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1 Introduction

This paper presents some numerical results about applications of multiscale techniques to

boundary integral equations. The numerical schemes developed here are to some extent

based on the results of the papers [6]{[10]. Section 2 deals with a short description of

the theory of generalized Petrov{Galerkin methods for elliptic periodic pseudodi�erential

equations in IRn covering classical Galerkin schemes, collocation, and other methods. A

general setting of multiresolution analysis generated by periodized scaling functions as

well as a general stability and convergence theory for such a framework is outlined. The

key to the stability analysis is a local principle due to one of the authors. Its applicability

relies here on a su�ciently general version of a so-called discrete commutator property

of wavelet bases (see [6]). These results establish important prerequisites for developing

and analysing methods for the fast solution of the resulting linear systems (Section 2:4).

The crucial fact which is exploited by these methods is that the sti�ness matrices relative

to an appropriate wavelet basis can be approximated well by a sparse matrix while the

solution to the perturbed problem still exhibits the same asymptotic accuracy as the

solution to the full discrete problem. It can be shown (see [7]) that the amount of the

overall computational work which is needed to realize a required accuracy is of the order

O(N(logN)b), where N is the number of unknowns and b � 0 is some real number.

We focus here on two problems which are solved by fully discrete collocation wavelet

methods. Section 3 is devoted to various numerical experiments for the exterior Dirich-

let problem for the Helmholtz equation. In this case the theoretical results for periodic

problems apply and are con�rmed by the numerical tests. In Section 4 we present some

new results concerning a Dirichlet problem for the Laplace equation over three dimen-

sional polyhedral domains. Linear systems with � 100,000 unknowns are solved which

corresponds to fully populated matrices of the same order. In this case our goal is not

yet to present a fully developed scheme for such a complex three dimensional problem.

In fact, one should note �rst that the general theory described in Section 2 is not directly

applicable to this problem because it is not periodic and the boundary is not smooth.

Therefore our main goal here is to explore to which extent the theoretical predictions

from the model problem can still be con�rmed under these less ideal circumstances. In

particular, we focus on compression properties and the convergence behavior of the cor-

responding solutions of the perturbed problem. Therefore we content ourselves here still

with a rather expensive way of computing the compressed sti�ness matrices. Speeding

up this portion of the solution process is less dependent on the topology of the domain

and is meanwhile understood conceptually. Essentially following the analysis in [10], the

practical realizations and numerical tests presented here do con�rm a similar behavior as

predicted by the theory for the periodic model problem.

2 Multiscale methods

2.1 Periodic pseudodi�erential equations

At this stage we focus on the model case of periodic pseudodi�erential equations to ex-

ploit the full advantages of Fourier transform techniques in connection with appropriate

representations for the class of operators under consideration. However, we do consider
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variable symbols and it should be mentioned that this class covers all the classical exam-

ples such as H�ormander's class, in particular, those operators arising in connection with

boundary element methods. Moreover, most of the methods used here are of local nature

and thus apply in essence to the case of non{periodic equations, as well (see [8]).

Consider the discrete Fourier transform by ~u(k) :=
R
[0;1] u(x)e

�2�ix�kdx, k 2 ZZn, where

x � k = P
n

j=1 xjkj. Let T n denote the n{dimensional torus. Then a periodic pseudodi�er-

ential operator is de�ned by

�(x;D)u(x) :=
X

k2ZZn

�(x; k)~u(k)e2�ik�x :

The function � 2 C1(T n � ZZn), which is called the symbol of the operator �(x;D), is

assumed to belong to a certain class
P

� for some � 2 jC. Here
P

� is comprised of all

symbols � of the form � = �0 + �1, where �0 2 C1(T n � (IRn=f0g)) is homogeneous

of degree � 2 jC, i.e. �0(x; 0) = 1 ; �0(x; �k) = ���0(x; k), for � > 0, k 6= 0, and

j@�(x)��(k)�1(x; k)j � c�;�(1 + jkj)r1�j�j for x 2 T n, k 2 ZZn, and for some r1 < Re � = r.

Here @ stands for the partial di�erential operator and � for the partial forward di�erence

operator. By Ar we denote the class of operators of the form A = �(�; D)+K where � 2P
�, r = Re � is the order of A, and (Ku)(x) =

R
T
n k(x; y)u(y)dy with k 2 C1(T n� IRn)

is a smoothing operator. The operator �(x;D) 2 Ar is called elliptic if, for su�ciently

large jkj, j�0(x; k)j � cjkjr, x 2 T n.

Any A 2 Ar is a bounded linear operator A : H t ! H t�r, t 2 IR. This operator is

Fredholm if and only if it is elliptic. Here H t denotes the classical periodic Sobolev space

of order t, equipped with the norm kukt :=
�P

k2ZZn(1 + jkj)2tj~u(k)j2
�1=2

.

2.2 Multiresolution and wavelets

Multiresolution or Multiscale Analysis (MSA) is by now a well{studied notion [16]. Here

we focus only on those variants which are useful for our purpose. MSA of L2(IR) is a

sequence of nested closed subspaces � � � � V�1 � V0 � V1 � � � � � L2(IR) with

1. [jVj = L2(IR),

2. \jVj = f0g,

3. f(x) 2 Vj , f(2x) 2 Vj+1,

4. There is a function ' 2 L2(IR) such that the translates f'(x � k)g (k 2 ZZ) form an

orthonormal basis of V0.

The function ' is called scaling function. Obviously, the functions 'j;k(x) := 2j=2'(2jx�k)
form an orthonormal basis of Vj (j 2 ZZ) (see [11] for examples). Since ' 2 V0 � V1 there

exists a sequence fhkgk2ZZ (which is called the mask or the �lter of ') such that ' satis�es

the scaling equation

'(x) =
p
2
X
k2ZZ

hk'(2x� k) ; x 2 IR : (2.1)
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Moreover, the mask fhkg is �nite if and only if ' is compactly supported. (2.1) is the

key to the constructions of orthogonal wavelet bases and of fast wavelet algorithms. The

wavelet space Wj (j 2 ZZ) is de�ned as the orthogonal complement of Vj with respect to

Vj+1 = Vj �Wj. Thus

L2(IR) = �
j2ZZWj = Vm ��j�mWj (for each m 2 ZZ): (2.2)

One of the main results of MSA reads as follows. Given ', then there exists  2 L2(IR)

such that the functions  j;k(x) := 2j=2 (2jx � k), k 2 ZZ, form an orthonormal basis of

Wj (j 2 ZZ). The function  is called the mother wavelet of MSA and is de�ned by

 (x) =
p
2
X
k2ZZ

gk'(2x� k); gk = (�1)kh1�k: (2.3)

An important property of wavelets is that certain moments vanish, i.e.,

Z
IR

xl (x)dx = 0; 0 � l < d�; (2.4)

where in the case of orthogonal wavelets d� is the order of polynomials which can be

written as linear combinations of the translates '(� � k); k 2 ZZ.

More exibility is o�ered by the concept of biorthogonal wavelets [11] which permits the

employment of B{splines as scaling functions. In particular, the possibility of raising

the order of moment conditions turns out to be essential for balancing compression and

convergence rates.

In the following we need a periodic version of MSA. To this end, let [�] denote the pe-

riodization operator de�ned by [f ](x) :=
P

k2ZZ f(x + k) for any compactly supported

function f . Given a compactly supported MSA ' 2 L2(IR), then the functions ['m;k] and

[ m;k] are 1{periodic. MSA of L2(IRn) can be de�ned in a completely analogous manner.

However, one needs a �nite number of mother wavelets depending on the type of scaling.

2.3 Generalized Petrov{Galerkin schemes

The spaces Vj will be used as trial spaces for the approximate solution of the equation

Au = f ; (2.5)

where A 2 Ar and f 2 H t�r is given. In the following we will �x one such t and assume

that � 2 Hr�t(IRn) is a �xed linear functional with support in some compact set � � IRn.

De�ning the functionals �j;k by �j;k(f) := 2�nj=2�(f(2�j(�+ k))), k 2 ZZn;j, we seek for an

element uj 2 Vj satisfying

�j;k(Auj) = �j;k(f) ; k 2 ZZn;j := ZZn=2jZZn : (2.6)

Clearly, � = ' corresponds to a classical Galerkin scheme, while � = �(� � x0) give rises

to collocation at the points 2�j(k + x0), k 2 ZZn;j, j 2 IN0.
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Our �rst objective is to study the solvability of (2.6), and if this is the case, the convergence

of the solution uj as j !1. The key to this problem is a suitable stability concept. To

this end, it is convenient to consider projectors of the form

Qjf =
X

k2ZZ
n;j

�j;k(f)�j;k;

where the �j;k are suitable basis functions satisfying �j;k(�j;l) = �l;k (possibly spanning

spaces di�erent from Vj, see [6] Sect. 4). Then (2.6) can be rewritten as operator equation

QjAuj = Qjf . The scheme (2.6) is called (t; r){stable if

kQjAvkt�r � ckvkt (2.7)

for all v 2 Vj uniformly in j 2 IN0. Clearly, (2.7) means that the �nite dimensional

operators Aj := QjAPj : H
t ! H t�r have uniformly bounded inverses A�1

j : im Qj !
im Pj.

It turns out that the stability of (2.6) is equivalent to the ellipticity of a certain function

� which shares many features with the principal symbol �0 of the operator A and which is

called the numerical symbol (more precisely, the \symbol of the Petrov{Galerkin scheme

(2.6)"). The numerical symbol is de�ned by

�(x; y) :=
X

k2ZZn

�0(x; y + k)'̂(y + k)�̂(y + k) (2.8)

for all x; y 2 T n (provided that the series on the right hand side of (2.8) converges

absolutely for all x; y 2 T n), where ^ stands for the Fourier transform.

Theorem:[[6]] The scheme (2:6) is (t; r){stable if and only if the numerical symbol �

is elliptic, i.e. j�(x; y)j � cj�(y)jr holds uniformly in x 2 T n, where � = (�1; :::; �n)
T ,

�j(y) = e2�iyj � 1.

Example: Consider the knot collocation (i.e. x0 = 0) with tensor product splines of degree

d. Then �̂ = 1 and '̂(�) =
Q

n

l=1(sin ��l)
d+1= (��l)

d+1. Clearly, if d is odd, then � is elliptic

if and only if A is strongly elliptic, i.e. Re �0 � const > 0. Hence, in that case, Theorem 1

provides stability of the collocation with odd degree splines for strongly elliptic operators

(cf. [1] for the case n = 1 and [6] for the multidimensional case). Notice that, in the

case of the classical Galerkin scheme, the ellipticity of the numerical symbol for strongly

elliptic operators is a consequence of the stability property of '.

Applying Theorem 1 in combination with well known Galerkin techniques and approxima-

tion properties of the functions ['j;k] one obtains optimal estimates for the error ku�ujkt
for a certain range of Sobolev norms (see [6]).

2.4 Matrix compression and fast solution

This technique is essentially based on estimates for the asymptotic behavior of the entries

of Aj (j !1) in the wavelet representation. We will present such estimates only for the

case of classical Petrov{Galerkin schemes, i.e., when � is actually an L2{function.
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Theorem:[[7, 17]] Let 2d�+n+r > 0 where d� denotes the number of vanishing moments

of the wavelets. Then for A 2 Ar the estimate

j(A[ l;k]; [ l0;k0])j � c
2�(l+l

0)(n=2+d�)

%n+r+2d
�+2

(2.9)

holds, where % = dist (supp [ l;k], supp [ l0;k0]) and the constant c depends only on r; n

and d�.

(2.9) are the crucial estimates which compression criteria rely on. Such criteria allow us

to avoid the computation of the full sti�ness matrix in the wavelet representation and

tell us which entries must be computed in order to guarantee a required accuracy. More-

over, by realizing su�ciently high accuracy on lower scales, the asymptotical convergence

rates of the solutions to the uncompressed systems can be preserved for those of the com-

pressed system. Such a compression strategy reduces the computational work to the order

O(N(logN)b), where N = 2jn and b is a positive number ([7]).

3 Exterior Dirichlet problem for the

Helmholtz equation in 2D

3.1 Statement of the problem

The treatment of scattering of time{harmonic acoustic and electromagnetic waves on

in�nitely long cylindrical obstacles in IR3 with simply connected cross section D� � IR2

and smooth boundary � leads to an exterior boundary value problem for the Helmholtz

equation in IR2.

D Given the boundary data g and

� the wave number �k > 0 in D, real.

D�

'

&

$

%

� win

We seek the solution w of the following problem

�w(x) + �k2w(x) = 0 in D = IR2nD� ; (3.1)

w(x) = g(x) on � ; (3.2)

@w(x)

@r
� i�kw(x) = o(r�1=2) ; r = jxj ! 1 (3.3)

uniformly in all directions (Sommerfeld's radiation condition). This problem is known to

have a unique solution (cf. [5]).

Using a single{layer approach (indirect method), one seeks w in the form

w(x) =

Z
�
�(x; y)�(y)ds(y) ; x 2 D ; (3.4)
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where s is the arc length parametrization, and the fundamental solution corresponding to

the Helmholtz equation is given by

�(x; y) :=
1

2i
H

(1)
0 (�kjx� yj) ; x 6= y :

Here H
(1)
0 means the Hankel function of order zero and of the �rst kind. Substituting

(3.4) into (3.2) gives the boundary integral equation for the unknown density �:

Z
�
�(x; y)�(y)ds(y) = g(x) ; x 2 � : (3.5)

Equation (3.5) is uniquely solvable in Hs(�) provided that the homogeneous Dirichlet

problem for the interior of � admits only the trivial solution.

Let x(t) = (x1(t); x2(t)) ; 0 � t � 2� ; be a 2�{periodic regular parametrization of � sat-

isfying [x01(t)]
2+[x02(t)]

2 > 0, t 2 �. Setting in (3.5) u(t) := �(x(t)) f[x01(t)]2 + [x02(t)]
2g1=2

and f(t) := g(x(t)) ; the exterior Dirichlet problem for the Helmholtz equation leads to

the following logarithmic singular integral equation of the �rst kind:

(Au)(t) :=
1

2�

Z 2�

0
K(t; �)u(�)d� = f(t) ; 0 � t � 2�; (3.6)

K(t; �) :=
�

i
H

(1)
0 (�kr(t; �))

where r(t; �) := f[x1(t)� x1(�)]
2 + [x2(t)� x2(�)]

2g1=2.
In principle it is possible to separate the logarithmic part of the Hankel function and

treat it separately. There exist several fast methods for the solution of the logarithmic

kernel equation (also called Symm's equation). In particular, one can use the fast Fourier

transform, apply the fast method [20] or the exponentially convergent method [14]. Here

we do not separate the logarithmic part because we only consider it as a model problem

for other cases where a separation is usually not applicable. A second related reason is to

simplify the implementation by keeping it as independent as possible of further analytic

investigations which have to be tuned to the particular application at hand.

3.2 Wavelet discretization method

For the numerical solution of (3.6) consider the knot collocation method on the following

nested grids of [0; 2�]:

rl = ftl
k
jtl
k
:= khl; k = 0; :::; Nl � 1; hl = 2�l � 2�; Nl = 2lg, l = 0; 1; :::; j. The set of

additional knots for passing from level l�1 to level l is denoted by �l�1 := rlnrl�1 . For

a corresponding Galerkin wavelet method the reader is referred to [17]. As trial functions

we use here continuous piecewise linear functions spanned by the canonical periodized hat

functions ['j;k], i.e.,

'(x) :=

8><
>:

1 + x if �1 � x � 0;

1� x if 0 � x � 1;

0 else:
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Figure 1: Two-scale relations for our choice of generating function and mother wavelet.

In this case the mask in the two-scale relation (2.1) is

fhkg1k=�1 = f1
2
; 1;

1

2
g: (3.7)

Since the translates '(� � k) are not pairwise orthogonal the simple recipe from (2.3) for

forming orthogonal wavelets does no longer work. Nevertheless, one can resort to the

literature for a long list of candidates  (x) whose integer translates are stable and span

the orthogonal or other complements of V0 in V1. In particular, for any desired order d� of

vanishing moments biorthogonal wavelets have been constructed in [4] which all give rise

to Riesz bases. Speci�cally, the wavelet for d� = 2 from this family has support [�1; 2]
and the mask has the form

fgkg3k=�1 = f
1

8
;
1

4
;�3

4
;
1

4
;
1

8
g: (3.8)

To keep the support of  as small as possible we will focus here though on the following

choice with also vanishing moments of order d� = 2:

fgkg1k=�1 = f
1

2
;�1; 1

2
g; (3.9)

which is depicted in Figure 1. These wavelets are likewise biorthogonal in the sense of

[4] and therefore give rise to a Riesz basis as is shown in [18]. Since we are employing

a collocation method the Brandt/Lubrecht functionals [2] are adequate \test wavelets"

(because of pointwise evaluation) spanned by �{distributions:

�l;k(f) = f(tl+12k+1)�
1

2

h
f(tl

k
) + f(tl

k+1)
i
; (3.10)
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k = 0; :::; 2l�1 � 1; l = j � 1; :::; 1; �0;k(f) = f(t1
k
); k = 0; 1:

One easily veri�es that the �l;k have also vanishing moments of order d� = 2. Figure 2

illustrates for three levels l how the point values are transformed into the data �l;k(f).

Obviously, the complexity of this transformation is of the order O(Nj) when j is as above

the �nest level. Given (3.10), the collocation sti�ness matrix Aj on level j relative to the
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Figure 2: Generation of the functionals of Brandt/Lubrecht. Open circles indicate those

grid points whose values are to be calculated in the next step.

wavelet basis has entries of the form

(Aj)(l;k);(l0;k0) := �l0;k0(A[ l;k]); (3.11)

k = 0; : : : ; 2l�1 � 1; k0 = 0; : : : ; 2l
0
�1 � 1; l; l0 < j :

It is easily seen that the integral operator A de�ned by (3.6) belongs to the class Ar (see

Sect. 2) with r = �1 and r1 = �3. Moreover, it is strongly elliptic and, hence, the

considered collocation method is stable (see Theorem 2). Furthermore, the error estimate

ku� ujks � c2j(s�2)kuk2 (3.12)

holds for all s, �1 � s < 3=2, provided f 2 H3.

Using an a-priori compression criterion established in [7] and improved in [21] we only

calculate and store approximations to those matrix entries of (3.11) obtained through

quadrature for which

dist (
l;k; ~
l0;k0) � max
n
a2�l; a2�l

0

; aj5=6 � 2(2=3)j�(4=3)l�(2=3)l0
o
; (3.13)

where 
l;k is the support of [ l;k], ~
l0;k0 the support of �l0;k0, and a a constant that has to be

chosen appropriately. Note that, according to the general theory, to realize an (asymptoti-

cally) almost optimal compression rate for the choice of piecewise linear wavelets with two

vanishing moments it would be necessary to use Brandt/Lubrecht functionals with three

vanishing moments. In this case also criterion (3.13) changes somewhat. Nevertheless,
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the present method turns out to be more e�cient for the present scope of experiments

because of the smaller support of the test functionals. Also our convergence studies con-

�rm a su�ciently good nearly optimal performance of the present version in all our test

problems (see Figs. 3,4,5).

In order to get a fully discrete method we have to employ a suitable quadrature method

to approximate the integrals. Because of the logarithmic singularity of the kernel function

it is necessary to use an adapted rule for the quadrature to guarantee that the order of

convergence is better than one. Therefore we choose the following graded quadrature

points �q of the interval [0; 2�] with grading parameter � � 1. More precisely, the points

are graded near the singular point t 2 (0; 2�) as follows:

� 0
q
= �

��� q
~m

����sign q + t; q = � ~m; :::; ~m� 1:

The integer ~m has to be chosen proportional to Nj. To make the quadrature exact for the

ansatz functions these graded points are united with equidistant ones: f� egNj�1
0 = ftj

k
g.

Let �q; q = 0; : : : ; m� 1; m = 2 ~m+Nj be the quadrature points obtained by periodizing

f� 0
q
g [ f� eg. In our numerical examples we choose a grading parameter � = 2:5 together

with the trapezoidal rule. The latter is exact for linear polynomials, and hence su�cient

to obtain second order convergence in L2 (cf. (3.12)).

3.3 Assembling the compressed sti�ness matrix

Let

( ~Aj[ l;k])(ti) =
m�1X
q=0

�q 6=t

K(ti; �q)!q l;k(�q); k = 0; : : : ; 2l � 1; l < j;

be the approximation of (A l;k)(ti) obtained by quadrature. Here !q are quadrature

weights.

Keeping in mind that

�l0;k0(A[ l;k]) = (A[ l;k])(t
l
0+1
2k0+1)� 1=2f(A[ l;k])(t

l
0

k0) + (A[ l;k])(t
l
0

k0+1)g

and that the vanishing moments of the test wavelets �l;k imply that these quantities

decay, their approximations obtained through quadrature are expected to exhibit the

same behavior. Thus we have to compute the following expressions:

�l0;i( ~Aj[ l;k]) =
m�1X
q=0

�q 6=t
l0+1
2i+1

K(tl
0+1
2i+1; �q)!q[ l;k](�q)�

1

2

m�1X
q=0

�q 6=tl
0
i

K(tl
0

i
; �q)!q[ l;k](�q)� (3.14)

1

2

m�1X
q=0

�q 6=tl
0
i+1

K(tl
0

i+1; �q)!q[ l;k](�q) ;
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i = 0; : : : ; Nl0 � 1; k = 0; : : : ; Nl � 1; l; l0 = 1; : : : ; j � 1;

�l0;i( ~Aj['1;k]) =
m�1X
q=0

�q 6=t
l0+1
2i+1

K(tl
0+1
2i+1; �q)!q['1;k](�q)�

1

2

m�1X
q=0

�q 6=tl
0
i

K(tl
0

i
; �q)!q['1;k](�q)� (3.15)

1

2

m�1X
q=0

�q 6=tl
0
i+1

K(tl
0

i+1; �q)!q['1;k](�q);

i = 0; : : : ; Nl0 � 1; k = 0; 1; l0 = 1; : : : ; j � 1;

�0;i( ~Aj[ l;k]) =
m�1X
q=0

�q 6=t1i

K(t1
i
; �q)!q[ l;k](�q); (3.16)

i = 0; 1; k = 0; : : : ; Nl � 1; l = 1; : : : ; j � 1;

�0;i( ~Aj['1;k]) =
m�1X
q=0

�q 6=t1i

K(t1
i
; �q)!q['1;k](�q); (3.17)

i = 0; 1; k = 0; 1:

Here it is important to note that, according to our above remarks, these calculations are

only performed for those pairs (l0; k0); (l; k) which satisfy condition (3.13). Thus storage

is only required, and hence is directly reduced, for the signi�cant entries of the matrix A"

j

de�ned by

(A"

j
)(l0;k0);(l;k) :=

(
0 if (3:13) does not hold;

�l0;k0( ~Aj[ l;k]) if (3:13) holds;

where k0 = 0; : : :Nl0 � 1, k = 0; : : : ; Nl � 1, l; l0 = 0; : : : ; j � 1 and where we have set

 0;k := '1;k.

Next let us denote by Bj the transformation (3.10) which takes the array of data f(t
j

k
); k =

0; : : : ; Nj � 1, into the array �l;k(f). One can check that A"

j
is the compressed version of

the matrix Bj
~Aj. Hence we end up with the following sparse matrix equation

A"

j
uj = Bjfj; (3.18)

where fj := (f(t
j

0); f(t
j

1); : : : ; f(t
j

Nj�1
))T .
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Figure 3: Error Ej in logarithmic scale for various wave numbers �k and constants a for

the a-priori compression strategy. � = circle.

Note that it is possible to use the same quadrature formula as for a standard collocation

method not based on wavelets for all expressions in (3.14){(3.17). It is only necessary to

shift the grading for the singularity to the actual singular point.

Clearly, the solution uj of (3.18) consists of the coe�cients of the approximate solution

relative to the wavelet basis. If one wishes to represent the solution in terms of the nodal

basis, a further transformation

u
'

j = Tjuj

has to be performed. This transformation also has the following familiar pyramid structure

w1;� w2;� w3;� � � � wj�1;�

& C1 & C2 & Cj�1

u1;� ! u2;� ! u3;� � � � uj�1;� ! u
'

j ;

M1 M2 Mj�1

(3.19)

where the matricesMi; Ci; i = 1; : : : ; j�1 are sparse and contain the masks from (3.7) and

(3.9). For a description of the algorithm in pseudocode see [10]. Thus Tj takes coe�cients

uj := fu1;k; wl;kg of the wavelet representation
P

k=0;1 u1;k'1;k +
Pj�1

l=1

P
k2�l wl;k l;k into

the coe�cients u
'

j := fuj;kg of the corresponding nodal representation
P

k2rj uj;k'j;k: Also

the application of the transformation Tj is easily seen to require only O(Nj) operations.
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Figure 4: Error ej in logarithmic scale for various wave numbers �k and constants a for

the a-priori compression strategy. � = circle.

3.4 Preconditioning and solution

The linear system (3.18) is solved with the aid of the iterative Krylov subspace method

GMRES (cf. [19],[24]). This method has been proved to be e�cient for this kind of

systems (cf. e.g. [23],[13],[10]). Since r = �1, the condition numbers �(A"

j
) grow like

Nj so that the number of iterations which is necessary to accomplish a desired accuracy

increases when Nj becomes large. The theory in [21] suggests multiplying A"

j
with the

Nj�Nj diagonal matrix D from the right where D(l;k);(l0;k0) = (�k2+22l)
1

2 � �(l;k);(l0;k0). After

solving then the system A"

j
Dvj = Bjfj one has to transform the resulting vector according

to uj = Dvj to obtain the wavelet coe�cients of the solution.

We have also tested the following alternative preconditioning strategies based on diagonal

scaling. Let �D(l;k);(l0;k0) = 2l � �(l;k);(l0;k0).

1. Solve �DA"

j
uj = �DBjfj or

2. solve �D
1

2A"

j
�D

1

2vj = �D
1

2Bjfj followed by corresponding diagonal back transformations.

The results of the tests for a �xed example are given in Table 1. The best preconditioner

is the one suggested by the theory which gives a constant iteration count. May be that

with higher order Brandt/Lubrecht functionals the iteration count can further be reduced.

The corresponding tools are available and, in principle, easily implemented.

The main steps of the solution procedure may be summarized now as follows:

1. Compute the matrix A"

j
directly in the wavelet representation as described by (3.14) {

(3.17) and apply the a-priori compression criterion (3.13) yielding a sparse matrix;

12



2. apply the transformation Bj (3.10) to the right-hand side:

Bj : ff(tj
k
)g 7! f�j;k(f)g; k = 0; : : : ; Nj � 1 : Bjfj, which requires only O(Nj)

operations;

3. solve the sparse matrix equation A"

j
Dvj = Bjfj by an iterative solver (e.g. GMRES).

The complexity of this part is nearly O(Nj(logNj)
b);

4. back transform the solution of this linear system to uj = Dvj (= Nj operations), which

provides the coe�cient vector uj relative to the wavelet basis and

5. (optionally) apply the transformation Tj which yields the coe�cients u
'

j = Tjuj for

the nodal basis representation. Again this only requires O(Nj) operations.

Clearly, the multiplications with the diagonal matrices are applied to the iteration vector

rather than to the matrix A"

j
: A"

j
(Du

(i)
j
), with u

(i)
j

the actual iteration vector of uj during

the GMRES-iteration. This only requires 2Nj additional operations for the diagonal

matrix times vector products in each iteration step.

Summing up the operation count in steps 2.-5. the overall complexity is of order

O(Nj(logNj)
b) which gives rise to a fast solution of the linear system. Unfortunately,

step 1., the matrix assemblation, is still of the order O(N2
j
) although only (nearly)

O(Nj(logNj)
b) matrix entries are calculated. This is due to the poor quadrature scheme

which does not take the distance between the supports 
l;k and 
l0;k0 into account. Mean-

while it has been shown in [21] that such a re�ned quadrature strategy reduces the com-

putational work for assembling the matrix to the order of nonvanishing matrix entries.

After the evaluation of the solution, the relative L2 error Ej of the solution and the

convergence rate �1 are calculated:

Ej =

PNj�1
i=0 juj(tji )� u(t

j

i )j2PNj�1
i=0 ju(tji )j2

; �1 = � log(Ej=Ej�1)

log 2
:

Preconditioning

j 2 3 4 5 6 7 8 9 10 11 12

Nj 4 8 16 32 64 128 256 512 1024 2048 4096

without 3 5 9 14 18 21 29 33 37 40 44
�DA"

j
3 5 9 15 18 20 25 27 28 28 29

�D
1

2A"

j
�D

1

2 3 5 9 15 17 19 24 27 26 26 27

A"

j
D 3 5 9 14 15 16 21 23 23 22 22

Table 1: Number of GMRES iterations without preconditioning and with di�erent pre-

conditioners for the following example: �= ellipse, �k = 10; a = 1:0.

3.5 Numerical examples for scattering

We consider the scattering of an E-polarized electromagnetic plane wave uin by a perfectly

conducting cylinder. In acoustics this problem is equivalent to the scattering of a plane

wave by an impenetrable, sound-soft cylinder with smooth cross section. Let the incident
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wave be given by uin(x) = exp(i�k~einx), with ~ein a unit vector describing the direction of

propagation of the incident wave, and let us be the scattered wave. Then the exterior wave

(total �eld) ue = uin+us is also a solution of the Helmholtz equation �ue+�k2ue = 0 in D

and satis�es the boundary condition ue = 0 on �: So we have us = �uin on � and

us also satis�es the conditions (3.1) and (3.3). Thus in terms of our initial unknowns we

have:

� w := us,

� g := usj� = � exp(i�k~einx)j� and if we set for the incident direction ~ein = (1; 0),

we obtain

f(x(t)) := �(cos(�kx1(t)) + i sin(�kx1(t))):

With these data one can then solve the integral equation (3.6).

The solution us, the backscattered electric �eld, exhibits the following asymptotic behavior

which follows from the asymptotics for the Hankel function for large argument:

us(x) =
exp(i�kjxj)q

jxj

(
u1(~x) +O

(
1

jxj

))
; jxj �! 1;

u1(~x) =
exp(i�

4
)p

8��k

Z
�
�(y) exp(�i�k~xy)ds(y):

uniformly for all directions ~x := x=jxj. The function u1 is known as far �eld pattern or

scattering amplitude of us. Substituting for �(y) the solution u(t) of our integral equation,

we obtain

u1(~x) =
exp(i�

4
)p

8��k

Z
�
u(t) exp(�i�k~eobx(t))dt: (3.20)

A more interesting quantity is the radar cross section (RCS). It is de�ned by �c(�
0
) =

2� limjxj!1 x
jusj2

juinj2
; with 0� � �

0 � 360�, the backscatter angle. With the aid of the

asymptotics of us we obtain the following approximation �c(�
0
) = 2�ju1(~x)j2 for the

RCS where ~x is the direction given by �
0
. When plotting the RCS as a function of the

observation angle, the quantity

� = 10 log10(�
c=�); � = wavelength (3.21)

are shown in the �gures rather than �c which is common in the engineering literature.

After the solution of the integral equation by the wavelet method, the integral (3.20) is

calculated which is a functional of the solution. This is realized by the rectangular rule

which in the periodic case is equivalent to the trapezoidal rule. Let the approximation of

(3.20) be u1
j
. For the determination of u1 and u1

j
we �x the direction of observation.
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For a sequence of discretizations we determine the error ej and the convergence rate �2
for the functionals u1

j
:

ej =
ju1

j
� u1j
ju1j ; �2 = � log(ej=ej�1)

log 2
:

For all numerical examples we have selected � = 2:5 as an optimal grading parameter

for the quadrature points and employing the a-priori compression criterion, we have

examined the convergence and compression behavior for various wave numbers �k and

constants a. In the �rst example we consider a disc of radius r = 0:6 as cross section of

a scattering obstacle (cf. e.g. [3]) and we set ~eob := (1; 0) while the second considered

obstacle is assumed to have an elliptical cross section with ax = 2by = 0:6.

Figures 3 and 4 present the behavior of the errors Ej; ej for the disc. Figure 5 shows

results for the case of an ellipse. Figures 3,4,5 clearly show the predicted behavior for

the convergence rate of Ej; ej for the investigated boundaries if the constant a for the

a-priori compression criterion is appropriately chosen. The convergence rates of � 2

coincide with the expected convergence rate of the solutions to the full systems when

using the same discretization method. Because of (3.12) for ej a convergence rate of 3 is

possible when using a quadrature of higher exactness.

The constant a from (3.13) in practical applications should be chosen so that the supports

of  j;k; �j;k0 do not overlap on the �nest level j. This leads to a �xed bandwidth for

the diagonal bandmatrix on the �nest levels j and determines all other bandwidths of

the appearing block band matrices. For our special choice of  l;k; �l;k we recommend a

bandwidth �b of �b � 4. For greater values of �k or more complex domains D� it may be

necessary to increase this value by small amounts.

Obviously, the error ej for the functional of the solution is not as sensitive to di�erent

compression constants a as the error Ej. This is due to the fact that a quadrature rule of

higher exactness would yield a better compression rate for this error.

Figures 6 and 7 show the number nze of nonzero elements of the compressed matrix A"

j

for some constants a and the time tGM for the iterative solution of the linear system by a

preconditioned GMRES. One clearly observes that the time depends on the wave number
�k as well as on the constant a for the compression criterion.

Finally, Figs. 8,9,10 present some results for the RCS for two domains and two di�erent

wave numbers �k. The results agree with those obtained with a conventional collocation

method.

4 Dirichlet problem for the Laplace equation in 3D

In this section new results for the multiscale method proposed in [10] are presented for

a large number of degrees of freedom Nj. Note that linear systems with nearly 100,000

unknowns are solved. Since the thresholding procedure is chosen so that the optimal

asymptotic accuracy of the discretization error is preserved this corresponds to solving

fully populated linear systems of the same size arising from non-wavelet approaches.

We start briey recalling the main ingredients of the method and refer to [10] for further

details. Note that the theory outlined in Section 2 does not apply directly because we are
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dealing now with a non-periodic problem and the boundary of the considered polyhedral

domain is not smooth. Nevertheless, the decay of the matrix entries in the wavelet

representation on a face of the polyhedron [10] is of the same form as for the periodic case

[7]. Accordingly, the results are also similar to those predicted in the model problem.

It is a well known fact that the Dirichlet problem for the Laplace equation in some domain

P � IR3 can be transformed into a second kind integral equation over its boundary [15].

For a polyhedral domain P this equation over the boundary 
 = @P reads

Au := (I + 2W )u = f; (4.1)

Wu(x) := [1=2� �
(x)]u(x) +
1

4�

Z



ny � (x� y)

jy � xj3 u(y)dy
;

where �
(x) is the inner solid angle of 
 at x 2 
 and ny the unit vector of the interior

normal to P at y. W is the double layer potential operator. The kernel function k(x; y) :=
1
4�
ny � (x� y)jy � xj�3 vanishes if x and y are located on the same face of 
.

4.1 Triangulation and discretization

As mesh for the boundary 
 a regular triangulation is used. Given some initial partition

(mesh 
0) of 
 into triangles, subsequent subdivision of each triangle of 
0 into four

congruent subtriangles leads to 
1. This process generates a sequence of nested meshes


j of depth or level j 2 IN0. Clearly, the meshsize h on the level j is proportional to 2�j.

The vertices xK of the triangles are the knot points of the mesh. The indices K on a given

level de�ne a grid rj = fK : xK is a knot in 
jg. Again, the set of additional knots

added when passing from level j � 1 to level j is �j�1 := rjnrj�1.

As trial functions, we employ properly normalized Courant hat functions 'j;K which are

frequently used in �nite element or boundary element methods. More precisely, each basis

function 'j;K is a continuous function on 
 whose restriction to any triangle � in 
j is

a�ne and satis�es the nodal conditions 'j;K(xK0) = 2j�K;K0; for all K;K 0 2 rjj� . The

spaces Vj := span f'j;K : K 2 rjg of piecewise linear continuous functions on 
 are

by construction nested V0 � V1 � � � � � Vj�1 � Vj: By considering the restriction to the

planar faces of P one readily con�rms second order accuracy of the trial spaces.

Consider knot collocation on the �nest grid rj, i.e., we wish to determine a piecewise

linear and continuous function u
'

j 2 Vj such that

Au
'

j (xK) = f(xK); K 2 rj : (4.2)

Thus the entries of the collocation sti�ness matrix are given by

(A'j;K0)(xK) =
1

2�

Z
supp'

j;K0

ny � (xK � y)

jy � xKj3
'j;K0(y)dy
; (4.3)

K;K 0 2 rj; K 6= K 0:

supp'j;K0 consists of the six triangles � , for which knot K 0 is a common vertex. In order

to get a fully discrete method quadrature which is known to be exact for polynomials
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p of degree at most two is used for approximating the integrals (e.g. [22]). To describe

this, let � = [xK1
; xK2

; xK3
] 2 
j and let xK0

1
; xK0

2
; xK0

3
denote the midpoints of its edges

[xK1
; xK2

], [xK2
; xK3

],[xK3
; xK1

], respectively (cf. Figure 11). The quadrature formula for

a function v(x) then reads

Z
�

v(x)dx ' 1

3

3X
i=1

v(xK0
i
)j� j: (4.4)

Moreover, to treat the singularities in a proper way, usually a regularization technique is

employed (cf. [13]) based on rewriting Au = f as

2u(x) +
1

2�

Z



ny � (x� y)

jy � xj3 [u(y)� u(x)]dy = f(x); x 2 
: (4.5)

Note that some calculations presented in Tables 2 and 3 are performed without singularity

subtraction.

In summary one obtains the following linear system with the discrete collocation matrix

A
'

j u
'

j = fj; A
'

j = (aK;K0)K;K0
2r

j : (4.6)

4.2 Decomposition of function spaces

Our approach is based on a multiscale decomposition of the given trial spaces induced by

the following two scale relations. The re�nement equation (2.1) now takes the form

'j;K =
X

K0
2r

j+1

mj;K0;K'j+1;K0; K 2 rj: (4.7)

The coe�cients mj;K0;K are called mask or �lter coe�cients. On those grid points lo-

cated in the interior of the triangles � 2 !0 the entries of the sparse Nj+1 � Nj matrix

(mj;K0;K)K0
2r

j+1;K2r
j can be represented by the following 7 point stencil

0
B@

0 1 1

1 2 1

1 1 0

1
CA : (4.8)

Here the bold value indicates a position K in the coarse grid rj. Relation (2.3) which

complements the basis in Vj to one for Vj+1, now reads

 j;K :=
X

K0
2r

j+1

cj;K0;K'j+1;K0; K 2 �j = rj+1 n rj; (4.9)

and in the interior of each � 2 
0, cj;K0;K corresponds to one of the following 3 point

stencils

0
B@

0 0 0

�1 2 �1
0 0 0

1
CA 1

2
;

0
B@

0 �1 0

0 2 0

0 �1 0

1
CA 1

2
;

0
B@

0 0 �1
0 2 0

�1 0 0

1
CA 1

2
; (4.10)
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depending on the direction of the edge containing the knot xK , K 2 �j. Here the boldface

values correspond to indices K 2 �j.

Now let as before Tj denote the transformation that takes the coe�cient vector ~uj of

some element of Vj relative to the multiscale basis f'0;K : K 2 r0g[ f l;K : K 2 �l; l =

0; : : : ; j � 1g into the coe�cient vector u
'

j
relative to the nodal basis f'j;K : K 2 rjg.

The linear system (4.6) is equivalent to

Aj~uj = T �

j
fj; fj = f(xK); K 2 rj;

where Aj := T �

j
A
'

j
Tj is the collocation sti�ness matrix relative to the multiscale basis.

The transformation Tj has the same pyramid structure as described in Section 3. Due to

the �nite supports of the masks its application requires the order of O(Nj) operations.

The essential steps of the present preliminary version of the algorithm may now be de-

scribed as follows:

1. The discretized collocation method in the nodal basis gives rise to a linear system

(4.6). The complexity of assembling the matrix is O(N2
j
).

2. The transformations Tj; T
�

j
lead to the matrix Aj := T �

j
A
'

j Tj, so that the system

is equivalent to Aj~uj = T �

j
fj, and u

'

j = Tj~uj. Since A
'

j is fully populated the

complexity of this part is still O(N2
j
). In view of the order of our quadrature rule,

the estimates in [10] predict a signi�cantly faster decay of the entries in Aj than of

those in A
'

j . Replacing all those entries in Aj by zero whose modulus stays below

a given threshold th yields the compressed system A"

j
uj = T �

j
fj. To improve the

scheme one has to compute A"

j
directly without going through A

'

j . The theoretical

concepts needed to perform this step in an e�cient way have now become available

[21].

3. This latter system is solved with the aid of a sparse iterative solver (e.g. GMRES)

without preconditioning since the order of the operator is zero in this case.

The decay estimates (see [10]) allow us to estimate the deviation of the solution of the

compressed system from the solution to the full system and, in some cases, also from the

exact solution of Au = f . As pointed out above at this stage this method has still an

overall complexity of O(N2
j
). Only the last step, after the thresholding procedure, has

a complexity which is nearly linear and therefore leads to a fast solution of the linear

system. As one can see in Tables 2 and 3, quadrupling the number Nj of unknowns leads

to quadrupled nze only. In contrast to the method of Section 3 it does not save yet memory

because in the �rst two steps, N2
j
matrix entries are handled. Nevertheless, so far the

primary objective of these test has been to con�rm the performance of such techniques

with regard to compression and convergence behavior in situations where not all the

assumptions of the model case are ful�lled. The results show that e�cient compression is

possible without deteriorating the resulting accuracy of the discrete solutions signi�cantly.

4.3 Numerical examples

For our numerical experiments we consider a Dirichlet problem for Laplace's equation

�U(x) = 0 ; x 2 P, and smooth Dirichlet data, U(x)j
 = f(x); x = (1x; 2x; 3x) 2 
.
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In spite of the smoothness of the Dirichlet data the solution will generally not be smooth

because the boundary is not smooth.

Here we mainly present numerical experiments for two di�erent polyhedra, a cube, and a

pyramid. For a nonconvex domain (bench) and further more detailed results, see [10].

Recall that the solution U of the above Dirichlet problem with boundary data f(x); x 2 


has the representation

U(x) =
1

4�

Z



ny � (x� y)

jx� yj3 u(y)dy
; x 2 P; (4.11)

where u is the solution of the double layer potential equation Au = f . Speci�cally, for

our tests we choose f(x) := U(x)j
 with the harmonic function U(x) :=
q

11
4
((1x+ 1)2 +

2x
2 + 3x

2)�
1

2 ; x 2 P.
In order to control our compression error, we have to monitor the error between the

exact solution u, and the approximate solution u
'

j
obtained by the given (uncompressed)

discretized collocation method on a grid rj with N = Nj knots. Since we are often

interested in the potential U , or in some functionals of the boundary data u, rather than

in the values of u, we directly go ahead and determine �rst an approximation of U as

follows. Inserting u
'

j into the representation formula above and computing the integral via

the same quadrature rule used for the computation of the entries of the sti�ness matrix, we

derive the following formula for the approximate solution of the boundary value problem

(cf. Fig.11):

U
'

j (x) :=
1

4�

X
�2
j

1

3

3X
i=1

n� � (x� y�
K0
i

)

jx� y�
K0
i

j3 u
'

j (y
�

K0
i

)j� j; (4.12)

where for � = [yK1
; yK2

; yK3
] the points y�

K0
i

are de�ned by y�
K0
i

= 1
2
(yKi

+ yKk
) 2 �j; i =

1; 2; 3 with k = i+ 1; for i = 1; 2 and with k = 1 if i = 3, are the midpoints of the edges

of the triangle � and u
'

j (y
�

K0
i

) := 1
2
(u

'

j (y
�

Ki
) + u

'

j (y
�

Kk
)).

As a further control we replace the exact solution u of (4.5) by the numerical solution uJ on

a very �ne grid and compute ERR
'

j =
ku

'

j
�uJk0

kuJk0
where here kuk0 := (

P
K22j

ju(xK)j2)1=2.
This error is equivalent to the relative L2-error (see [10]).

In the multiscale representation Aj of the operator we discard those elements which are

below a given threshold th and end up with a compressed or sparsi�ed matrix A"

j
. The

ratio between the total number N2 of matrix elements of the full matrix and the number

nze of nonzero elements after thresholding de�nes the compression rate= cpr := N2

nze
. By

compression we obtain a perturbed system. The solution of this perturbed system yields

the approximate solution uj (which at this stage is given in its multiscale representation).

Evaluating uj at the points y
�

K0
i

and substituting these values into the discrete represen-

tation formula (4.12) for u
'

j , provides Uj(x). The evaluation is most e�ciently performed

by transforming the solution of the compressed system into nodal basis coe�cients with

the aid of Tj and exploiting then the localness of the basis functions 'j;K.

Of course, the compression causes an additional error. An acceptable compression should

have only a negligable inuence on the precision of the �nal approximate solution. To
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monitor uj we again replace the exact solution u of (4.5) by the numerical solution uJ on

a very �ne level J and compute ERRj =
kuj�uJk0

kuJk0
. In order to determine which threshold

results in a suitable compression, we compare this error with the error ERR
'

j
of the

discretization scheme. Similarly we compare ERRxi with the corresponding error jU(xi)�
Uj(x

i)j. To estimate this error we compute the maximum MERRx := maxi=1;2;3jU(xi)�
Uj(x

i)j. This is the second quantity that should help determining which compression

rate still has a negligable e�ect on the precision of the approximate solution. Finally, we

compute the additional error arising from the compression ERR :=
ku

'

j
�ujk0

ku
'

j
k0

, which is also

displayed in most of the tables.

The main results for the geometries we have tested are presented in Tables 2, and 3.

The bold quantities refer to the largest threshold th and the corresponding solution uj
for which ERRj � ERR

'

j
on the same level j. In this case, thresholding apparently has

a negligable inuence on the solution uj. Furthermore for the bold quantities one has

MERRx � ERRxi ; i = 1; 2; 3 and for j > 4 even MERRx � ERRxi; i = 1; 2; 3. We observe

that we can choose a larger threshold, and this results in a better compression for larger

N , satisfying MERRx � infiERRxi ; i = 1; 2; 3.

In Figs. 12, and 13 the number nze of nonzero elements of the compressed matrices A"

j
,

for which we observed acceptable precision (bold quantities in Tables 2, and 3) versus

the number of knot points N = #rj are plotted and compared with the N2 elements of

the dense matrix. Figure 13 exhibits a nearly linear increase of nze for greater N . The

compression reduces storage signi�cantly to 1=cpr � N2. Likewise the CPU time for the

matrix-vector multiplications during the iterative solution of the linear system decreases

substantially (see Fig.14).

For the solution of the discrete and compressed scheme we again use the iterative method

GMRES. For the estimation of the condition numbers �(A
'

j ) and �(A
"

j
) we apply a direct

solver. This method is an expert driver of the well known LA-package [12]. The number of

iteration steps, the estimated condition numbers and the CPU time tGM for the GMRES

solution on a DEC 3000 AXP 500 workstation are presented in Table 4. The termination

bound for the iteration process is chosen to be about ERR
'

j =100. Note that since the

operator has order zero in this case and since we have not employed an orthogonal basis

the condition of the original matrix should be better than that of the transformed matrix.

Furthermore, compression should have a minor inuence on the condition numbers which

is also con�rmed by our experiments.

Our aim was to show the nearly linear asymptotic behavior of the necessary number

of nonzero elements nze also in the case of a large number of degrees of freedom. So

quadrupling the number Nj of unknowns leads to quadrupled nze only. In spite of a

relatively strong compression one observes acceptable accuracy. For N � 100; 000 such a

compression rate is about 500 and we observed this rate to be more or less independent of

the underlying geometry. Therefore in CPU{time solving the linear system by an iterative

scheme the speed up factor was dramatic { solving a system corresponding to 100; 000

degrees of freedom, only takes 3 minutes on a sequential workstation and the whole matrix

goes into a main memory of � 200 MB. Our method damps the coe�cients away from

the singularity. Thus the double layer potential operator for the Laplacian can be well

compressed. We expect the same to persist for the double layer potential for the Stokes

system.
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One advantage of the present multiscale technique applied to boundary integral equations

is that we have additionally a simple a posteriori criterion to decide which coe�cients

are essentially required. Applying the present thresholding leads often to much better

compression than the a priori choice of coe�cients. This seems to apply to our double

layer potential operator.

5 Concluding remarks

We have outlined some theoretical foundations of multiscale methods and have carried

out corresponding numerical experiments for two types of boundary integral equations.

Galerkin methods being better understood we have concentrated here on collocation. The

�rst case study concerning the Helmholtz equation is covered by the existing theory and

shows that aside from the natural e�ects of large wave numbers also operators of order

di�erent from zero can be handled e�ciently. The experiments are of signi�cant help in

clarifying the quantitative e�ects of the various ingredients of the scheme. The second

example is a more complex three dimensional problem which is not fully covered by the

analysis of the model problems. It could be shown though that nevertheless even for large

problem sizes the basic compression and convergence properties predicted by the theory

for the periodic case still persist to be valid.
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Figure 5: Errors Ej; ej in logarithmic scale for an elliptical cross section and �xed wave

number �k = 10 for two di�erent constants a for the a-priori compression strategy.
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fK1; K2; K3g � rj ) fK1; K2; K3; K
0

1; K
0

2; K
0

3g � rj+1; fK 0

1; K
0

2; K
0

3g � �j.

Cube

j Nj th nze cpr ERR MERRx

1 26 3 � 10�3 568 1.2 2:0 � 10�4 2:9 � 10�2
1 � 10�2 466 1.4 4:3 � 10�3 2:9 � 10�2
3 � 10�2 274 2.5 8:5 � 10�2 3:0 � 10�2

2 98 1 � 10�3 5176 1.8 2:3 � 10�3 4:6 � 10�3
3 � 10�3 3346 2.9 5:5 � 10�3 4:4 � 10�3
1 � 10�2 1990 4.8 2:5 � 10�3 2:9 � 10�3

3 386 3 � 10�4 36,484 4.1 1:0 � 10�3 6:7 � 10�4
1 � 10�3 21,124 7.0 4:4 � 10�3 5:2 � 10�4
3 � 10�3 12,646 11.8 2:3 � 10�2 1:9 � 10�3

4 1,538 1 � 10�4 401,272 5.9 4:7 � 10�4 1:3 � 10�4
3 � 10�4 235,588 10.3 1:3 � 10�3 1:2 � 10�4
1 � 10�3 125,524 18.8 3:8 � 10�3 1:8 � 10�4

5 6,146 3 � 10�5 2,098,108 18.0 2:9 � 10�4 9:2 � 10�6
1 � 10�4 1,118,296 33.8 8:4 � 10�4 4:0 � 10�5
3 � 10�4 647,032 58.4 2:1 � 10�3 2:4 � 10�5

6a 24,578 3 � 10�6 6,755,512 89.4 - 5:0 � 10�6
1 � 10�5 3,953,114 152.8 - 5:5 � 10�6
3 � 10�5 2,478,484 243.7 - 2:1 � 10�5

7b 98,306 3 � 10�6 17,857,936 541.0 - 2:0 � 10�6
3 � 10�5 7,097,044 1361.0 - 2:2 � 10�5

a Calculations without singularity subtraction. Coarsest level is set to l = 2.
b Calculations without singularity subtraction. Coarsest level is set to l = 3.

Table 2: Number nze of nonzero elements, compression rate cpr, errors ERR and MERRx

for the multiscale algorithm for the Laplace equation on the cube for several thresholds

th and levels j.
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Pyramid

j Nj th nze cpr ERR MERRx

1 14 3 � 10�3 188 1.0 1:1 � 10�4 2:2 � 10�2
1 � 10�2 172 1.1 1:8 � 10�4 2:2 � 10�2
3 � 10�2 122 1.6 5:6 � 10�2 3:7 � 10�2

2 50 1 � 10�3 1948 1.3 7:5 � 10�4 5:2 � 10�3
3 � 10�3 1494 1.7 1:5 � 10�3 5:3 � 10�3
1 � 10�2 1016 2.5 1:5 � 10�2 6:3 � 10�3

3 194 3 � 10�4 22,546 1.7 2:2 � 10�4 2:2 � 10�4
1 � 10�3 15,108 2.5 1:6 � 10�3 1:8 � 10�4
3 � 10�3 9,736 3.9 5:8 � 10�3 1:5 � 10�4

4 770 1 � 10�4 159,022 3.7 3:1 � 10�4 1:2 � 10�4
3 � 10�4 96,244 6.2 1:1 � 10�3 1:2 � 10�4
1 � 10�3 56,668 10.5 3:0 � 10�3 2:3 � 10�4

5 3,074 3 � 10�5 1,179,686 8.0 1:8 � 10�4 2:9 � 10�5
1 � 10�4 660,124 14.3 5:1 � 10�4 2:8 � 10�5
3 � 10�4 389,018 24.3 1:4 � 10�3 2:5 � 10�5

6a 12,290 3 � 10�6 4,071,856 37.1 - 9:0 � 10�6
1 � 10�5 2,401,236 62.9 - 7:3 � 10�6
3 � 10�5 1,486,256 101.6 - 9:2 � 10�6

7b 49,154 3 � 10�6 10,776,400 224.4 - 1:6 � 10�6
a Calculations without singularity subtraction. Coarsest level is set to l = 2.
b Calculations without singularity subtraction. Coarsest level is set to l = 3.

Table 3: Number nze of nonzero elements, compression rate cpr, errors ERR and MERRx

for the multiscale algorithm for the Laplace equation on the pyramid for several thresholds

th and levels j.

j Nj �(A
'

j ) it(A
'

j ) t(A
'

j ) cpr �(A"

j
) it(A"

j
) t(A"

j
)

Cube:

3 386 2.4 6 0.2 7.0 38.9 14 0.1

4 1,538 2.8 8 3.9 10.3 133.0 16 0.9

5 6,146 3.2 11 52.0 33.8 215.7 23 6.0

6 24,578 - - - 152:8a - 29 33.8

7 98,306 - - - 541:0b - 32 178.0

Pyramid:

3 194 2.3 7 0.06 3.9 31.1 13 0.03

4 770 5.3 8 0.9 6.2 63.4 15 0.3

5 3,074 8.6 10 17.3 14.3 118.2 19 2.6

6 12,290 - - - 62:9a - 28 19.9

7 49,154 - - - 224:4b - 31 74.2
a Calculations without singularity subtraction. Coarsest level is set to l = 2.
b Calculations without singularity subtraction. Coarsest level is set to l = 3.

Table 4: Laplace equation: Number of iterations it for the solution of the linear systems

A
'

j u
'

j = fj and A
"

j
uj = (Tj)

�fj, respectively, with GMRES; CPU-times t in seconds on a

DEC 3000 AXP 500 �{processor workstation. Condition numbers � of the corresponding

matrices.
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