p) := APAd*"®p : K — GL(APp* @ V).
There is a canonical isomorphism AP(E,) = I'\(G x,,(,) (APp* @ V,)). By [MtM, Lemma
3.1], the bundle E, carries a canocial invariant metric, called admissible metric and if A,(p)
denotes the corresponding flat Hodge-Laplace operator acting on the E,-valued p-forms,
then by Kuga’s formula A,(p) acts on C*°(I'\G, v,(p)) as —Q + p(£2), see [MtM, equation
6.9]. By [MP2, Lemma 7.1 (2), Lemma 7.3], for p = 0,...,3 one has p(Q) — b,,(,) > 1,
where the b, ,) are as in (4.7). Thus the determinants det(A,(p)) := det(A,, ) + p(£2))
are defined. As in the closed case we now define the analytic torsion of F, by

3
Tx(p) = [ [ det &8, (p) V"%
p=0
We define a K-finite Schwarz-function k7 by

3
(4.9) ke = e N (< 1)rphy ),
p=0
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Then if we apply equation (4.6), we obtain

)
z=0

(410 touTi(p) = 31 (i [ #7000 + H) + T + ZO) + S0t

where the right hand side is defined near z = 0 by analytic continuation of the Mellin
transform.

5. THE DETERMINANT FORMULA FOR THE SYMMETRIC SELBERG ZETA FUNCTION

In this section we let 0 = o, k € N. We want to relate the symmetric Selberg zeta
function S(s, o) to the graded determinant of certain Laplace-type operators.

We consider the differential operator A(o) which was introduced by Bunke and Olbrich
for the closed case [BO, section 1.1.3] and which had been used in [Pf, section 7]. Let us
briefly recall its definition. We let the m, (o) be as in Lemma 2.1. Then one defines a
vector bundle E (o) over X and a differential operator A(c) on E(o) by

(5.1) E(o):= @ E; Alo)= @ A +clo),

VGK VER
my (0)#0 my ()70

where ¢(0) is as in the preceding section. We define a K-finite Schwarz function h{ by
(5.2) hy = e "N “my(0)hy,

vek
where the h? are as in the previous section. Then by [Pf, equation 7.4] for o/ € M one has
(5.3) Opa(h)) = e ™ if o’ € {o,weo}; Opr(hY) =0, if o' & {o, w0}

The bundle E(0) admits a grading E(c) = E*(0)® E~ (o) defined by the sign of m,, (o).
In this section we study the graded determinant of the operators A(c) + s. To define this
determinant, we start with the following Lemma.

Lemma 5.1. For v e K, m,(0) # 0 one has ¢(o) > b(v).

Proof. By Lemma 2.1, and the definition of the ¢(o), we have ¢(0) > ¢(¢”) for every o/ € M
with m,(¢) [v: 0'] # 0, v € K. Moreover, since o # w0, the twisted Dirac operator D(o)
can be defined as in [Pf, section 8, section 9] and it follows from [Pf, Proposition 8.1] that
A(o) = D(0)?. Thus the eigenvalues of A(c) are nonnegative and the Lemma follows. [

Let s € C with Re(s) > 0. By Proposition 4.1 and Lemma 5.1, for every v € K with
my (o) # 0 the determinant det (A4, 4+ c¢(0) +s) € C* is defined. Thus we can define the
graded determinant det,, (A(c) + s) € C* of A(o) + s by

dety(A(0) +5) =[] (det(A, +c(o) + )™

VEIA(
my (0)#0
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We now study the function s — detg, (A(c) + s%), Re(s) > 0, Re(s?) > 0. By (4.6) we have

log detg, (A(a) + 5%

d 1 00 2—1 —ts2 o o ju o -
ZO(F(Z)/O e (I(ht)+H(ht)—I-T(ht)—&—I(ht)_FJ(ht))dt)’

(5.4) =

_5:

where the right hand side is defined near z = 0 by analytic continuation of the Mellin
transform. We will compute the Mellin transform of each summand on the right hand side
separately. In the sequel, we shall write LM to indicate that the Laplace-Mellin transform
of a function is taken, althoug we take the Laplace-transform in s? rather than in s. Firstly,
the idenditiy contribution is easily treated.

Proposition 5.2. Let s € C, Re(s) > 0, Re(s?) > 0. For Re(z) > 3/2 the integral

LMI(s,z,0) ::/ = Le " [(hY)dt
0

converges absolutely. Moreover, LMI(s,z,0) has a meromorphic continuation to z € C

and is reqular at z = 0. Let LMI(s,0) := LMI (s, 270)‘2:0' Then one has

LMI(s,0) = —4mvol(X) / P (r)dr.

Proof. Since the P,(z) are even polynomials in z of degree 2, it follows from (5.3) and
a change of variables that I(hy) = aot™% + ait—2, where ag,a; € C. Thus for s € C,
Re(s) > 0, Re(s?) > 0 and Re(z) > 3/2 the function LMI(s, z, o) is defined and it extends
to a meromorphic function of z € C which is regular at 2 = 0. Moreover the assignment
s — LMI(s,0,0) is holomorphic on {s € C: Re(s) > 0, Re(s?) > 0}. Applying [Fr,
Lemma 2, Lemma 3|, the Lemma is proved for s € (0,00) and thus it also follows for
general s. O

Next we treat the hyperbolic contribution. For our purposes, it suffices to prove the
following estimate.

Proposition 5.3. Let s € (v/2,00). Then for every z € C the integral
LMH(s, z,0) ::/ e H(hY)dt
0
converges absolutely and LMH (s,z,0) is an entire function of z. Let LMH(s,0) =
LMH (s, z,0) ‘z:o' Then there exists a constant C' such that one has |[LMH (s,0)| < Cs™2.

Proof. For v € Ty we let 7 be a generator of Z(y) and we let

= —20(v Tr(o)(m.) + Tr(weo)(m.) e—t()?/4t
0= 3 OO0 i Gl (e

[vleC(T)s—(1]
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Then, since & = wyo, by (5.3) and [Pf, equation 5.4] we have H(h{) = f(t). Thus by
[MP2, Proposition 10.2], it remains to prove the estimate in s. By [MP2, equation 10.§]
there is C; such that

2

/ e (1) dt < Crem 7.

1

Moreover, by [MP2, equation 10.12] there exists a constant ¢ > 0 such that for 0 < ¢ <1
one can estimate |f(t)] < e~%. Thus, by partial integration we obtain

1 1 1
C ]_ C c C
/ 2571|f(7f)|€7t$2d75 < 02/ e e sidt = Oy (——263262 + — tgetszeztdt)
0 0 S

2
2s% J,

for some constant C5. It follows that there exists a constant C5 such that

1
/ Y F) e dt < Cys72
0

This proves the proposition.

The contribution of the distribution 7" is as follows.

Proposition 5.4. Let s € C, Re(s?) > 0, Re(s) > 0. For Re(z) > 3/2 the integral
LMT(s,z,0) = / e T (RY ) dt
0

conveges absolutely. Moreover, the function z — LMT (s, z,0) has a meromorphic con-
tinuation to C which is reqular at 0. Let LMT(s,0) = LMT (s, z, a)‘zzo. Then one has
LMT(s,0) = —=2C(T')s.

Proof. By (5.3) and the definition of 7" one has LMT (s, z,0) = %s*”llﬂ (z—1) and
the proposition follows. O

For the invariant distribution Z associated to the weighted orbital integral we have the
following proposition.

Proposition 5.5. Let the meromorphic function Q(o, \), o € M, X € C be defined as in
[MP2, Theorem 6.2]. Then for k € N the function Q(ox, \) is given as

2l k|
AZ_‘_lQ )\2+k2’

Qow, ) = =2y — (L +iX) — (1 —id) = Y

1<I<|k|
where 7y 1s the Fuler-Mascheroni constat and v is the Digamma function. Moreover, for
s € C, Re(s) > 0, Re(s?) > 0 and z € C, Re(z) > 3/2 the integral

LMI(s,z,0) = / e T (WY )dt

0
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converges absolutely. The function z — LMZ(s,z,0) has a meromorphic continuation to
z € C with an at most simple pole at z = 0. Let LMZ(s,0) := % 220%. Then

there exists a constant Cy which is independent of X such that for every k € N one has
LMI(s,0r) = k(X)Cy+ 26(X)ys + 26(X) log'(s + k) + k(X) log (s + k).

Proof. The statement about Q(oy, A) follows from an elementary computation using the
identity ¥(z + 1) = L + ¢(z). Thus the Proposition follows from (5.3) and [MP2, Lemma
10.5, Lemma 10.6]. Here we remark that the assumption ¢ € (0,00) in these Lemmas can
be weakened to ¢ € C, Re(c¢) > 0. The proofs remain the same. U

We finally turn to the contribution of the non-invariant distribution J.

Proposition 5.6. Let the distribution J be as in (4.5) and let k € N. The one has

K(X) (k22 1.2 1 2
. hit) = ——= | 1+2 (k*=3%) th /— ATAN.
(5.5) J(hy*) 5 + E e +e Ri)\—i—ke

™ -
1<5<|k|

Let s € C, Re(s) > 0, Re(s?) > 0. For Re(z) > 3/2 the integral

LMI(s,z,01) = / tz—le—tSQJ(hf’“)dt
0
converges absolutely. Moreover, the function z — LMJ(s, z,0k) has a meromorphic con-

tinuation to C with a simple pole at 0. For LMJ(s,0},) := % Z:()% one has

LMJI(s,01) = — 2r(X Z log (/s + k2 —j2+ k)

— k(X)) log(\/s2 + k24 k) — w(X)log (s + k).

Proof. For j € Z, 1 € N° |j| < I we let ¢,(0j,2) be the Harish-Chandra c-function
associated to the representation v, and o; defined by [MP2, equation 6.7]. Then by [Co,
Appendix 2] one has

['(iz — )iz +7)
Iz - (iz+1+1)
see also [MP2, equation 6.8]. By [MP2, equation 6.14] and the definition of h{* one has

k(X )etelon) 2
J(h{*) = —L Z Z my (o) [v: U’]/ e UE=Ae, (0" ()™ —c,,(a ¢)dC.

4mi d¢
vEK o'eM De

Thus if one applies Lemma 2.1, equation (5.5) follows. If one applies [MP2, Lemma 10.5]
o (5.5), the formula for LM.J(s, o) follows. Here we remark again that the condition

€ (0,00) in [MP2, Lemma 10.5] can be weakened to the condition ¢ € C, Re(c) > 0
without changing the proof.

Cy, (Uj> Z) -

O
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By the preceding proposition, each summand on the right hand side of (5.4) can be
integrated individually and we have

log dety, (A(c) + 5?)
(5.6) =—LMI(s,0) — LMH(s,0) — LMT(s,0) — LMZL(s,0) — LMJ(s,0).
To prove our determinant formula, we will also need the following Lemma.

Lemma 5.7. Let Tryeg(e7t4@) := 3" _my (0)e ) Tryou(e7t4%). Then for s, s; € C with
Re(s) > 0, Re(s1) > 0 one has

/o (e7! — ™) Trmg(e*m("))dt

:d_clogdet (A0) + Ol — 3¢

Proof. For ¢ € C, Re(¢) > 0 and z € Clet 4(5)(C, 2) := >, e mw(0)&(C+¢(0), 2), where
the &, are as in the previous section. Then by definition one has

2614(0)(57 Z) }

0z T(z) =0

log dety (A(0) + C>|<:s1'

log (detg (A(0) +5)) = —

By (4.3) and Lemma 5.1, (e7* — e71) Tr,ou (e 7*4(?)) decays exponentially for ¢ — oo and
by (4.8) one has (7" — e7"1) Tr e, (e _tA(")) O(t7'/?) as t — 0. Thus the integral in the
lemma exists. By Proposition 4.1, there exists a constant a(c) such that for all ¢ with
Re(¢) > 0 one has Res‘zzogA(a)(C,z) = a(o) and since ﬁ =z+722+0(2%) as 2 — 0,
for all such ¢ one has logdetg (A(o) + () = —lim,o(Ea(0) (¢, 2) — @ +~ya(o)). One has
Ea)(C 2 +1) = —a%f A(0)(C, z) by the definition of 4,y and by meromorphic continuation.
Thus one has

z—0 0

(0 0
— llg% (a_ch(J)(C, z)}CZS - a—CfA(a)(C, Z)’gzsl>

:—hm( C(gA(a)(Ca )_Q—F ))‘C s

/ (678 — e71) Tryee (e 714 dt = lim t(e7 — e71) Try (e 7)) at
0

C(fA(a)(Ca z) — Q +ya(o )>|4_51>

d d
= log detg, (A(c) + C)|<: T log detg, (A(0) +
Here limit and differentation in the third line can be interchanged since the function
((,2) = &a)(C,2) — @ + va(o) is holomorphic for ( € C, Re(() > 0 and z in a
neighbourhood of zero. 0

C)‘C=S1'

Now we can state the determinant formula for the symmetric Selberg zeta function,
which is the main result of this section.
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Proposition 5.8. Let s € C, Re(s) > 0, Re(s?) > 0. Let x(X) be the number of cusps of
X and let cr :=2(C(T") — vk(X)), where C(T") is as above. Then there exists a constant
Co which is independent of X such that for every k € N one has

S(s,0y) =" dety, (A(a) + 32) exp (—47r vol(X) /S P, (r)dr> (T(s + k))2+X)

(54 k)" exp (LM (s, 04) — scr).
Proof. We fix sy € R, s; > 2 and let s € R, s > 2. We let 0 := ;. Then we can apply [Pf,
equation 7.7] with N = 2, s5 := s and obtain
1 d 1 d

> —ts2 _ —ts% o - .
/0 (e e 1) H(hy)dt QSdSS(S,O') S(s1,0).

Thus if we apply (4.6), (5.3) and equation (4.4), Proposition 5.2, Proposition 5.4, Propo-
sition 5.5 and Propostion 5.6, we obtain a constant a, depending on sy, such that

oo
/ (eftSQ . eftsf) Trreg(eftA(a))dt
0

:iilog S(s,0) + 27 vol(X) P, (s) N CI)  k(X)y+r(X)P(s + k)
2sds s 5 s
K(X) 3 K(X) ta
W2+ RV K2 k) S SR = (SRR - 2t k)
:2—18% (log S(s,0) — LMI(s,0) — LMT(s,0) — LMZ(s,0) — LMJ(s, 0)> +a.

If we multiply this equation by 2s and apply Lemma 5.7, we obtain
log S(s,0) =logdety, (A(o) + %) + LMI(s,0) + LMI(s,0) + LMT(s,0) + LMJ(s,0)
(5.7) +as® +b.

for some constant b. Thus by (5.6) we have log S(s,0) = —LMH (s,0)+as?+b. Applying
[Pf, equations 3.3, 3.4, 3.5], it follows that log S(s, o) decays exponentially as Re(s) — oo.
Since LM H (s,0) tends to zero for s € R, s — oo by Propostion 5.3, the constants a and
b are zero. If we apply Proposition 5.2, Proposition 5.4 and Proposition 5.5 and to the
right hand side of (5.7), the Proposition follows for s € (2,00). By [Pf, Theorem 1.1],
the function S(s, o) has a meromorphic continuation to C and since all functions on the
right hand side of the equation in the Proposition are holomorphic in s € C, Re(s) > 0,
Re(s?) > 0 by Proposition 4.1, Lemma 5.1 and Proposition 5.6, the proposition follows. [

6. THE FUNCTIONAL EQUATIONS

Let o € M. In this section we prove a functional equation for the symmetric Selberg
zeta function S(s, o).
For v € K and o € M with [v: 0] # 0 we define the space E(v : ) and the operator
Clv:o: A :E&Ww:o0)— EW : wyo) as in [Pf, section 4]. Let us first symmetrize the
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scattering matrices. For 0 € M, 0 # woo and v € K we let E(o,v) := E(o,v)BE (w0, 1)
and for s € C we let
Clo:v:s): E(o,v) = E(o,v); Clo:v:s):= 0 Clwgo v )
B ’ el T \C(oivs) 0 '
By the arguments of [Pf, section 4], the function (detC(o: v :s))™® is canonically

defined. For ¢ € M we let v, be as in [Pf, section 4]. Then, if 0 = o} we have v, = v
To save notation, for k € %N we shall write

(det C(oy : v : 8)) o C(k:s).

Then C(k : s) is a meromorphic function of s which has no zeroes and poles for s € iR.
By [Pf, equation 4.2] it satisfies C(k : s)C(k : —s) = 1.
We can now state a functional equation for the symmetric Selberg zeta function.

Proposition 6.1. Let k € N and let cr be as in Proposition 5.8. Then the symmetric
Selberg zeta function S(s,oy) satisfies the functional equation

(T(=s + k)X C(k : 5)
(D(s + k) C(k: 0)

S(—s,0x) =S(s,0%) exp (87r Vol(X)/ P, (r)dr + QCFS)
0
Proof. Let
=(s,0p) := exp (47TV01(X)/ P, (r)dr + SCF) (T (s + k) "2X) . 5(s, ).
0

We note that the Polynomial Q)(oy, A) and the constants ¢;,;(¢) occuring in [Pf, Proposition
5.4] are zero in the 3-dimensional case. Thus if we combine [Pf, Proposition 7.2], [Pf,
equation 4.2] [Pf, equation 4.10] and [Pf, Remark 4.3], we obtain

E/<S70k> E/(_‘S?Uk) _ d

=——1IlogC(k:s).
=(s,08) Z(—s,0%) ds 8 (s s)

=(s,0)
2(—s,0)
Now the order of the singularity of the function Z(s, o) at 0 is the same as the order of
the singularity of S(s,o) at 0. This order is even by [Pf, Theorem 9.2]. Since P,, (r) is an

even polynomial, the proposition follows. 0

Hence the logarithmic derivative of C(k : s) is zero and so this function is constant.

The previous proposition implies the following functional equation for the symmetric
Ruelle zeta function.

Proposition 6.2. Let k € N. Then the symmetric Ruelle zeta function Rsym (s, 0y) satisfies
the functional equation

8
Ryym(—5,0k) =Rsym(s, o)) exp (—— vol(X)s)
T

Ck+1:0)C(k—1:0)
C(k: 0)?

Ck:s—1)C(k:s+1)
Ck+1:s5)C(k—1:5)
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Proof. The same argument as in [Mii3, Lemma 3.1] gives
S(S + 17 Uk)S<S — 17 Uk)
S(s,0k41)S(s,06-1)

Rsym(87 Uk) =

Moreover, using (4.4) we compute

s+1 s—1 s s
/ P, (r)dr + / P, (r)dr — / Py (r)dr — / P, (r)dr = _5
0 0 0 0

Thus the proposition follows from Proposition 6.1. 0
To prove Theorem 1.2, we will also need the following proposition.
Proposition 6.3. Let m € N, m > 3. Then

O ) P 0 G = 5= o o0

m

. H Ryym(k — s, 0%) Regm (K + s, 01) exp (—; vol (X)(k — s))

k=3

Proof. Let m € N, m > 3. Applying [Mii3, equation (3.14)], we can symmetrize [Mii3,
equation (8.2)] and obtain

Ry (8) Rpum)o (8) = Ro2) () Rz, (8) [ [ Reym(s + &, 0k) Reym(s — i, ).
k=3

Thus together with proposition 6.2, the proposition follows. 0

7. PROOF OF THE MAIN RESULTS

In this section we prove our main results. Let m € N. Arguing as in [Mii3, Proposition
3.5] it follows that
S(s+m+1,0,)S(s —m—1,0,)

1 =
(7 ) Rﬂ(m)(S)RP(m)e(S) S(S 4 m, Um+1>S(S —m, Um—',-l)

Now we express the analytic torsion T'x (p(m)) by the graded determinants associated to the
operators A(o) which were introduced section 5. Namely, we have the following proposition
which is a generalization of [Mii3, equation 7.28] to the noncompact case.

Proposition 7.1. Let m € N. Then one has

o, detg(A(oy) + (m +1)?)
Lxlptm)” = = et CAlomen) +m2)

Proof. Let k™™ be as in (4.9). Then by Lemma 2.2 and Remark 2.3, as a special case of
[MP2, Proposition 8.2] one has P = etm+ )P pom _ o—tm® pomit - Applving (4.10) and
(5.4), the proposition follows. O
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In order to relate the behaviour of R,(m)R,um), at 0 to the analytic torsion T’x(p(m)),
we want to apply the determinant formula for the symmetric Selberg zeta function from
Proposition 5.8 to the right hand side of (7.1) and combine it with Proposition 7.1.

However, in contrast to the situation on a closed hyperbolic manifold, this is not possible
directly since the determinant formula for the symmetric Selberg zeta function is valid only
for s € C with Re(s) > 0, Re(s?) > 0. Thus we first have to apply the functional equation
from Proposition 6.1. We obtain the following proposition.

Proposition 7.2. For m € N one has
S(=s+m+1,0,)S(s+m+1, Um)C(m—i—l :0)
Ry (S)Ryim —e2er ’
( )(S> ( )0(S> S(—s—l—m,omﬂ) (s—l—m O'm+1)C( )

Cim:m+1—s)(I'(s—1))*X exp (87r vol(X) [, st p (T’)dr)
( )

C(m+1:m —s)(I'(s+ 1)) exp (87 vol(X fo st op

Tm+1

(r)dr
Proof. By Proposition 6.1 we have

S(s—m—1,0p) 5. S(=s+m+1,0p,)exp (87 vol(X) fo_s+m+1 Py, (T)dr)

S(s—m,omi1) S(—=s+m,0pm41)exp (87r vol(X) fO_Ser Py .\ (r)dr)
Cm+1:0)C(m:m+1—s)(T(s— 1))
" C(m:0)C(m+1:m—s)(D(s+ 1))
Applying (7.1), the proposition follows. O

Now we can prove Proposition 1.3. We shall state the proposition also for m + %, m € N.
The proof remains the same if one makes the appropriate modifications in section 5 and
in Proposition 6.3, Proposition 7.1 and Proposition 7.2. For m € N we define

175 /(m+3/2) + (m+1/2)2 = (j + 1/2) + m + 1/2
[T/ (m+3/22+(m+1/2)2— (j +1/2)2+m+3/2

Then we have the following proposition.

(7.2)  e(m+1/2) =

Proposition 7.3. For m € N we define the constant c(m)s and c¢(m + 3) as in Theorem
1.1 resp. equation (7.2). Then one has

Tx(p(m))"

=c(m)i(X) C(m : 0) Cim+1:m-—s)

Clm+1:0) 2% (RMm)(s)Rp(m)e(S) Clmom 11—~ 1))2H(X>>

) C(m+1/2:0)
! (X)C<m i 3/2 : O) E_{n (Rp(m+1/2)(5)Rp(m+1/2)e (S)

Cm+3/2:m+1/2—5s) -
C(m+1/2:m+3/2_5)(r(8—1)) ( ))'

and

Tx(p(m+1/2))" =c(m +1/2)
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Proof. Let m € N. To save notation, let us first introduce two auxiliary functions. Let

s+m+1 —s+m+1
Py (5) :=exp (—47T vol(X) / P, (r)dr + 47 vol(X) / P, (r)dr
0 0

—s+m s+m
— 4mvol(X) / Py, .. (r)dr + 4m vol(X) / Py i (r)dr) :
0 0

Moreover, let

Jp(m) (8) := exp (ﬁMJ(—S +m, omy1) + LMI (s +m, 0y1)

—LMJI(=s+m+1,0,)— LMJI(s+m+ 1,0m)>.

Then by Proposition 7.2, Proposition 5.8 and Proposition 7.1 one has

C(im:0) . )(
Comt1.0) lim (Rp(m)(S)Rp(m)e(S) Clm m 11— s)(T(s = 1)@ Jp(m)(s)>

— lim <e2cr S(s+m+1,0,)S(—s+m+1,0,)

S(s+m,omi1)S(=s +m,opms1) Spm) (8)

s—0

. £1_1>% exp (87r vol(X) /0 o P, (r)dr — 8w vol(X) /0 o Foria (r)dr)
i Qb (A(00) + (s + m 4 1)°) ety (A(0) + (= +m+1)?)
550 dety (A(Tma1) + (5 + m)2) detyg (A(Gmrr) + (—s +m)2)
ot (Alow) + (m + 1)

N dety, (A(gmy1) +m?)
=Tx(p(m))".

Py ()

Here we used that the function P,,)(s) is an entire function of s satisfying Pp,)(0) = 1.
Now by Proposition 5.6 the function J,,(s) is entire for s in a neighbourhood of zero and
one has J,(n)(0) = ¢(m)* ). This proves the proposition for m € N. For m + 1/2 one
can argue in the same way. 0

Let us finally turn to the proof of Theorem 1.2. We recall that the infinite products
in (3.1) defining the Ruelle zeta functions R(s, o) converge absolutely for Re(s) > 2. Let
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m € N,
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m > 3. By Proposition 7.3 and Proposition 6.3 we have

Tx(p(m))*

=c(m)

=c(m

Cim+1:m-—ys)

09 Dty Ry (6 Ry (o) 82N = 1) 2409
P S o i (R 6 Ry 6) G5 (s = 1))

e (—2 vol(X)k) Rom(k, 0
k=3

C(m)4n(X)

= o) esp (=)t +1) =6)) T Rl

Now one has @ = wyo and so by the definition of the Ruelle zeta function and by meromor-
phic continuation one gets R(5,wo0) = R(s, o). Thus one has Rem(k, o) = |R(k, o%)|>.
This proves the first equation in Theorem 1.2. Modifying Proposition 6.3, the second
equation in this theorem is obtained in the same way:.

[Che]
[Co]

[Do]
[Fr]
(Gi]
[GP]
[Hol]

[Ho2]
[Me]

[MePol]
[MePo2]

[MtM]

REFERENCES

J. M. Bismut, W. Zhang, An extension of a theorem by Cheeger and Mdller. With an appendix
by Francois Laudenbach, Astérisque No. 205 (1992)

U.Bunke, M. Olbrich, Selberg zeta and theta functions, Akademie Verlag, Berlin (1995)

U. Brocker, Die Ruellesche Zetafunktion fir G-induzierte Anosov-Flisse, Ph.D. thesis, Humboldt-
Universitit Berlin, Berlin, 1998.

J. Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979), 259-322

L. Cohn, Analytic theory of the Harish-Chandra C-function, Lecture Notes in Mathematics, Vol.
429. Springer-Verlag, Berlin-New York, 1974.

H. Donnelly, On the point spectrum for finite volume symmetric spaces of negative curvature,
Communications in Partial Differential Equations 6 (1981), no. 9, 963-992

D. Fried, Analytic torsion and closed geodesics on hyperbolic manifolds, Invent. Math. 84 (1986),
no. 3, 523-540

P. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Second
edition, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.

Y. Gon, J. Park, The zeta functions of Ruelle and Selberg for hyperbolic manifolds with cusps,
Math. Ann. 346, no. 3, (2010), 719-767

W. Hoffmann, The Fourier transform of weighted orbital integrals on semisimple groups of real
rank one, J. Reine Angew. Math. 489 (1997), 53-97

W. Hoffmann, An invariant trace formula for rank one lattices, Math. Nachr. 207 (1999), 93-131
R.B. Melrose, The Atiyah-Patodi-Singer index theorem, Research Notes in Mathematics, 4. A K
Peters, Ltd., Wellesley, MA, 1993.

P. Menal-Ferrer, J. Porti, Twisted cohomology for hyperbolic three manifolds, Preprint 2010,
arXiv:1001.2242

P. Menal-Ferrer, J. Porti, Higher dimensional Reidemeister torsion invariants for cusped hyper-
bolic 3-manifolds, Preprint 2011, arXiv:1110.3718

Matsushima, Murakami, On wvector bundle valued harmonic forms and automorphic forms on
symmetric riemannian manifolds, Ann. of Math. (2) 78 (1963), 365-416



[MP1]
[MP2]
[Pa]
[P1]

[Wo

23

W. Miiller, Analytic torsion and R-torsion of Riemannian manifolds, Adv. in Math. 28 (1978),
233-305

W. Miiller, Analytic torsion and R-torsion for unimodular representations, J. Amer. Math. Soc.
6 (1993), 721-753

W. Miiller, The asymptotics of the Ray-Singer analytic torsion of hyperbolic 3 manifolds, Preprint
2010, arXiv:1003.5168, to appear in: Metric and Differential Geometry, a volume in honor of Jeff
Cheeger for his 65th birthday, Progress in Mathematics, Birkhauser, 2012

W. Miiller, J. Pfaff, The asymptotics of the Ray-Singer analytic torsion for compact hyperbolic
manifolds, International Mathematics Research Notices 2012; doi: 10.1093/imrn/rns130

W. Miiller, J. Pfaff, Analytic torsion of complete hyperbolic manifolds of finite volume, Preprint
2011, arXiv:1110.4065

J. Park, Analytic torsion and Ruelle zeta functions for hyperbolic manifolds with cusps, J. Funct.
An. 257 (2009), no. 6, 1713-1758

J. Pfaff, Selberg zeta functions on odd-dimensional hyperbolic manifolds of finite volume, Preprint
2012, arXiv:1205.1754

A. Wotzke, Die Ruellesche Zetafunktion und die analytische Torsion hyperbolischer Mannig-
faltigkeiten, Bonner Mathematische Schriften 389 (2008)

UNIVERSITAT BONN, MATHEMATISCHES INSTITUT, ENDENICHER ALLE 60, D — 53115 BoNN, GER-

MANY

E-mail address: pfaff@math.uni-bonn.de



Bestellungen nimmt entgegen:

Sonderforschungsbereich 611
der Universitat Bonn
Endenicher Allee 60

D - 53115 Bonn

Telefon: 0228/73 4882
Telefax: 0228/73 7864
E-Mail: astrid.avila.aguilera@ins.uni-bonn.de http://www.sfb611.iam.uni-bonn.de/

511.

512.

513.

514.

515.

516.

517.

518.

519.

520.

521.

522.

523.

524.

Verzeichnis der erschienenen Preprints ab No. 511
Olischlager, Nadine; Rumpf, Martin: A Nested Variational Time Discretization
for Parametric Wollmore Flow

Franken, Martina; Rumpf, Martin; Wirth, Benedikt: A Nested Minimization Approach
of Willmore Type Functionals Based on Phase Fields

Basile, Giada: From a Kinetic Equation to a Diffusion under an Anomalous Scaling

Frehse, Jens; Specovius-Neugebauer, Maria: Fractional Interior Differentiability of the
Stress Velocities to Elastic Plastic Problems with Hardening

Imkeller, Peter; Petrou, Evangelia: The Numéraire Portfolio, Asymmetric Information and
Entropy

Chen, An; Petrou, Evangelia; Suchanecki, Michael: Rainbow over Paris
Petrou, Evangelia: Explicit Hedging Strategies for Lévy Markets via Malliavin Calculus

Arguin, Louis-Pierre; Bovier, Anton; Kistler, Nicola: An Ergodic Theorem for the Frontier of
Branching Brownian Motion

Bovier, Anton; Gayrard, Véronique; Svejda, Adéla: Convergence to Extremal Processes in
Random Environments and Extremal Ageing in SK Models

Ferrari, Patrik L.; Vet8, Bélint: Non-colliding Brownian Bridges and the Asymmetric
Tacnode Process

Griebel, Michael; Hullmann, Alexander: An Efficient Sparse Grid Galerkin Approach for
the Numerical Valuation of Basket Options under Kou’s Jump-Diffusion Model;
erscheint in: Sparse Grids and its Applications

Muller, Werner: The Asymptotics of the Ray-Singer Analytic Torsion of Hyperbolic
3-Manifolds; erscheint in: Metric and Differential Geometry Progress in
Mathematics, Birkhduser

Mdiller, Werner; Vertman, Boris: The Metric Anomaly of Analytic Torsion on Manifolds with
Concial Singularities

Griebel, Michael; Bohn, Bastian: An Adaptive Sparse Grid Approach for Time Series
Prediction; erscheint in: Sparse Grids and its Applications



525.

526.

527.

528.

529.

530.

531.

532.

533.

534.

535.

536.

537.

538

539

Maller, Werner; Pfaff, Jonathan: On the Asymptotics of the Ray-Singer Analytic Torsion
for Compact Hyperbolic Manifolds

Kurzke, Matthias; Melcher, Christof; Moser, Roger; Spirn, Daniel: Vortex Dynamics in the
Presence of Excess Energy for the Landau-Lifshitz-Gilbert Equation

Borodin, Alexei; Corwin, lvan; Ferrari, Patrik: Free Energy Fluctuations for Directed
Polymers in Random Media in 1+1 Dimension

Conti, Sergio; Dolzmann, Georg; Miiller, Stefan: Korn’s Second Inequality and Geometric
Rigidity with Mixed Growth Conditions

Buliek, Miroslav; Frehse, Jens; Steinhauer, Mark: Everywhere C® — Estimates for a Class
of Nonlinear Elliptic Sytems with Critical Growth

Frehse, Jens; Specovius-Neugebauer, Maria: Addendum to the Preprint 514; Fractional
Interior Differentiability of the Stress Velocities to Elastic Problems with Hardening

Griebel, Michael; Harbrecht, Helmut: A Note on the Construction of L-Fold Sparse Tensor
Product Spaces

Raisch, Alexander: Mixed Method for Conformally Invariant Variational Problems

Griebel, Michael; Hullmann, Alexander: A Sparse Grid Based Generative Topographic
Mapping for the Dimensionality Reduction of High-Dimensional Data

Beck, Lisa; Frehse, Jens: Regular and Irregular Solutions for a Class of Elliptic Systems in
the Critical Dimension

Bulicek, Miroslav; Frehse, Jens; Steinhauer, Mark: Weighted Integral Techniques and
Ca-Estimates for a Class of Elliptic Systems with p-Growth

Bebendorf, Mario; Kuske, Christian; Venn, Raoul: Wideband Nested Cross Approximation
for Helmholtz Problems

Maller, Werner; Pfaff, Jonathan: On the Asymptotics of the Ray-Singer Analytic Torsion
for Compact Hyperbolic Manifolds

. Miller, Werner; Pfaff, Jonathan: Analytic Torsion and L2-Torsion of Compact Locally

Symmetric Manifolds

. Pfaff, Jonathan: Analytic Torsion versus Reidemeister Torsion on Hyperbolic 3-Manifolds

with Cusps



