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ANALYTIC TORSION OF COMPLETE HYPERBOLIC MANIFOLDS OF
FINITE VOLUME

WERNER MULLER AND JONATHAN PFAFF

ABSTRACT. In this paper we define the analytic torsion for a complete oriented hyperbolic
manifold of finite volume. It depends on a representation of the fundamental group. For
manifolds of odd dimension, we study the asymptotic behavior of the analytic torsion
with respect to certain sequences of representations obtained by restriction of irreducible
representations of the group of isometries of the hyperbolic space to the fundamental

group.

1. INTRODUCTION

Let X be an oriented hyperbolic manifold of dimension d. Let G = Spin(d, 1), K =
Spin(d). Then there exists a discrete, torsion free subgroup I' C G such that X = I'\H¢,
where H¢ = G/ K is the d-dimensional hyperbolic space. First assume that X is compact.
Let 7 be an irreducible finite dimensional representation of G. Restrict 7 to I and let E.
be the associated flat vector bundle over X. By [MM] one can equip E, with a canonical
metric, called admissible metric, which is unique up to scaling. Let T'x(7) be the Ray-
Singer analytic torsion with respect to the hyperbolic metric of X and the admissible
metric in £, (see [RS], [Mu3]). It was proved in [MP], that for d even, Tx(7) = 1 for all
representations 7 as above.

Now let d be odd, say d = 2n + 1. In [MP] we introduced special sequences 7(m),
m € N, of irreducible representations of G and we studied the asymptotic behavior of
Tx(r(m)) as m — oo. The representations 7(m) are defined as follows. Fix natural
numbers 7 > 75 > -+ > 7,41. For m € N let 7(m) be the finite-dimensional irreducible
representation of G with highest weight (71 +m,..., 7,11 + m) (see [GW, p. 365]). By
Weyl’s dimension formula there exists a constant C' > 0 such that

n(n+1)

(1.1) dim(r(m)) =Cm~ =z + O(mw_l), m — 0.

One of the main results of [MP] is the following asymptotic formula: There exists a constant
C(n) # 0, which depends only on n, such that

n(n+1)

(1.2) logTx(7(m)) = C(n) vol(X)m - dim(7(m)) + O(m 2 )
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as m — oo. The 3-dimensional case was first treated in [Mu2]. This result has been
used in [MaM] to study the growth of torsion in the cohomology of arithmetic hyperbolic
3-manifolds.

The main goal of the present paper is to extend the results of [MP] to complete oriented
hyperbolic manifolds of finite volume. Let I'\H? be such a manifold. To simplify some
of the considerations we will assume that I' satisfies the following condition: For every
[-cuspidal parabolic subgroup P = MpApNp of G we have

(1.3) I'NP=TnNNp.

We note that this condition is satisfied, if I' is “neat”, which means that the group generated
by the eigenvalues of any v € I' contains no roots of unity # 1. We need (1.3) to eliminate
some technical difficulties related to the Selberg trace formula.

The first problem is to define the analytic torsion for non-compact hyperbolic manifolds
of finite volume. The Laplace operator A,(7) on E;-valued p-forms has then a continuous
spectrum and therefore, the heat operator exp(—tA,(7)) is not trace class. So the usual
zeta function regularization can not be used to define the analytic torsion in this case. To
overcome this problem we use a regularization of the trace of the heat operator which is
similar to the b-trace of Melrose [Me]|. This kind of regularization was also used by Park
[Pa] in the case of unitary representations of I'.

The regularization of the trace of the heat operator is defined as follows. Chopping off
the cusps at sufficiently high level Y > Yj, we get a compact submanifold X (Y) C X with
boundary 0X (Y). Let KP7(t,z,y) be the kernel of the heat operator exp(—tA,(7)). Then
it follows that there exists a(t) € R such that fX(Y) tr KP7(x,x,t)de — a(t)logY has a
limit as Y — oo. Then we put

(1.4) Tryeq (e_tA”(T)) = lim (/ tr K7 (t,z, z) de — a(t) log Y) .
X(Y)

Y —oo

We note that one can also use relative traces as in [Mu3] to regularize the trace of the heat
operator. The methods are closely related.

It turns out that the right-hand side of (1.4) equals the spectral side of the Selberg trace
formula applied to the heat operator exp(—tA,(7)). Using the Selberg trace formula, it
follows that Tryeq (e*tAP(T)) has asymptotic expansions as ¢ — +0 and as t — oo. This
permits to define the spectral zeta function. Let (71,...,7,.1) be the highest weight of 7.
If 7,41 # 0, then it follows that Tre, (e’mp(ﬂ) is exponentially decreasing as t — oo. In
this case the definition of the zeta function is simplified. It is given by

1 /o0 1 —tA(7)
— 17 Trpeg (e 27\ dt.
) Jy ol

The integral converges absolutely and uniformly on compact subsets of the half-plane
Re(s) > d/2 and admits a meromorphic continuation to C which is regular at s = 0. In
analogy to the compact case we now define the analytic torsion Tx(7) € RT with respect

(1.5) G(s;T) =



to E, by

d
1 d
(1.6) Tx(T) := exp (5 ;(—1)1’19%@(5; T)‘SZO) .
Again, the analytic torsion behaves quite differently in even and odd dimensions. We first
consider the odd-dimensional case. The main result of this paper is the following theorem.

Theorem 1.1. Let X = T\H*"! be a (2n+1)-dimensional, complete, oriented, hyperbolic
manifold of finite volume. Assume that I satisfies (1.3). There exists a constant C'(n) # 0
which depends only on n, such that we have

log Tx (7(m)) = C(n) vol(X)m - dim(7(m)) + O (mn(n;l) log m>

as m — Q.

This result generalizes (1.2) to the finite volume case. The constant C'(n) in Theorem
1.1 equals the constant C'(n) occurring in (1.2) and can be computed explicitly from the
Plancherel polynomials. It equals

T

(1.7) C(n) = (—1)nm,

where vol(S9) is the Euclidean volume of the d-dimensional unit sphere, see [MP, (2.24),

(5.22)]. We also consider the L?-torsion T)((2 )(7). Although X is noncompact, it can be
defined as in the compact case [Lo|. It can be computed using the results of [MP]. First
of all, we show that there exists a polynomial P.(m) of degree n(n + 1)/2 4+ 1 such that

(1.8) log T8 (7(m)) = vol(X) P, (m).

The polynomial is obtained from the Plancherel polynomials. Its leading term can be
determined as in [MP] and we obtain
n(n+1)

(1.9) log T (r(m)) = C(n) vol(X)m - dim(r(m)) + O(m™= ),

as m — o0o. Compared with Theorem 1.1 we obtain the following Theorem.

Theorem 1.2. Let X = T\H*"*! be a (2n+ 1)-dimensional complete, oriented, hyperbolic
manifold of finite volume. Assume that I satisfies (1.3). Then we have

n(n+1)

log Tx (1(m)) = log T (7(m)) + O(m™ = logm)

as m — 0Q.

Remark 1.3. We note that we may also assume that 7y,...,7,.; and m are in %N. Then
both Theorem 1.1 and Theorem 1.2 continue to hold.

Next we turn to the even-dimensional case. First recall that for a compact manifold of
even dimension, the analytic torsion is always equal to 1 (see [RS], [MP, Proposition 1.7]).
This is not true anymore in the noncompact case. Park [Pa, Theorem 1.4] has computed
the analytic torsion of a unitary representation of I' in even dimensions. His formula
shows that in the noncompact case, the analytic torsion in even dimensions is not trivial in
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general. Nevertheless, the torsion has still a rather simple behavior as shown by the next
proposition. For a hyperbolic manifold of finite volume X, denote by x(X) the number
of cusps of X. Let h be the standard Cartan subalgebra of g and let A(G) C hg be the
highest weight lattice. For A € A(G) let 7\ be the corresponding irreducible representation
of G.

Proposition 1.4. There exists a function ®: A(G) — R such that for every even-dimensional
complete oriented hyperbolic manifold X of finite volume one has

log Tx (1) = #(X)®(\), e AQ).

The function ® can be described as follows. There is a distribution J which appears
on the geometric side of the trace formula. It is of the form J = x(X) - .J, where J is
defined in terms of weighted characters of principal series representations of G (see (6.13)).
Let k] € C(G) be the function (1.10). There is ¢ > 0 such that J(k7) = O(e~) as
t — oo. Moreover J (k7) has an asymptotic expansion as t — 0. Thus the Mellin transform
M.J(s;7) of J(kT) is defined for Re(s) > 0 and admits a meromorphic extension to C
which is regular at s = 0. Then we have

d(N) = MJ(0;7)

for all highest weights A = (kq,. .., knyt1).

Next recall that for a compact manifold X, the analytic torsion equals the Reidemeister
torsion (see [Mul]). This is the basis for the applications of the results of [Mu2] to the
cohomology of arithmetic hyperbolic 3-manifolds in [MaM]. Currently it is not known if
there is an extension of the equality of analytic and Reidemeister torsion to the noncompact
setting. This is an interesting problem and the present paper is a first step in this direction.

We shall now outline our method for the proof of our main result. Let d = 2n + 1. We
assume that the highest weight of 7 satisfies 7,41 # 0. Let

41
K(t,7) =Y (=1)p Tryeg(e™ 4.
p=0
By (1.5) and (1.6) we need to compute the finite part of the Mellin transform of K (¢, 7) at
0. Let E, be the homogeneous vector bundle over X = G/K associated to 7 and let &,,(T)
be the Laplacian on E,-valued p-forms on X. The heat operator e **7(") is a convolution
operator with kernel H/?": G — End(APp*®@V,). Let e (g) =tr Ho (9), g € G, and
put
d
(1.10) K= (=1)7ph”.
p=1
Let Rr be the right regular representation of G on L*(T\G). There exists an orthogonal
Rr-invariant decomposition L?(I'\G) = L3(I'\G) & L?(I'\G). The restriction RE of Rr to
L%(T\G) decomposes into the orthogonal direct sum of irreducible unitary representations,
each of which occurs with finite multiplicity. On the other hand, by the theory of Eisenstein
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series, the restriction Rf of Rr to L2(T'\G) is isomorphic to the direct integral over all
tempered principal series representations of G. For ¢ € L2(T'\G) let

(REK)6) (x) = /G K (9)0(9)dg.

Then R&(KT) is a trace class operator and the Selberg trace formula computes its trace.
The right-hand side of the trace formula is the sum of terms associated to the continuous
spectrum and orbital integrals associated to the various conjugacy classes of I'. If we move
the spectral terms to the left hand side of the trace formula we end up with the spectral
side Jypec(k]) of the trace formula. The key fact is now that

K(t,7) = Jspec (k7).

By the Selberg trace formula, the spectral side equals the geometric side, that is, the sum
of the orbital integrals. This leads to the following fundamental equality:

(1.11) K(t,7)=I1(t;7)+ H(t;7)+T(t;7) +Z(t;7) + J(t;7),

where I(t;7) is the contribution of the identity conjugacy class of I' and H(¢;7) is the

contribution of the hyperbolic conjugacy classes of I'. Moreover, T'(t; 1), Z(t;7) and J(;7)

are tempered distributions applied to k] which are constructed out of the parabolic conju-

gacy classes of I'. Now we evaluate the Mellin transform of each term separately. Here an

important simplification is obtained using a theorem of Kostant on Lie algebra cohomology.
Let MI(7) be the Mellin transform of I(¢;7) evaluated at 0. Then we show that

1
log T)((Z) (1) = 5./\/1](7').

Now consider the representations 7(m), m € N. Using the results of [MP] we compute
MI(7(m)) and prove (1.8) and (1.9). Thus in order to prove our main result, we need to
show that the Mellin transforms at 0 of all other terms are of lower order. It is easy to treat
the hyperbolic term and the terms T'(¢;7(m)). The distribution Z(¢; 7(m)) is invariant and
its Fourier transform was computed explicitly by Hoffmann [Ho]. Using his results we
can estimate the Mellin transform of Z(¢;7(m)) at 0. Finally, the distribution J(¢;7(m))
is non-invariant. However it is described in terms of Knapp-Stein intertwining operators
which are understood completely in our case. With this information its Mellin transform
at 0 can also be estimated.

In [MP] we have used a different method which does not rely on the trace formula. It
would be interesting to generalize this method to the finite volume case. Especially the
Fourier transform, which we use to deal with Z(¢;7(m)), is a very heavy machinery and
is not available in the higher rank case. Part of the arguments used in [MP] go through
in the finite volume case as well. The difficult part is to deal with the contribution of the
parabolic terms.

This paper is organized as follows. In Section 2 we fix notations and collect some basic
facts. In Section 3 we review some properties of the right regular representation of G on
L*(T\G). In Section 4 we introduce the locally invariant differential operators which act on
locally homogeneous vector bundles over X. Section 5 is devoted to the regularized trace
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which we introduce there and relate it to the spectral side of the Selberg trace formula. In
Section 6 we apply the Selberg trace formula which leads to (1.11). Furthermore, we study
the Fourier transform of the distribution Z. Finally we derive an asymptotic expansion
as t — 0 for the regularized trace of the heat operator of a Bochner-Laplace operator.
In 7 we introduce the analytic torsion. In Section 8 we express the test function k] as a
combination of functions defined by the heat kernels of certain Bochner-Laplace operators.
The results of this section are needed to deal with the Mellin transforms of the various
terms on the right-hand side of (1.11). In Section 9 we study the L3-torsion. In the final
section 10 we prove the main results.

This paper arose from the PhD thesis of the second author under the supervision of the
first author.

2. PRELIMINARIES

In this section we will establish some notation and recall some basic facts about repre-
sentations of the involved Lie groups. For d € N, d > 1 let G := Spin(d,1). Recall that
G is the universal covering group of SOq(d, 1). Let K := Spin(d). Then K is a maximal
compact subgroup of G. Put X := G /K. Let

G =NAK

be the standard Iwasawa decomposition of G and let M be the centralizer of A in G. Then
M = Spin(d — 1). The Lie algebras of G, K, A, M and N will be denoted by g, ¢, a,m and
n, respectively. Define the standard Cartan involution 6 : g — g by

0(Y)=-Y" Y eq.
The lift of # to G will be denoted by the same letter . Let
g=top

be the Cartan decomposition of g with respect to 6. Let zg = eK € X. Then we have a
canonical isomorphism

(2.1) Ty X = p.
Define the symmetric bilinear form (-, -) on g by

1

(2:2) (Y1,Ys) = Ad=1)

B(Y.,Y:), Yi.Y:eu.

By (2.1) the restriction of (-,-) to p defines an inner product on T,,X and therefore an
invariant metric on X. This metric has constant curvature —1. Then X, equipped with
this metric, is isometric to the hyperbolic space H.



2.1. Fix a Cartan subalgebra b of m. Then
h:=adb

is a Cartan subalgebra of g. We can identify gc = so(d+ 1,C). Let e; € a* be the positive
restricted root defining n. Then for d = 2n + 1, or d = 2n + 2, we fix e5,...,e,,1 € 1b*
such that the positive roots At (gc, bc) are chosen as in [Kn2, page 684-685] for the root
system D, resp. B,y1. We let A*(gc, ac) be the set of roots of AT (gc, he) which do not
vanish on ac. The positive roots A*(mc, bc) are chosen such that they are restrictions of
elements from A*(gc, be). Fori =1,...,n+ 1 we let H; € hc be such that e;(H;) = 0, ;,
j=1,...,n+1. For a € A*(gc, be) there exists a unique H’, € he such that B(H, H,) =
a(H) for all H € he. One has o H,) # 0. We let

One easily sees that
(23) H:teizl:ej- = :l:HZ :|: H]
For j=1,...,n4+1 let

n+1-—j, G = Spin(2n + 1,1);
(2.4) j.:{ ( )

n+3/2—j, G=Spin(2n+2,1)."
Then the half-sum of positive roots pg and pyy, respectively, are given by
1 n+1

(2.5) PG =5 Z Q= ijej
j=1

a€AT(ge,he)

and
n+1

1
(26) PM ‘= 5 Z o = z;pjej.
]:

a€A+(mc,bc)

Let W be the Weyl-group of A(gc, be).

2.2. LetZ [%}] be the set of all (ki,...,k;) € Q7 such that either all k; are integers or all

k; are half integers. Then the finite dimensional irreducible representations 7 € G of G are
parametrized by their highest weights

27) AW = B(er+ o+ B (Pensss Fi(7) 2 Fa(r) 2 - > () 2 P ()],
if G = Spin(2n + 1,1) resp.

(28) A(T) =hki(r)er + -+ kppa(T)ensr; ki(T) > ka7) > -0 > kn(7) > kg (1) >0,
if G = Spin(2n + 2,1), where (ki(7), ..., knt1(7)) € Z [%]nﬂ.

Moreover, the finite dimensional irreducible representations v € K of K are parametrized
by their highest weights

(2.9) A(v) =ke(v)ea + -+ kni1(V)entr; ka(v) > ks(v) > -+ > kp(v) > ki (v) >0,
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if G = Spin(2n + 1, 1) resp.
(2.10) A(v)=ki(v)er + -+ knr1(V)eni1; ki(v) > ko(v) > - > kn(v) > ka1 (V)]

if G = Spin(2n + 2,1), where (ky(v), ..., ki1 (1)), (k1 (1), .. Ky (v)) € Z [L]"".
Finally, the finite dimensional irreducible representations o € M of M are parametrized
by their highest weights

(2.11)  Ao) = ka(o)ea + -+ + knya(0)ensa; ka(0) 2 ks(0) = -+ = k(o) = |knsa(0)],

if G = Spin(2n + 1,1) resp.

(2.12) Ao) =ka(o)er + -+ + kpy1(0)ent; ko(o) > -+ > k(o) > kpyi(0) >0,

if G = Spin(2n + 2,1), where (ks(0), ..., kns1(0)) € Z [%}n

2.3. Letd=2n+1. For 7 € G let 75 := 7 0 0. Let A(7) denote the highest weight of 7
as in (2.7). Then the highest weight A(7y) of 7y is given by

(2.13) A(mg) = ki(m)er + - + kn(7)en — kng1(7T)enya.

Let o € M with highest weight A(¢) € b% as in (2.11). By the Weyl dimension formula
[Knl, Theorem 4.48] we have

dmey= [ A0 towa)

aeAt (me,be) {par, @)

(2.14) -
11 ﬁ o)+ pi)’ = (ki(o) + p))’*
= _pQ .
i=2 j=i+1 J

2.4. Let M’ be the normalizer of A in K and let W(A) = M’/M be the restricted Weyl-
group. It has order two and it acts on the finite-dimensional representations of M as
follows. Let wy € W(A) be the non-trivial element and let my € M’ be a representative of
wy. Given o € M , the representation wyo € M is defined by

woor(m) = a(memmy*), m e M.

If d = 2n + 2 one has wygo = o for every o € M. Assume that d = 2n + 1. Let
A(o) = ko(o)es + -+ + kyr1(0)enyq be the highest weight of o as in (2.11). Then the
highest weight A(wgo) of wyo is given by

(2.15) A woo) = ka(o)ea + -+ -+ kp(0)en, — kpy1(0)ensa.

25. Let d = 2n+ 1. Let R(K) and R(M) be the representation rings of K and M.
Let ¢ : M — K be the inclusion and let ¢* : R(K) — R(M) be the induced map.
If R(M)Y@ is the subring of W (A)-invariant elements of R(M), then clearly «* maps
R(K) into R(M)" @), The first part of the following proposition is due to Miatello and
Vargas [MV, Proposition 1]. The more precise statement is due to Bunke and Olbrich [BO,
Proposition 1.1].
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Proposition 2.1. The map ¢ is an isomorphism from R(K) onto R(M)WVWY) . Explicitly,

let o € M be of highest weight A(o) as in (2.11) and assume that kn4q(c) > 0. Then if
v(o) € R(K) is such that

U'v(o) = {U 7= wa

0+ weo 0 # wyo

one has
(2.16) vio)= 3 (1) (A(o) - p).
pe{0,1}m

where the sum runs over all u € {0,1}" such that A(c) — p is the highest weight of an
irreducible representation v (A(o) — ) of K and c(p) := #{1 € pu}.

Let 0 € M and assume that o # woo. Then by Proposition 2.1 there exist unique
integers m, (o) € {—1,0,1}, which are zero except for finitely many v € K, such that

(2.17) o+ woo = Z my(0)i*(v).

veK

2.6. Measures are normalized as follows. Every a € A can be written as a = exploga,
where loga € a is unique. For ¢t € R, we let a(t) := exp (tH;). If ¢ € G, we define
n(g) € N, H(g) € R and k(g) € K by

g =mn(g)exp (H(g)e1)r(g)-
Normalize the Haar-measure on K such that K has volume 1. We let
1

(2.18) (XY= —50 5

B(X,0(Y)).

We fix an isometric identification of R4~ with n with respect to the inner product (-, -),. We
give n the measure induced from the Lebesgue measure under this identification. Moreover,
we identify n and N by the exponential map and we will denote by dn the Haar measure
on N induced from the measure on n under this identification. We normalize the Haar
measure on G by setting

(2.19) /G f(g)dg = /N /R /K e~V (na(t)k)dkdtdn.

The spaces X and ['\G, I' a discrete subgroup, will be equipped with the induced quotient-
measure.

2.7. We parametrize the principal series as follows. Given o € M with (o,V,) € o, let
‘H? denote the space of measurable functions f: K — V, satisfying

f(mk) = o(m)f(k), VkeK,VmeM, and /K I f(k) II* dk =|| f < oc.
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Then for A € C and f € H let

o (9) [ (k) = eHEDDIED f (15 g) ).
Recall that the representations 7, are unitary iff A € R. Moreover, for A € R — {0} and
o € M the representations 7, ) are irreducible and 7, and 7, », A\, \" € C are equivalent
iff either 0 = o', A = X or 0/ = woo, ' = —A. The restriction of 7, to K coincides
with the induced representation Ind}; (). Hence by Frobenius reciprocity [Knl, p.208] for
every v € K one has

(2.20) [T v =[v:o].

2.8.  Assume that d = 2n+ 1. For o € M and A € R let 1, ()\) be the Plancherel measure
associated to m, . Then, since rk(G) > rk(K), p,(N) is a polynomial in A of degree 2n.
Let (-,-) be the bi-linear form defined by (2.2). Let A(o) € b be the highest weight of o
as in (2.11). Then by theorem 13.2 in [Knl] there exists a constant ¢(n) # 0 such that

o) =cn) [ (ider + Ao) + par, @)
aeA™ (ge.be) (pe: )
For z € C let
(2.21) P,(z) = ¢(n) H (zer + Alo) + par, a>‘
oA+ (ge.he) (pe, @)
One easily sees that
(2.22) Py (%) =Pugo(2)-

3. THE DECOMPOSITION OF THE RIGHT REGULAR REPRESENTATION

Let I" be a discrete, torsion free subgroup of G with vol(I'\G) < co. Let 8 be a fixed set
of representatives of I'-nonequivalent proper cuspidal parabolic subgroups of G. Then B
is finite. Let xk := #B. Without loss of generality we will assume that Fy := M AN € ‘3.
For every P € 3, there exists a kp € K such that

P = NpApMp
with Np = kkagl, Ap = k:pAkgl, and Mp = k;pMk‘;l. We let kp, = 1. We will assume
that for each P € ‘B one has
(3.1) 'NnP=INNp.
Since Np is abelian, we have I' N Np\Np =2 T%"! where 797! is the flat (d — 1)-torus. For
P € P let ap(t) := kpa(t)kp'. If g € G, we define np(g) € Np, Hp(g) € R and kp(g) € K
by
(3.2) g9 =np(g)ap(Hp(g))rr(9)-

For each P € ‘B define
Lp: Rt — Ap
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by tp(t) := ap(log(t)). For Y >0, let
A% Y] = 1p(Y, 00).
Then there exists Yy > 0 and, for every Y > Y, a compact connected subset C(Y') of G
such that in the sense of a disjoint union one has
(3.3) G=T-C(Y)u | |T NpAL[Y]K
Pep
and such that

(3.4) v - NpAL Y] KN NpAL[Y]K # 0 < v € TN Np.
If for Y > Y, one lets
(35) Fp7y Z:AP[Y]XFHNP\Npg[Y,OO)XFmNP\Np,

it follows from (3.3) and (3.4) that there exists a compact manifold X (Y) with smooth
boundary such that X has a decomposition as

(3.6) X=XY)U| | Fpy

Pep
with X(Y) ﬂFRy = 3X(Y) = 8Fp’y and Fp’y ﬂFp/’y = @ if P 7é P
Let Rr be the right regular representation of G on L*(I'\G). We shall now describe
some basic properties of Rp. The main references are [Lal, [HC1] [Wal]. There exists an
orthogonal decomposition
(3.7) LA(T\G) = Ly(T\G) & Lo(I\G)

of L*(T\G) into closed Rr-invariant subspaces. The restriction of Rr to L3(I'\G) decom-
poses into the orthogonal direct sum of irreducible unitary representations of G' and the
multiplicity of each irreducible unitary representation of G in this decomposition is finite.
On the other hand, by the theory of Eisenstein series, the restriction RS of Rr to L2(T\G)
is isomorphic to the direct integral over all unitary principal series representations of G.

Next we recall the definition and some of the basic properties of the Eisenstein series.
For P = MpA,Np € ‘B let Ep be the space of all functions on G which are measurable
and left-invariant under (I'N P)NpAp and whose restriction to K is square-integrable. We
turn €p into a Hilbert space using the inner product

(@, W) :=vol(I' N Np\Np) / (k)W (k)dk.

K

For each A € C there is a representation mpy of G on Ep, defined by
(mpA(y)®)(z) = ePHA-L/2Hp @) o= OHd-D/2Hp @) (1)
Given ¢ € Ep and A\ € C, put
Dy (z) = AED/DHR@ ().
The action of the representation 7p is then given by
(A (Y)P)a(z) = Palzy).
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and 7p, is unitary for A € iR. Let £} be the subspace of Ep consisting of all right K-
finite and left 3,,-finite functions, where 3, denotes the center of the universal enveloping
algebra of me. For @ € £ and A € C the Eisenstein series E(P, ®, \, x) is defined by

E(P,®\z)= > &(yz).
~yeI'NP\T'
It converges absolutely and uniformly on compact subsets of {\ € C: Re(\) > (d—1)/2} x
G, and it has a meromorphic extension to C. Let P’ € 3. The constant term Ep/(P, @, \)
of E(P,®,\) along P’ is defined by

1
3.8 Ep/(P,®, \x):= / E(P,® X\ n'z)dn.
(38) . ) vol(I' N NpANpr) Jran . N ( )

Let W(Ap, Ap:) be the set of all bijections w: Ap — Aps for which there exists x € G such
that w(a) = zazr™!, a € Ap. Then one can identify W(Ap, Ap/) with kp/W (A)kp'. Thus
W(Ap, Ap/) has order 2. We let W (Ap, Ap/) act on C as follows. For w = kp/kgl and
A € C we put wA := \. Let wy be the non-trivial element of W (A). Then for w = kpwokp'
and A € C we put w\ := —\. Then one has

(3.9) Ep(P,® \ z) = Z e(WA+(d=1)/2)(Hp (z)) (CP,‘P(w: )\)q)) (2),
weW (Ap,Apr)

where
Cp/|p<’w2 )\) Ep = Epr
are linear maps which are meromorphic functions of A € C. Put
8:@(9]3, TI')\:@T('R)\.
Pep pep

Then 7 acts on € as an induced representation. For & = (®p) € £ and A € C put
E(® \x)=> E(P,®p\x).

pPep

Let £° = @pepf®. Let wy be the nontrivial element of W(A). Then the operators
cpr| p(k‘}wokz;l : A) can be combined into a linear operator

C(\): &% — &°,
which is a meromorphic function of A.

The space £° decomposes into the direct sum of finite-dimensional subspaces as follows.
Let P = MpApNp be a I'-cuspidal proper parabolic subgroup. For op € Mpand v € K
let £(op,v) be the space of all continuous functions ®: (I' N P)ApNp\G — C such that
for all z € G the function m € Mp — ®(mz) belongs to the op-isotypical subspace of the
right regular representation of M and for all x € G the function k € K — ®(xk) belongs
to the v-isotypical subspace of the right regular representation of K. For o € M set

E(o,v) =P E(op,v),

pPep
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where op € Mp is obtained from o by conjugation. Each &€(c,v) is finite-dimensional.
Furthermore, let

E(o) = @8(0, v).

Then £(o) is invariant under 7, and the restriction of 7y to £ (o) will be denoted by 7, ).
Now consider an orbit ¥ € W(A)\M. Let ¢ = {0, wo}. Put

E(o,v), wo = o,
EW,v) =
¥,v) {E(J,V)@g(wa,y), wo # o.
Then it follows that
(3.10) E=Pew,v),
J,v

where @ runs over W(A)\M and v over K. The operator C()\) preserves this decomposi-
tion. For ¥ € W(A)\M, v € K and X\ € C let

(3.11) CW,v,\): EW,v) — ED,v)

be the restriction of C(\). We note that for ¥ = {o,wo}, C(J,v, ) maps E(o,v) into
E(wo,v). We denote the corresponding operator by

(3.12) C(o,v,\): E(o,v) = E(wo, ).
Taking the direct sum with respect to v € K , we get operators
(3.13) C(o,\): E(0) — E(wo).

Next we recall the functional equations satisfied by F and C. For ® € £ and A € C we
have

(3.14) E(®,\) = E(C\)®,—)),

and

(3.15) C(NC(—=A) =1d.

Furthermore, let f € C°(G) be right K-finite. Then 7, (f) acts on £” and we have
(3.16) COVmA(f) = TA()C(N), A€eC.

Thus C(\) is an intertwining operator for the induced representation 7.

Now we come to the relation with the spectral resolution of Rf. For P = MpApNp € P
let Ry, denote the right regular representation of Mp on L*(Mp). Since Mp is compact,
it decomposes discretely as

(317) RMPZ @ d(O’p)O’p,

(TPGMP
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where d(op) = dim(op). For A € C let £, : Ap — C be the quasi-character given
by &Ex(ap(t)) == e?. Let Ind%(Ras,, A) be the representation of G induced from Ry, ®
Ext(d—1)/2- Then we have

(3.18) Tpa = IndG(Ras,, ).

The theory of Eisenstein series implies that

RS =2 @/RWP,M A\ = /Rm d.

pPep

Using the decomposition (3.17), the induced representation decomposes correspondingly
into the direct sum of principal series representations 7, . This gives the spectral resolution
of R{. (see [Wal, Section 3]).

Now let a be a K-finite Schwarz function. Define an operator Rr(a) on L*(T\G) by

(3.19) Re(a)é(x) := /G a(9)dl(zg)dg, 6 € IX(T\G).

Then Rr(«) is an integral operator with smooth kernel K, (z,y). Moreover, the decompo-
sition of Rr in (3.7) induces a decomposition of the operator Rr(«) as

Rr(a) = Ri(a) & R ().

It turns out that Rf(a) is again an integral operator with smooth kernel which can be
be computed explicitly in terms of Eisenstein series as follows. Let {e,: n € I} be an
orthonormal basis of € which is adapted to the decomposition (3.10), i.e., each e, belongs
to some subspace E(¥, v). The following proposition is the main result about the spectral
resolution of the kernel.

Proposition 3.1. Let o be a K-finite function in C'(G). Then Rg(«) is an integral
operator with kernel K(x,y) given by

(3.20) KS(z,y) = ﬁ Z /R<7l'i,\(oz)em,en>E(en,i>\,x)E(em,i)\,y) d.

m,nel

Furthermore, the kernel K¢ = K, — K¢ is integrable over the diagonal, the operator Ri(«)
s of trace class and its trace is given by

Tr(R(a)) = K%z, ) dx.
G
Proof. See [Wal, Theorem 4.7]. O
The Eisenstein series are not square integrable. However, the truncated Eisenstein series,

which are obtained by subtracting the constant terms in each cusp, are square integrable.
Their inner product gives rise to the Maass-Selberg relations which we recall next.
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Let Yy > 0 be such that (3.3) holds. Let Y > Y;. For P € P let xpy be the characteristic
function of NpA%[Y] K C G. Let ® € . For Y > Y; put

EY(®, )\ 2) = E(®,\x) — Z Z xpy (79)Ep(®, N, 79),
PeP ve'NNp\I'

where Ep(®, A\, ) is as in (3.8). By (3.4) at most one summand in this sum is not zero. By
[HC1] the function EY (®, \) belongs to L*(I'\G). Now we have the following proposition.

Proposition 3.2. Let &, ¥ € £° and A € C. Then one has

z

/F\G EY(®,i\, 2)EY (V, i), x) dov = — <C(—i)\)diC(@')\)q>7 \1;>

2i) Y —2iA
O, C(i\)V) —
2ix (PO =55
At the end of this section, we remark that the space L3(I'\G) admits a further decom-
position
(3.21) Li(T\G) = L2,,,(T\G) & L}

res

+2(P, V) logY +

(C(iN)D, T).

(MG).
Here L2 . (T'\G) is the space spanned by the cusp forms, i.e. the square integrable functions

cusp

f, which for all P € B satisfy
fo(r) = / f(nz)dn =0 for almost all x € G.
I'NNp\Np

One does not know much about L? . (I'\G) and its size in general. On the other hand, let

cusp

® € E(o,v). Let so € (0,n] be a pole of E(®,s). Then the function x — Res|s—s, E(P, 5)
is square integrable on I'\G' and L2 (T'\G) is spanned by all these residues of Eisenstein
series.
4. BOCHNER LAPLACE OPERATORS
Regard G as a principal K-fibre bundle over X. By the invariance of p under Ad(K),
the assignment

or d
T; = {% _ogexptX: X € p}

defines a horizontal distribution on (. This connection is called the canonical connection.
Let v be a finite-dimensional unitary representation of K on (V,, (-,-), ). Let

E,=Gx,V,

be the associated homogeneous vector bundle over X. Then (-, -}, induces a G-invariant

metricNBu on E,. Let V" be the connection on E,, induced by the canonical connection.
Then V¥ is G-invariant. Let

E,:=T\(G x,V,)
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be the associated locally homogeneous bundle over X. Since B, and V" are G-invariant,
they push down to a metric B, and a connection V¥ on F,. Let
(4.1) C®(G,v)={f:G—=V,: feC™ flgk)=v(k"f(g9), Vg€ G, Vk € K}.
Let
(4.2) CE(\G,v) :={f € C*(G,v): f(vg) = fl9) Vg€ G, ¥y €T}
Let C*°(X, E,) denote the space of smooth sections of E,. Then there is a canonical
isomorphism
A:C*(X,E,) =2C™(T\G,v)
(see [Mil, p. 4]). There is also a corresponding isometry for the space L*(X, E,) of L*-
sections of F,. For every X € g, g € G and every f € C*(X, E,) one has

d
A(Vi(gpr)(g) = %|t=oz4f(9 exptX).

Let &V — V' V" be the Bochner-Laplace operator of E,,. Since X is complete, &,, with
domain the smooth compactly supported sections is essentially self-adjoint [Ch]. Its self-

adjoint extension will be denoted by A, too. Let R be the regular representation of Z(g)
on C*°(G,v). Then by [Mil, Proposition 1.1] it follows that on C*°(G,v) one has

(4.3) A, = —R(Q) + v(Q),

where (2 is the Casimir operator of £ with respect to the restriction of the normalized
Killing form of g to & Let A, be the differential operator on E, which acts as —Rp(£2) on
C*(G,v). Then it follows from (4.3) that A, is bounded from below and is essentially self-

adjoint. Its self-adjoint extension will be denoted by A, too. Let e~ be the corresponding
heat semigroup on L*(G, v), where L*(G, v) is defined analogously to (4.1). Then the same
arguments as in [CY, sectionl] imply that there exists a function

(4.4) KY € (G x G,End(V},)),

with the following properties: K/ (g, ¢’) is symmetric in the G-variables, for each g € G,
the function ¢’ — K7 (g,¢’) belongs to L?(G,End(V,)), it satisfies

K{(gk,g'K) =v(k K/ (g9,9)v(K), Vg,9' € G, Vk, K € K

and it is the kernel of the heat operator, i.e.,

(e Hg)(g) = /G K2 (9,9)6(d)dg, Y6 € LX(G,v).

Since (2 is G-invariant, K} is invariant under the diagonal action of GG. Hence there exists
a function

H/ :G — End(V,)
which satisfies
(4.5) HY (k7 'gk')y = v(k) " o HY (g) ov(K), Vk, k' € K,¥g € G,
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such that

(4.6) K{(9,9')=H{(97'¢), V9.4 €G.

Thus one has

(47) etivg / HY(g7'd)d(g)dg, € IAG.v), g€

By the arguments of [BM, Proposition 2.4], H} belongs to all Harish-Chandra Schwartz
spaces (CY(G) ® End(V,)), ¢ > 0.

Now we pass to the quotient X = F\)? Let A, = V"*V” the closure of the Bochner-
Laplace operator with domain the smooth compactly supported sections of E,. Then A,
is self-adjoint and by (4.3) it induces the operator —Rp(€2) +v(Q) on C*°(I'\G, v). Thus
if we let A, be the operator —Rp(£2) on C°(I'\G, v), then A, is bounded from below and
is essentially self-adjoint. The closure of A, will be denoted by A, too. Let e7*4* be the
heat semigroup of A, on L*(T'\G,v). Let

(4.8) HY(t;z,2") = ZH”g vq')
~yel

where z, 2" € T\G, x =T'g, 2’ =T'¢’. By [Wal, Chapter 4] this series converges absolutely
and locally uniformly. It follows from (4.7) that

(o)) = [ H(ho,a)o@)de, o€ LAT\Gv), zeT\G.
G

Put
(4.9) hi(g) = tr H{(g),
where tr denotes the trace in End V,,. Define the operator Rr(hY) on L*(T'\G) as in (3.19).
Then Rp(hY) is an integral-operator on L*(T'\G), whose kernel is given by
(4.10) hY(t;xz,x') == tr H" (t;x,2').
We shall now compute the Fourier transform of hY. Let m be a unitary admissible rep-
resentation of G on a Hilbert space H,. Let  be the contragredient representation of v
and let Py(m) be the projection of H, onto HZ , the v-isotypical component of H,. By

assumption H” is finite dimensional. Furthermore, it easily follows from (4.5) and the
Schur orthogonality relations [Kn2, Corollary 4.10] that

(4.11) w(hy) = Py(m)mw(hy) Py (7).

The restriction of 7(hY) to HZ will be denoted by 7(h}) too. Define a bounded operator
on H,®V, by

(4.12) #(HY (g)) = / w(g) ® HY (g)dg.

Then relative to the splitting
K K\t
He @V, = (M@ Vi) @ (M0 V,))
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n(HY) 0
0 0/’
where m(H?) acts on (H, ® V;)*. It follows as in [BM, Corollary 2.2] that
(4.13) m(HY) = ™ 1d,

7(H}) has the form

where Id is the identity on (H, ® VI,)K. Now let A : H. — H, be a bounded operator
which is an intertwining operator for 7|x. Then A o w(hY) is again a finite rank operator.
Define an operator A on H, ® V, by A := A®1Id. Then by the same argument as in [BM,
Lemma 5.1] one has

(4.14) Tr <A o ﬁ(H{)) — Tr (Aon(hY)).

Together with (4.13) we obtain

(4.15) Tr (Ao n(h})) = ™ - Tr Al v, .

Let 7 € G and let ©, be its global character. Taking A = Id in (4.15), one obtains
O (hY) = ™D . dim(H, @ V)X =™V . [r . 1],

Now note that if d is odd, we have 7 = v for every v € K and if d is even we have
o = o for every o € M, see for example [GW, section 3.2.5]. Thus, in any case we have
[V: 0] = [v:o]. Moreover, by [GW, Theorem 8.1.3, Theorem 8.1.4] we have [v:0] <1
for all v € K and all 0 € M. Now consider the principal series representation 7, », where
o€ M and ) € R. Let O, be the global character of 7, . For all v € K one has

[Tox V] =[v:0].
by Frobenius reciprocity [Knl, p.208]. Hence for [v : o] # 0 one has
@U’)\(hz) — e (Q)

and one has ©,,(hy) = 0 for [v: 0] = 0. The Casimir eigenvalue can be computed as
follows. For o € M with highest weight given by (2.11) resp. (2.12), let

n+1 n+1

(4.16) c(o) =" (kj(0) + p;)* Z P2,

=2
Then one has
(4.17) Toa(2) = =A% + ¢(0).

For G = Spin(2n + 1, 1) this was proved in [MP, Corollary 2.4]. For G = Spin(2n + 2,1),
one can proceed in the same way. Thus we obtain the following proposition.



19

Proposition 4.1. Foro € M and X\ € R let O, be the global character of m, \. Let c(o)
be defined by (4.16). Then one has

CINUAE etle(@) =A%)
for [v: o] #0 and O, (hy) = 0 otherwise.
Finally, by (3.18), (4.17) also gives
(4.18) oA () = A2 + c(0).

5. THE REGULARIZED TRACE

In this section we define the regularized trace of the heat operator. The decomposition
(3.7) induces a decomposition of L2(I\@, v) = (LAT\G,v) @ V,)" as
(5.1) L*(D\G,v) = LA(T\G,v) ® LA(T\G,v).
Let A, be the operator induced by —Rr(f2) on C°(I'\G). The decomposition (5.1) is
invariant under A, in the sense of unbounded operators. Let A? denote the restriction of
A, to L2(I'\G,v). Then the spectrum of A? is discrete. Let A\; < Ay < ... be the sequence

of eigenvalues of A%, counted with multiplicities. This sequence may be finite or infinite.
For A € [0,00) let

NA) =#{j: \; <AL

be the counting function of eigenvalues. By [Mu4, Theorem 0.1] there exists C' > 0 such
that

(5.2) N(A) < O(1 + 2%

for all A > 0. In fact, in the present case, the exponent is d/2. This follows from an
estimation of the counting function of the cuspidal eigenvalues, which can be obtained
by adapting [Do, Theorem I.1] and its proof to the case of a locally homogeneous vector
bundle, and the fact that the residual spectrum is finite in the present case. Hence the
sum ) e~ converges for all ¢ > 0, the operator e 4% is of trace class and one has

(5.3) Tr (e*"Ag) = Z e N

Let HY be the kernel of e~ and let h? = tr H”. Then h? belongs to C*(G). Let h*(t;z,y)
be the kernel of Rr(hy). By Proposition 3.1, the kernel hZ(t; x,y) of Rf.(hY) is given by

1 . = .
6o By = Y [ malda) B v Beixg) d
ki VR

where {e;: k € I} is an orthonormal basis of £ adapted to the decomposition (3.10). Let
(5.5) ha(t; 2, y) = hY (8 2, y) — W (t; 2, y).
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By the second part of Proposition 3.1, h is the kernel of R&(hY) and we have

(5.6) Tr(e ') = Tr(RA(hY)) = /F\G hY(t; x, x)d.

Now the argument on page 82 in [Wal] can be extended to hy € C(G) and one has

(min(h} ey, ex) Ey(ek,i)\,x)EY(el,i)\,w) dxd\ < o0.
kol

s
Thus one can apply Proposition 3.2 and interchange the order of integration. Let C(o, v, \)
be the operator (3.12). Arguing now as in [Wal, page 82-84] and using Proposition 4.1 one
obtains

Tr (7,0(h})C(o,v,0)) (/@'etc(") log Y dim(o)
ho(t;x,x) de = : +
/X(Y) ( ) Z 4 Z Vit

JGM;O’Zon JGM
[vio]£0 [v:0]#0
1

- C(o,v, z)\)> d)\) + o(1),
as Y — oo. Now recall that the restriction of the representation 7, ;\ to K is independent
of the parameter \. Let
C(o,v,\): (E(0) @ V,)K — (E(wo) @ V,)E

be the restriction of C(o,\) ® Idy, to (E(0) ® V,)X, where C|(o, \) is the operator (3.13).
Using the intertwining property of C(o, A), equation (4.15) and equation 4.18 one obtains

Tr(C () Jog Y di
/ Wt a)de= Y e DCER0) (ne og Y dim(0)
X(Y)

z

d
Tr (wU,iA(h’t’)C(U, v, —i)\)d—

4 Vart

JEM;U:wOU UGM
[v:o]#0 [vio]£0
1 2 ~ d ~
~ Re_t(A —el0)) Ty <C(a, v, —iA)EC((T, I/,i)\)> d)\) +o(1),

as Y — oo. Thus together with (5.5), (5.6) we obtain

ket dim (o) log Y
h(t;x,x)dr = + et
[ e de = 3 TR 5

oeM J
[v:o]#0

+ Z etc(a) TI‘(C(O', v, 0))

(57) O'EMJ =woo 4
[vio]£0
—c(cr) . d ~ .
Z C(a, v, —Z)\)d—C(J, v, i) | dA
oeM -
[v:o]#0

+o(1)
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as Y — oo. It follows that fX(Y) tr h¥(t; x, x)dz has an asymptotic expansion as ¥ — oo

and following [Me], we take the constant coefficient as the definition of the regularized
trace.

Definition 5.1. The regularized trace of e * is defined as

- - Tr(C(o, v,0))
Tr,. tAy — T < tAff) Z te(o) Y,
Treg (e ) Tle + e —4

aEM;o‘:woo'

(5.8) o0

E / X2 —c(0)) <C(a, v, —i)\)ié(a, V,i)\)) dA.
dz
[u cr

Remark 5.2. The right-hand side of (5.8) equals the spectral side of the Selberg trace
formula applied to exp(—tA,). This follows from [Wal, Theorem 8.4].

Remark 5.3. There are slightly different methods to regularize the trace. One is to truncate
the zero Fourier coefficients of h¥(t;x,y) at level Y > Y{. The resulting kernel h¥ (¢; x, )
is integrable over the diagonal. The integral f « My-(t; 2, 2) dr depends on Y in a simple
way. If one subtracts off the term which contains Y, one gets another definition of the
regularized trace which is closely related to (5.8).

Remark 5.4. The definition of the regularized trace depends in a subtle way on a choice
of the representatives P of I'-cuspidal proper parabolic subgroups of G since the terms
in equation (5.8) involving the scaterring matrices C depend on this choice. If one ex-
presses the regularized traces as in Theorem 6.1 below, then its dependence on the set B
is incorporated in the constant C(I') which occurs in the definition of the distribution 7.
This fact has been brought to our attention by Werner Hoffmann. However, it will follow
immediately from our proof that our main result Theorem 1.1 is not affected by the choice
of P since the leading term C(n)vol(X)m - dim(7(m)) in Theorem 1.1 is independent of
the choice of .

6. THE TRACE FORMULA

In this section we apply the Selberg trace formula to study the regularized trace of the
heat operator e~ *4». To begin with, we briefly recall the Selberg trace formula. First we
introduce the distributions involved. Let o be a K-finite Schwartz function. Let

I(a) :== vol(I'\G)a(1).

By [HC2, Theorem 3], the Plancherel theorem can be applied to a.. For groups of real rank
one which do not possess a compact Cartan subgroup it is stated in [Knl, Theorem 13.2].
Thus if P,(z) is as in section 2.8, then for an odd-dimensional X one has

(6.1) I(a) = vol(X Z/ (iX)Ogr(a)dA,

ceM
[vial#0
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where the sum is finite since « is K-finite. In even dimensions an additional contribution
of the discrete series appears. Let Iy be the semisimple elements of I" and let C(I")g be the
set of T'-conjugacy classes [v], v € T's. Put

H(a) = /F\G Z oz yr)dz.

~vel's—{1}

By [Wal, Lemma 8.1] the integral converges absolutely. Its Fourier transform can be
computed as follows. Since I' is assumed to be torsion free, every nontrivial semi-simple
element ~y is conjugate to an element m(y) exp ¢(y)Hy, m(y) € M. By [Wal, Lemma 6.6],
I(7) > 0 is unique and m(y) is determined up to conjugacy in M. Moreover, £(7) is
the length of the unique closed geodesic in X associated to [y]. It follows that I, the
centralizer of v in I, is infinite cyclic. Let vy denote its generator which is semi-simple too.
For v € C(I')s — {[1]} let a, := exp {(y)H; and let

W e~ ()
det (Id — Ad(m,a,) s '

Proceeding as in [Wal| and using [Ga, equation 4.6], one obtains

(6:3) Ha)=) >, l(;;)L(% o) / " 0ua(a)e M),

ceM eC(l)s—[1] *

(6.2) L(vy,0) =

where the sum is finite since « is K-finite.

Now let P € P. For every n € ' N Np — {1} let X,, := logn. Write ||| for the norm
induced on np by the restriction of =B(-,0-). Then for Re(s) > 0 the Epstein-type zeta
function (p, defined by

(6.4) Cpls) = Y G ,
WGFONP—{l}

converges and (p has a meromorphic continuation to C with a simple pole at 0. Let Cp(I")
be the constant term of (p at s = 0. Then put

// oz(knpk‘_l)dnpdk‘//oz(k:nok:_l)dnodk:
Np K JN

Z Cp(I VOl L ﬂSJQ\ZP\lj)VP>TP(Oé)
Pep

Tp(a // (knpk~Hlog ||log np||dnpdk.
Np

Then T" and Tpr are tempered distributions. The distribution 7" is invariant. Let

ZCP VOI FONP\NP)

2n—1
et vol(S2n—1)



23

Applying the Fourier inversion formula and the Peter-Weyl theorem to equation 10.21 in
[Knl], one obtains the Fourier transform of T as:

(6.5) T(a)= 3 dim(a)%C(F) /]R O ()N,

The distributions 7% are not invariant. However, they can be made invariant using the
standard Knapp-Stein intertwining operators. These operators are defined as follows. Let
P, := NyAyM, be the parabolic subgroup opposite to Py. Let o € M and let (H7)™ be
the subspace of C*>-vectors in H?. For ® € (H?)* and A € C define ®, : G — V,, by

@)\(ﬂgk) = @(k)e(i)\el+p) loga'
Then for Im(\) < 0 the integral

(6.6) T N(@)E) = [ sk,

is convergent and Jp) p, (0, A) : (H7)>* — (H7)> defines an intertwining operator between
7o and 7, 5 p,, where 7,y 5 denotes the principal series representation associated to o,
A and P,. As an operator valued function, .J PolPo (0, ) has a meromorphic continuation to
C (see [KS]). Let v € K be a K-type of m,.5. Since [v: o] < 1 for every v € K, it follows
from Frobenius reciprocity and Schur’s lemma that

(6.7) Jpo1p, (0, M) (o = (02 A) - 1d,

where ¢, (0 : A\) € C. The function z +— ¢,(0 : z) can be computed explicitly. Assume
that d = 2n + 1. Let kao(0)es + - -+ + kpy1(0)e,t1 be the highest weight of o as in (2.11)
and let ko(v)es + - - - + kni1(v)ens1 be the highest weight of v as in (2.9). Then taking the
different parametrization into account, it follows from Theorem 8.2 in [EKM]| that there
exists a constant a(n) depending on n such that

[T725 D(iz = ki(0) = p) [T}5 iz + Ky (o) + py)
[T7%2 Dliz — kj(v) = p) IT}2 Tiz + ki (v) + pj + 1)

(6.8) c(0:z) =a(n)

This formula implies that

n+1 n+1 k (V)
(RTINS ARES S SILE o 5
=2 [k @)<t J21|k<>|lz+l+pf
<k;(v)

Next let d = 2n+2. Let ky(0)ea+ -+ -+ kyi1(0)e,sq be the highest weight of o as in (2.12)
and let k1 (v)e; + -+ - + kny1(V)eny1 be the highest weight of v as in (2.10). Then by [EKM,
Theorem 8.2], there exists a constant «(n) depending only on n such that

D(2i2) [T, Tliz = k(o) — pj) IT}25 Tz + k(o) + p;)

2% T3 Tiz — ky(v) — py + D ITE Tliz + ks (v) + py)

(6.10) c(o:z) =a(n)
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Equation (6.8) and (6.10) imply that Jpp, (o, A) has no poles on R — {0} and is invertible
there and that Jg,p, (0, 2) " is defined as a meromorphic function of z. It follows that the
weighted character

., d
(6.11) Tr (Jp0|p0(0, z) 1EJP0\P0(07 z)%,z(a)>

is regular for z € R — {0}. Let ¢ > 0 be sufficiently small. Let H. be the half-circle from
—e to € in the lower half-plane, oriented counter-clockwise. Let D, be the path which is
the union of (—oo, —¢|, H, and [e,00). Using (6.8), (6.10) and the fact that the matrix
coefficients of 7, .(«) are rapidly decreasing, it follows that (6.11) is integrable over D..
Let

kdimo . d
(6.12) o) == e /D Tr (Jp0|p0(g, 2) 1@(]}30‘;,0(0, Z)’]TU’Z(CY)) dz.

The change of contour is only necessary if Jp p, (7, s) has a pole at 0. Let
(6.13) J(a) ==Y Jo(a).
oM
Using [GW, section 3.2.5], [GW, Theorem 8.1.3, Theorem 8.1.4] , (6.8) and (6.10) it is easy

to see that [7: 0] = [v: 0] and ¢5(0 : 2) = ¢,(0 : 2) for all v € K and all ¢ € M. Thus by
(4.11) and Proposition 4.1 one has

d
(6.14) J(hY) = —% A [v: o] dim(o) /6 e =D, (o z)_lacy(a D 2)dz.
oceM
For notational convenience, if v € K and o € M with [v: 0] = 0 we let ¢,(0 : 2) := 0.

Now we define a distribution Z by
(6.15) I(a) =Y _ Tpla) — J(a).
Pep

We claim that 7 is an invariant distribution. This can be seen as follows. Using the formula
for Jy(m, ) on p. 92 of [Ho|, we get Ju,. (1, ) = Th(cr). Next using the formula for the
invariant distribution Ip(m, a) on p. 93 of [Ho] and formula (8) of [Ho], it follows that

Ip(L,0) = Tha) + Z dim(o) /DE Tr (Jpopo(a, Z)I%Jpo|p0<0, z)wg,z(a)> dz.

< 473
oeMy

Adding over P € B, we get
Z ]P(La) = I(Oé) o J(O(),
Py

which proves our claim.

Theorem 6.1. With the above notations, one has

Treeg(e ™) = I(hY) + H(WY) +T(hY) + Z(hY) + J(hY).
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Proof. By (5.8), Tryeg (e74) is the difference of Tr (e*tAg) and the terms in the trace

formula which are associated to the continuous spectrum. These are the last two terms in
the trace formula [Wal, Theorem 8.4]. Using [Wal, Theorem 8.4], the theorem on page
299 in [OW], and taking our normalization of measures into account, we obtain the claimed
equality:. (Il

The Fourier transform of the distribution Z was computed in [Ho]. We shall now state
his result. For o € M with highest weight ka(o)es + -+ + kyi1(0)e 1 and A € R define
As € (b)z by

nt1
(6.16) Ao 1= 1Aeg + Z(k‘j(a) + pj)e;.
j=2

Let S(bc) be the symmetric algebra of be. Define 1T € S(be) by
(6.17) M= [J] H.

OKEA+(mc,bC)

The restriction of the Killing form to h¢ defines a non-degenerate symmetric bilinear form.
We will identify b with he via this form and denote the induced symmetric bilinear form
on hg by (-,-). Then for « € AT(gc,bc) we denote by s, : hg — b& the reflection

o oflza)
Se(x) =2 2(a,a)

«. Now the Fourier transform of Z is computed as follows.

Theorem 6.2. For every K-finite « € C?*(G) one has
K )
I(a) = o Z /RQ(O', —A)O,x()dA,

where

O A) = —2dim(o)y — 5 3 T (14 Ay (Hu)) (1 Aa(Ha).
aeA*(ge,ac)

Here 1) denotes the digamma function and v denotes the Fuler-Mascheroni constant. More-
over & denotes the contragredient representation of o and 11 is as in (6.17).

Proof. This follows from [Ho, Theorem 5|, [Ho, Theorem 6], [Ho, Corollary on page 96].
Here we use that for d even and 7 € Gy, the discrete series of G, the term |Dg(a)|/*©x(a)
occurring in [Ho, Theorem 5] vanishes for @ = 1. This can be seen as follows. By the formula
for the character of the discrete series [Knl, Theorem 12.7], [Wa3, Theorem 10.1.1.1], one
needs to show that  y det(w) = 0. This has been established in the proof of Lemma
5 in [DG]. O

For the applications we have in mind, we shall now transform the functions Q(\, o) a
bit. In the rest of this section we assume that d = dim(X) is odd, d = 2n + 1. We start
with the following elementary lemma.
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Lemma 6.3. One has

(s,
3 H(Sa °) _ 9 dimo,

a€AT(gesac)

Proof. This is proved in [Ho, page 95] but can also be seen as follows. Let £ € b,
€ =E&eg+ -+ &ur1ns1. Then it follows from (2.3) that

(6.18) me) = J[ &-&)&+4)

2<i<j<n+1
If 7 is a permutation of {2,...,n+ 1} and

&= &aer2) + o+ np16r(nt)
it follows from (6.18) that
(6.19) (&) = £I1(¢).

Write A(o) + par = &aea + -+ + Enr€nya. Let A, be as in (6.16). Then if @ = e; £ e, one
has

(6.20) Sa(As) = FEjer + &aea + -+ + 1€ Fide; + i+ + Enpilntr
Using (2.15) and (6.18) it follows that

(621)  M(sere/(0)) = s o0 Tsertey (M) = T50r 20, Ohu))

Thus by (2.14) and (6.18) for o = ey = ¢; one gets

M(sa(\,)  (—1) s o TT( a2 e
T Ty L @=L =)

2<k<I<n+1 p=2
ol i
L @ all g
- & — &) 2—2p
L(par) 2<k<i<n+1 =2 & =&
PF#J
n+1 2 2
. -\ =
(6.22) ~ain(o) [[
p=2 >J P

p#£j

Now as in [MP, Lemma 5.6] one has

n+1 n+1 —A2 . 52
p
5 1

3] |
Jj=2 p=2 J D
P#J

for every A. This proves the lemma. U
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For j=2/....,n+1and XA € C let
H(361+ej/\0)
I(pwr)

Then if o is of highest weight ka(o)ea+ -+ -+ kyi1(0)ensr as in (2.11) it follows from (6.22)
that

(6.23) Pi(o,\) ==

L e () + )
02 Pl =dim(o) || Gy e o)
p#£j

In particular Pj(o, A) is an even polynomial in A of degree 2n — 2.

Proposition 6.4. Let 0 € M be of highest weight ky(c)es + - -+ + kny1(0)eny1. Assume
that all k;(o) are integral an that k,+1(0) > 0. Let the notation be as in Theorem 6.2.
Then one has
Qo, A) = Qwo, A);  Qo,\) = Q(F,—N).
Moreover one can write
Qo,\) = Qi(0,A) + Qa(0, A),
where Q1 (o, \) and Qa(0, A) are defined as follows. Let mgy := |ky41(0)| — 1. Then one puts

Qi (o, A) := —dim (o) (27 + (1 4+4X) + (1 —iX) + Z P_i_l)@) .

1<i<myg

Furthermore for every j let Pj(o,\) be as in (6.23). For mg <1 < k;j(0) + p; define an
even polynomial Qj,(o, \) by

Pi(o,\) — Pj(o,il)  Pj(o,\) — P;j(o, zl)'

6.25 ; A) =
(6:25) Qia(o:A) ) i =i
Then
n+1 n+1
( )+PJ
Z Z UZZ >\2+l2 Zdlm _|_p) +>\2
7=2 mo<li<
kj(o)+p;
n+1
=2 2 QuleN -5 X QuleN)
j=2 mo<I< l kj(o)+p;
kj(o)+p; 2<j<n+1

Finally, if kn11(0) < 0, one puts (o, ) = Qi (weo, N), Qa(o, A) = Qa(woo, N).
Proof. Let j € {2,...,n+ 1}. We have
(6.26) Ao(Heyse,) = 1A £ (kj(0) + pj) -

Now recall that p,,1 = 0 and that the highest weight of wgyo is given by ko(o)es + -+ - +
kn(0)en — kn+1(0)ent1. Moreover recall that for M = Spin(n) one has ¢ = ¢ if n is odd
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and ¢ = wyo if n is even. Thus (6.21) and (6.26) imply that Q(\,0)
o

= Q(A\, wpo) and
) = Q(—A\, ). Moreover, using ¢(z + 1) = £ +4(z) , (6.21) and (6.26)

Q0 we obtain
H(Sel-‘rej-)‘ﬂ)
W (¢<]_ + )\0<He1+e]~>) + ’(ﬂ(l - )\U(H€1+€j)>)
(8¢, —¢; As) _
iy (W o (Hepme))) + 9 (L= Ao(Hey))
:2% <¢(1 +iA) + (1 —id) + Z l2_2'_—l)\2

1<I<my

2l (kj(o) + pj)
> leﬁ(kj(a)wj)zH?)'

mo<I<k; (0’)+Pj

Using Lemma 6.3 and (6.21) we obtain

- 21 ki(o) + p
Qo, A) = (o, A) — ZPJ(Uv A) Z 12 4 \2 T (kj§0)<—|—)pj)2p—|)— 22

j=2 mo<l
<kj(o)+p;
Since Pj(o, \) is an even polynomial in A, for every j = 2,...,n + 1 and every [ with
mo < 1 < |k;j(o)] + p; we can write
Di(o, Nl

2122 QJZ(U )+ Pj(o,il)-——

Using (6.24) it follows that
Pj(o,i(kj(0) + p;)) = dim(o).
This implies the proposition. 0

EEDY)

Remark 6.5. There is a similar formula for ¢ € M with half-integral weight.

In order to define the analytic torsion, we need to know that the regularized trace of
e~ "2»(7) admits an asymptotic expansion as t — +0. We establish this in general for the
operators e~*». To begin with, we prove some auxiliary lemmas.

Lemma 6.6. Let ¢(t) fR —tx? /\2+ sr=d\. Then there exist a; € C such that

t) ~ Zajt%.
7=0
ast — 0.

Proof. We have
—t(A2+¢?)

¢ (&
o) = [ S
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One has

Thus one has
—t(A2+4¢?)
e
——d\=C+ Vrt.
/R A2 4 2
Writing e’ as a power series, the proposition follows. O

Lemma 6.7. Let ¢o(t) := [, e~ (1 4 i\)d\. Then there exist complex coefficients a;,
b;, ¢; such that ast — 0, there is an asymptotic expansion

Ga(t) ~ > a4 bt P logt + ) et
j=0 §=0 j=0

Proof. The asymptotic behavior of the Laplace transform at 0 of functions which admit
suitable asymptotic expansions at infinity has been treated in [HL].
Recall that
1 =By 1
6.27 1) =1 — -y 2. 4R NeN
(6.27) w(z+1) ogz+2z ; o 22k+ N(2), N € N,

where B, are the Bernoulli numbers and
Ry(2) = O(z7N7%), 2 — 0.
uniformly on sectors —m + ¢ < arg(z) < m — ¢. Consider

oF (1) == /OOO e P(1 4 iN)dA.

Let x be the characteristic function of [1, 00). Define a function

A
g(A) == (1 +1iX) — log(i\) — %)\)

and define a function

h(A) = M

2v/A

Then by (6.27) there is an asymptotic expansion
(6.28) hA) ~ ) @A™ A = o0,

k=1

First define

5 () = /0 ) e g(N)d\ = /0 N e~ h(\)dA.
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Then by (6.28) and [HL, Corollary 5.2] one obtains

S(t) ~ > a4y et
k=0 k=0
for complex aj, ¢). Next we have

/ e N log A d\ = tV/? / e log Ad\ — 425‘” “logt.
0 0

0 1 o0
/ N AN = / e NN LA\ + / e M A Ld\
1 \/Z 1

Finally we have

k—1
/ d\+C
Vii—o
——log\/E—FZ(—l)ka—l—C’.
k=1 ’

Putting everything together, we obtain the desired asymptotic expansion for ¢3. For the
integral over (—oo, 0] we proceed similarly.

Alternatively, one can also proceed as in [Koy, page 156-157, page 165-166]. The methods
of [HL] and [Koy] are closely related. O

Lemma 6.8. Let P(z) := Z;V:o a;z% be an even polynomial. Then there exist a/; € C such
that

/ e P(\)dA
R

I
S
oL~
~
d
|
|

Proof. This follows by a change of variables. O

Proposition 6.9. Assume that dim(X) is odd. There exist coefficients a;, b, ¢;, j € N,
such that one has

Tryeg (e74%) Zat] 2+th1 210gt—|—Zc]tJ

as t — +0.

Proof. We use Theorem 6.1 and derive an asymptotic expansion of each term on the right-
hand side. We can always ignore additional factors of the form e, ¢ > 0 by expanding
this term in a power series. The term I(h}) has the desired asymptotic expansion by
Proposition 4.1, equation (6 1) and Lemma 6.8 . Secondly, using [GaWa, Proposition 5.4]
one obtains H(h?) = O(e™%) for a constant ¢ > 0. By Propos1t10n 4.1 and equation (6.5),
the term T'(hY) has an asymptotic expansion starting with ¢~ 3. For every o € M with
[v: o] # 0 we write (), o) as in Proposition 6.4. Then by Proposition 4.1, Proposition
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6.4 together with Remark 6.5, Lemma 6.6, Lemma 6.7 and Lemma 6.8 it follows that the
term Z(hY) has the claimed asymptotic expansion in ¢. The term J(hY) has the claimed
asymptotic expansion by equation (6.14) and Lemma 6.6. 0

Remark 6.10. The proposition remains true in even dimensions. The proof, however, would
require more work due to the discrete series. This is not needed for our purpose.

7. THE ANALYTIC TORSION

Let 7 be an irreducible finite dimensional representation of G on V,. Let E. be the flat
vector bundle associated to the restriction of 7 to I'. Then E’ is canonically isomorphic
to the locally homogeneous vector bundle E, associated to 7|x. By [MM], there exists an
inner product (-,-) on V; such that

(1) (t(Y)u,v) = — (u, 7(Y)v) for all Y € ¢, u,v € V;
(2) (t1(Y)u,v) = (u, 7(Y)v) for all Y € p, u,v € V,.

Such an inner product is called admissible. It is unique up to scaling. Fix an admissible
inner product. Since 7| is unitary with respect to this inner product, it induces a metric
on E, which will be called admissible too. Let A?(E;) be the bundle of E, valued p-forms
on X. Let

(7.1) vp(7) = APAd" @7 : K — GL(APp" @ V;).
There is a canonical isomorphism
(7.2) AP(E:) ZT\(G Xy, ) (A" @ V7).

If AP(X, E;) are the smooth FE -valued p-forms on X, the isomorphism (7.2) induces an
isomorphism

(7.3) NP (X,E,) = C*(I\G, v,(1)),

A corresponding isomorphism also holds for the L?-spaces. Let A,(7) be the Hodge-
Laplacian on AP(X, E.) with respect to the admissible inner product. By (6.9) in [MM],
on C*(I'\G, v,(7)) one has

(7.4) Ap(t) =—-Q+7(2)1d.

If A(T) = ki(7)er + .. . kny1(7)ensq is the highest weight of 7, we have

(7.5) T(Q) = Z (k;(T) + p;)* Z P5-

For G = Spin(2n+ 1, 1) this was proved in [MP, sect. 2]. For G = Spin(2n+2,1), one can
proceed in the same way. Let 0 < A\ < Ay < --- be the eigenvalues of A,(7). By (7.4)
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and (5.8) we have

Trog () =S e 4 30 o tr(@—c(o)) TL(C(0, (7). 0))

4
J UGM;a:woa
[vp(7):0]#0
1 —t(r(@)e(0))
oceM
[vp(7):0]£0

. /]R e Ty (6(0, yp(T),—M)diié(a, up(T),m) dx.

Let
d

(7.7) K(t,7) =Y (—1)"p Tryeg(e "4,

p=0
Then the analytic torsion is defined in terms of the Mellin transform of K (¢, 7). For every
p=0,...,d, let v,(7) be the representation (7.1) and let hty”(T) be defined by (4.9). Put

d
(7.8) k= e TN (—1)pphye).

p=0
By Theorem 6.1 we have
(7.9) K(t,7)=1I1(kj)+ H(k) +T(k]) +Z(k]) + J(k]).

This equality will be used in section 10 to study the Mellin transform of K (¢, 7).

To define the analytic torsion, we need to determine the asymptotic behavior of the
regularized trace of e **»(") as t — co. To begin with we estimate the exponential factors
occurring on the right-hand side of (7.6).

Lemma 7.1. (1) Let G = Spin(2n+2,1). Let T be an irreducible representation of G.
Then

7(Q2) — ¢(o) >

-

for all o € M with [v,(1): o] # 0.
(2) Let G = Spin(2n + 1,1). Let T be an irreducible representation of G with highest
weight 11 + -+ + Tpr1€n11 as in (2.7). Then

T(2) —c(o) > 7'13+1

for all o € M with [v,(7): 0] # 0. Moreover assume that o € M is such that
[vp(T): 0] # 0 and such that o = woo. Then one has

7(Q) —c(o) > (7 + 1)2 + TZH > 1+ Tg-ﬁ-l'
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Proof. For p =0, ...,d let
vp = AP Ady: K — GL(A"p").

Recall that v,(7) = 7|x ® 1,. Let v € K with [1,(7) : ¥] # 0. Then by [Knl, Proposition
9.72], there exists v/ € K with [7: /] # 0 of highest weight A(v') € bf. and u € b which
is a weight of v, such that the highest weight A(v) of v is given by p + A(v'). Now let

V' € K be such that [r: /] # 0. Let A(+) be the highest weight of 1/ as in (2.9) resp.
(2.10). Then by [GW, Theorem 8.1.3, Theorem 8.1.4] we have

T > ki (V) >0, j=2,...,n+1,
ifd=2n+1 and
> k)], j=1,...,n+1,
if d = 2n + 2. Moreover, every weight u € b of v, is given as
p==xe; £---te;, j1<jo<--<gp<ntl

Thus, if v € K is such that [v,(7) : v] # 0, the highest weight A(v) of v, given as in (2.9)
resp. (2.10), satisfies

Tio1+1>kj(v) >0, je{2,...,n+1},
ifd=2n+1 and

T+ 1> ki(v) >0, je{l,....,n+1},

if d =2n+42. Let 0 € M be such that [,(7) : 0] # 0. Then using [GW, Theorem 8.1.3,
Theorem 8.1.4] it follows that

Tjo1+ 12> k(o)

for every j € {2,...,n + 1}, where the k;(0) are as in (2.11) resp. (2.12). Furthermore
note that by (2.4) we have p;_; = p; + 1. Using (7.5) and (4.16) we get

n+1 n+1 n+1 n+1
2
C(U>:Z( +p] Zp]<ZTJ 1+IO] 1 Zp]_T Tn+1+pn+1> .
j=2

If G = Spin(2n + 2,2), we have p,,1 = 1/2 and 7,,.1 > 0. If G = Spin(2n + 1,1), we have
Pn+1 = 0. Thus item (1) and the first statement of item (2) are proved.

Now assume that G = Spin(2n+ 1, 1). Assume that o additionally satisfies 0 = wgo. This
is equivalent to ky,41(0) =0 by (2.15). Thus since p,11 =0, p, = 1 we get

n n+1 n+1
c(o) = (ki(o) + p;)’ Zﬂ?é (751 + pj1) ZpJ—T — (1) =72,
=2 =2
Finally by (2.7) we have 7,, > 0. This proves the lemma. O

The next two lemmas are also needed to determine the behavior of the regularized trace
as t — oo.
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Lemma 7.2. There is an asymptotic expansion
2 ~ d ~ > .
/etA Tr (C(U, vp(7), —iN)—C (o, Vp(T),i/\)> dA ~ E bt~/
R dz =t

ast — oo.

Proof. Since C(o : vp(T) 1 iA) is analytic near A = 0, we have a power series expansion

z

- d = . - ,
Tr (C’(U, Vp(T), —M)d C(o,v,(1), z)\)) = ; a;N
which converges for |\| < 2e. Hence we get an asymptotic expansion
° e ~ d ~ - .
/ e ™ Tr <C(J, vp(T), —Z')\)EC<O', Z/p(T),i)\)> A\ ~ ijt_J/z.
e o

The integral over (—oo, —¢/2] U [¢/2,00) is exponentially decreasing. This proves the
lemma. U

Lemma 7.3. Let G = Spin(2n + 1,1). Let 7 € G and assume that T # 75. For p €
{0,...,d} let \g € RT be an eigenvalue of A,(T). Then one has g > 1/4.

Proof. If 7 # 1y one has |7,,1| > 1/2. Let G be the unitary dual of G. Recall that if Ao is
an eigenvalue of A,(7), there exists a 7 € G with [ : 7,(7)] = [7 : 15,(7)] # 0 such that
)\0 = —F(Q) + T(Q)

Since rk(G) > rk(K), it follows from [Knl, Theorem 8.54] and [Tr, Corollary 6.2] that
G consist of the unitary principal series representations 7, , o € M , A € R and the
complementary series representations 7y , o € M , A € R. First consider a unitary principal
series representation 7, . Then by Frobenius reciprocity [Knl, page 208], [m, : v,(7)] is
non zero iff [v,(7) : o] is non zero. Thus together with (4.17) and Lemma 7.1, for every
A € R one has

—Ton(Q) +7(Q) = —c(0) + A2 + 7(Q2) > 1/4.

Next consider a complementary series representation 7 ,. Again it follows from Frobenius
reciprocity that [m, : 1v,(7)] is non zero iff [v,(7) : o] is non zero. Moreover by [KS,
Proposition 49, Proposition 53], if 75 , belongs to the complementary series one has o =
weo and 0 < A < 1. Recall that by (4.17) one has

T Q) = (o) + N
Thus together with Lemma 7.1 one gets
—mo () +7(Q) = —c(o) = N +7(Q) > 77, > 1/4.
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We are now ready to introduce the analytic torsion. We distinguish between the odd-
and even-dimensional case. The reason is that the even-dimensional case can be treated
in a more elementary way.

First assume that d = 2n + 1. Let h,(7) := dim(ker A,(7) N L?). Using (7.6), Lemma
7.1 and Lemma 7.2, it follows that there is an asymptotic expansion

(7.10) Trreg (e747™) ~ hy(7) + Z et %t — o0
j=1

On the other hand, by Proposition 6.9, Tre, (e‘tAP(T)) has also an asymptotic expansion
as t — 0. Thus we can define the spectral zeta function by

@11) Gp(si7) = ﬁ/{) £ (Tryeg (e_tAP(T)) — hy(7)) dt
' LI R v (o=t _ (1
+F(s)/1 £ (Tryeg (720 — hy(r)) dt.

By Proposition 6.9, the first integral on the right converges in the half-plane Re(s) > d/2
and admits a meromorphic extension to C which is holomorphic at s = 0. By (7.10), the
second integral converges in the half-plane Re(s) < 1/2 and also admits a meromorphic
extension to C which is holomorphic at s = 0.

Now assume that 7 # 75. This is equivalent to 7,1 # 0. Then by (2.7) and Lemma 7.1
we have 7(Q) —c(o) > 1/4 for all ¢ € M with [,(7): 0] #0and p =0, ..., d. Furthermore
by Lemma 7.3 we have ker(A,(7) N L?) =0, p=0,...,d. By (7.6) it follows that there
exist C, ¢ > 0 such that for all p=10,...,d:

(7.12) Tryeg (e7277) < O™, t> 1.
Using Proposition 6.9, it follows that ,(s;7) can be defined as in the compact case by

1 /oo -1 —tA,(7)
7 Tryee (e72PV)) dt.
F(S) 0 g ( )

The integral converges absolutely and uniformly on compact subsets of Re(s) > d/2 and
admits a meromorphic extension to C which is holomorphic at s = 0. We define the
regularized determinant of A,(7) as in the compact case by

(7.13) Gls;7) =

(7.14) det A,(7) := exp <—%<p(s; T)yszo> .

In analogy to the compact case we now define the analytic torsion Tx(7) € RT associated
to the the flat bundle E;, equipped with the admissible metric, by

d
(7.15) Tx (1) := Hdet AP(T)(—I)pHp/g
p=0



36 WERNER MULLER AND JONATHAN PFAFF

Let K(t,7) be defined by (7.7). If 7 2 1y, then K(t,7) = O(e™*) as t — o0, and the
1d

analytic torsion is given by
1 oo
=-—— — [ tT'K(t,7)dt
2ds|,_, (F(s)/o (t,7) )’

where the right-hand side is defined near s = 0 by analytic continuation.
Now assume that d = 2n + 2. We use (7.16) as the definition of T'x (7). Let h,(7) :=
dim(ker A,(7) N L?) and let

(7.16) log T'x (7)

d

h(r) =) (=1)"phy(r).

p=0
Then it follows from (7.6) and Lemma 7.1 that there exists a constant ¢ > 0 such that
(7.17) K(t,7)—h(t) =0(e™"), t— oo

Next we use (7.9) to determine the short-time asymptotics of K (t,7) and to prove Propo-
sition 1.4. To compute the terms on the right-hand side of (7.9), we note that by [MP,
Lemma 4.1] we have

(7.18) Opa(k]) =0, Yoe M, \eR.

This result immediately implies H(k]) = 0 by (6.3), T'(k]) = 0 by (6.5), and Z(k]) = 0 by
Theorem 6.2. The identity contribution is given by

1K) = vol(X)kT (1)

Since k] is a K-finite function in C(G), the Plancherel Theorem can be applied to k] by
[HC2, Theorem 3]. Thus by [Knl, Theorem 13.5] and (7.18) we have

k() = > a(mOx (k).

where G4 denotes the discrete series and a(r) € C. Since k7 is K-finite, the sum is finite.
In [MP, Section 5] it was shown that for each 7 € G4, ©,(k7) is independent of ¢ > 0.
This implies that I(k]) is independent of ¢. Summarizing, it follows from (7.9) that there
exists ¢(7) € C such that

(7.19) K(t, 1) =c(r)+ J(k}).

Next we investigate J(k]). Using (7.8) and (6.14), we have

J(’fﬂz—ﬁz) ST Y Y v oldim(o)e @)

1 veK oM
(720) [VP(TG)ZV]7£O ©

d
-/E e ey (o z)_lacl,(a L 2) dz.

d
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Thus by Lemma 7.1 one has
J(k]) = O(e™), t = o0
for some constant ¢ > 0. Using (7.17) and (7.19) it follows that ¢(7) = h(7) and we get
(7.21) K(t,7) — h(1) = J(K]).

For the short time asymptotics of K (t,7), we use equation (6.10), Lemma 6.6, Lemma 6.7
and (7.21). This implies that there exist a;,b; € C such that

K(t, ) ~ Z a;ti =% 4 Z bt 2 logt + Z cit!
=0 =0 =0
as t — 0. Together with (7.17) it follows that the integral

/OOO (K (t,7) — h(T))dt

converges for Re(s) > 0 and admits a meromorphic continuation to s € C with at most
a simple pole at s = 0. Then in analogy with (7.16), we define the analytic torsion
Tx(7) € RT of E, with respect to the admissible metric by

s:O) '

Ty(r) = exp (%% <$ /0 T K () — h(r) dt)

Let 7 = 7, be an irreducible finite-dimensional representation of G' with highest weight
A € A(G). Using (7.20) it follows that there exists a function ¢ : Rt x A(G) — R such
that

J(k*) = r(X)(E, A)
for all even-dimensional X and A € A(G). For A € A(G) let

d(N) := %% (ﬁ /Ooow(t, N dt)

where the value at s = 0 is defined by analytic continuation. Then by the definition of
Tx (1) we have

I

s=0

log TX (7’)\) = H(X)q)()\)
for all even-dimensional X and A € A(G). This proves Proposition 1.4.

8. VIRTUAL HEAT KERNELS

In order to deal with the Mellin transform of the terms on the right-hand side of (6.1)
we express kj in terms of certain auxiliary heat kernels which are easier to handle. These
functions first occurred in [BO] in a different context. To begin with, we need some
preparation. In this section we assume that d = 2n + 1.
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Let 7 € G and let A(T) = mer+ - -+ Tui1€ns1 be its highest weight. For w € W let [(w)
denote its length with respect to the simple roots which define the positive roots above.
Let

wl.= {w e Wg: wla>0Va € A(mg, be)}

Let V, be the representation space of 7. For k = 0,...,2n let H*n, V) be the cohomology
of n with coefficients in V;. Then H*(n,V;) is an M A module. For w € W' let V,(, be
the M A module of highest weight w(A(7) + pg) — pe. By a theorem of Kostant (see [Wa2,
Theorem 2.5.1.3]), it follows that as M A-modules one has

Him; V) 2 Y Vi,

weW?!
l(w)=k

Using the Poincaré principle [Ko, (7.2.3)], we get

2n
(8.1) SN eV = Y (1),
k=0 weWl

as M A-modules.
For w € W' let o,,, be the representation of M with highest weight

(8.2) Aorw) == w(A(T) + pc)loc — pm
and let A\, € C such that
(8'3) w(A(T) + pG)‘uc = /\r,wel-

For £k =0,...n let

(8.4) Ak =Tiy1 +n—Kk

and let o, be the representation of M with highest weight

(8.5) Ao, = (i +1Deg+ -+ (1 + 1)exs1 + Thro€rio + -+ + Tnr1€na1-
Then by the computations in [BW, Chapter VI.3] one has

(.6) { Ny Ty Lw)): w € W = {( A\, 000, k) k=0,...,n}

' U (=M woor g, 2n — k) k=0,...,n}.
We will also need the following lemma.

Lemma 8.1. For every w € W one has

T(Q) = Af,w + c(orw).
Proof. See [MP], Proposition 2.7. O
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Fix ¢ € M and assume that o # woo. For v € K let m,(0) € {—1,0,1} be defined by
(2.17). Let HY be the kernel of e=*4 as in (4.7) and let hY := tr HY. Put

(8.7) h{(g) =€ " m,(o)hi(g).

v
my (0)#£0

Proposition 8.2. For k =0,...,n let o) and A\, be as in (8.6). Then one has

n

kz’ — Z(_l)k—i-left)\ikhg-r,k'

k=0
Proof. 1t is easy to see that as M-modules p and a @ n are equivalent. Thus in the sense
of M-modules one has
d d —1

(8.8) D (=1PpApt = (—1)Pp (APn* + A t) = (=17 A

p=0 p=0

Let i*: R(K) — R(M)"™ be the restriction map. Then it follows from (8.8), (8.1) and
(8.6) that we have

QU

i
o

n

(8.9) D (=1pit(np(r) = (=) ok + wooms)-

p=0 k=0
Since 7 # 79 we have o, # woo,y, for all k by (2.13), (2.15) and (8.5). Thus as in (2.17)
we can write
Ork + WoO,rf = Z my(o,5)i" (V).
veK
Moreover, the restriction map ¢* is injective. Therefore the following equality holds in
R(K) :

d n

D (FWpp(r) =Y (UMY (o).

p=0 k=0 vekK
Since R(K) is a free abelian group generated by the representations v € K, it follows that
for every v € K one has

d n

(8.10) S 1plny() 1] = S (=D (o,0).

p=0 k=0

Moreover let us remark that if v, vy, 15 are finite dimensional unitary representations of K
with v = v; ® 1 one has

(8.11) hY = R+ B2
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Thus we obtain

d d
kT = Z(_l)ppe—tr(ﬂ)h;’p(f) _ Z(_l)pp Z v, (7) : V] e—tT(Q)hty
p=0 p=0 vek
d
= > (1 pln(r) s vle Ty
veK p=0
(+) =D (=) my (o p)e Ry
veK k=0
_ Z(_l)k-‘rl Z my<0_77k)e—t(7(ﬂ))h2/
k=0 veK
(++) =STEDFS my (opg)e  Oretelono))
k=0 veK
(+++) _ (—1)k+1€_t)‘zvk'h?’k.
k=0

Here the second equality in the first line follows from (8.11), (+) is (8.10), (++) follows
from Lemma 8.1 and (+ + +) follows from (8.7). O

Finally we compute the Fourier transform of h7, o € M. Using (2.17) and Proposition
4.1, it follows that for a principal series representation 7, y, A € R we have

(8.12) Oy A (hY) = ™ for o' € {o,woo}; O, A (h7) =0, otherwise.

9. L2-TORSION

In this section we briefly discuss the L?-torsion T)((? )(7'). We assume that d = 2n+1. For
the trivial representation, the L?-torsion of complete hyperbolic manifolds of finite volume
has been studied in [LS]. Although X is not compact, the L-torsion can be defined as in

the compact case [Lo]. This follows from the fact that X is homogeneous. We assume that
the highest weight of 7 satisfies 7,,,1 # 0. Let ﬁp(T) be the Laplace operator on E,-valued
p-forms on X. By (7.4) the kernel of e~t2(7) is given by e*”(Q)HtV’”(T) where th”(T) is the
kernel of the operator induced by —£2 in the homogeneous bundle attached to v,(7) (see
(4.6)). Then the I'-trace of e~tAr(™) (see [Lo] for its definition) is given by

(9.1) Trp (645?(70 = vol(X)e @ (1),
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vp(T)

Applying the Plancherel theorem to h,”"’(1) and using Proposition 4.1, we get
(9.2) Trr (e‘tﬁp(7)> = vol(X) Z e_t(T(Q)—C(G))/e—t/\QPU(Z')\) dA.
JEM R
[vp(7):0]#0

mece /(<) 1S an even polynomial O egree — 1, we getl an asymptotic exXpansion
Si P i 1 ial of d d—1 t toti i
oo
. e 77 ~ a;ti™ — 0.
(9.3) T ( A <T>) St t 0
k=0

Since we are assuming that the highest weight of 7 satisfies 7,41 # 0, it follows from Lemma
7.1 and (9.2) there exists ¢ > 0 such that

(9.4) Trp <€—t5p(T)> -0 (e—ct)

as t — oo. Therefore the Mellin transform

/ Trp <e*tzp(7)) L dt
0

converges absolutely and uniformly on compact subsets of Re(s) > d/2 and admits a
meromorphic extension to C. Moreover, since the asymptotic expansion (9.3) has no
constant term, the Mellin transform is regular at s = 0. So we can define the L*-torsion
T¢ (7) € R by

d

(9:5) log T3 (1) = %% (%S) Z(—l)”p/RTrp (e‘tﬁr(f)) ot dt)

Now recall that the contribution of the identity I(k]) to the right hand side of (7.9) is
given by

s=0

I(t,7) = vol(X )k (1).
Let -
MI(s,T):= / I(t, 7t dt

be the Mellin transform. Using (7.8) and the considerations above, it follows that the
integral converges for Re(s) > d/2 and has a meromorphic extension to C which is regular
at s = 0. Let MI(7) be its value at s = 0. Then by (7.8), (9.1), and (9.5) we have

(9.6) log T (1) = %MI(T).

Our next goal is to compute MI(7). Let o, and A\, x, k = 0,...,n, be defined by (8.4)
and (8.5), respectively. Then for every k we have o, # woo, . Let P, _j be the Plancherel
polynomial. Using Proposition 8.2, the Plancherel theorem, (8.12) and (2.22), we obtain
(9.7) I(t,7) =2vol(X) D (~1)*le / e P, (i) dA.

k=0 R
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To evaluate the Mellin transform of I(¢,7) at s = 0, we use the following elementary
lemma.

Lemma 9.1. Let P be an even polynomial. Let ¢ > 0 and o € M. For Re(s) > g let

E(s) :/ ts_le_tCQ/e_t’\2P(i)\)d)\dt.
0 R

Then E(s) has a meromorphic continuation to C. Moreover E(s) is reqular at zero and

B(0) = —2n / POV

Proof. This follows from Lemma 2 and Lemma 3 in [Fr]. O

We have A, > 0 for every k. Applying Lemma (9.1) to the right-hand side of (9.7) we
obtain

n

MI(7) = drvol(X) 3 (~1)* /0 " P, (A)dA.

k=0

Together with (9.6) we get the following proposition.
Proposition 9.2. Let 7 be such that 7,1 # 0. Then we have

n )“r,k

log T () = 2m vol(X) Y (~1)* / P, ,(\) dA.

k=0 0

10. PROOF OF THE MAIN RESULTS

In this section we assume that d = dim(X) is odd. Let d = 2n + 1. We fix natural
numbers 71, ..., 7,41 With 71 > 7 > -+ > 7,41. For m € N we let 7(m) be the represen-
tation of G with highest weight (m + 7)e; + -+ 4+ (m + Tui1)eny1. Then 7(m) satisfies
7(m) o 6 ot 7. Hence the analytic torsion T'x(7(m)) is defined by (7.16).

Our goal is to study the asymptotic behavior of log Tx(7(m)) as m — oo. To begin
with, for & € {0,...,n} let Ay € R and o)k € M with highest weight A(or(m) k) be
defined as in (8.4) resp. (8.5). One has

NG rmyi) =(m + 71+ Deg + - + (m + 7 + Derpr

10.1
(10-1) + (m + Tryo)epro + -+ (M4 Tg1)enst
and
(10.2) Ar(m)k = M+ i1 + 1 — k.

We use the decomposition (7.9) of K(¢,7(m)) and study the Mellin transform of each term
on the right-hand side separately. First we consider the identity contribution which is given
by

I(t,7(m)) := vol(X)k; "™ (1).
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Its Mellin transform MI(7(m)) has been computed in the previous section and the con-
tribution to log Tx (7(m)) equals

%MI(T(m)) = log TP (7(m)).

In order to study the asymptotic behavior of log T)((2 )(7(m)) as m — oo, we use Proposition
9.2. Let

n )‘T(m),k
P (m) := %Z(_l)k/o Py (N)dA.
k=0

Using (10.2) and the explicit form of the Plancherel polynomial P, (), it follows that
P.(m) is a polynomial in m of degree n(n+ 1)/2 + 1. The coefficient of the leading power
has been determined at the end of section 5 of [MP]. Let C'(n) be constant given by (1.7).

Combining the results above with the computations of the leading coefficient of P.(m) in
[MP], we get

Proposition 10.1. We have
log T)(?)(T(m)) = C(n)vol(X)mdim1(m) + O(m%),
as m —» 0o.

Thus to prove our main results we have to show that the Mellin transform of the terms
in (7.9) which are different from the identity contribution are of lower order as m — oo.
We begin with the contribution of the hyperbolic term to the analytic torsion. For [y] €
C(I')s — [1] and ¢ € M let L(v,0) be defined by (6.2). Put

(10.3) Ly (v;0) == L(y;0) + L(v; weo).

Using (6.3), Proposition 8.2 and (8.12), it follows that the hyperbolic contribution is given
by

n

_in2 Ly
(10.4)  H(t,7(m)) := Z(_l)kJrle AT (m) b Z n(—())LSym(y;aT(m),k)
k=0 plec@,— TV

o~/
(4mt)z
In order to study the Mellin transform of H (¢, 7(m)), we use the following proposition.

Proposition 10.2. Let A > v/2n and o € M. For every s € C the integral

- 2 14 —0(+)? /4t
(10.5) G(s, \;0) ::/ F5—Lp—tA (7) Lo e—ldt
’ [y]€CT)s—[1] nr(7) (4rt)=

converges absolutely and is an entire function of s. There exists a constant Cy which is
independent of o and A such that

(10.6) |G(0, \;0)] < Cpdim(o).



44 WERNER MULLER AND JONATHAN PFAFF

Proof. Let
g fy 676(7)2/4t
fey= > n(( ))L(V;U)T-
hleC@e— TV (4mt)>
We have
. E fy 676(7)2/4"‘
0] < din) 3 St
pleCme— TV (4mt)>

where 1 stands for the trivial representation of M. Now let Ag be the Laplace operator
acting on C*°(X) and let A be its restriction to the point spectrum. Then the right-
hand side is exactly the hyperbolic contribution to the Selberg trace formula for Tr(e‘mg).
So we can apply the trace formula to estimate the right-hand side. Denote the trivial
representation of K by 1 too. Then if we apply the trace formula [Wal, Theorem 8.4,
Theorem 9.3] and use equation (4.16), Proposition 4.1, equation (6.1) and equation (6.3),
it follows that there exist constants ¢;(I"), co(T") such that

14 —l(v)? /4t
- e N / e~ ol (X) Py (iA)d
[Y]€C(I)s—[1] nr(7) (4rt)z &

—/ gt %) (w(1 +i)) 4 e(T) 4+ Tr (6(1, 1, —M)d%éu, 1, M))) AN + ¢ (D)e ™.
R

The right-hand side of this equation is bounded for ¢ > 1. Thus there exists a constant C}
which is independent of ¢ such that

2

(10.7) |f(t)| < Cydim(o)e™, t>1.
For A > n and s € C put

Go(s, \;0) ::/ £ 1e™™ £ (1) dt.
1

Then it follows from (10.7) that Gy (s, \; ) is an entire function of s and that for A > v/2n
we can estimate

(10.8)  |Go(0, X 0)| < / e ()] dt < Cydim(o) e 5, A > Vo,
1

Next we consider the integral from 0 to 1. To begin with, we need to estimate L(vy, o). By
[GaWa, Proposition 5.4] there exist a constant Cy > 0 such that for R > 0 one has

(10.9) #{[] € C(D)s: £(y) < R} < Coe™,
Thus if we let
(10.10) c:=min{l(v): [y] € C(I')s — [1]}

we have ¢ > 0. Moreover one has
det (Id — Ad(m,a,)|s) > (1 — e ™)

n
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Hence there exists a constant C3 such that for all [y] € C(I")s — [1] one has

! < C
det (Id — Ad(myay)]a) =

It follows that there exists a constant Cj; which is independent of ¢ such that for every
[v] € C(T')s — [1] one has

‘() < dim(a){(y)e ™)
nr(7y) ~ det(Id — Ad(m,a)ls)

Using (10.9) and (10.11), it follows that there exist constants ¢; > 0, C5 > 0 which are
independent of o such that

(10.12) 1f(t)] < Csdim(o)e @/t 0 <t <1.
For A > 0 and s € C put

(10.11) |L(v;0) < Cydim(o).

1
Gi(s, X 0) :/ =t e™™N f(t) dt.
0

By (10.12), G4(s, \; o) is an entire function of s and its value at zero can be estimated as
follows

1 1
1G1(0,\;0)] < / e ™ F (1) dt < Cgdim(o) / e Ne 2 dt < Cgdim(o).
0 0

Together with (10.8) the proposition follows. O

Now let m > v/2n. Then by (10.2) one has Ay, > V2n for every k. Thus by (10.4)
and Proposition 10.2 the integral

MH (s,7(m)) := /00 L H(t, m(m)) dt

0
absolutely and uniformly on compact subsets of C and defines an entire function of s.
Denote by MH (7(m)) its value at zero. It can be estimated as follows.

Proposition 10.3. There exists a constant C' such that for every m > v/2n one has

n(n—1)

IMH (7(m))| < Cm™ 2
Proof. By (2.14) and (10.1) there exists a constant C' such that for every m € N one has
n(n—1)

(10.13) dim(o myk) < Cm™ 2
The proposition follows from Proposition 10.2. 0

The contribution of the distribution 7" can be treated without difficulty.
Proposition 10.4. For Re(s) >> 0 let

MT(s,7(m)) = /0 h T (kT ™)t
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Then MT (s, 7(m)) has a meromorphic continuation to C and is reqular at s = 0. Let
MT(1(m) denote its value at s = 0. Then there ezists a constant C' which is independent
of m such that

n(n+1)

[(MT(7(m))| < Cm—=—
Proof. By Proposition 8.2, equation (6.5) and equation (8.12) we have

—25+1 1
MT(S,T 2\/_ Z k+1 dlm O'T(m) k) ()\T(m),k) r (S — §> .

The proposition follows from (10.2) and (10.13). O
To treat the remaining terms, we need the following two auxiliary lemmas.

Lemma 10.5. For c € (0,00), s € C, Re(s) >0, j € [0,00) let

2

1 ] —tz
C(s) == —/ t516tc2/ dzdt,
T Jo D. 12+ 7

where D, is the same contour as in (6.12). Then (.(s) has a meromorphic continuation to
C with a simple pole at 0. Moreover, one has

d|  Cls)

ds|,_oT(s)

= —2log (c+ 7).

Proof. The statement about the convergence of the integral and the meromorphic contin-
uation follows from Lemma 6.6 and standard methods. Note that

12 2
e tz 1 e tz
—dz = — — dz = .
D, 1z 2 Jzj=e 12

Ce(s) = ¢ #T(s)

and the claim follows in this case. Assume that 7 > 0. Then one has

J o 2 €_t)‘2
(10.14) Co(s) = = / tilete / SdAdt.
0

T A2 4 52
For Re(z?) > 0, Re(z) > 0 define a function ((z, s) by

((z,8) = J / et / il d\dt.
U ) A2+ 42

Then it is easy to see that ((z, s) is holomorphic in z. Let

et ,\ +22 et )\2+]
/ 51/ dAdt——/ t51/ d)\dt.

Hence, for j = 0 we have




Then, since e — 7" = O(t), t — 0, the integral converges for Re(s) > —1. One has

2 7t )\2+Z 2
_¢ _ Y= / / : O it =
A2 + 52 z4j
Since ¢(j,0) = 0, one has

(10.15) #(z,0) = —2log (z + j) + 2log 2.
On the other hand, one has

‘ B ] 0 7/ . e—t()\z-‘r]) j72s 1
C(j,s) = 7TS/O (dtt )/R O d\dt = ﬁsr(5+ 2).

Hence for s — 0 one has

r'(3)

C(j,s)zé—Qlogj%— NG +O(s )z%—Qlogijw(%)%—O(s).

Together with (10.15) this gives for s — 0:
1 1
((z,9) = 2logj + (5) —2log (2 +j) +2log2j + O(s)

1
=~ 2log (2 +]) =7+ 0(s),

where we used ¢(3) = —2log2 — ~. Since for s — 0 one has
1

(10.16) 5

=5+ 795+ O(s%),

the proposition follows.

Lemma 10.6. Let ¢ € RY, s € C, Re(s) > 1/2. Define

Co(s) = 1/00 ts—le—tc2/ N (14 4)) dAd.
0 R

s
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Then fc(s) has a meromorphic continuation to s € C with at most a simple pole at s = 0.

Moreover there exist a constant C'(v) which is independent of ¢ such that

d| )
s=0 F(S)

= —2logl' (14 ¢) +C(¥).

ds

Proof. The convergence of the integral and the statement about the meromorphic continua-

tion follow from Lemma 6.7 and standard methods. Fix ¢y € R*. Since et

as t — 0, it follows from Lemma 6.7 that the integral

e(s,2) = /0 et /R (e*t(“*) —e*t<A2+23)>¢(1+M) dAdt

—e7% = O(t)
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converges for Re(s) > —1 and is holomorphic in z € C, Re(z) > 0, Re(z?) > 0. One has

0 ~ B Y (1 +1N)
@gbc(O’Z) =% g A2+ 22

This proves the lemma. O

d\ = =2m)(1 + z).

Next we treat the contribution of the distribution Z to the analytic torsion. By Theorem
6.2, Proposition 6.4, Proposition 8.2 and (8.12) we have

n

(10.17) (k™) = 5= (1) le N /RQ<UT(m),k, Ne= d.
k=0

By Proposition 6.4 we have the decomposition
Q(UT(m),ka )\) - Ql (UT(m),k7 )\) + QQ(UT(m),kv )\)

Using the description of £2; and €2, together with Lemma 6.6, Lemma 6.7 and Lemma 6.8,
it follows that Z(k]"™) admits an asymptotic expansion

Z(k[™) ~ Za th=(d= 2/2+Zb t*=121og t 4 ¢
k=0 k=0

as t — 0. Moreover, since A, > m for every k, it follows that I(k:T(m)) = O(e™") as
m — oo. Thus for s € C with Re(s) > (d — 2)/2 the integral

MZ(s:7(m)) := / (k7™ dt

0

converges and has a meromorphic continuation to C with at most a simple pole at s = 0.
Let

] Mifs;7(m))

ds|,_, ['(s) '

Next we will estimate MZ(7(m)) as m — oo. To this end we establish some auxiliary
lemmas.

MI(r(m)) =

Lemma 10.7. There exists a constant C' such that for every m one has
(10.18)

. n(n+1)
> (=1)F dim(o i) (108 T (ks (Trimy k) + Ar(nyi) + Ve + C(10)) < Cm™ 2
k=0

where C'(1) is as in Lemma 10.6.
Proof. By (8.6) and (8.1) one has

2n

(10.19) 22 b dim(o(my 1) = dim(7) Y (=1)? dim APn* = 0.

p=0
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Thus the sum on the left-hand side of (10.18) equals
- . C(kpsa (o )+ A )
k +1\O7(m),k T(m),k
E (=1)" dim(or(m).x) (log T2m)

k=0

+ 7)\T(m),k)

It follows from (10.2) that there exists a constant C' which is independent of m such that
F<kn+1 (UT(m),k) + )\T(m),k)

1 <Cl .

og T2m) < Clogm
Using (10.2) and (10.13) the proposition is proved. O
The next two lemmas are concerned with the polynomials Pj(o,\), 7 = 2,...,n+ 1,

which are defined by (6.23).

Lemma 10.8. Let k € {0,...,n} and let j € {2,...,n+1}. Then there exists a constant
C' such that for every m one has

2(n—1)
=0
and such that
d (n—1)(n—2) 2(n_1)_1 . 2( _1)_,
: —~ L\ 0r(m),k> = 0m m
(10.21) P 0 V| < Om ST (1 e
1=0
for all X € C.

Proof. If we use the explicit formula (6.24) for the polynomials Pj(o, A), combined with
(10.1) and (10.13), the lemma follows. O

Lemma 10.9. Let k € {0,...,n} and let j € {2,...,n+ 1}. Forl € N withm <[ <
kj(o-mmyk) + pj let the even polynomial Q;i(0rm) ks A) be defined by (6.25). Then there
exists a constant C' such that for every m one has

n(n+1)

)‘T(m),k
/ Qi 1(Tr(my ks IA) A < Cm™ 2z .
0

Proof. By (6.25) we have

Q51(r(m).ky IA) = Pj(UT(m)”“’i/\l) - /\Pj O 1) | Fi(Orme MZ)J: /\Pj (e ),

Using the fact that Pj(c,z) is an even polynomial, together with equations (10.2) and
(10.21), we obtain

)‘T(m),k ) n(n+1)
/ Q;1(0rm) i IN) AN < 2Xr () MaAxX <Cm =2 .
0

PJ(O',Z)\)

N,

Now we can estimate MZ(7(m)) as m — oo.
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Proposition 10.10. There exists a constant C' such that for every m one has
n(n+1)

IMZ(r(m))| < Cm ™z .
Proof. For k € {0,...,n} let

MI(8; 0 (my k) = / tleT s T(R]T) dt,
0

As in the case of MZ(s;7(m)) it follows that the integral converges for Re(s) > (d —2)/2
and admits a meromorphic continuation to C with at most a simple pole at s = 0. By
Proposition 8.2 we have
= d MZI(8;07(m) k)
I — -1 k+1 7 y O1(m), .
ME(rim) = (-1 5 o

Let k € {0,...,n}. Using Proposition 6.4, Lemma 10.5 together with (10.14), Lemma 10.6
and Lemma 9.1 we obtain

d M.’Z(S;(TT(m)’k)
ds ['(s)

s=0

= 2k dim (07 (m) k) (108 T(kng1(0r(my k) + Armyk) + YAk + C(0))
s=0
n+1

)‘T(m),k
+EY Y <2Pj(07(m)7k,il)log (L4 Mrgmy ) + /0 Qj,l(aT(m),k,M)dA)

=2 kng1(07(m) k)<l
<kj(or(m),k)tP)

n+1 . 1 Ar(m),k )
Y (dlm(UT(m)Jg) log (I + Armyt) + 3 /0 Q;1(Tr(my ks z)\)d)\) :
Jj=2

lzkj("’f(m),k)""ﬂj
By (10.1) we have m < knpi1(0r(myx) and kj(o-onyx) + p; < m+ 7 +n+ 1 for every
j=2,...,n+1, and by (10.2) we have 0 < Ar(yx < m+ 7 +n. Thus if we apply Lemma
10.7, Lemma 10.8, Lemma 10.9 and (10.13), the proposition follows. O

Finally we consider the asymptotic behavior of the contribution of the non-invariant
distribution .J to log Tx (7(m)). For k € {0,...,n} let h,""* be as in (8.7), and for v € K
let

my(UT(m)’k) S {—1, 0, 1}
be defined by (2.17). By (6.14) we have

J(hjr(m),k) —ete(or(m) k) Z M, (O () 1) T ()

uef(

Heftc Ir(m),k

(vt )
(10.22) == > dim(0) Y my(0nmyi) [V 1 0]

oeM veK
d 2
. -1 . —t(z%—c(0))
X (o —c, (0 dz.
/DEC (0:2) oC (o:2)e z

To continue with the investigation of the right-hand side, we need the following lemma.
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Lemma 10.11. Let k=0,...,n. Foro € M let

d

(10.23) frm(z,0) == Z My (Ormyx) [V o) (o Z)_lacl,(a L 2).
veK
Then one has
-~ i i
fk?mZO' Zmya‘r(m)k |28 U]Z Z ZZ—l—pj_ Z ZZ+l+p]
veK J=2 \ m<i<k;(v) m<I<k;(v)
Ikj (o)|<t Ikj (o) |<l

Proof. By Proposition 2.1 and equation (10.1), it follows that for every v € K with
My (0r(myx) 7 0 and every j =2,...,n 4+ 1 we have

m—1 S k}j(V),

where (ka(v), ..., kny1(v)) is the highest weight of v. Thus, using (6.9) one can write

n+1 : ;
7 1
fkaO' Zmua"rm)k v U]Z Z m_ Z ZZ+l+p
vek J=2 \ m<I<k;(v) J m<I<k;(v) !
|k (o)]<l |kj(o)|<l
n+1 m—1 i m—1 i
10.24 v\Or( : : o 1
w2+ SmimariaS | S S
veK J=2 =1 =0
1>k (o) 1=|kj(o)]

Now if 0 = () OF 0 = Wy, (m),x the sum in the second row of (10.24) is zero by (10.1)
and (2.15). On the other hand, assume that o # 0,(n)k, 0 # WoTr(m) k- Since R(M) is the

free abelian group generated by o € M, it follows from (2.17) that

Z My (Or(myk) [V 2 0] = 0.

veK

Thus, in this case the sum in the second row of (10.24) is zero too. This proves the
proposition. [

Proposition 10.12. For s € C, Re(s) > 0 let

MI (850 (m) k) ::/ 1 _t)\r(m)kj(h Y g,
0
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Then MJ(s;00m) ) has a meromorphic continuation to C with at most a simple pole at
0 and we have

d MI(8; 0 (m) k

<N - ) _ . ST mu(or ) v 0] dim(o)

UEM VER
n+1

: Z Z log (\/Ai(mm + c(ormyk) — c(o) +1+ pj>

7=2 m<I<k;(v)
I>|k;(o)]

- g SN (0 mys) [v - 0] dim(o)

oEM vEK
n+1

> log <\/ X2 s+ 0rmi) = e(0) + k()] + )

j=2
|kj (o) |=m

Proof. Let o € M. By (2.16) the highest weights of v € K with My (Cr(m)e) 7 0 are
of the form A(o;(m) k) — p, where p € {0,1}". Now assume that also [v: o] # 0. Then

by [GW, Theorem 8.1.4] we have kj(0r(m) k) > kj(o). Hence if o € M is such that
[v 2 0] my (0 (myx) # 0 for some v € K, it follows from (4.16) that

(10.25) c(Ormy k) — c(o) > 0.
Thus the proposition follows from Lemma 10.5, equation (10.22) and Lemma 10.11. [

Proposition 10.13. Let k € {0,...,n}. There exists a constant C' such that for every m
one has

d
ds

MI(5;07(m) k)
['(s)

n(n+1)

<Cm 2z logm.

s=0

Proof. Let v € K such that My (0r(myx) 7 0. Let 0 € M such that [v: o] # 0. Then
(10.25) holds as shown in the proof of the previous proposition. Hence

m < \/)\E(m)’k + c(Or(myx) — c(o) < \/Ai(mm + c(Or(m).k)-

By (4.16), (10.1) and (10.2) there exists a constant C); which is independent of v and o
such that for every m we have

m < \/)\i(mm + c(or@my k) — c(o) < Cym.

For v € K as above, it follows from (2.16) and (10.1) that for every j € {2,...,n+1} one
has

ki(v) <m+m + 1.
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Thus there exists a constant Cy which is independent of v and o such that for every m we
have
n+1

Z Z )log (\/Af(m)’k + (T n) — (o) + 1+ pj>

J=2 m<I<k;(v)

< Cylogm.

By Proposition 10.12 it follows that there exists a constant C5 such that for every m € N
we have

d MUI(S;0:(m .
— (53 Orom).) <Cj logmz |0, (0 () 1) | Z [v: o] dim(o)
45, I(s) vek oeM
=C3logm Z |10, (0 () 1) | dim ().
vek

Now by (2.16) the number of v € K with My (0r(m)k) 7 0 is bounded by 2" and one has

| (07 (my )| < 1 for every v € K. Let A(v) € b be the highest weight of v as in (2.9)
Then by Weyl’s dimension formula [Knl, Theorem 4.48] we have

(10.26) dim(v)= ] (A(v) + px, @)

Q€A+ (bc,be) (e, )
Tt = o S (k) + i+ 1/2) = (k) + pj + 1/2)°
(10.27) = g(kz(u) +pi + 1/2)3-—1111 12— (o, 1+ 1/2)°

By(2.16) the highest weights of v € K with My, (0r(myx) 7 0 are of the form A(o-(m)x) —
where p € {0,1}". Using (10.1) it follows that there exists Cy > 0, which is independent
of m, such that for each v € K with m, (0;(n) %) 7 0 one has

n(n+1)

dim(v) < Cym™ 2
This proves the proposition. 0
Summarizing, we have proved the following proposition.

Proposition 10.14. For s € C, Re(s) > 0 the integral
M (s:7(m)) = / BT g
0

converges and MJ(s;7(m)) admits a meromorphic continuation to C with at most simple
a pole at 0. Let
MJ(s;7(m))
5=0 F(‘S)
Then there exists a constant C' such that for every m € N one has

n(n+1)

IMJ(T(m))] < Cm~ = logm.

MJI(1(m)) =
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Proof. By Proposition 8.2 one has

MJ(s;7(m)) = Z(—l)kHMJ(s; Tr(m) k)-
k=0
The proposition follows from Proposition 10.12 and Proposition 10.13. 0

Now by equation 7.16, equation 7.9 and Proposition 8.2 we have

log T'x (1(m)) = %(MI(T(m)) + MH(1(m)) + MT(1(m))
+ MZ(1(m)) + MJ(r(m))).

Combining equation 9.6 and Propositions 10.1, 10.3, 10.4, 10.10 and 10.14, Theorem 1.1
and Theorem 1.2 follow.
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