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Summary. Data from egg sampling surveys often contain a large proportion of zeros.
We examine the time and location of collected walleye pollock egg counts from the
western Gulf of Alaska, from Kodiak Island to Unimah Pass, in the years
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We take the excessive number of zeros in the data into account by taking a two stage
modelling approach, resulting in a zero-inflated hierarchical space-time model. The
binary (presence/absence of zeros) process is directly linked to the underlying intens-
ity process. Hence, the latter process influences both the presence of zeros and the
amount of eggs in non-zero observations. We fit our model for each year, and compare
the underlying intensities over the years within regions of the sampled area.
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1. Introduction

Spatial structure and temporal changes in spawning habits are important aspects of un-
derstanding the population dynamics of many fish stocks. Large surveys performing
egg counts during the spawning period have been performed for many species. In ad-
dition to variations in space and time, a typical pattern of such data is a large amount
of zero observations. These zero observations can be informative about the spawning
structure and neglecting them might lead to biased estimates and erroneous results.
In this paper we examine the time and location of collected walleye pollock egg counts
from the western Gulf of Alaska, from Kodiak Island to Unimah Pass, in the years�
������� ������� (with some years missing). According to Ciannelli et al. ( ������� ) there are
favorable geographical formations in the Shelikof strait, making it the main spawn-
ing region throughout the years. During the last decade there has been indications
of less spawning within this area. Statistical analysis of changes in the spatial struc-
ture over the years might shed light on this. The counts are per ��� . In addition to a
large amount of zeros, the data set contains many high non-zero counts. Using a tradi-
tional modelling approach without taking the zeros carefully into account might lead
to biased estimates and erroneous results. The expected counts, given that something
is observed, are large, and a natural approximation is the ����� transformed Gaussian dis-
tribution. Working within a Gaussian framework is preferable since a well-developed
theory exists, making the computations and implementation nicer. The presence of
zeros in the data set complicates the modelling. We aim to build a model that takes
this into account. This can be done in several ways. One way of handling zero-inflated
data, when the non-zero data follow a known distribution, is an approach in the spirit
of Allcroft and Glasbey ( ������� and ������� ) and Glasbey and Nevison (

�
�����
). They think

of the data as thresholded Gaussian variables, where the non-zeros form an upper part
of the distribution. This model imposes an assumption of zero observations being an
indication of small values of the underlying process, and is sensible in some applic-
ations, as in e.g. Natvig and Tvete ( ������� ). In our situation the eggs will typically
appear in clusters. A zero observation corresponds to missing a cluster. It is therefore
natural for us to think of a zero observation as something occurring with low prob-
ability. We therefore choose to apply a method along the lines of Dobbie and Welsh
( ����� � ), but in a space-time setting and with continuous data. They describe a two
stage modelling approach to zero-inflated data. They first model the presence/absence
of zeros by a logistic model and then, conditioned on the presence of the non-zero
counts, these are modelled by a truncated Poisson model. We also model the pres-
ence/absence of zeros by a logistic model, but then, conditioned on the presence of
non-zero counts, these are modelled by a Gaussian space-time model. The egg counts
are modelled according to an underlying egg intensity that both effects the zero and
the non-zero observations. Such a connection was proposed by Lambert (

�
��� � ), in a
non-spatial setting, and commented on by Agarwal et al. ( ������� ), in a spatial setting
(but not carried through). Papers concering egg abundance where the excessive num-
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bers of zeros are taken into consideration include Pennington (
� ��� � ) and Fox et al.

( ������� ). The problem of excessive zeros is also discussed in Brochers et al. (
�
�����

), but
not modelled. Both Pennington (

�
��� � ) and Fox et al. ( ������� ) separate the zero from the
non-zero observations. They model the non-zero observations as either lognomal or
through a GAM approach, respectively. The analysis in Pennington (

�
��� � ) is simple,
not spatio-temporal and the probability of zero observations is not explicitly computed.
The model in Fox et al. ( ������� ) is spatio-temporal and the probability of zero obser-
vations is modelled similar to the expectation process for the non-zero observations,
but no direct connection between them is made (i.e. the two processes just include the
same covariates).
In our modelling we obtain a hierarchical model which we analyze in a Bayesian
framework. Inference is performed through MCMC simulations. We choose to model
each year separately and compare the fit over years.

A description of the data is given in Section � . The model is presented in Section � .
Some comments on Bayesian inference is given in Section ! , while the results of fitting
the model to separate years are presented in Section " . A comparison over the years is
done in Section � , and some final remarks and a conclusion are given in Section

�
.

2. Data

Our objective is to examine the time and location of walleye pollock spawning in the
western Gulf of Alaska, from Kodiak Island to Unimah Pass, determining the area
within which the majority of the pollock spawns. In the years

�
�����#� ������� (with�
��� � missing) walleye pollock eggs were sampled within the area "�� � � ��$ N,
� � �%�� � ��$ W. Sampling was also done in

� ��� � , but with only a few samples from this year
( !�� ) and a fairly long time gap to the next year of sampling, it is omitted from the
analysis. The samples are densities, eggs per � � , taken at a given longitude, latitude,
Julian day (hereafter only denoted day) and bottom depth, recorded together with other
information. We only include samples taken between (and including) the

� � th and� ! � th day, and bottom depths between (and including) ��� and !����&� below sea surface,
which include most of the area and days within the year when eggs can be found. A
similar restriction was made by Cianelli et al. ( ������� ), who analyzed the non-zero
data through GAM-modelling. The top plot in Figure

�
displays the sampled days

within each year and the bottom plot the sampled days versus counts, all the years
taken together, with counts above zero on the �'��� scale. Traditionally the majority of
walleye pollock spawn in the last week of March and the first week of April, with the
Shelikof Strait as the preferred spawning grounds. From the bottom plot in Figure

�
we see a peak in count size around day

� ��� . We can see from the top plot in Figure�
that for some of the years the sampling went on for a few days, then stopped for a

while, and then continued for a few days more. In
� �����

,
�
��� � and the years after

�
��� ! ,
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sampling was done only late in the season, many days after the peak days seen in the
other years. These years were therefore neglected in this study.
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Figure 1: Top plot: range of the sampled days within each year. Bottom plot: the
sampled days versus the counts, with counts above zero on the ����� scale.

For each year a different number of boats sampled at different locations in space and
time. The amount of data varies from year to year. Table � in the Appendix displays
some summary statistics for all the years. Over all the years, about ����( of the data
consists of zero counts, for some of the years as much as

� ��( . Considering all the
years, about ��")( of the counts above zero are greater than ����� and about ���*( are
greater than

� ����� . These numbers vary over the years, but the tendency is the same
for all years. Typically sampling was done within the same region several times a day,
and often a few zero samples are collected on the same day within the same region as
high counts. The plots in Figure � display two representative years regarding day and
location of sampling,

�
��� ! and
�
��� � . The observations are plotted as circles, together

with the borders of " regions within the total area. These regions will both be used in
the modelling step (temporal structure depending on region) and to describe changes
in spatial structure over the years.
The top plots in Figure ! display the spatial distribution of the positive egg densities,
on ����� scale, for

�
��� ! and
� ��� � . These plots have been generated in S-plus by standard

kriging techniques (applying an exponential correlation structure). Figures
�

and
� � in

the Appendix display the same for all the years analyzed. Considering first � sub-areas;
the lower left part, the middle part (containing the Shelikof strait region) and the top
right part, there are certain features over the years. For years where the sampling was
done throughout the peak days, as in

�
��� ! , the zeros and the non-zeros in the lower
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left part are often mixed. In the middle part, where most of the sampling was done and
the highest values registered, there are considerably fewer zeros, but still some. In the
top right part again zeros and non-zeros are mixed, for some years more than others.
In

� ��� ! , ��! out of a total of
�
���

observations are zero. The numbers for
�
��� � are

���
out of ����� . For

�
��� ! the maximal count is
��� ! � ",+-� eggs per �.� , taken on day

� " ,
and for

�
��� � the maximal count is � � ��!��/+ � " eggs per � � , taken on day
� � . On day� " in

�
��� ! the " largest counts collected that year, all above ������� eggs per � � , were
collected south west in the Shelikof strait, while on day

� � in
�
��� � the � largest counts

collected that year, all above ������� , were collected somewhat more north-east in the
Shelikof strait.
The eggs are not necessarily evenly distributed in the water, but could rather be aggreg-
ated in “hot spots”, possibly depending on present eddies. When sampling, one might
hit a “hot spot” and thereby achieve a high count, or miss a “hot spot” resulting in a
zero count. The result is a dataset with some zeros and high counts close in space and
space-time. Hence, we could have a very high local variation at certain areas and time
points, compared to the overall variation. These eddies can occur and disappear, be
small or large. An important question is whether this causes the process to be inhomo-
geneous. According to biologists the clustering effects of these eddies are random, in
the sense that when having a “hot spot” at one place and a “none hot spot” at a nearby
place at a given time point , the reverse is just as likely at a next time point. Another
factor, not taken into consideration, is the diffusion and drift of eggs from spawning
time to the time of sampling. According to biologists the Alaska Coastal current is a
subsurface current and does not cause a serious displacement of the eggs, since spawn-
ing usually takes place at greater depths.
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Figure 2: The spatial observations plotted as circles, together with the borders of "
regions within the total area.
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3. The model

Working with space-time models, a challenge is to construct models that describe the
covariance structure that is present in the given data. Correlation can be present within
non-zero data, but the source of non-zero data can also influence the probability of zero
data in nearby observations. Most of the variation from year to year is due to climatic
variability. Since the latter has a low year-to-year dependence, each year is modelled
separately. The model will be presented for one year, suppressing reference to year in
the notation.

3.1. Modelling the observed egg densities

We model the egg densities through an underlying process 0�132 , describing the intensity
of eggs at spatio-temporal locations. The 0�132 process is interpreted as the underlying
intensity for egg densities for a given small spatial area for a time span of a few hours.
This process influences both the presence of zeros and the amount of eggs in non-zero
observations. We let 465 be the egg count for observation 7 , at location longitude 5 ,
latitude 5 and day 5 , 798 ��: +'+;+ :=< , and assume

4>538 ? � with probability @A5BDCFE 5HG with probability
�I� @J5 : (1)

where both @A5 and the expectation of
E 5 depend on the intensity 1A5 (with a slight abuse

of notation we will use 1K5 as the intensity at the spatio-temporal location for obser-
vation 7 and similarly for @A5 and

E 5 ). B
is an appropriate transformation that makes

it reasonable to assume
E 5 to be Gaussian distributed. Given 0�132 we further assume

that the
E 5 ’s are independent with expectation 1K5 and common variance L �M . Hence,E 5
NPO C 1A5 : L3�M G .

3.2. Modelling the presence/absence of zeros

The probability process @K5 models the discrete presence/absence of zeros in the egg
density process. The data indicates that regions with high density counts have fewer
zeros and vice versa. We therefore choose to make @K5 dependent upon the intensity
process 1A5 . In particular, we will assume ������Q;R C @A5HGS8UT �WV 1A5 . Local variations in 1K5
is then reflected directly in @K5 . The idea is that a high value of 1K5 should impose a
small value of @J5 , and vice versa. Notice that we do not put any constraints on T andV

. Hence, they are in theory allowed to be negative, although we should expect
V

to be
positive.
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3.3. Modelling the intensity process

The 0�132 process is specified as a combination of a regression term, a spatially varying
term and an independent random variable term, given by1A5
8YX[Z5A\^]`_badcJ]`e 5 : (2)

where fg5 is the spatial location corresponding to observation 7 .h 5 is a vector of covariates and \ is a vector of corresponding regression parameters._baic explains spatial variation not captured in the regression term. The terms e 5 are inde-
pendent random variables. They describe the local variation in the expectation process
not accounted for in the term

h Z 5J\^]`_badc . We let e 5
NPO C � : L �j G , 798 ��: +;+'+ :=< +
0 _ba 2 is a stationary spatial process withkmlon C _baFpJq : _ba Gr8sL �t�u�vSw x=wyoz + (3)

3.4. Remarks on the model

Conditional on the spatio-temporal intensity process 0�132 and the spatio-temporal prob-
ability process 0{@32 the egg densities are either zero or follow a Gaussian distribution
(on a transformed scale). Two counts are spatio-temporally dependent through 0�1b2
but conditionally independent given this process. To what degree the intensity process
describes both the binary and the non-zero data is reflected in the variance L �M . A small
value of L �M indicates a high correlation between these data sets, and vice versa.

Although we have suppressed reference to year in the notation, we emphasize that all
variables and parameters are assumed to change from year to year.

4. Bayesian inference

Inference will be made in a Bayesian setting with the computation carried out through
Markov Chain Monte Carlo (MCMC) simulations. Let

�| 1U8 C 1
} : +;+'+ : 1J~�G Z . Parallel to�| 1 we define
�| @ ,

�| e and
�| _ . We write

�| _ N�O C � :�� t G , where the elements of
� t are

defined through ( � ).
With the hierarchical description of the model given in Section � , the variables to be
simulated are \ : �| _ : �| e : L �t :{� t :�V3: T : L �M and L �j . In order to obtain reasonable mixing
properties of the MCMC algorithm, the updating is done in blocks. An option in these
cases is to group some highly correlated parameters, and update all the parameters
within each block simultaneously. For observations greater than zero,

h Z 5 \*]�_ 5 ]�e 5
�
7



B v } C 4�5HG , giving a negative correlation between \ , _ 5 , e 5 , and a possible block is ( \ : �| _ ,�| e ). Since there is a one to one correspondence between
C \ : �| _ : �| e G and

C \ : �| _ : �| 1�G ,
and considering

�| 1 in this case leads to nicer equations, we define a block consisting
of ( \ : �| _ ,

�| 1 ). Due to the zero observations the full conditional distribution of this
block is a non-standard one, and we apply a Metropolis Hastings step. For details, see
the Appendix. The other four blocks in our MCMC algorithm are

C V G , C T ),
C L �t : L �M : L �j G

and
C � t G . Given \ : �| _ ,

�| 1 ,
V

and T , the variances L �t : L �M and L �j can be sampled inde-
pendently of each other. The details of the algorithm are again given in the Appendix.

A priori we let \ N�O C � :=��� L �� G , where
���

is an identity matrix. Prior assumption
for

� t is given by
� t N�� Cd��� z :{� � z G . We assume a priori that

V N�O C � : L �� G andT6N�O C � : L �� G . L �� : ��� z :{� � z , L �� and L �� are parameters to be specified.
�,� z and

� � z
are chosen to be �,+�"�����7 < C����D� G and �/+-"���� ���9C{���D� G , respectively, where

�
is given in

equation
C ��G .

For the simulations performed in the next section, we have specified the following.L �� 8Y" . L �� 8 � � and L �� 8 � � . The presicion
�o  L �j is Gamma distributed with expect-

ation
�

and variance "�� . The presicion
�o  L �t is Gamma distributed with expectation

�
and variance

� ��� . Finally, the presicion
�o  L �M is Gamma distributed with expectation

�
and variance

��� + ��� .
5. Results

The years are analyzed separately, and results for
�
��� ! and

�
��� � are discussed in de-
tail. The MCMC chain was run with

� ��������� iterations (where ��������� iterations were
disregarded as “burn-ins”) to obtain posterior samples of the variables. In the analysis
we have used longitude ( ¡ l < ) , latitude ( ¡ ��¢ ), bottom depth ( £ u @ ¢¤� ) (on �'��� scale) and
day ( £ ��¥ ) as covariates. Day includes both a linear term and a quadratic term, and is
assumed to be region specific, using the " regions defined in Section � , and displayed
with numbering in Figure � . In addition to the other three covariates and a constant
term this results in a total of

� ! regression coefficients. The covariates are transformed
to be more uncorrelated to the constant term by subtracting the mean levels over all
observations. This gives

1J5¦8s§
} ] § � C ¡ l < 5 � ¨¡ l < G ] §A© C ¡ ��¢ 5 � ¨¡ ��¢ G ] §Jª C £ u @ ¢¤� 5 � ¨£ u @ ¢¤� G ]§A«­¬ ® c C £ ��¥ 5 � ¨£ ��¥ G ] §A¯­¬ ® c C £ ��¥ 5 � ¨£ ��¥ G � ]`_badcJ]`e 5 : (4)

where ¡'5 denotes the region corresponding to location of observation 7 , ¡H5°8 ��: +;+'+ : " .
For years where there are no observations in some of the regions the dimension of XP5
is reduced. As noticed in Figure � some of the counts were sampled outside the "
regions. They are taken to belong to their closest region. We have chosen to model the
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intensity process on the �'��� scale, that is,
B±CiE 5�G&8³²m´,µ CFE 5HG .

Figure � displays the residuals ����� C 465dG �U¶1 for 4>5¸·¹� plotted against day. There is
an overweight of residuals above zero. This is natural as the residuals are only for egg
counts above zero. The residuals are not too large and we see no apparent structure.
Hence, we conclude that the model fit for the non-zero data is fairly good for

�
��� ! and�
��� � .
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Figure 3: Residuals, ����� C 465�G �º¶1A5 for all 4>5»·[� , plotted against day.

In examining how well the model is able to capture the spatial structure in the data
we plot the spatial term f=@ ��¢ 5b8 ¶§
} ] ¶§ � C ¡ l < 5 � ¨¡ l < G ] ¶§A© C ¡ ��¢ 5 � ¨¡ ��¢ G ] ¶§Jª C £ u @ ¢¤� 5 �¨£ u @ ¢¤� G ] ¶_baic in the bottom row in Figure ! . Comparing these plots with the spatial
plots of the data in the top row, keeping in mind the different scales, we see that the
model captures the main features of the spatial structure in the data. The high and low
intensity regions are roughly identified.
For considering the temporal fit we define

¢ u �¼@K5½8 ¶§A«­¬ ® c C £ ��¥ 5 � ¨£ ��¥ G ] ¶§A¯­¬ ® c C £ ��¥ 5 �¨£ ��¥ G � . If the model fit is good the term ����� C 465dG � f­@ ��¢ 5 for all 4>5¾·¿� should be
close to the temporal term (i.e. L �j is small) (see ( � )). Hence, we plot in Figure " both
these two terms against day of sampling. If the spatial fit is good (displayed in Figure! ) and the

¢ u �¼@J5 is close to �'��� C 465HG � f­@ ��¢ 5 for all 4>5S·�� over the sampled days,
we conclude that the temporal fit is satisfactory. �'��� C 4^5HG � f­@ ��¢ 5 , for all 4>5*·�� ,
are plotted as points with region coding (blue).

¢ u �¼@ are also plotted as points with
region coding, but connected with lines (red). From the plots in Figure " we see that
the temporal effect on egg density for several regions are not necessarily linear. We
especially notice how the temporal effect on egg density varies for different regions.
As an example, consider region

�
, containing the Shelikof strait. In

� ��� ! , where most
of the sampling in this region was done early, the temporal effect on egg density in this

9



region is slightly convex. In
�
��� � , where the sampling in this region was done from

the peak days throughout the season, it is piecewise linear with large negative slopes.
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Figure 4: Top row: spatial distribution of the collected egg densities for
�
��� ! and

�
��� �
based on smoothing the non-zero data. Bottom row: the spatial fit,

¶§
} ] ¶§ � C ¡ l < 5 �¨¡ l < G ] ¶§A© C ¡ ��¢ 5 � ¨¡ ��¢ G ] ¶§Jª C £ u @ ¢¤� 5 � ¨£ u @ ¢¤� G ] ¶_baic , 7D8 ��: +;+'+ :=< , for the same years.
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Table
�

displays the MCMC posterior means with standard deviations for the space-
time independent variables entering the model for the years

�
��� ! and
�
��� � . The es-

timated coefficients for longitude and latitude, § � and §A© , indicate a positive north east
direction for the spatial influence of the egg densities for all the three years. The estim-
ated coefficient for bottom depth, §Kª , indicates an increasing egg density with greater
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depths. Many of the temporal coefficients, §Â«­¬ ® c and §A¯­¬ ® c , Ãg5Ä8 ��: +'+;+ : " , have negative
signs for all the three years, resulting in the temporal fit on egg density as displayed in
Figure " . L �M is estimated to be small for

�
��� ! and
�
��� � . That is, the intensity process

describes both the binary data and the non-zero data well for these two years.

Parameter 1984 1993§
} 4.2116(0.1420) 3.2065(0.0883)§ � 0.7880(0.2245) 1.2608(0.1218)§A© -0.5320(0.0941) -0.1922(0.1258)§Jª 2.3610(0.2776) 1.2989(0.0810)§A«­¬ ®�Å -22.591(1.119) -12.273(0.220)§A«­¬ ® � 11.738(4.163) -24.970(11.067)§A«­¬ ® 	 -26.157(5.864) -31.088(11.031)§A«­¬ ® � -21.455(11.881)§A«­¬ ®ÇÆ -7.232(9.719) -39.164(06.425)§A¯­¬ ®�Å 3.755(2.268) -0.737(0.248)§A¯­¬ ® � -16.510(4.245) -24.509(11.752)§A¯­¬ ® 	 -27.390(3.112) -13.395(11.884)§A¯­¬ ® � -0.875(6.070)§A¯­¬ ®ÇÆ -6.796(5.594) 10.598(2.323)L �t 2.0585(0.3451) 0.6364(0.2204)� t 0.2621(0.0654) 0.2558(0.2243)T 2.1161(0.3240) 0.5964(0.2035)V
0.8464(0.0744) 1.0363(0.1360)L �j 0.4235(0.0484) 0.4869(0.0462)L �M 0.4069(0.0535) 0.1050(0.0109)

Table 1: Posterior means and standard deviations, based upon the MCMC simulations
of the parameters.

Results from fitting all the years are displayed in the Appendix. Figures
���

and
� �

display the spatial fit for all the years, as described in the beginning of this section,
and shown in Figure ! for

�
��� ! and
�
��� � . Figures

� � and
� ! display the temporal

fit, also as described in the beginning of this section, and as shown in Figure " for�
��� ! and
�
��� � . Comparing the spatial fit for all the years in Figure

���
and

� � with the
plots in Figure

�
and

� � in the Appendix, displaying the distributions of egg densities,
and keeping in mind the different scales, we see that the spatial fit is captured by the
model for most years. For some years there are a few extreme values in the Shelikof
strait, and the model does not seem to be able to capture these in the spatial fit, as is
seen for e.g.

� ��� � . There might be a too abrupt jump from small to extreme densities.
High values in the spatial fit is typically found on the Shelf of the Alaska Peninsula,
along the Alaska Peninsula and in particular in the Shelikof strait.

�
���/�
seems to be
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an exception, with low values along the Alaska Peninsula and high values in the far
north-east. Comparing the plots in Figures

���
and

� � with those in Figures
�

and
� �

for
�
�����

the spatial fit is not as good as for the other years. In this year as much as� � + � �)( of the observations are zero. In this year the estimated L»�t , L3�j and L3�M were�,+ � � , �,+ � ! and �È+ � � , respectively. Lb�M is for a few of the other years estimated to be
large as well, but for those years L �t and L �j are estimated to be small.

Looking at the temporal fit for the years in Figures
� � and

� ! we see that the tem-
poral effect on egg density clearly varies for the different regions, according to day
of sampling over the years. That is, there clearly is an interaction in space and time.
For many of the years the temporal effect on egg density is linear or close to linear for
many regions, but far from all. In sampling prior to around day

� ��� there tends to be an
increasing egg density with day, while sampling posterior to this day the relationship
is opposite. This is natural, and in accordance with the idea of a spawning peek around
day

� ��� .

6. Comparing the intensity level over years

As stated in Section " , our ultimate goal is to compare the fitted underlying intensity
process 1 over the years. We wish to make the comparison on day

� ��� , the approximate
peak day. That is, we are interested in comparing the fitted 1 a'É�ÊÌË5 8Í§
} ] § � C ¡ l < 5 �¨¡ l < G ] §A© C ¡ ��¢ 5 � ¨¡ ��¢ G ] §Jª C £ u @ ¢¤� 5 � ¨£ u @ ¢¤� G ] §A«­¬ ® c C � ��� � ¨£ ��¥ G ] §A¯­¬ ® c C � ��� � ¨£ ��¥ G � ]Î_badc
over the years. Let us consider possible changes in the " regions presented in section � .
To compare the fitted 1 a'É�ÊÌË5 over years we choose a center point and a few surrounding
reference points within the " regions, being the same for each year. The center and
reference points are displayed in Figure � . In each of the reference points, Ã , we
calculate 1 a;ÉmÊÌËÏ . Letting

�| _ Ï be the vector of _ values for the reference points, we note
thatÐ �| _�| _ ÏÒÑ NPO ÐÓÐ �� Ñ : Ð � t � tmÏ� Z t�Ï � Ï ÑÓÑ ,

where
� t is the covariance matrix of

�| _ , given by
C ��G , � t�Ï is the covariance matrix of�| _ and

�| _ Ï , and
� Ï is the covariance matrix of

�| _ Ï , also found by
C ��G .

Since Ô �| _ Ï � �| _�Õ NÖO C � Z tmÏ � v }t �| _ :�� Ï �s� Zt�Ï � v }t � tmÏ G we can sample
�| _ Ï . Having

�| _ Ï
we can compute 1 a;É�Ê×ËÏ . In order to obtain one value representing the egg density at the
center point of each region, we compute, for each region, Ø �ÏÚÙ }/Û Ï 1 a;É�Ê×ËÏ , where Û Ï is
the weight for reference point Ã and

�
the total number of reference points in the given

region. We choose Û Ï to be the Euclidean distance between the center point and the
reference point, scaled to sum to

�
. Letting ¡ denote region, ¡r8 ��: +'+;+ : " , we write 1 aiÜ®8 Ø �ÏÚÙ }/Û Ï 1 a;É�Ê×Ë®Ý¬ Ï for each region. This is done for every

� ��� th iteration in the MCMC
sampling, giving the posterior distribution for 1 aiÜ® in every region ¡ . We omit

�
�����
12



since this year is not fitted well.
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Figure 6: Solid, red circles display the center points. Open, blue circles display refer-
ence points.

The estimated means and
� "¼( credibility bands based on the posterior distributions

of 1 aiÜ for the " regions are displayed in Figure
�
, along with the mean and

� "�( cred-
ibility bands for the sum over the " regions. For region

�
the estimated level is slightly

increasing from
�
���/�

through
�
��� ! , thereafter slightly decreasing through

�
�����
. From�
�����

to
�
�����

there is an abrupt upward shift in the estimated level, reaching a peak
in

� ��� � , and thereafter it decreases. In region � the estimated level is fairly stable,
with small estimated credibility bands, through

�
���/�
. In

�
��� � there is a large abrupt
downward shift in the estimated level, which increases over the next years. In region� the level is more or less increasing through

�
�����
. In

�
�����
the estimated level ab-

ruptly shifts downwards, where it more or less remains through
�
��� � , when it shifts

somewhat down again. In region ! the estimated level fluctuate over the years through�
���/�
. In

�
��� � it is also here an abrupt downward shift in the estimated level, but it
shifts up in

�
��� � , and back down again in
�
��� ! . In region " the estimated level varies

somewhat over the years through
�
��� � , then making an abrupt upward shift in

�
��� �
to an estimated level remaining more or less the same in

�
��� ! . In addition, we no-
tice the wide credibility bands for the last three years for all the regions. This could
be due to the fact that, although sampling covered day

� ��� , the bulk of the sampling
occurred later in the years. In addition the majority of the late sampling took place
rather to the south-west of the Shelikof strait, that is the south-west part of region

�
,

the south-east part of region " and the north-east part of region ! . This is opposed to
the early sampling these years, which took place in the Shelikof strait. This results
in some uncertainty about the level early in the season. When considering the bottom
right plot, for the sum over the five regions, we again see the abrupt shift downwards
from

�
���,�
to

� ��� � . Then, in
�
��� � it shifts back again to the old level. We also here

notice the large credibility bands for the last three years.
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Figure 7: Mean and
� "¾( credibility bands based on the posterior distribution of 1 aiÜ

over the years for the " regions and their sum.

It is also of interest to examine how the estimated 1 a'É�ÊÌË in each region varies over the
years relative to the other regions. Let 1 aiÜdÞ® 8U1 adÜ® � Ø «ß Ù } 1 adÜß   " , and computing this
for every

� ��� th iteration we obtain the posterior distribution of 1 aiÜdÞ® . The resulting
means and

� "S( credibility bands based on the posterior distributions of 1 adÜdÞ for the "
regions are displayed in Figure

�
.
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Figure 8: Mean and
� "à( credibility bands based on the posterior distribution of 1 adÜiÞ

over the years for the " regions.

Looking at Figure
�

we see an abrupt change from
� ���/�

to
�
��� � in all the regions.

The relative estimated level in region
�

compared to the other years is mostly positive,
with the opposite being the case for region � and ! . We also notice that the relative
estimated level is fairly stable in regions

�
, � and " before

�
��� � , compared to region �
and ! , where it fluctuates quite a lot. We also notice that in the years

� ��� � and
�
�����

the
relative estimated level shifts somewhat upwards in region � , with the opposite being
the case in region ! . As in Figure

�
we also here notice the wide credibility bands for

the last three years.

7. Final remarks and conclusions

In settings where it is appropriate to think of a zero observation as something occuring
with low probability a popular approach is the two stage model applied here. By ap-
plying such a model we are able to capture the space-time process in the egg densities

15



well for most years. That is, the space-time regression term
h Z 5 \ and the spatial

�| _
term describe most of the variation in the data, as is seen by the low estimated L �M for
most years.

In our model we have included an extra random effect in the modelling of the pos-
itive data, that is var

CFE 5HG�8áL3�M . As an alternative we could instead have modelled
this random effect in the binary process, that is, suppressing space-time notation,
var

C �'����Q'R C @ÂG � T :�V3: 1ÂGâ8 L �M . This is an alternative approach worth keeping in mind
for this type of modelling in the future.

The local variation in the expectation process not accounted for in
h Z 5A\ã]ä_3aic , e 5 , has

an estimated small variance for all the years except
�
�����

, and we conclude that the
term

h Z 5A\[]Y_badc is able to capture the major space-time variation in the underlying
intensity process for the egg densities. The temporal dependency on the underlying
intensity varies with region. This dependency is often linear or close to linear, but not
always. Generally the temporal effect increases with day before the peak day of about� ��� . Afterward the effect is usually the opposite. How strong this dependency is, var-
ies between the different regions. This space-time interaction is an important feature
of the model, and ignoring it could lead to erroneous results.

Analyzing temporal changes over years could give valuable information regarding pos-
sible major shifts in spawning habits, and a contribution to explaining environmental
changes in the area. Instead of fitting the model for each year separately we could
have constructed one model for all the years. When obtaining data for a new year we
would then have to run the model for all the years (with data from the previous years
and the new year). When looking at the data we find it plausible to allow for both the
binary and the underlying intensity process to be different over the years. If one should
choose to incorporate the year-to-year dynamics the model would need the flexibility
to allow many different changes, both smooth and abrupt. This is a complex modelling
task. Hence, we model each year separately.

We are particularly interested in possible changes in the spatial structure of the egg
densities over the years. We are looking for evidence of walleye pollock changing
preferences regarding spawning area, and if we find it, whether the spatial spawning
pattern is changing in a particular direction as the years pass by. An examination of the
fitted zero-inflated spatio-temporal Gaussian distribution model over the years sheds
light on this. The objective of this study has been to examine possible changes in
the spatial influence on the spawning pattern. By examining the underlying intensity
process 1 over the years that had a sampling interval covering day

� ��� we can from
Figure

�
see some main features. In region

�
and � there is a shift in the estimated

level in
�
�����

. In region
�

it shifts upwards and thereafter decreases, while in region

16



� it shifts downwards to a fairly stable level until
� ��� ! . In region � and ! there is

a shift downwards in
� ��� � , while in region " there is a shift upwards in

� ��� � . When
comparing the regions relative to each other in Figure

�
we see a shift in

�
��� � , upwards
in region

�
, � and " , downwards in region � and ! . Hence, regions

�
, � and " became

more important relative to the other regions in
�
��� � , while regions � and ! became less

important. In
�
��� � and

�
��� ! regions
�
, � and ! loose some of their relative importance,

while in regions � and " it increases.

From this analysis we see that changes occurred in the Western Gulf of Alaska over the
years examined. In

�
�����
there is a sudden increase in the estimated level in the major

spawning region within our area; the Shelikof strait and the area to the south-west of
it, while at the same time there is a shift in the north-east region, from an increasing
estimated level to a lower, more stable level for the next years. Even though the es-
timated level in the region containing the Shelikof strait and the area to the south-west
of it decreases over the last years it becomes relative important as spawning ground in�
��� � , at the expense of the area south of Kodiak island and the area to the north-east.
In the next years the Shelikof strait and the area to the south-west of it, the north-east
region and the south-west region became relative less important, but the region along
the Alaska peninsula and the region south of the Kodiak island became more import-
ant. Keeping in mind that few samples were taken in the region in the north-east and
to the south of Kodiak island we sum up at the end of

� ��� ! : the Shelikof strait and the
area to the south-west of it lost some of it’s relative importance as a major spawning
region at the expense of the area along the Alaska peninsula.

Acknowledgments

This analysis is based on walleye pollock egg densities (number of eggs per m � ) collec-
ted during the ichthyoplankton surveys of the Alaska Fisheries Science Center (AFSC,
Seattle) in the gulf of Alaska, extracted from the Ichthyoplankton Cruise Database
(IchBase), conducted by AFSC and partner institutions in the gulf of Alaska. For fur-
ther details, see Cianelli et al. ( ������� ). We are grateful to Lorenzo Cianelli and Nils
Christian Stenseth at the Centre for Ecological and Evolutionary Synthesis (CEES),
University of Oslo, for their biological expertise and valuable comments and sugges-
tions.

17



Appendix

Plots and statistics
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Figure 9: The spatial distribution of the positive egg densities, on �'��� scale, collected
in the given area for the years
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Figure 10: The spatial distribution of the positive egg densities, on ����� scale, collected
in the given area for the years
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Table � displays a statistical summary for all the years. Longitude, latitude, bottom
depth and Julian day are all on the original scale. The third column displays the per-
centage of zero observations for each year. The last four columns contain the minimum
and maximum values. Comparing this table with the corresponding one in Ciannelli et
al. ( ������� ) we notice that for

�
���/�
and

�
�����
they differ in that in Ciannelli et al. ( ������� )

the number of observations greater than zero is one less. This is due to the inclusion
of bottom depth ��� meters in our analysis, while Ciannelli et al. ( ������� ) considered
bottom depths greater than ��� meters.

year no. obs
C ·W��G (å� lon lat depth day

1978 73(24) 67.12 55.9483, 59.0450 -155.4250, -149.5100 37, 367 87, 105
1979 44(14) 68.18 54.2750, 59.0083 -161.6667, -148.8700 45, 250 135, 143
1981 424(298) 29.72 54.0500, 58.3300 -163.3833, -151.5000 33, 375 76, 147
1982 120(93) 22.50 54.0333, 57.8833 -164.4000, -151.7000 35, 370 94, 149
1983 53(16) 69.81 55.2383, 57.2567 -158.7100, -154.6333 41, 297 140, 147
1984 198(134) 32.32 54.6750, 60.0350 -159.0167, -145.9333 34, 299 93, 123
1985 445(324) 27.19 55.2133, 59.5433 -158.2050, -148.5000 33, 390 76, 149
1986 293(245) 16.38 53.6633, 60.2117 -165.5833, -139.3500 55, 382 88, 137
1987 239(171) 28.45 53.6550, 59.6667 -165.0833, -147.7500 40, 380 93, 116
1988 305(258) 15.41 54.0000, 59.6667 -164.3333, -147.0000 37, 363 77, 101
1989 334(302) 9.58 55.6483, 59.0617 -157.4767, -151.7050 57, 355 95, 136
1990 214(185) 13.55 55.2500, 59.0367 -157.4650, -151.5167 49, 320 97, 149
1991 426(328) 23.01 54.4817, 59.7817 -158.8317, -147.8433 39, 329 91, 144
1992 308(214) 30.52 55.1100, 58.3700 -158.6083, -153.6433 36, 336 94, 147
1993 300(201) 33.00 54.2950, 58.7250 -158.6150, -151.4883 40, 375 95, 149
1994 248(161) 35.08 54.8467, 59.0883 -159.9750, -150.1117 41, 328 76, 149
1995 94(53) 43.62 54.2505, 57.7177 -163.5147, -154.7777 63, 314 140, 147
1996 425(285) 32.94 54.0445, 59.9032 -164.7272, -147.9328 37, 304 115, 149
1997 100(38) 62.00 55.0938, 58.3390 -158.6032, -153.5037 34, 311 143, 149
1998 193(102) 47.15 55.0933, 58.7058 -158.3785, -151.3877 40, 350 122, 149
1999 136(66) 51.47 54.1667, 57.7300 -164.7217, -154.5990 33, 305 141, 149
2000 76(26) 65.79 54.1735, 56.8183 -164.7155, -155.8172 34, 293 145, 149

Table 2: Statistical summary for the years.
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Results
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Figure 11: The spatial fit:
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Figure 12: The spatial fit:
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Figure 13: The temporal fit: ����� C 465HG � f=@ ��¢ 5 , for all 4>5Ä·æ� , 7Ä8 ��: +'+;+ :=< , are plotted
as points with region coding (blue).
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Figure 14: The temporal fit: ����� C 465HG � f=@ ��¢ 5 , for all 4>5Ä·æ� , 7Ä8 ��: +'+;+ :=< , are plotted
as points with region coding (blue).
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region coding, but connected with lines (red).

�
�����/: +;+'+ : �
��� ! .
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The MCMC algorithm

We here describe the details in the MCMC algorithm applied. The sampling is per-
formed sequentially through the five blocks defined in Section ! . We describe sampling
of each of these blocks below.
The vector of regression parameters \ is of length

<3�
. X is the matrix of covariates of

dimension
<¦�*çâ<

. We define some matrices and vectors to ease the notation.è ��~ is a vector of dimension
<

of zeros.è � ~ is a vector of dimension
<

of ones.è � ~ is an
<�çâ<

identity matrix.èêé°ë is an
<�ç#<

matrix with entries on the main diagonal equal to one if 4ì59·[� ,
zero elsewhere.

1. Sampling
�|�í 8 C \ : �| _ : �| 1¾G Z

In sampling
�| í

we take the approach of Rue and Held ( ������" , p.
� ��" -

� !�� ). We
let î&Ô �| í ��ï Õ denote the full conditional distribution of

�| í
. We denote the other

conditional distributions in a similar way. We further use the notation +8 to mean
equality up to an additive constant.

�����Îî&Ô �|�í ��ï Õ 8æ�����Îî&Ô \ : �| _ : �| 1 �-ï Õ+8s¡ l
ð 0
î&Ô \ � L �� Õ î&Ô �| _ � � t Õ î&Ô �| 1 � \ : �| _ : L �j Õ î&Ô � |4 � �|Ýí : ï Õ 2+8 � }� 0 }ñ �ò \ Z \ó] �| _ Z � v }t �| _ô] }ñ �õ C �| 1 � C�ö Z \Î] �| _ G­G Z C �| 1 � CHö Z \Î] �| _ G­G{2� }� }ñ �÷ C �| E � �| 1¼G Z é°ë C �| E � �| 1¾G
] �'���,0ùø ~5 Ù } C }} p/ú�û¤ü ý � v � M c;þ GÌÿ ý ë c Ù } þ ç ø ~5 Ù } C ú�û­ü ý � v � M c'þ} p/ú�û­ü ý � v � M c'þ G×ÿ ý ë c Ù�� þ 2+8 � }� 0 \ Z C }ñ �ò �m� ] }ñ �õ öâö Z G \�] �| _ Z C � v }t ] }ñ �õ � ~�G �| _.] �| 1 Z C }ñ �õ � ~ ] }ñ �÷ éIë G �| 1
] �ñ �õ \ Z ö �| _ � �ñ �õ \ Z ö �| 1 � �ñ �õ �| _ Z �| 1 � � }ñ �÷ �| 1 Z éIë �| E 2 ] Ø ~5 Ù } ð C 1J5�G ,

where ð C 1A5�G&8 C T �`V 1J5HG � C 4>5
8s��G � �'��� C � ] ²m´,µ C T �`V 1J5HG¤G .
Define

�|���� 8 C � Z ~ ò : � Z ~ : }ñ �÷ C é°ë �| E G Z G Z and
� v }� by
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� v }� 8
������
�

}ñ �ò ��� ] }ñ �õ öâö Z � }ñ �õ ö � � }ñ �õ ö� � � � �}ñ �õ ö Z � � v }t ] }ñ �õ � ~ � � }ñ �õ � ~� � � � �� }ñ �õ ö Z � � }ñ �õ � ~ � }ñ �õ � ~ ] }ñ �÷ éIë
	�





� ,

This gives�����Îî&Ô �| í ��ï Õ +8 � }� C �| í �`� � �| �
� G Z � v }� C �| í �ô� � �| �
� G ] Ø ~5 Ù } ð C 1 C 7ÚG¤G .ð C 1J5�G contains non-quadratic terms of 1K5 , resulting in a non-Gaussian distri-
bution for î&Ô �| í �-ï Õ , and we apply a Metropolis Hastings step. This requires a
proposal distribution. We consider an approach where a Gaussian proposal is
derived through a Taylor series expansion of ð around 1 � ¬ 5 . In particular, we
approximate ð C 1A5�GS� � 5 ] � 5H1A5 � }� k 5d1 �5 , where

� 5&8 ð�� C 1 � ¬ 5HG � ð�� � C 1 � ¬ 5�G­1 � ¬ 5 andk 5
8 � ð � � C 1 � ¬ 5HG (we do not need to specify
� 5 ). We define

�| �
and

�| k parallel to
�| 1 .

Then îÄÔ �| í ��ï Õ is approximated by �î&Ô �| í �-ï Õ , where

�������îÄÔ �| í �-ï Õ +8 � }� C �| í �`� � �| ��� G Z � v }� C �| í �ô� � �| �
� G ] Ø ~5 Ù } Ci� 5 ] � 5d1 C 7 G � }� k 5�1 C 7ÚG � G+8 � }� �| í Z C � v }� ] £�7 � ð C �| k � G­G �|�í ] C �|���� ] �| � � G Z �|Ýí ,

where
�| � � 8 C � Z ~ ò : � Z ~ : �| � Z G Z and

�| k � 8 C � Z � : � Z ~ : �| k Z G Z .

Using thatð � C 1A5�GD8 �SVJ� C 4>5
8Y��G ] V ú�û¤ü ý � v � M c;þ} p/ú�û¤ü ý � v � M c;þ and ð � � C 1A5�GD8 �SV � ú�û­ü ý � v � M c'þý } p/ú�û¤ü
ý � v � M c;þ'þ � ,we get� 538 ��VJ� C 4>5
8Y��G ] V úHû¤ügý � v � M ��� c�þ} p/ú�û­ü ý � v � M ��� c�þ ] V � ú�û¤ügý � v � M � ý 5 þ'þý } p/ú�û¤ü ý � v � M ��� c'þ'þ � 1 � ¬ 5 andk 5A8 V � ú�û­ü ý � v � M ��� c;þý } p/úHû¤ü ý � v � M ��� c�þ;þ � .
The approximated distribution for Ô �| í �-ï Õ is given by

�î&Ô �| í �-ï Õ NPO C­C � v }� ] £�7 � ð C �| k � G­G v } C �| ��� ] �| � � G : C � v }� ] £�7 � ð C �| k � G­G v } Gm+
This distribution depends on

�| 1 � since both
�| �

and
�| k depend on

�| 1 � . This ap-
proximation is used as the proposal distribution in a Metropolis Hastings step.
We have choosen

�| 1 � to be the current
�| 1 value.

We constrain the _ 5 s so that Ø ~5 Ù } _ 5.8 � , in order to avoid possible iden-
tifiability problems. We therefore sample a proposal

�|Ýí É from �î&Ô �|Ýí �-ï Õ condi-
tioned on Ø ~5 Ù } _ 5±8U� . We do this by applying a “trick” described in Rue and
Held ( ������" , p. � � - !�� ). Denote �Í8 C � Z~ ò : � Z~ : � Z ~ G . We want to sample from�î&Ô �| í � � �| í 8s� Õ . Denoting é��� C �| í �-ï Gr8�� and � lon��� C �| í �-ï Gr8�� v } we can compute
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the expectation é��� C �| í � � �| í 8À��GÁ8�� � ��� v } C � � v } � Z G v } ��� and covariance� lon��� C �|�í � � �| í 8Y��Gr8!� v } � � v } � Z C ��� v } � Z G"� � v } .
Hence, é��� C �| í � � �| í 8Y��G is just a transformation of é��� C �| í ��ï Gr8!� .

2. Sampling L �t
We let

¨� v }t denote
� v }t without the factor }ñ �z , i.e.

� v }t 8 }ñ �z ¨� v }t .

î&Ô L �t �-ï Õ$# î&Ô L �t � % t : Ã t Õ îÄÔ �| _ � � t Õ# }& ý(' z þ Ã v ' zt }ý ñ �z þ*) z,+ Å ²m´,µ30 � }Ï z ñ �z 2 ç }ý ñ �z þ.-0/ � ²�´,µ30 � }� ñ �z �| _ Z ¨� v }t �| _ 2
This gives: î&Ô L �t ��ï Õ N �21 C ~ � ] % t : Ô }Ï z ] }� �| _ Z ¨� v }t �| _�Õ v } G .

3. Sampling L �j
As for L3�t we get:î&Ô L �j ��ï Õ N �21 C ~ � ] % j : Ô }Ï õ ] }� C �| 1 � C�ö Z § ] �| _ G­G Z C �| 1 � CHö Z § ] �| _ G­G Õ v } G .

4. Sampling L �M
We have: î&Ô L �M ��ï Õ N �21 C ~ � ] % M : Ô }Ï ÷ ] }� C �| E � é°ë �| 1¾G Z C �| E � éIë �| 1�G Õ v } G .

5. Sampling
� t

î&Ô � t �-ï Õ3# îÄÔ �| _ � � t Õ î&Ô � t � ��� z :{� � z Õ�# � � t � v Å� ²�´/µb0 � }� �| _ Z � v }t �| _ 2 ç }4 y z v Ê y z� t enters the equation above on the right hand side through
� t , and the full

conditional distribution for
� t is a non-standard one. We employ a Metropolis

Hastings step. We take the approach of Rue and Held ( ������" , p.
� !�� -

� !�! ) by
letting the proposal

� Þt be given by
� Þt 8 B � t .

� t is the present value and
B

a scaling factor having the density î CiB G # � ] }5 for
B76 Ô }8 ::9 Õ , and zero oth-

erwise.
9

is a tuning parameter. This is a convenient approach, as the proposal
distribution is symmetric, i.e.

� � ý ��;z�< � z þ�� ý � z < � ;z þ 8 �
.
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6. Sampling T and
V

T and
V

enters the model both through @ and are sampled in a similar way. We
therefore only present the sampling of T .

î&Ô T ��ï Õ$# î&Ô T � L3�� Õ îÄÔ �| @ � T :�V3: �| 1 Õ=# ²�´/µ C � }� }ñ �> T���G ç ø ~5 Ù } C ú�û¤ü ý � v � M ý 5 þ;þ} p/ú�û¤ü ý � v � M ý 5 þ;þ G ÿ ý ë ý 5 þ Ù�� þ
This is a non-standard distribution and we apply a Metropolis Hastings step
with proposal distribution �î C T�G . �î C T�G is a Gaussian distribution with expecta-
tion given by the current value of T and constant variance. Since Ô T �-ï Õ can be
written as ²m´,µ C � }� }ñ �> T � ] Ø ~5 Ù } ð C T :�V3: 1 C 7 G­GÌG we could employ the method of

Held and Rue ( ������" ) as done for the
�| í

block. This was tried out, but rejected as
a possible approach since the proposal was practically never accepted. Probably
the resulting proposal distribution from a second order Taylor expansion aroundØ ~5 Ù } ð C 1J5�G is just not a good one.
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