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Abstract

In this article we present a new approach to the computation of volume potentials over

bounded domains, which is based on the quasi-interpolation of the density by smooth, almost

locally supported basis functions for which the corresponding volume potentials are known.

The quasi-interpolant is a linear combination of the basis function with shifted and scaled

arguments and with coe�cients explicitly given by the point values of the density. Thus,

the approach results in semi-analytic cubature formulae for volume potentials, which prove

to be high order approximations of the integrals. It is based on multi-resolution schemes for

accurate approximations up to the boundary by applying approximate re�nement equations

of the basis functions and iterative approximations on �ner grids. We obtain asymptotic

error estimates for the quasi-interpolation and corresponding cubature formulae and provide

some numerical examples.

1 Introduction

In recent years the boundary element method (BEM) has been used extensively to solve boun-

dary value problems for partial di�erential equations with constant coe�cients which occur in

mechanics, electromagnetics and other �elds of mathematical physics.

Let, for example, L be a partial di�erential operator with known fundamental solution E and

consider the equation

Lf = u in 
;

complemented with some boundary condition. The simplest way to apply BEM for solving this

problem is to represent the solution u as the sum

f(x) = f0(x) + Pu(x);

where Pu is the volume potential de�ned by

Pu(x) =

Z


u(y) E(x;y)dy

and f0 satis�es the homogeneous equation

Lf0 = 0 in 
;

with boundary conditions adjusted such that the total solution f satis�es the boundary condition

of the original problem. The remainder f0 is obtained by solving the corresponding boundary

integral equations, involving now the new boundary data for f0. In order to �nd these data

su�ciently precise, one must be able to compute the volume potential (and, very often, its

derivatives) very accurately.

Even more important applications of the volume potentials appear when one combines the

BEM with iteration procedures for linear problems with variable coe�cients or for non-linear

problems. Essentially, the approach for solving boundary problems for nonlinear equations lumps

the nonlinearity into body forces and then solves the problem iteratively. This introduces domain

integral contributions or volume potentials to the corresponding boundary integral equations.

The construction of closed�form particular solutions is possible only for some special inhomo-

geneities. Thus the particular solutions must be approximated. However, the direct computation

of the potential Pu leads to evaluation of a typically singular integral, which is both numerically

expensive and inaccurate if conventional cubature formulae are used.

Therefore, starting with the paper of Nardini/Brebbia [11] it has become increasingly popular

to represent the densities u of the volume potentials in terms of simpler functions for which

particular solutions are known (see, e.g., [12] and the references therein). Thus, the singularity
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is removed and one obtains an approximation for the potential Pu. Typically, in the case of

volume potentials for isotropic di�erential operators the most widely used class of approximating

functions are special radial basis functions and the approximant interpolates u at certain nodes.

Thus, the approximation of the volume potentials turns to the approximation-theoretic problem

of the construction of approximants to given functions u by special basis functions and the

corresponding error estimates. However, the construction of the interpolant may be rather

involved; see for example [13], where the case of Gaussian radial basis functions is studied.

Let us note that another popular method of transforming domain integrals to boundary in-

tegrals relies also on the interpolation of the density by linear combinations of certain radial

functions (cf. [14] and the references therein).

The aim of this article is to present a new approach to the computation of volume potentials

over bounded domains, which is based on the quasi-interpolation of the density u by smooth,

almost locally supported basis functions for which particular solutions are known. Since the

quasi-interpolant is a linear combination of the basis function with shifted and scaled arguments

and with coe�cients explicitly given by the point values of u, we get semi-analytic cubature

formulae for volume potentials, which prove to be high order approximations of the integrals.

Our approach is based on an approximation method proposed by the second author in [2] which

use generating functions forming only an approximate partition of unity. Given a function u,

de�ned and somewhat regular on Rn, the approximate approximation operatorMh;D is de�ned

as the quasi-interpolant

Mh;Du(x) = D�n=2
X
m2Zn

u(hm)�

�
x� hm

h
p
D

�
; (1)

where h is the step size, D is a positive parameter and � satis�es some decay and moment

conditions. In [7] it is shown that for any integer N it is easy to �nd a generating function �

such that at any point x,

ju(x)�Mh;Du(x)j � cu;�((h
p
D)N + "0(�;D)): (2)

A proper choice of the parameter D allows to make the saturation error "0(�;D) as small as

necessary, e.g., less than the machine precision.

Formula (1) is the basis of the semi-analytic cubature formulae for the approximation of various

integral and pseudo-di�erential operators. It su�ces to �nd the action of the corresponding

operator P on the generating function � of the quasi-interpolant Mh;D:

Pu(x) � PMh;Du(x) =
X
m2Zn

u(hm)P�
�� � hm

h
p
D

�
(x):

Some important examples are analyzed in [3] and [9], including in particular, the harmonic,

elastic, hydrodynamic, di�raction and other potentials.

Such cubature formulae perform well and satisfy estimates similar to (2) only if the approxi-

mated function u is de�ned and somewhat regular on the whole space or can be continued outside

the domain of de�nition with preserved regularity. For functions de�ned only in bounded do-

mains, we develop multi-resolution schemes for accurate approximation up to the boundary by

applying iteratively approximate approximations on �ner grids. The mesh re�nement is achieved

using the analytical factorization of the operatorMh;D

Mh;D =M�h;D
fMh;D; 0 < � < 1;

where fMh;D is another quasi-interpolant of the form (1). These iteration schemes not only

retain, but increase the accuracy of approximation at points lying nearer to the boundary. The
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procedure results in the approximation formula:

BMu(x) =
MX
k=0

X
m2Qk

ck;m �

�
x� hkm

hk
p
D

�
; hk = �kh; 0 < � < 1; (3)

which is accurate on the whole of 
 except on a boundary layer of width decreasing exponentially

with M , the number of steps made in the iteration scheme from which BMu originates. The sets

Qk � Z
n are such that the mesh points hkm � hkQk lie in boundary layers of width exponentially

decreasing with k and the coe�cients ck;m are given by

ck;m =

�
u(hm) ; k = 0,

u(hkm)� fMhk�1;D
u(hkm); k � 1.

Of course, representation (3) can be used not only near the boundary, but also locally at other

regions where higher accuracy is needed.

Clearly, the multi-resolution operator BM retains also the quasi-interpolation character of the

Mh;D which grants an easy computation of the coe�cients ck;m. Moreover, in similarity to

wavelet bases and other techniques built upon orthogonal basis functions, the introduction of

new higher-frequency terms in (3) does not require re-computation of the coe�cients ck;m.

The good accuracy provided by (3) for functions on domains can be used to successfully

approximate a large class of integral operators. Given an integral operator P with density u

de�ned on a domain, one obtains a cubature formulae for its calculation by setting

Pu(x) � Phu(x = PBMu(x) =
MX
k=0

X
m2Qk

ck;m P�
� � � hkm

hk
p
D

�
(x): (4)

In the cases of many potentials from mathematical physics, including the harmonic, elastic,

hydrodynamic and di�raction potentials, integration can be performed analytically (cf. [2],[3]

and [9]). Since the density is reproduced accurately near the boundary if M is large enough, the

cubature formula (4) admits error estimates similar to (2). More precisely, in section 7 we prove

the following theorem:

Let u 2 WN

p (
) with N > n=p and suppose that P maps Lp(R
n) into the Bessel potential

space Hm
p (Rn)). For any " > 0 there exists D > 0 such that

kPu � PhukHm
p (Rn) � c1(Dh)

NkrNukLp(
) + c2h
1=p
M
kukL

1
(
) + "kuk

W
N�1
p (
)

:

If additionally P 2 L(H�m
p (Rn); Lp(R

n)) then

kPu � PhukLp(Rn) � (c1(Dh)
N + c2h

1=p+r
M

)kukWN
p
(
) + " hm kuk

W
N�1
p (
)

;

where 0 < r < m=n; r � (p� 1)=p.

We note that a signi�cant reduction of the computational cost can be achieved through aniso-

tropic mesh re�nement in direction normal to the boundary which will be studied in a forthcoming

paper.

The outline of the paper is as follows. In section 2 we brie�y review some results of quasi-

interpolation on uniform meshes with smooth and rapidly decaying basis functions. Section 3

is devoted to approximate re�nement equations for those functions resulting in the factorization

and multiresolution decomposition of the corresponding quasi-interpolation operators. In section

5 we de�ne the boundary layer approximants (3), the approximation errors in integral and weak

norms will be studied in section 6. In the �nal section obtain error estimates for cubature

formulae and give examples of semi-analytic cubature for potentials.
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2 Approximate approximations on domains

In this section we derive some estimates for the approximation properties of the quasi-interpolant

(1) for the case when u is de�ned on a domain 
 with compact closure and Lipschitz boundary

and is continued by zero outside.

2.1 Notation

We will suppose that the generating function � belongs to the Schwartz class S(Rn) and that

for some N > 0, the following moment conditions are satis�ed:Z
Rn

�(x) dx= 1;

Z
Rn

x
��(x) dx= 0; 0 < j�j < N: (5)

For a given multi-index �, we introduce the numbers

"� = "�(�;D) := D�n=2
 X
m2Zn

� � �mp
D

�
�

�
� � �mp

D

�
�
Z
Rn

x
��(x) dx


L
1
(Rn)

;

�� = ��(�;D) := D�n=2
 X
m2Zn

���� � �mp
D

�
�

�
� � �mp

D

���� 
L
1
(Rn)

:

(6)

From Poisson's summation formula one obtains immediately

"� �
X
m6=0

jFx7!�(x
��(x))(

p
D�)j; 0 � j�j < N; (7)

where F is the Fourier transform

Fu(�) =
Z
Rn

u(x) e�2�ihx;�i dx;

We de�ne also the monotone function

g�;D(t) = D�n=2 sup
x2Rn

X
jx�mj>t

����x�mp
D

�
�

�
�
x�mp

D

����;
and note that since � 2 S(Rn), g�;D(t) decays far out faster than any negative power of t. Of

course, if � is continuous, then evidently ��(�;D) = g�;D(0).

For r > 0, let B(x; r) be the closed ball centered at x of radius r. Finally, if 
 is a bounded

domain in Rn, we de�ne the subdomain 
r and the equidistant r-neighbourhood 
+
r
of 
 by


r = fx : B(x; r) � 
g; 
+
r
= fx : dist(x;
) < rg: (8)

2.2 Accuracy of approximate approximation in domains

In [7] it is shown that if u if N -times di�erentiable and the generating function � satis�es the

moment conditions (5), the quasi-interpolantMh;Du approximates u at a rate O("0+(h
p
D)N).

The quantity "0, de�ned by (6), is referred to as the saturation error.

Since � 2 S(Rn), by (7) the values of "�, 0 � j�j < N , can be made as small as needed if D

is chosen large enough. Note also that the bound (7) for the saturation error is independent of

the step size h.

Clearly, the boundedness of 
 = supp u does not imply boundedness of the support ofMh;Du.

Nevertheless, as � is in the Schwartz class, Mh;Du(x) decays fast with the dist(x; suppu):
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Lemma 1 Suppose that u is a bounded function and 
 = supp u. Then

jMh;Du(x)j � g0;D(h
�1 dist(x;
)) kuk1:

Since g0;D 2 S, one can �nd a number Ns > 0, such that

g�;D(Ns) � "�(�;D); 0 � j�j < N: (9)

In other words, Lemma 1 assures that if Ns is a positive number such that (9) holds, the essential

support ofMh;Du is the Nsh-neighbourhood 
+
Nsh

of 
, in the sense that

jMh;Du(x)j � "0kuk1 whenever x 2 Rn n 
+
Nsh

: (10)

Note also that since jMh;Du(x)j decays far out more rapidly than any power of dist(x;
), the

quasi-interpolant on Rn n 
+
Nsh

is of the order of the saturation error "0 even in integral norms.

Remark 1 Another consequence of (10) is that the computation of Mh;Du requires to take

only the (2Ns + 1)n summands in (1) for which jx=h�mj � Ns, since the error introduced by

neglecting the other terms is smaller than the saturation.

In order to show the approximation properties ofMh;D for functions de�ned on domains and

continued by zero outside, we begin by investigation of the behaviour of the quasi-interpolant

under truncation of the summation.

Theorem 1 Suppose that � 2 S(Rn) satis�es the moment conditions (5) and let Ns > 0 be such

that (9) holds. If u is N -times continuously di�erentiable in the ball B(x; Nsh), then

j(I �M(B)

h;D
)u(x)j � 2

N�1X
j�j=0

(h
p
D)j�j

"�(�;D)

�!
j@�u(x)j

+ (h
p
D)N

X
j�j=N

��(�;D)

�!
k@�u(x)kC(B(x;Nsh));

where M(B)

h;D
denotes the truncated quasi-interpolant

M(B)

h;D
= D�n=2

X
hm2B(x;Nsh)

u(hm)�
�
x� hm

h
p
D

�
:

Proof. Set for brevity B = B(x; Nsh) and �m = x�hm
h

p
D
. The Taylor expansion of u(hm) around

the point x yields

M(B)

h;D
u(x) = D�n=2

N�1X
j�j=0

(�
p
Dh)�

@�u(x)

�!

X
hm2B

�
�

m
�(�

m
)

+D�n=2
X

j�j=N

(�pDh)N
�!

X
hm2B

@�u(ym) ��
m
�(�

m
);

where ym lies on the segment connecting the points hm and x. If we split the summation over

Z
n and Zn nB, we obtain for the �rst inner sum in the right-hand side

D�n=2
��� X
hm2B

�
�

m
�(�

m
)
��� � "�(�;D) + g�;D(Ns); 0 � j�j < N;

whereas

D�n=2
X

hm2B

�����
m
�(�

m
)
��� � ��(�;D); j�j = N:

Choosing Ns as in the statement of the theorem completes the proof.
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2.3 Examples

As an example, consider the generating functions based on the radial Gaussian

�2M(x) = ��n=2L
(n=2)

M�1(jxj2) e�jxj
2

; M = 1; 2; : : : ; (11)

where L
(�)

k
(t) denote the generalized Laguerre polynomials de�ned by

L
(�)

k
(t) =

t��et

k!

dk

dtk

�
tk+�e�t

�
; � > �1: (12)

Since the corresponding Fourier transforms are (cf. [3])

F�2M(�) = PM�1(�
2j�j2) e��2j�j2 ; Pm(t) =

mX
k=0

tk

k!
; (13)

these functions satisfy the moment conditions (5) with N = 2M and hence, by Theorem 1,

give rise to quasi-interpolation formulae (1) of approximate order of convergence O((h
p
D)2M).

Furthermore, using (7), the saturation error "0 can be estimated by

"0(�2M ; D) �
X

m2Znnf0g

PM�1(jmj2r2) e�jmj2r2 = O(r2M+n�4 e�r
2

) ; r = �
p
D:

Note that since e��
2 � 5:17 � 10�5, already D = 4 ensures a saturation error in the range

10�15 � 10�12 for 1 �M � 3 and space dimensions n = 2 and 3.

2.4 Lp-estimates

We recall that our main goal is to use quasi-interpolants for approximation of densities of integral

operators, many of which are known to be continuous mappings from Lp to the Sobolev space

W l

p, l > 0. Thus, in order to derive estimates for the approximation of the integral operators, it

will be necessary to have Lp-estimates for the approximation of the corresponding densities.

By Theorem 1, only the values of the function in a small neighbourhood of the point x a�ect the

approximation results, and hence, modulo the doubled saturation error, the truncated operator

M(B)

h;D
possess identical approximation properties as it's untruncated counterpart Mh;D. This

means also that functions belonging to CN (
) are approximated at the rate O("0 + (h
p
D)N )

in the subdomain 
Nsh (cf. (8)), i.e., at all internal points which lie on a distance larger that

Nsh from the boundary @
. Generally, if u belongs to the Sobolev space WN

p
(
), the following

Lp-estimate holds (cf. [9]):

Theorem 2 Suppose that � 2 S(Rn) satis�es the moment conditions (5) and that Ns is as

in (9). Further, let 
 be a domain in R
n with compact closure and Lipschitz boundary and

u 2 WN
p (
) with N > n=p, 1 � p � 1. Then,

k(I �M(B)

h;D
)ukLp(
Nsh) � 2

N�1X
j�j=0

(h
p
D)j�j

"�(�;D)

�!
k@�ukLp(
Nsh)

+ (h
p
D)N

X
j�j=N

��(�;D)

�!
k@�ukLp(
);

where 
Nsh is the sub-domain de�ned in (8).
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We note that under the requirements in Theorem 2 u is continuous on 
 and thus the quasi-

interpolantMh;Du is well-de�ned. Clearly, if u 2 �WN
p
(
); then the result of Theorem 2 can be

extended to the whole space Rn instead of 
Nsh.

In order to estimate the accuracy of approximation of integral operators, besides the bounds

inside the domain given by Theorem 2, one needs estimates for the discrepancy (I �Mh;D)u on

the whole space.

Theorem 3 Suppose that the conditions of Theorem 2 hold. Then for any t > 0,

k(I �Mh;D)ukLp(
+
th
n
Nsh)

� c
h
1=p (1 + �0(�;D))(Ns+ t)1=pkukL

1
(
)

kMh;DukLp(Rnn
+
th
) � hn=p kg0;D(j � j+ t)kLp(Rn) kukL

1
(
);

where c
 is a constant depending only on the domain 
.

The proof is based on the following lemma:

Lemma 2 Suppose that 
 is a domain in Rn with compact closure and Lipschitz boundary. For

h > 0, denote by XSh the characteristic function of the boundary layer fx 2 
 : dist(x; @
) < hg.
Then, the following estimates hold:

kXShukLp(
) � ch(t�1)=ptkukLpt(
); 1 � p; t <1 ; (14)

kXShukLp(
) � chrkukW s
p (
)

; 1 � p <1; 0 < r < s=n; r � 1=p ; (15)

kXShuk(W s
p (
))

0 � chrkukLp=(p�1)(
); 1 � p <1;

0 < r < s=n; r � 1=p ;
(16)

with constants depending only on 
.

Here (W s

p (
))
0 denotes the dual space of W s

p (
) with respect to the L2 scalar product.

Proof. The �rst inequality follows fromZ


jXShujp dx �

nZ


jujpt dx

o1=tnZ
Sh

dx
o(t�1)=t

= (measSh)
(t�1)=t kukp

Lpt(
)
:

To prove (15), we note �rst that since u 2 W s

p
(
), s > n=p, then u 2 C(
). HenceZ



jXShujp dx � max

x2Sh
ju(x)jpmeasSh � cmeasSh kukpW s

p
(
)

;

so that

kXShukLp(
) � ch1=p kukW s
p (
)

:

Since evidently kXShukLp(
) � kukLp(
), we obtain by interpolation

kXShukLp(
) � ch�=p kukW s�
p (
); 0 � � � 1; s > n=p:

Setting r = �=n yields (15). Finally, since the operator XSh is symmetric, there holds

kXShkLp=(p�1)(
)7!(W s
p
(
))0 = kXShkW s

p
(
) 7!Lp(
);

which proves (16) and the lemma.
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Proof of Theorem 3. Let for brevity S denote the boundary strip S = 
+
th
n
Nsh. Then by

the proof of (14)

k(I �Mh;D)ukLp(S) � k(I �Mh;D)ukL
1
(
)(measS)1=p � (1 + �0(�;D))(measS)1=pkukL

1
(
) :

To obtain the second estimate in the formulation of the theorem, we note that

kMh;Du(x)kp
Rnn
+

th

�
Z

Rnn
+
th

 
D�n=2

X
hm2


���u(hm) �(
x=h�mp

D
)
���!p dx

� hn kukp
L
1
(
)

Z
dist(�;h�1
)>t

 
D�n=2

X
m2h�1


����(��mp
D
)
���!p d� :

By the construction of the set 
+
th

we have

j(x=h�m)j � t+ inf
y2
+

th

jh�1(x� y)j; x 2 Rn n 
+
th
; hm 2 
;

and hence

j� �mj � t + dist(�; h�1
+
th
); m 2 h�1
; dist(�; h�1
) > t:

Lemma 1 provides the estimate

D�n=2
X

m2h�1


������ �mp
D

���� � g0;D(t+ dist(�; h�1
+
th
));

and therefore

kMh;Du(x)kp
Rnn
+

th

� hnkukp
L
1
(
)

Z
j�j�t

fg0;D(t+ j�j)gp dx:

The proof is completed.

Combined, Theorems 2 and 3 give Lp-estimates for the approximation error on the whole of

R
n. By Theorem 2, the quasi-interpolantMh;Du is a good approximation of u at internal points,

lying at a distance larger thanNsh from the boundary. The error is then of orderO("0+(h
p
D)N )

and can be controlled e�ectively by a proper choice of the step-size h and the parameterD. The

second estimate from Theorem 3 assesses the error accumulated outside of the th-neighbourhood

of supp u. Since g0;D is in the Schwartz class, kg0;D(j � j+ t)kLp(Rn) ! 0 more rapidly then any

power of t, so this term can be made of the same order of magnitude as, e.g., the saturation error

"(�;D), by choosing t larger.

Thus, the main contribution to the overall error comes from the boundary strip 
+
th
n 
Nsh,

where, by the �rst estimate in Theorem 3, the error is of order O(h1=p) if u does not vanish on

@
. Clearly, it will be numerically very expensive to make this term small by choosing h smaller,

especially in higher space dimensions. In what follows, we concentrate our e�orts to build local

mesh re�nements near points of where the quasi-interpolantMh;Du does not approximate with

satisfactory accuracy, in particular, near the boundary of the domain.

3 Approximate re�nement equations

In this section we concentrate on the construction and properties of the cornerstone of approxi-

mate multi-resolution techniques, namely, the re�nement equations of the type

�(x) =
X
�2Zn

~�(��) �(x=�� �) + small remainder term: (17)
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3.1 Construction

It was proven in [10], that an approximate re�nement equation of type (17) is true for � 2 S(Rn)

if the Fourier transform F� 6= 0 and that ~� can be determined from

F ~�(�) =
F�(�)
F�(��) : (18)

More precisely, the following theorem holds:

Theorem 4 Suppose that (18) holds for some positive � < 1 and that �, ~� satisfy

� 2 S(Rn); ~� 2 S(Rn); F� > 0:

Then

�
�
xp
D

�
= D�n=2

X
m2Zn

~�
��mp

D

�
�
�
x� �m

�
p
D

�
+ R�;�;D(x) ; (19)

where the remainder R�;�;D 2 S(Rn) is given by

R�;�;D(x) =
X

m2Znnf0g

e2�ihx;mi=�
Z
Rn

F ~�(�)F�(��+
p
Dm)) e2�ih�;xi=

p
D d� : (20)

Moreover, for any " > 0 there exists D = D(�; �) > 0 such that jR�;�;D(x)j < ".

In the sequel, the function ~� de�ned by (18) will be referred to as the adjoint function corre-

sponding to �.

For example, the generating functions (11) based on the Gaussian satisfy the requirements of

Theorem 4, since by (13) they possess positive Fourier transforms. The analytic expression of

adjoint functions ~�2, ~�4 and ~�6 in the case of one space dimension are:

~�2(t) =
e�t

2
=�

p
��

; ~�4(t) =
1

�2

h
~�2(t)� �

�
W(

p
�

�
;
tp
�
)
i
;

~�6(t) =
1

�4

n
~�2(t)� 2

�

�
<
h1 + i�2p

1 + i
W (

p
�(1+i)

�
;
tp
�
)
io
;

(21)

where � = 1� �2,

W(z; t) =
e�t

2

2
fw (i(z + t)) + w (i(z � t))g;

and w(z) is the scaled complementary error function

w(z) = e�z
2

erfc(�iz) = e�z
2
�
1� 2p

�

�izZ
0

e�t
2

dt
�
:

Of course, these formulae allow to obtain analytical representations for the adjoint functions in

any space dimension when �(x) is a product of one dimensional functions:

�(x) = �2M(x1) : : :�2M(xn):

Note that for computations we do not need the analytic expression of the functions ~�. In the

following section we will show that for our purposes it su�ces to precompute the values of ~� just

in several points, which can be done with some numerical method for inverse Fourier transform.
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3.2 Properties of the adjoint function ~�

Suppose that in addition to the requirements of Theorem 4, � is subject also to the moment

conditions (5). Since these conditions can be rewritten by Fourier transformation as

F�(0) = 1; Fx!�(x
��(x))(0) = 0; 0 < j�j < N;

relation (18) guarantees that they are satis�ed by ~� as well. Then, by Theorem 1, ~� gives rise to

a quasi-interpolant fMh;D featuring the same rate of approximate convergence as Mh;D, which

is generated by �. Hence, in similarity to (9) one can introduce the positive integer eNs = eNs(D),
so that

~g�;D( eNs) � ~"�; 0 � j�j < N;

where

~g�;D(t) = D�n=2 sup
x2Rn

X
jx�mj>t

����x�mp
D

�
�

~�
�
x�mp

D

����:
and ~"� = "�(~�;D) are de�ned as in (6). The same estimate as (7) holds also in this case, and

consequently, the saturation error ~"0 ! 0 as D ! 1 more rapidly than any power of D. For

example, for the adjoint functions ~�2M to �2M (cf. (11)), one obtains by (13) and (18) that

~"0 �
X

m2Znnf0g

PM�1(jmj2r2)
PM�1(�jmj2r2) e

�(1��2)jmj2r2 = O(r2M+n�4 e�(1��
2)r2) ; r = �

p
D:

3.3 Quasi-interpolants based on the remainder term

In the following we meet quasi-interpolants generated by the remainder term R�;�;D(x) of the

form

Rh;Du(x) = D�n=2
X
m2Zn

u(mh)R�;�;D(x=h�m) (22)

By Theorem 4 these quasi-interpolants are properly de�ned, since we have rapid decay in x. For

instance, when � is the Gaussian, the corresponding function ~�2 is by (21) also a scaled Gaussian:

~�2(
xp
D
) = �2(

xp
D(1� �2)

) = �2(
xp eD ); eD = D(1� �2):

The approximate re�nement equation for this case takes the form

e�jxj
2=D = (� eD)�n=2

X
m2Zn

e�j�mj2=eD e�jx=��mj2=D + R�2;�;D
(x)

and the remainder term R�2;�;D
(x) is given by

R�2;�;D
(x) = �2

�
xp
D

�
[(I � fM�;D)1 (x�)] = �2

�
xp
D

�
[(I �M

�;eD)1 (x�)];
where M

�;eD1 is the quasi-interpolant M
�;eDu for u(x) � 1 and x� = (1 � �2)x. Thus by

Theorem 1 jR�2;�;D
(x)j � ~"0 and the quasi-interpolant Rh;Du satis�es the uniform bound

jRh;Du(x)j � "0(~�2; D)kukL
1

= "0(�2; D(1� �2))kukL
1

:

In following lemma, which we state without proof, we establish the remainder terms in the

re�nement equations R�2M ;�;D for M > 1 exhibit similar behaviour as R�2;�;D
:

10



Lemma 3 Suppose that �2M is de�ned by (11) and 0 < � < 1 is a �xed parameter. Then there

exist positive univariate polynomials Q1 and Q2 of degree M � 1 such that for any su�ciently

large D

jR�2M ;�;D(x)j � Q1(jxj2=D) e�jxj
2
=D

X
m2Znnf0g

Q2(Djmj2) e��2D(1��2)jmj2 :

As a consequence we obtain that the generating function of the quasi-interpolant R�2M ;�;D

has amplitude of the same order as the saturation error, and the rate of decay of �2M :

Corollary 1 Suppose the conditions of Lemma 3 are met. Then, there exists a constant CR,

such that

jR�2M;�;D(x)j � CR "0(~�2M ; D) j�(x)j:
and, hence, the quasi-interpolant Rh;Du de�ned by (22) admits the uniform estimate

jRh;Du(x)j � CR ~�0~"0:

4 Factorization and multiresolution decomposition of quasi-in-

terpolation operators

In this section we use the approximate re�nement equation (20) to factorize the quasi-interpo-

lation operator Mh;D. Such a factorization allows to obtain an approximate multi-resolution

decomposition of the operator on the highest resolution M�Mh;D from which one obtains the

desired boundary layer approximate approximation (3) after an appropriate truncation of the

summation.

In what follows, we suppose that � and ~� satisfy the requirements of Theorem 4 and the approx-

imate re�nement equation (19), and thatMh;D, ~Mh;D are the corresponding quasi-interpolants.

Given a sequence of step sizes fhkgMk=0, where

hk = �kh; 0 < h; � < 1; ��1 2 Z;

we will use the notation

Ak =M�kh;D;
~Ak = fM�kh;D; Rk = R�kh;D; k = 0; 1; 2 : : : ; (23)

where Rk is the quasi-interpolant (22) based on the remainder term in (19).

Theorem 5 (Approximate operator factorization) Suppose that � and ~� are generating functions

satisfying the requirements of Theorem 4 and let Ak, ~Ak and Rk be de�ned by (23). Then

Ak = Ak+1
~Ak +Rk; k = 0; 1; 2 : : : : (24)

Proof. Set for brevity �D(x) := D�n=2�(x=
p
D) and let ~�D be the corresponding adjoint

function, de�ned by (18). Then, using the approximate re�nement equation (19) one obtains

Aku(x) =
X
m2Zn

u(mhk) �D(x=hk �m)

=
X

�;m2Zn
u(mhk) ~�D(�m) �D[x=(�hk)�m=�� � ]

+D�n=2
X
�2Zn

u(mhk)R�;�;D(x=hk � x):

11



Since ��1 is an integer, k = � + ��1m 2 Zn. Thus, after re-indexing and taking into account

that hk+1 = �hk one arrives at the representation

Aku(x) =
X

k;m2Zn
u(mhk) ~�D(�k�m) �D[x=hk+1 � k] +Rku(x):

Finally, as �k =
hk+1k

hk
, we recognize

Aku(x) =
X
k2Zn

~Aku(hk+1k) �(x=hk+1� k)

which is precisely the claimed identity.

Theorem 6 (Approximate multiresolution decomposition) Suppose that the approximate oper-

ator factorization identity (24) holds, and let fXkgMk=1 be a set of linear operators. Then

AMXM = A0X0 +
MX
k=1

Ak(Xk � ~Ak�1Xk�1)�
M�1X
k=0

RkXk : (25)

Proof. By the approximate factorization identity (24) one has

AkXk = Ak�1Xk�1 +AkXk �Ak�1Xk�1
= Ak�1Xk�1 +AkXk �Ak

~Ak�1Xk�1 �Rk�1Xk�1
= Ak�1Xk�1 +Ak(Xk � ~Ak�1Xk�1)�Rk�1Xk�1;

and the theorem follows by induction.

Corollary 2 Under the conditions of Theorem 6, suppose that Xk = I, k = 1; : : : ;M . Then

AM = A0 +
MX
k=1

Ak(I � ~Ak�1)�
M�1X
k=0

Rk:

Adding identity I to both sides in the above corollary and moving AM to the right yields

Corollary 3 (Multi-resolution decomposition of identity operator)

I = A0 +
MX
k=1

Ak(I � ~Ak�1) + (I �AM )�
M�1X
k=0

Rk:

5 Boundary layer approximate approximations

In this section we use the multi-resolution decomposition (25) to construct a boundary layer

approximate approximation operator BM . If 
 is a bounded domain and u a su�ciently regular

function with supp u = 
, then BMu is an accurate approximation of u on the whole of 
 except

on a thin boundary layer of width decreasing withM . Moreover, the operator BM can be de�ned

in such a way that the essential support of BMu does not extend outside 
.

Throughout this section we suppose that �; ~� satisfy the requirements of Theorems 1 and 4,

and thatMh;D and fMh;D are the quasi-interpolants generated by � and ~� respectively. Finally,

we suppose that there exists a constant CR, independent of the step size h such that

g0;R�;h;D(t) = sup
x2Rn

X
jx�mj>t

jR�;h;D(x�m)j � CR ~"0 g0;D(t); k = 0; 1; 2 : : : :
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For instance, if � is one of the functions de�ned in (11), such a condition follows from Corollary 1.

We begin by sketching a straightforward way to construct a boundary layer approximate

approximation operator BM of type (3). Corollary 2 shows that modulo the saturation terms
M�1P
k=0

Rk, the multi-resolution operator A0 +
MP
k=1

Ak(I �Ak�1) performs as the quasi-interpolant

AM on the �nest resolution. Thus, if u is smooth in 
, the multi-resolution approximation

MX
k=0

Ak~uk = AMu+
M�1X
k=0

Rku; ~uk =

�
u; k = 0,

(I � ~Ak�1)u; k � 1,
(26)

achieves high accuracy inside and leaves only a thin boundary layer of width NshM = �MNsh0
where the error is large. Of course, the use of such a scheme is meaningless since one could have

applied AM at once. Also, its numerical cost of order O(h�n
M

) becomes unacceptable if we wish

to make the boundary layer very small by making a large number of iterations M. On the other

hand, if u 2 CN (
), Theorem 1 guarantees that

j~uk(x)j = O(~"0 + (hk
p
D)N )); x 2 
 n
 eNshk�1 ;

whereas for points outside the domain, one has

j~uk(x)j = j ~Ak�1u(x)j � ~g0;D(h
�1
k�1 dist(x;
));

so j~uk(x)j � ~"0 if dist(x;
) > eNshk�1. Hence, if we can truncate those terms in Ak ~uk which

contain ~uk(hkm) with argument hkm such that d@
(hkm) > ~Nshk�1 and neglect the saturation

terms, then (26) reduces to the boundary layer approximate approximation (3) with

ck;m =

�
u(h0m); k = 0,

~uk(hkm); k � 1,

and

Qk =

� fm 2 Zn :mh0 2 
g; k = 0,

fm 2 Zn : d@
(x) � eNshk�1g; k � 1.

Such a truncation retains the ability of the initial scheme to diminish the remainder boundary

layer exponentially with M , while the computational cost is reduced to O(hn�1
M

). The price paid
is the introduction of an error of order O((h0

p
D)N )).

5.1 Boundary layer approximate approximations with support inside 


In this section we use Theorem 6 to introduce boundary layer approximate approximations of

the type (3) with support essentially contained in the domain of de�nition 
 of u. Here we use

the term �essentially� to describe the fact that jBMu(x)j is of order O("0kukL
1
(
)) for x 2 @


and decays to zero faster than any negative power of dist(x;
) if x 2 Rn n 
. Otherwise, if u

is smooth enough in 
, then BMu(x) is a high order of (approximate) approximation for x in


 n SM+1, where SM+1 is a boundary strip of width decreasing exponentially with M .

For k = 1; 2; : : :, we introduce the boundary layers (see Figure 1) in 


Sk =

(

; k = 0,


 n 
(No+Ns)hk�1 ; k � 1,

where No is a free parameter such that

No >
Ns

1� �
:
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Figure 1: Illustration for the nested subdomains 
(Ns+No)hk and their

complements Sk in respect to 
.

We de�ne also the operators of multiplication by characteristic functions

X ?

k u(x) =

(
u(x); x 2 
Nohk

0 ; otherwise.

and the multi-resolution operator

B?
M

:= A0X ?

0 +
MX
k=1

Ak(X ?

k
� ~Ak�1X ?

k�1);

where fAkgM0 , f ~AkgM0 are the quasi-interpolants from (23). In analogy with the notation in the

beginning of 5, one can introduce also discrepancy functions ~uk, and write

B?Mu =
MX
k=0

Ak ~uk; ~uk =

(X ?

0 u; k = 0

(X ?

k
� ~Ak�1X ?

k�1)u; k � 1.

Now we will show that B?
M
u is essentially supported in 
. We notice �rst that if X is a

characteristic function of some set, then by Lemma 1, we have

jMh;DXu(x)j � g0;D(h
�1 dist(x; suppX )):

By Theorem 6,

B?Mu = AMX ?

Mu+
M�1X
k=0

RkX ?

k u

and hence

jAMX ?

Mu(x)j � g0;D(No + h�1
M

dist(x;
))kuk
C(
); x 2 Rn n 
;

as dist(@
; suppXk) = Nohk by de�nition. In other words, B?
M
uj@
 is of the same order as the

saturation error if No > Ns, and jB?Mu(x)j decreases faster than any power of dist(x;
) for large

x as we declared in the beginning.

In the present form, however, the summation is performed upon the whole of Rn, due to

the unbounded support of ~uk, so it remains to truncate using the idea in the same spirit as we

did in the beginning of section 5. In virtue of Theorem 1, ~uk is of order O(~" + p
DhN

k�1) for
x 2 


(No+ eNs)hk�1 , so the contribution to Ak~uk from points in 

(No+ eNs)hk�1 can be neglected.

In the following de�nition, we introduce the operator BM in which the summation is performed

layer by layer with only minimal overlapping:
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De�nition 1 Let fXkgM0 be the operator sequence

X0 = X ?

0 ; Xku(x) =
�
u(x); x 2 
 : Nohk � d@
(x) � (No + eNs)hk�1
0 ; otherwise.

Then the multi-resolution operator

BM := A0X ?

0 +
MX
k=1

AkXk(X ?

k
� ~Ak�1X ?

k�1): (27)

is called the boundary layer approximate approximation operator subordinate to fXkgM0 .

Alternatively, as we indicated in the beginning of this section, we can rewrite (27) in the form

BMu(x) =
MX
k=0

X
m2Qk

ck;m �

�
x� hkm

hk
p
D

�
; (28)

with coe�cients

ck;m = uk(hkm) =

(X ?

0 u(h0m); k = 0

(X ?

k
� ~Ak�1X ?

k�1)u(hkm); k � 1.
(29)

and

Qk =

� fm 2 Zn :mh0 2 
g; k = 0,

fm 2 Zn : Nohk � d@
(x) � (No + eNs)hk�1g; k � 1.

Remark 2 The practical implementation of Theorem 6 does not require an explicit formula for

~�. Indeed, in order to calculate BMu(x) by (28) one has to compute the coe�cients ck;m, i.e.,

to tabulate (X ?

k
� ~Ak�1X ?

k�1)u at the points hkm (cf. (29)). By Remark 1, the computation of

A?

k�1X ?

k�1u(hkm) requires only summation for indices �, for which

jhkm=hk�1 � �j = j�m� � j � eNs;

where eNs is such that (9) holds for ~�. These (��1(2Ns + 1))n (or just ��1(2Ns + 1), if ~� is a

radial function) values can be pre-computed using numerical Fourier inversion of (18).

6 Accuracy

In this section we estimate the error if functions belonging to certain function spaces over 
 are

approximated with the operator BM . Since the cubature formula for the integral operator P is

obtained by

Pu(x) � PBMu(x) =
MX
k=0

X
m2Qk

ck;mP�
� � � hkm

hk
p
D

�
(x):

for the study of the cubature error it is therefore su�cient to estimate (I � BM)u in integral

norms, for example in Lp or weak Sobolev norms, but on the whole of Rn.

6.1 Lp-estimates

Theorem 7 Suppose that 
 is a domain in R
n with compact closure and Lipschitz boundary

and let u 2 WN

p (
) with N > n=p. For any " > 0 there exists D > 0 and a boundary layer

approximation BM such that

ku� BMukLp(Rn) � c1(Dh)
NkrNukLp(
) + c2(�

Mh)1=pkukL
1
(
) + "kuk

W
N�1
p (
)

:
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suppX ?

k
suppXk�1;X

?

k�1

supp(I �Xk+1) supp(I �Xk)suppXk+1

suppXk

SL n Sk+1

�

�

� � � � �

Nohk�1

(No+ eNs)hk�1

(No+Ns)hk�1Nohk

(No+ eNs)hk

(No+Ns)hk

@
 


Figure 2: Sketch of the mutual disposition between the layer Sk nSk+1 and the support of

the cut-o� operators Xk, X
?

k
, I �Xk, etc. The bottom numbers denote distance

to the boundary @
.

Proof. We will estimate the Lp norm of (I �BM )u on each of the layers SL n SL+1, SM+1 (cf.

Fig. 2) and on the exterior domain Rn n 
.
To estimate kBMukLp(Rnn
) we decompose BM by Theorem 6:

BM = A0X ?

0 +
MX
k=1

AkXk(X ?

k � ~Ak�1X ?

k�1)

= A0X ?

0 +
MX
k=1

�
AkX ?

k
� Ak�1X ?

k�1 +Rk�1X ?

k�1 �Ak(I � Xk)(X ?

k
� ~Ak�1X ?

k�1)
�

= AMX ?

M �
MX
k=1

�
Ak(I �Xk)(I � ~Ak�1)�Rk�1

�
X ?

k�1 ;

where we used in the last equation that (I � Xk)X ?

k
= (I � Xk)X ?

k�1. Thus, by Theorem 3 we

get immediately

kBMukLp(Rnn
) � h
n=p

M
kg0;D(j � j+No)kLp(Rn)kukL

1
(
)

+
MX
k=1

�
h
n=p

k
kg0;D(j � j+ (No + ~Ns)�

�1)kLp(Rn) + h
n=p

k�1kg0;R�;�;D(j � j+No)kLp(Rn)

�
kukL

1
(
)

� c�h
n=pkg0;D(j � j+No)kLp(Rn)kukL

1
(
) :

(30)

Setting for brevity

dN = No +Ns; and ~dN = No + ~Ns;

we obtain analogously

ku� BMukLp(SM+1)

� ku�AMX ?

M
ukLp(SM+1)

+
MX
k=1

�
h
n=p

k
kg0;D(j � j+ ~dN�

�1 � dN�
M�k)kLp(Rn)

+ h
n=p

k�1kg0;R�;�;D(j � j+No � dN�
M+1�k)kLp(Rn)

�
kukL

1
(
)

� ku�AMX ?

MukLp(SM+1)
+ hn=pkukL

1
(
)

MX
k=1

�
�kn=pkg0;D(j � j+ ~dN�

�1 � dN�
M�kkLp(Rn)

+ kg0;R�;�;D(j � j+No � dN�
M+1�k)kLp(Rn))

�
:

(31)
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To estimate ku� BMukLp(SLnSL+1) we use the representation

BM =
MX

k=L+1

AkXk(X ?

k
� ~Ak�1X ?

k�1) +ALX ?

L
+

LX
k=1

�
Ak(I �Xk)(I � ~Ak�1)�Rk�1

�
X ?

k�1 :

By Theorem 3 we obtain

 MX
k=L+1

AkXk(X ?

k
� ~Ak�1X ?

k�1) u

Lp(SLnSL+1)

� hn=pkukL
1
(
)

MX
k=L+1

�kn=pkg0;D(j � j+ dN�
L�k�1 � ~dN�

�1)kLp(Rn)

(32)

as well as

k
L�1X
k=1

�
Ak(I �Xk)(I � ~Ak�1)�Rk�1

�
X ?

k�1ukLp(SLnSL+1)

� hn=pkukL
1
(
)

L�1X
k=1

�
�kn=p2~�0kg0;D(j � j+No � dN�

k+1�L)kLp(Rn)

+ �(k�1)n=pkg0;R�;�;D(j � j+No � dN�
k�L)kLp(Rn)

�
;

(33)

showing that these terms are small if No and Ns are chosen large enough, and additionally tend

to zero together with h.

Consequently, besides the estimate

ku�ALX ?

L
ukLp(SLnSL+1) � (hL

p
D)N

X
j�j=N

��(�;D)

�!
k@�ukLp(
)

+ 2
N�1X
j�j=0

(hL
p
D)j�j

"�(�;D)

�!
k@�ukLp(SLnSL+1) ;

which follows immediately from Theorem 2, it remains to study

k(AL(I �XL)(I � ~AL�1)�RL�1)X ?

L�1ukLp(SLnSL+1) :

In view of

kRL�1X ?

L�1ukLp(SLnSL+1) � (meas (SL n SL+1))1=pkRL�1X ?

L�1ukL1(SLnSL+1)

� (meas (SL n SL+1))1=pCR ~"0�0kukL
1
(
) ;

(34)

and
k(AL(I �XL)(I � ~AL�1)�RL�1)X ?

L�1ukLp(Rnn

(No+ ~Ns�Ns)hL�1

)

� 2h
n=p

L
~�0kg0;D(j � j+Ns)kLp(Rn)kukL

1
(
) ;

(35)

we are left with the estimation of

kAL(I �XL)(I � ~AL�1)X ?

L�1ukLp(GL) � kAL(I �XL)(I � ~AL�1)~ukLp(GL)
+ (measGL)

1=p
�0 k~g0;D(j � j+ ~Ns)kLp(Rn)kukWN

p (
) ;

where GL = SL \ 

(No+ ~Ns�Ns)hL�1

, and ~u 2 WN
p (Rn) is the extension of u 2 WN

p (
) with

k~ukWN
p
(Rn) = kukWN

p
(
).
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The function (I�XL)(I� ~AL�1)~u(x) is discontinuous on GL. In order to apply Theorem 2 we

introduce the smooth counterpart 'L of the characteristic function Xk . That means, we require

that 'L 2 CN

0 (Rn) is constant with the exception of small neighbourhoods of the jumps of XL
not containing grid points and that 'L(hLm) = XL(hLm), m 2 Zn. Obviously such a function

with

k@�'LkL
1

� cNh
j�j
L

; 0 � j�j � N ;

exists. Furthermore, we introduce the continuous analogue of the quasi-interpolant ~AL�1

~KL�1u(x) := (
p
DhL�1)

�n
Z
Rn

~�
�

x� yp
DhL�1

�
u(y)dy:

and the function ~UL = (I � 'L)(I � ~KL�1)~u. With this notation we have

AL(I �XL)(I � ~AL�1)~u = AL
~UL +AL(I � 'L)( ~KL�1 � ~AL�1)~u: (36)

and from Theorem 2 we obtain

kAL
~ULkLp(GL) � k ~ULkLp(GL) + k(I � AL) ~ULkLp(GL) � k ~ULkLp(GL)

+ (hL
p
D)N

X
j�j=N

��(�;D)

�!
k@� ~ULkLp(Rn) + 2

N�1X
j�j=0

(hL
p
D)j�j

"�(�;D)

�!
k@� ~ULkLp(GL) :

Now the rough estimate

k@� ~ULkLp(Rn) � CN

�X
�=0

�!

�!(�� �)!
h
j�j�j�j
L

k@�(I � ~KL�1)~ukLp(Rn)

together with the moment condition of ~� implies

k@� ~ULkLp(Rn) � CNkrNukLp(
)
�X
�=0

�!

�!(�� �)!
h
j�j�j�j
L

(hL�1
p
D)N�j�j

Z
Rn

j~�(x)jjxjj�j dx;

resulting in

k@� ~ULkLp(Rn) � c�;Dh
N

L�1krNukLp(
) (37)

with a constant c�;D depending only on �, D and �. The second term in (36) can be written as

the di�erence between an integral operator and its semi-discretization

AL(I � 'L)( ~KL�1 � ~AL�1)~u = h�n
L�1

Z
Rn

�L

�
x

hL
;
y

hL�1

�
~u(y)dy�

X
j2Zn

�L

�
x

hL
; j
�
~u(jhL�1)

with the smooth kernel function

�L(x;y) := D�n
X

m=2h�1
L

suppXL

�
�
x�mp

D

�
~�
�
m�� yp

D

�
:

This di�erence can be estimated by using the Taylor expansion of ~u 2 WN

p
(Rn) in the following

form (cf. [7],[1]):

kAL(I � 'L)( ~KL�1 � ~AL�1)~ukLp(GL) � c(DhL�1)
NkrNukLp(
)

+
N�1X
j�j=0

(DhL�1)
j�j k@�ukLp(GL)

�X
�=0

��(�;D) "���(~�;D)

�!(�� �)!
�� :
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with some constant c not depending on ~u and h. Summing up the last estimate together with

(30)�(35) and (37) we see that for u 2 WN
p
(
)

ku� BMukLp(Rn) � ku�AMX ?

M
ukLp(SM+1) + c(Dh)NkrNukLp(
)

+
N�1X
j�j=0

(Dh)j�j ��k@�ukLp(
) + hn=p�(1)kukL
1
(
) ;

where the numbers ��, which depend on "� and ~"�, can be made arbitrarily small for D large

enough, and �(1) is determined by the functions g0 and is su�ciently small if the parameters N0

and Ns are appropriately chosen. Thus we have only to apply Lemma 2 (see also Theorem 3)

and the proof of Theorem 7 is complete.

6.2 Pointwise estimates

In a similar way one can show the following pointwise result

Theorem 8 Suppose that u 2 CN (
) and the boundary layer approximate approximation oper-

ator BL is de�ned by (27). Then for any " > 0 and x 2 
 nSM+1, there exist D > 0 and positive

integers Ns and No, such that the accuracy of approximation satis�es the estimate

j(I � BM)u(x)j � c(
p
Dhk)

NkrNukL
1
(
) + "kuk

CN�1(
)
;

where 0 � k �M denotes the index for which x 2 Sk n Sk+1.

Thus the behaviour of BMu(x) is actually very close to that of Aku(x) for some positive k �M ,

where k increases as the distance from x to the boundary decreases. This leads to the e�ect that

the approximation becomes better in points x 2 
 n SM+1 which lie nearer the boundary @
.

6.3 Estimates in weak norms

Quasi-interpolation on uniform meshes of the form (1) has the remarkable property that it

converges in weak norms, since the saturation error, which is caused by fast oscillating functions,

converges weakly to zero. The same property holds for the case of nonuniform meshes considered

here. In the proof of Theorem 7, the approximation error (I � BM )u was decomposed into

(I � BM )u = (I � AMX ?

M)u+
MX
k=1

�
Ak(I �Xk)(I � ~Ak�1)�Rk�1

�
X ?

k�1u :

The second term consists of functions with Lp-norms which do not exceed c(Dh)NkrNukLp(
)
and hn=p�(1)kukL

1
(
), respectively, plus small oscillating functions. Therefore one can show

similarly to [7] that for s > 0

 MX
k=1

�
Ak(I �Xk)(I � ~Ak�1)�Rk�1

�
X ?

k�1u

H
�s
p

� c�(Dh)
NkrNukLp(
)

+ hn=p�(1)kukL
1
(
) + cs h

s

N�1X
j�j=0

(h
p
D)j�j

"�(�;D)

�!
k@�ukLp(
) ;

where Hs

p
= Hs

p
(Rn) denotes the Bessel potential space equipped with the norm

kukHs
p
= kF�1(1 + 4�2j � j)s=2FukLp = k(I ��)s=2ukLp :
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Thus it remains to estimate k(I � AMX ?

M
)uk

H
�s
p
. For integer s > 0 we have

k(I � AMX ?

M
)uk

H
�s
p
� c(kAMX ?

M
)ukLp(Rnn
) + k(I �AMX ?

M
)uk(W s

q
(
)0)

with q = p=(p� 1), and from Lemma 2 one gets for 0 < r < s=n; r � 1=q

kXSM+1
(I �AMX ?

M
)uk(W s

q (
)
0 � chr

M
kXSM+1

(I � AMX ?

M
)ukLp(
) � ch

r+1=p
M

kukWN
p
(
) :

Furthermore,

k(I �XSM+1
)(I � AMX ?

M
)uk(W s

q (
)
0 = sup

k'kWs
q
(
)=1

��� Z

nSM+1

(I � AMX ?

M
)u' dx

���
� c�(Dh)

NkrNukLp(
) + cs h
s

M

N�1X
j�j=0

(hM
p
D)j�j

"�(�;D)

�!
k@�ukLp(
) ;

so that the following approximation result is valid.

Theorem 9 Suppose that 
 is a domain in R
n with compact closure and Lipschitz boundary

and let u 2 WN

p
(
) with N > n=p. Then for any " > 0 there exists D > 0 and a boundary layer

approximation BM such that

ku� BMuk
H
�s
p (Rn)

� (c1(Dh)
N + c2(�

Mh)1=p+r)kukWN
p (
) + " hs kuk

W
N�1
p (
)

;

where 0 < r < s=n and r � (p� 1)=p.

6.4 Numerical examples

Here we give some numerical examples to illustrate the overall approximation properties of the

operator BM de�ned by (27), and especially the behaviour of the error near the boundary. We

shall use the boundary layer approximate approximation (28) generated by the functions �2, �4,

�6 based on the Gaussian (see (11)), providing second, fourth, and sixth order of approximate

convergence. The corresponding adjoint functions ~�2, ~�4, ~�6 are given by (21). In all cases we

use D = 3, which assures saturation levels of magnitude 1 � 10�12, 1 � 10�11 and 1 � 10�10

for quasi-interpolants Mh;D based on �2, �4, �6, respectively. The step re�nement ratio in all

examples is ��1 = 3.

We recall that by Theorem 8, BM performs approximately as Ak on the k-th boundary strip

Sk n Sk+1, i.e., the nearer the boundary, the better approximation. The approximation results

are plotted over the boundary layer

SM+1 n S0 = fx 2 
 : (No +Ns)hM+1 � dist(x; @
)� (No +Ns)h0g

in order to illustrate the interplay between the di�erent quasi-interpolants building the operator

BM . Since the step-size used by BM is proportional to the distance from the boundary, one can

determine the order of the formula used by the slope of the error plot j(I � BM)uj against the
distance to the boundary in logarithmic scales.

Consider the plot in Fig. 3a showing the error from the approximation of cos(1000t) near

the boundary using the second-order formula based on the Gaussian. One can clearly see the

step-wise increase of the accuracy towards the boundary until a saturation is reached. The error

remains unchanged within Sk n Sk+1 for �xed k, since the step does not change there. Observe

also the slope of the �staircase� � it is approximately two. In Fig. 3b the same function is

approximated using the sixth-order formula based on �6. Here the slope is approximately 6 : 1,

but the saturation error is higher.
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Figure 3: Boundary layer error plots for (I � BM )cos(1000t) using a) O(h2)-order formula,

and b) O(h6)-order formula.

The last example represent boundary error plots for approximation of the function

u(x1; x2) =

�
cos(100 jxj2); x1 > 0, x2 > 0,

0 ; otherwise,

as an illustration for the action of a two-dimensional operator built as the product BM =

1BM1 2BM2
of one-dimensional operators iBMi

acting on the i-th argument of x = (x1; x2).

These one-dimensional operators are based on the generating functions �2 and �6, which provide

approximate order of convergence of O(h2) and O(h6), respectively. In similarity with the pre-

vious examples, we use D = 3 and step re�nement ratio in all examples is ��1 = 3 in both the

x1 and x2-directions. Again, the approximation results are plotted in logarithmic scales only in

the interesting area near the vertex of the angle.

1
0.01

0.0001
1e-06

1
0.01

0.0001
1e-06

1e-05

1e-10

1e-15

1
0.01

0.0001
1e-06
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0.01

0.0001
1e-06

1e-05

1e-10

Figure 4: Boundary layer error plots for the function cos
�
100 jxj2

�
with support on the �rst

quadrant of R2 using product of one-dimensional multi-resolution operators pro-

viding a) order O(h2) of approximate convergence; b) order O(h6) of approximate

convergence.

Precisely as in the one-dimensional examples, one can see clearly the gradual increase (Fig. 4a)

of accuracy in the direction towards the boundary when the second-order formula is used. The

plot in Fig. 4b shows the approximation results when a sixth-order formula is used. In this case

the saturation level is reached already after two iterations.
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7 Cubature of potentials in domains

In this section we derive some estimates for the cubature of integral operators, that often appear

in problems of mathematical physics. As mentioned in the beginning, the cubature formula Phu

for the integral operator

Pu(x) =

Z


k(x� y)u(y)dy :

is easily obtained from the boundary layer approximate approximations of the density u and

de�ned as

Phu(x) := PBMu(x) =
MX
k=0

X
hkm2Qk

ck;m

Z
Rn

k(x� y)�
�
y� hkm

hk
p
D

�
dy ; (38)

if � is chosen such that the integrals can be obtained analytically or by simple one-dimensional

quadrature. For instance, the approximation by (38) of the harmonic potential H using the

generating functions �2M from (11) is obtained after calculating

H�2M (x) =
�(n

2
� 1)

4�n=2

Z
Rn

�2M(y)

jx� yjdy

=
1

4jxjn�2�n=2
Z jxj2

0
�n=2�2e�� d� + ��n=2e�jxj

2
M�2X
j=0

L
(n=2�1)
j

(jxj2)
4(j + 1)

:

Here L
(�)

k
denote the generalized Laguerre polynomials (12). Some further examples for the

action of di�erent potentials of mathematical physics on the generating functions �2M in any

space dimension, including the elastic, hydrodynamic and di�raction potentials, can be found in

[2], [3] and [9].

It is well known that many interesting operators are bounded mappings

P : Lp(
)! Wm

p (
1) ; (39)

with 
; 
1 � R
n; we write P 2 L(Lp(
);Wm

p (
1)). Note that the case m = 0 corresponds

to singular integral operators, whereas the volume potentials associated with partial di�erential

equations satisfy relation (39) with m > 0. In any case the kernel function k(x�y) is singular at
the diagonal x = y, so that the approximation of such multivariate integrals is quite complicated.

If the operatorP is such that (39) holds with 
 = 
1 = R
n, Theorems 7 and 9 imply immediately:

Theorem 10 Let u 2 WN
p (
) with N > n=p and P 2 L(Lp(Rn); Hm

p (Rn)). For any " > 0
there exists D > 0 such that

kPu� PhukHm
p (Rn) � c1(Dh)

NkrNukLp(
) + c2(�
Mh)1=pkukL

1
(
) + "kuk

W
N�1
p (
)

:

If additionally P 2 L(H�m
p

(Rn); Lp(R
n)) then

kPu� PhukLp(Rn) � (c1(Dh)
N + c2(�

Mh)1=p+r)kukWN
p
(
) + " hm kuk

W
N�1
p (
)

;

where 0 < r < m=n; r � (p� 1)=p.

However, very often the integral operator P ful�lls (39) only for bounded domains 
; 
1 � R
n.

Important examples are the harmonic or elastic potentials. In this case we are interested in the

estimation of Pu�Phu on some bounded domain 
1. Since in general suppBMu = R
n we have

to consider also integrals of the formZ
Rnn


k(x� y)BMu(y)dy ; x 2 
1 :
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To this end we choose a ball BR with radius R around the origin such that 
; 
1 � BR and

suppose that the kernel satis�es the estimate

j@�k(x� y)j � r�(jyj) ; for x 2 
1 ; y 2 Rn nBR ;

for some function r�(x) of at most polynomial growth and the multi-indexes 0 � j�j � m.

Lemma 4 For any N > 0 there exists constants cN;�;R such that Z
RnnBR

@�k(� � y)BMu(y)dy

Lp(
1)

� cj;�;R h
N (meas 
1)

1=pkukL
1
(
) :

If R!1 then cN;�;R ! 0.

Proof. We estimate��� Z
RnnBR

@�k(y� y)
X

hkm2Qk

ck;m �

�
y� hkm

hk
p
D

�
dy
���p

� ckukp
L
1
(
)

� Z
RnnBR

r�(jyj)
��� X
hkm2Qk

�

�
y � hkm

hk
p
D

� ���dy�p

� ckukp
L
1
(
)

� Z
RnnBR

r�(jyj) g0;D(dist( y
hk
;
Qk

hk
) dy

�
p

:

Let r�(y) � cj jyjj for jyj ! 1. From the rapid decay of g0;D one obtains

g0;D(dist(
y

hk
;
Qk

hk
)) = g0;D(No + h�1

k
dist(y;
))� cNh

N

k dist(y;
)�N

for any N . Now it is clear that for N > n+ j the inequalityZ
RnnBR

r�(jyj) g0;D(dist( y
hk
;
Qk

hk
)) dy � chNk

Z
RnnBR

jyjj
dist(y;
)N

dy

proves the assertion.

Now we are in a position to prove

Theorem 11 Let u 2 WN

p (
) with N > n=p and P 2 L(Lp(
);Wm

p (
1). Under the assump-

tions made above for any " > 0 there exists D > 0 such that

kPu � PhukWm
p
(
1) � c1(Dh)

NkrNukLp(
) + c2(�
Mh)1=pkukL

1
(
) + "kuk

W
N�1
p (
)

:

If additionally P 2 L((Wm

p=(p�1)(
))
0; Lp(
1)) then

kPu� PhukLp(
1) � (c1(Dh)
N + c2(�

Mh)1=p+r)kukWN
p (
) + " hm kuk

W
N�1
p (
)

;

where 0 < r < m=n; r � (p� 1)=p.

Proof. Fix the ball BR and split

Phu(x) = PBMu(x) = PXBRBMu(x) + P (1�XBR)BMu(x) :

The Wm

p (
1)-norm of the second term is bounded by chNkukL
1
(
) due to Lemma 4, whereas

the di�erence

kPu � PXBRBMukWm
p (
1) � cRku� BMukLp(BR)
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can be estimated using by Theorem 7.

The same arguments apply also for the assertion concerning the Lp(
1)-norm of Pu� Phu, if

we use the inequality

kPu� PXBRBMukLp(
1) � cRku� BMuk(Wm

p=(p�1)
(BR))

0 � cku� BMuk
H
�m
p (Rn)

and Theorem 9.

Summarizing, for a large class of domain integral operators with singular kernels one can de�ne

cubature formulae retaining the order O(hN) plus some small saturation error, if the boundary

layer approximate approximations of the density is used with appropriate parameters � and M .

Let us consider two simple examples:

Example 1. Consider the logarithmic potential

H2u(x) =
1

2�

Z


u(y)

1

log jx� yjdy

Note that the mapping

H2 : Lp(
) 7! W 2
p (
); 1 < p <1;

is bounded, if 
 is a bounded domain. Thus, in this case Theorem 11 yields the estimate

kH2u� H2;hukW 2
p
(
) � c1(Dh)

NkrNukLp(
) + c2(�
Mh)1=pkukL

1
(
) + "kuk

W
N�1
p (
)

:

Consequently, if the boundary layer approximate approximations are such that �M is of the same

order of magnitude as hNp�1, we get the approximation order O(hN) modulo saturation error.

If we measure the error in a weaker norm than W 2
p
, the small saturation error tends to zero

together with h. For example, if u 2 WN

2 (
) with N > 1 we obtain

kL2u� L2;hukL2(
) � (c1(Dh)
N + c2�

Mh)kuk
WN

2
(
) + " h2 kuk

W
N�1
2 (
)

;

such that already the choice �M � hN�1 leads to O(hN) order plus a very small error term

converging to zero with the rate O(h2). Note that Sobolev's imbedding theorem can be used to

prove the convergence of the cubature L2;h with respect to the uniform norm.

Example 2. The Poisson integral

Pn'(x; t) = 1

(2
p
�t)n

Z
Rn

'(y) exp
�
� jx� yj

4t

�
dy ; x 2 Rn ; t > 0 ;

gives a partial solution of the homogeneous heat equation with the initial condition u(x; 0) =
'(x). If the basis function � is the Gaussian or some related function then obviously the integrals

1

(2
p
�t)n

Z
Rn

�

�
y� hkm

hk
p
D

�
exp

�
� jx� yj

4t

�
dy

have simple analytic expressions. Since for �xed t > 0 the kernel function is smooth the Pois-

son integral generates a bounded mapping from Sobolev or Bessel potential spaces of arbitrary

negative order into usual function spaces. Therefore from Theorem 11 it follows that

kP'(�; t)� Ph'(�; t)kL2(Rn) � (c1(Dh)
N + c2�

Mh)k'k
W

N

2 (
) ;

with constants depending on t > 0 but not on ' and h. Hence, Ph represents a semi-analytic

cubature of order O(hN ) without saturation errors.
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