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Abstract

In this article we present a new approach to the computation of volume potentials over
bounded domains, which is based on the quasi-interpolation of the density by smooth, almost
locally supported basis functions for which the corresponding volume potentials are known.
The quasi-interpolant is a linear combination of the basis function with shifted and scaled
arguments and with coefficients explicitly given by the point values of the density. Thus,
the approach results in semi-analytic cubature formulae for volume potentials, which prove
to be high order approximations of the integrals. It is based on multi-resolution schemes for
accurate approximations up to the boundary by applying approximate refinement equations
of the basis functions and iterative approximations on finer grids. We obtain asymptotic
error estimates for the quasi-interpolation and corresponding cubature formulae and provide
some numerical examples.

1 Introduction

In recent years the boundary element method (BEM) has been used extensively to solve boun-
dary value problems for partial differential equations with constant coefficients which occur in
mechanics, electromagnetics and other fields of mathematical physics.

Let, for example, L be a partial differential operator with known fundamental solution £ and
consider the equation

Lf=w in 4,

complemented with some boundary condition. The simplest way to apply BEM for solving this
problem is to represent the solution v as the sum

F(x) = fo(x) + Pu(x),

where Pu is the volume potential defined by

Pu(x) = /Qu(y) E(x,y)dy
and fy satisfies the homogeneous equation
Lfo =0 in Q,

with boundary conditions adjusted such that the total solution f satisfies the boundary condition
of the original problem. The remainder f; is obtained by solving the corresponding boundary
integral equations, involving now the new boundary data for fy;. In order to find these data
sufficiently precise, one must be able to compute the volume potential (and, very often, its
derivatives) very accurately.

Even more important applications of the volume potentials appear when one combines the
BEM with iteration procedures for linear problems with variable coefficients or for non-linear
problems. Essentially, the approach for solving boundary problems for nonlinear equations lumps
the nonlinearity into body forces and then solves the problem iteratively. This introduces domain
integral contributions or volume potentials to the corresponding boundary integral equations.

The construction of closed—form particular solutions is possible only for some special inhomo-
geneities. Thus the particular solutions must be approximated. However, the direct computation
of the potential Pu leads to evaluation of a typically singular integral, which is both numerically
expensive and inaccurate if conventional cubature formulae are used.

Therefore, starting with the paper of Nardini/Brebbia [11] it has become increasingly popular
to represent the densities u of the volume potentials in terms of simpler functions for which
particular solutions are known (see, e.g., [12] and the references therein). Thus, the singularity



is removed and one obtains an approximation for the potential Pu. Typically, in the case of
volume potentials for isotropic differential operators the most widely used class of approximating
functions are special radial basis functions and the approximant interpolates u at certain nodes.
Thus, the approximation of the volume potentials turns to the approximation-theoretic problem
of the construction of approximants to given functions u by special basis functions and the
corresponding error estimates. However, the construction of the interpolant may be rather
involved; see for example [13], where the case of Gaussian radial basis functions is studied.

Let us note that another popular method of transforming domain integrals to boundary in-
tegrals relies also on the interpolation of the density by linear combinations of certain radial
functions (cf. [14] and the references therein).

The aim of this article is to present a new approach to the computation of volume potentials
over bounded domains, which is based on the quasi-interpolation of the density u by smooth,
almost locally supported basis functions for which particular solutions are known. Since the
quasi-interpolant is a linear combination of the basis function with shifted and scaled arguments
and with coefficients explicitly given by the point values of u, we get semi-analytic cubature
formulae for volume potentials, which prove to be high order approximations of the integrals.
Our approach is based on an approximation method proposed by the second author in [2] which
use generating functions forming only an approximate partition of unity. Given a function w,
defined and somewhat regular on R", the approximate approximation operator My, p is defined
as the quasi-interpolant

Mppu(x)=D™™? 3" u(hm)n (X - hm) , (1)

o hv/D

where h is the step size, D is a positive parameter and 7 satisfles some decay and moment
conditions. In [7] it is shown that for any integer N it is easy to find a generating function 7
such that at any point x,

[u(x) = Mh,pu(x)| < cun((hVD)N + eo(n, D)). (2)

A proper choice of the parameter D allows to make the saturation error e9(7, D) as small as
necessary, e.g., less than the machine precision.

Formula (1) is the basis of the semi-analytic cubature formulae for the approximation of various
integral and pseudo-differential operators. It suffices to find the action of the corresponding
operator P on the generating function 7 of the quasi-interpolant M, p:

-— hm
Pu(x) = PMp pu(x) = u(hm) P X).
(x) h’D”m;Zn( ) P(4 ) ()

Some important examples are analyzed in [3] and [9], including in particular, the harmonic,
elastic, hydrodynamic, diffraction and other potentials.

Such cubature formulae perform well and satisfy estimates similar to (2) only if the approxi-
mated function u is defined and somewhat regular on the whole space or can be continued outside
the domain of definition with preserved regularity. For functions defined only in bounded do-
mains, we develop multi-resolution schemes for accurate approximation up to the boundary by
applying iteratively approximate approximations on finer grids. The mesh refinement is achieved
using the analytical factorization of the operator My, p

Mpp = MunpMpp, 0<pu<l,
where ./{/lvh,D is another quasi-interpolant of the form (1). These iteration schemes not only
retain, but increase the accuracy of approximation at points lying nearer to the boundary. The



procedure results in the approximation formula:

Baru(x o ( ) hi = g*h, 0<p<l, 3
];)mggk "\ b 7 p (3)

which is accurate on the whole of 2 except on a boundary layer of width decreasing exponentially
with M, the number of steps made in the iteration scheme from which Bpsu originates. The sets
Qr C Z™ are such that the mesh points Axym C ki Qy lie in boundary layers of width exponentially
decreasing with k and the coeflicients c; , are given by

_ u(hm) , k=0,
Ckm = u(hgm) — My, pu(hgm), k> 1.

Of course, representation (3) can be used not only near the boundary, but also locally at other
regions where higher accuracy is needed.

Clearly, the multi-resolution operator Bjs retains also the quasi-interpolation character of the
My, p which grants an easy computation of the coefficients cxm. Moreover, in similarity to
wavelet bases and other techniques built upon orthogonal basis functions, the introduction of
new higher-frequency terms in (3) does not require re-computation of the coefficients c .

The good accuracy provided by (3) for functions on domains can be used to successfully
approximate a large class of integral operators. Given an integral operator P with density u
defined on a domain, one obtains a cubature formulae for its calculation by setting

hrym
Pu Pru(x = PBpru(x Ck,m P 4
(x) ~ Puu( o kzngk n(h\/—)() (4)

In the cases of many potentials from mathematical physics, including the harmonic, elastic,
hydrodynamic and diffraction potentials, integration can be performed analytically (cf. [2],[3]
and [9]). Since the density is reproduced accurately near the boundary if M is large enough, the
cubature formula (4) admits error estimates similar to (2). More precisely, in section 7 we prove
the following theorem:

Let u € Wlfv(ﬂ) with N > n/p and suppose that P maps L,(R™) into the Bessel potential
space HI*(R™)). For any ¢ > 0 there ezists D > 0 such that

1Pw — Paul| e (rey < er(DR)N||Vavullz, ) + e2haf |l o) + ellullyy-1(qy -
If additionally P € L(H,™(R"), Ly(R™)) then

1P — Prallz, ey < (ex(DRYY + b [ullmpay + €A™ [zt qy -

where 0 < r < m/n, r<(p—1)/p.

We note that a significant reduction of the computational cost can be achieved through aniso-
tropic mesh refinement in direction normal to the boundary which will be studied in a forthcoming
paper.

The outline of the paper is as follows. In section 2 we briefly review some results of quasi-
interpolation on uniform meshes with smooth and rapidly decaying basis functions. Section 3
is devoted to approximate refinement equations for those functions resulting in the factorization
and multiresolution decomposition of the corresponding quasi-interpolation operators. In section
5 we define the boundary layer approximants (3), the approximation errors in integral and weak
norms will be studied in section 6. In the final section obtain error estimates for cubature
formulae and give examples of semi-analytic cubature for potentials.



2 Approximate approximations on domains
In this section we derive some estimates for the approximation properties of the quasi-interpolant

(1) for the case when u is defined on a domain § with compact closure and Lipschitz boundary
and is continued by zero outside.

2.1 Notation

We will suppose that the generating function 7 belongs to the Schwartz class S(R™) and that
for some N > 0, the following moment conditions are satisfied:

/nn(x)dle, /nxo‘n(x)dxzo, 0<|a|<N. (5)

For a given multi-index a, we introduce the numbers

e = ca(n, D)= D72 m%;n ('\;%n)a"('\;%n) B / LX) dXHLw(Rn) ’

Pa = pa(m, D) := D_"/zH m%ﬂ‘(;%n)a"(;%n)‘ HLDO(R") '

From Poisson’s summation formula one obtains immediately

ta < Y [Fame(x*n(x))(VDw)|, 0% lal <N, (7)
m#0

where F is the Fourier transform

We define also the monotone function

gen(t) =D sy 30 |(* ) 0 (* )

b

and note that since n € S(R™), go,p(t) decays far out faster than any negative power of ¢t. Of
course, if 7 is continuous, then evidently po (7, D) = ga,p(0).

For » > 0, let B(x,r) be the closed ball centered at x of radius r. Finally, if Q is a bounded
domain in R™, we define the subdomain 2, and the equidistant r-neighbourhood 2 of £ by

Q. = {x: B(x,7) C }, QF = {x:dist(x,Q) < r}. (8)

2.2 Accuracy of approximate approximation in domains

In [7] it is shown that if u if N-times differentiable and the generating function 7 satisfies the
moment conditions (5), the quasi-interpolant My pu approximates u at a rate O(eo + (hv/D)V).
The quantity €o, defined by (6), is referred to as the saturation error.

Since n € S(R™), by (7) the values of €4, 0 < |a| < N, can be made as small as needed if D
is chosen large enough. Note also that the bound (7) for the saturation error is independent of
the step size h.

Clearly, the boundedness of {) = supp u does not imply boundedness of the support of M} pu.
Nevertheless, as 7 is in the Schwartz class, M}p pu(x) decays fast with the dist(x, supp u):



Lemma 1 Suppose that u is a bounded function and 0 = suppu. Then
M pu(x)] < go,n(h ™ dist(x, 2)) [ul]o
Since go,p € S, one can find a number N, > 0, such that
9a,p(Ns) <eaq(n,D), 0<|al< N. (9)

In other words, Lemma 1 assures that if N, is a positive number such that (9) holds, the essential
support of My pu is the N h-neighbourhood Ql-l\—fsh of £, in the sense that

| Mhp,pu(x)| < €ol|ullec  Whenever x € R™\ Qf ,. (10)

Note also that since |Mp pu(x)| decays far out more rapidly than any power of dist(x,(2), the
quasi-interpolant on R™ \ Ql—l\_fsh is of the order of the saturation error g even in integral norms.

Remark 1 Another consequence of (10) is that the computation of My pu requires to take
only the (2N, + 1) summands in (1) for which |x/h — m| < Ny, since the error introduced by
neglecting the other terms is smaller than the saturation.

In order to show the approximation properties of M}, p for functions defined on domains and
continued by zero outside, we begin by investigation of the behaviour of the quasi-interpolant
under truncation of the summation.

Theorem 1 Suppose that n € S(R™) satisfies the moment conditions (5) and let N, > 0 be such
that (9) holds. If u is N-times continuously differentiable in the ball B(x, Nsh), then

(1= Bl <2 Y (D)ol D) gy

lex|=0

pa 7’7 o
My )j6%u u(x)|c(B(x,NR)):
|a|=N

where ./\/l( ) denotes the truncated quasi-interpolant

Mgﬁ% =D/ Z u(hm)'f}(x - hm)'

hmeB(x,N.h) hv/D
ProoOF. Set for brevity B = B(x, Ns;h) and £, = Xh\;‘in The Taylor expansion of u(hm) around
the point x yields
N-1
MBPu(x) = D? 3" (—vV/Dh)*
le|=0 ' hmes

ey C “a_" 5 0u(ym) ER0(Em),

where yp, lies on the segment connecting the points Am and x. If we split the summation over
Z™ and Z™ \ B, we obtain for the first inner sum in the right-hand side

n/z‘ S g ‘ < ea(n D)+ gap(N,), 0<|a]<N,
hmecB
whereas
D2 N |emn(€m)| < pa(m D), o] =
hmecB

Choosing N, as in the statement of the theorem completes the proof. W



2.3 Examples

As an example, consider the generating functions based on the radial Gaussian
mam(x) = 72 L () e P M =12, (1)

where Lgca)(t) denote the generalized Laguerre polynomials defined by

o tatdk o
L) = g (=),  a>-1. (12)

Since the corresponding Fourier transforms are (cf. [3])
Fron(A) = Pua(r? A e Pa(t) = 3 1 (13)

these functions satisfy the moment conditions (5) with N = 2M and hence, by Theorem 1,
give rise to quasi-interpolation formulae (1) of approximate order of convergence O((hv/D)?M).
Furthermore, using (7), the saturation error ¢ can be estimated by

eo(marr, D)< > Py—a1(|m|?r?) e ImPr® = O(p2Mtn=t ="y p = 1/D.
meZ™\{0}

Note that since e=™ = 5.17 X 1075, already D = 4 ensures a saturation error in the range
10715 + 10712 for 1 < M < 3 and space dimensions n = 2 and 3.

2.4 L,-estimates

We recall that our main goal is to use quasi-interpolants for approximation of densities of integral
operators, many of which are known to be continuous mappings from L, to the Sobolev space
WII,, [ > 0. Thus, in order to derive estimates for the approximation of the integral operators, it
will be necessary to have Ly-estimates for the approximation of the corresponding densities.

By Theorem 1, only the values of the function in a small neighbourhood of the point x affect the
approximation results, and hence, modulo the doubled saturation error, the truncated operator
./\/l( ) possess identical approximation properties as it’s untruncated counterpart My p. This

means also that functions belonging to CV(Q) are approximated at the rate O(eo + (hv/D)V)
in the subdomain Quy,n (cf. (8)), i.e., at all internal points which lie on a distance larger that
N,h from the boundary 9. Generally, if u belongs to the Sobolev space Wlfv(ﬂ), the following
Ly-estimate holds (cf. [9]):

Theorem 2 Suppose that n € S(R™) satisfies the moment conditions (5) and that N, is as
in (9). Further, let Q be a domain in R™ with compact closure and Lipschitz boundary and
u € Wlfv(ﬂ) with N > n/p, 1 <p < oo. Then,

[o] ga ? [o]
I - )%wmwa;hf”'” €al®: D)) ey, 00 S
o|=0
pa [o]
Y ||3 u||L,(0)
Pomy

where Qn,p is the sub-domain defined in (8).



We note that under the requirements in Theorem 2 u is continuous on € and thus the quasi-
interpolant Mp, pu is well-defined. Clearly, if u € Wlfv(ﬂ), then the result of Theorem 2 can be
extended to the whole space R™ instead of Q5.

In order to estimate the accuracy of approximation of integral operators, besides the bounds
inside the domain given by Theorem 2, one needs estimates for the discrepancy (I — Mp, p)u on
the whole space.

Theorem 3 Suppose that the conditions of Theorem 2 hold. Then for any t > 0,
I = Ma,p)ullp (0t \ay,n < cah™P (L + po(n, D))(Ns + 1)M%|Jull oy ()
M, pullp,mmaz ) < K2 \lgo,n(| - | + )l L, (rm) 1|2l Los (0
where cq s a constant depending only on the domain (1.

The proof is based on the following lemma:

Lemma 2 Suppose that Q is a domain in R™ with compact closure and Lipschitz boundary. For
h > 0, denote by Xs, the characteristic function of the boundary layer {x € Q : dist(x, Q) < h}.
Then, the following estimates hold:

||X5hu’||Lp(Q) < Ch’(t_l)/ptH,u’HLpt(Q): 1<p,t< 00, (14)
[ ¥, ullz,(a) < ch||lullwsa)y, 1<p<o0, 0<7<s/n, r<1/p, (15)

[ X, ullwz(ayy < chllullz,,,_y @), 1<p<oo,
0<r<s/n,r<1/p,

with constants depending only on €.

Here (W, (2))’ denotes the dual space of W;(Q) with respect to the L, scalar product.

Proor. The first inequality follows from

1/t (t-1)/t _
/Q | Xs, ulP dx < {/Q |u Pt dx} {/Sh dx} = (meas )/t Hu”im(ﬂ)‘
To prove (15), we note first that since u € W3(€2), s > n/p, then v € C(). Hence
P P P
/Q | s, ulP dx < max |u(x)|P meas Sp, < cmeas Sp ||u||W;(Q) ,

so that
15, ullz,0) < ch* P [|ullws(a)-

Since evidently ||Xs, ul|z,(a) < [|ullz,(n), We obtain by interpolation
X5, ullzy@) < hP |[ullwgo@y,  0<O<1, s>n/p.
Setting 7 = /n yields (15). Finally, since the operator Xs, is symmetric, there holds
1€ 1| Ly oy () (W) = 180 W3 () Lp(0)

which proves (16) and the lemma. W



PrOOF OF THEOREM 3. Let for brevity S denote the boundary strip S = Q;';l \ Qn,n. Then by
the proof of (14)

I(Z = Mp,p)ull,(s) < (I = Mh,D)ull o) (meas §)'/P < (1 + po(n, D))(meas §)'/7|lul| 1. (q)

To obtain the second estimate in the formulation of the theorem, we note that

pr
M (N g < / (D—n/z 3 ‘u(hm)n(x/%m)o dx

P
n P —n/2 £—
<h [ (D Yy \n(ﬁ)\) g .
dist(¢,h—10)>¢ meh~10
By the construction of the set Q;';l we have

|(x/h—m)| >t+ inf+ Al x-y), x€R"\Q}, hmeQ,
yey,

and hence

£ —m|>t+dist(€,r7I01), m e h7iQ, dist(§,R7I0) > ¢
th

Lemma 1 provides the estimate

“n/2 (-m dist(£,h10%)),
D mezh;ln‘n( 75 )‘ < go,p(t + dist(§ th)

and therefore

MU gr < B0l ) [ Lon.nt+ €D dx.
1€1>¢

The proof is completed. N

Combined, Theorems 2 and 3 give Ly-estimates for the approximation error on the whole of
R"™. By Theorem 2, the quasi-interpolant Mj pu is a good approximation of u at internal points,
lying at a distance larger than N,h from the boundary. The error is then of order O(go+(hv/D)N)
and can be controlled effectively by a proper choice of the step-size h and the parameter D. The
second estimate from Theorem 3 assesses the error accumulated outside of the th-neighbourhood
of supp u. Since go,p is in the Schwartz class, ||go,p(| - | + ?)||z,(r») — 0 more rapidly then any
power of ¢, so this term can be made of the same order of magnitude as, e.g., the saturation error
e(n, D), by choosing ¢ larger.

Thus, the main contribution to the overall error comes from the boundary strip Q:;l \ On. 1,
where, by the first estimate in Theorem 3, the error is of order O(hl/”) if u does not vanish on
090. Clearly, it will be numerically very expensive to make this term small by choosing h smaller,
especially in higher space dimensions. In what follows, we concentrate our efforts to build local
mesh refinements near points of where the quasi-interpolant My, pu does not approximate with
satisfactory accuracy, in particular, near the boundary of the domain.

3 Approximate refinement equations

In this section we concentrate on the construction and properties of the cornerstone of approxi-
mate multi-resolution techniques, namely, the refinement equations of the type

n(x) = Z 7(pv) n(x/p — v) + small remainder term. (17)
vezin»



3.1 Construction

It was proven in [10], that an approximate refinement equation of type (17) is true for n € S(R")
if the Fourier transform Fn # 0 and that # can be determined from

Fn()

Fi(€) = Fr(ue)

(18)
More precisely, the following theorem holds:
Theorem 4 Suppose that (18) holds for some positive p < 1 and that n, 7 satisfy

neS(R™), 7HeSR"), Fn > 0.

Then

(75) =07 X a(5)n(5 /57) + Rawnl), (19)

meZn

where the remainder Ry, ,, p € S(R™) is given by

Rywp(x)= 30 @omi | Fi(e)Fa(ue + VDm) e VP de. (20)

meZ™\{0}
Moreover, for any e > 0 there exists D = D(n,u) > 0 such that |R, , p(x)| < €.

In the sequel, the function 7 defined by (18) will be referred to as the adjoint function corre-
sponding to 7.

For example, the generating functions (11) based on the Gaussian satisfy the requirements of
Theorem 4, since by (13) they possess positive Fourier transforms. The analytic expression of
adjoint functions 73, %4 and 7jg in the case of one space dimension are:

N . o Vo
ﬁ c et = () - W
{7’2 [1—|1_:L|_M,L W(@ La)

et/ 1

) = )]

b

Bl

(21)

[E—

}

where o = 1 — p?,
2

W(z,t) = S {w (i(z + 1)) + w(i(z — D))},

and w(z) is the scaled complementary error function

w(z) = e erfc(—iz) = e -7 1 _ 2 /

Of course, these formulae allow to obtain analytical representations for the adjoint functions in
any space dimension when 7(x) is a product of one dimensional functions:

n(x) = nane(21) - - . M20a (@)

Note that for computations we do not need the analytic expression of the functions 7. In the
following section we will show that for our purposes it suffices to precompute the values of 7 just
in several points, which can be done with some numerical method for inverse Fourier transform.



3.2 Properties of the adjoint function 7

Suppose that in addition to the requirements of Theorem 4, 7 is subject also to the moment
conditions (5). Since these conditions can be rewritten by Fourier transformation as

Fr0)=1,  Feoex*n(x))0)=0, 0<al <N,

relation (18) guarantees that they are satisfied by 7 as well. Then, by Theorem 1, 7 gives rise to
a quasi-interpolant My, p featuring the same rate of approximate convergence as M}, p, which
is generated by 7. Hence, in similarity to (9) one can introduce the positive integer N, = ]VS(D),
so that _

ga,D(Ns) <éq, 0L |O’,| <N,

where
—-n/2

X —m X —m
Ga,p(1) =D su ‘ g ‘

Ja,n(1) X€£n|x—z:m|>t ( JD ) JD )

and éq = €a(7, D) are defined as in (6). The same estimate as (7) holds also in this case, and
consequently, the saturation error g — 0 as D — oo more rapidly than any power of D. For

example, for the adjoint functions #japs to m2ar (cf. (11)), one obtains by (13) and (18) that

2,2
3 Ppr—1(|m]| ;" 2) e~ (B)ImPr? _ o 2Mint ~(1-2p?y /]
mezm {0} Ppr—1(p|m|?r?)

IN

3.3 Quasi-interpolants based on the remainder term

In the following we meet quasi-interpolants generated by the remainder term R, , p(x) of the
form

Ripu(x) = D™ 3" u(mh) Ry, p(x/h — m) (22)
meZn

By Theorem 4 these quasi-interpolants are properly defined, since we have rapid decay in x. For
instance, when 7 is the Gaussian, the corresponding function 7}, is by (21) also a scaled Gaussian:

X X X ~

(=) = m(—=—=—=5) = 1(—7=), D =D(1-p?).
vD D(1 - ?) vD
The approximate refinement equation for this case takes the form

ePPIP = (xD) 2 Y eWmPID i/ummlID 4 R p(x)
mezZn»

and the remainder term R,, , p(x) is given by
Roppu0(%) = 12 ﬁ)[u My,p)1 (%)) = ma ﬁ)w M, 501 (%),

where M 51 is the quasi-interpolant M  zu for u(x) = 1 and x, = (1 — p?)x. Thus by

Theorem 1 |R,72 u,D(x)| < & and the quasi- 1r1terpolar1t Rhn,pu satisfies the uniform bound

Ripu(x)| < eo(fie, D)z, = eolna, D(1 — 1)) [l

In following lemma, which we state without proof, we establish the remainder terms in the
refinement equations R,,,, ., p for M > 1 exhibit similar behaviour as Ry, , p:

10



Lemma 3 Suppose that napr is defined by (11) and 0 < p < 1 is a fized parameter. Then there
exist positive univariate polynomials Q1 and Q2 of degree M — 1 such that for any sufficiently
large D

| Rugngu0 (%) < Qu([x]?/ D) e /P 3™ Qy(Dm|?) e~ P-#)imf*
meZ™\{0}

As a consequence we obtain that the generating function of the quasi-interpolant R,,,, .0
has amplitude of the same order as the saturation error, and the rate of decay of naps:

Corollary 1 Suppose the conditions of Lemma 3 are met. Then, there exists a constant Cr,
such that
| R a0 (X)| < Cr€0(T2n1, D) |1(x)]-

and, hence, the quasi-interpolant Ry, pu defined by (22) admits the uniform estimate

|Rh,pu(x)| < Crpoéo.

4 Factorization and multiresolution decomposition of quasi-in-
terpolation operators

In this section we use the approximate refinement equation (20) to factorize the quasi-interpo-
lation operator Mp p. Such a factorization allows to obtain an approximate multi-resolution
decomposition of the operator on the highest resolution My, p from which one obtains the
desired boundary layer approximate approximation (3) after an appropriate truncation of the
summation.

In what follows, we suppose that 7 and 7 satisfy the requirements of Theorem 4 and the approx-
imate refinement equation (19), and that My, p, Mp p are the corresponding quasi-interpolants.
Given a sequence of step sizes {hs}2, where

he =pPh, 0<hpu<l, pteL,
we will use the notation
Ak:M”kh,D7 Ak:M”kh,D7 Rk:R”kh,Da k:0,1,2..., (23)

where Ry, is the quasi-interpolant (22) based on the remainder term in (19).

Theorem 5 (Approximate operator factorization) Suppose that n and 7 are generating functions
satisfying the requirements of Theorem 4 and let Ay, Ar and Ry be defined by (23). Then

Ap :Ak_|_1fik-|-7?,k, k=0,1,2.... (24)

PROOF. Set for brevity np(x) := D~™25(x/v/D) and let 7p be the corresponding adjoint
function, defined by (18). Then, using the approximate refinement equation (19) one obtains

Apu(x) = Z u(mhyg) np(x/hr — m)

meZn
= Y u(mbhy)fp(um) np[x/(uhy) — m/p — v]

v.meZn

+ D72 3" w(mhy) Ry, p(x/hk — ).
veZn

11



Since u~! is an integer, k = v + p~'m € Z™. Thus, after re-indexing and taking into account
that hgy1 = phg one arrives at the representation

Aru(x) = ) w(mbhg)fip(uk — m) np[x/hxsr — k] + Reu(x).
k,meZ"

Finally, as pk = —‘*k'l—k , We recognize
Apu(x) = > Agu(hpprk) n(x/hepr — k)
kezZ™»
which is precisely the claimed identity. W
Theorem 6 (Approximate multiresolution decomposition) Suppose that the approzimate oper-
ator factorization identity (24) holds, and let {X,}M | be a set of linear operators. Then

M _
A Xy = AoXo + D Ap(Xe — Ap_1Xeo1) — Y R (25)
k=1

Proor. By the approximate factorization identity (24) one has
Ay = Ag 1 X1 + Ap X — Ap_1 X%

= Ap 1 X1+ ApX — ApAp 1 X 1 — Rp_1 X1
= Ap 1 X1+ Ap( X — A1 X 1) — Re_1 X1,

and the theorem follows by induction. N

Corollary 2 Under the conditions of Theorem 6, suppose that Xy =1, k=1,...,M. Then

M i M-1
Ay = Ao+ Y AT = Ap—1) = D Re
k=0

k=1
Adding identity I to both sides in the above corollary and moving Ay to the right yields

Corollary 3 (Multi-resolution decomposition of identity operator)

M
I=Ay+ ZAk(I — vz(k—l) I AM Z Re.

k=1

5 Boundary layer approximate approximations

In this section we use the multi-resolution decomposition (25) to construct a boundary layer
approximate approximation operator Bps. If Q is a bounded domain and u a sufficiently regular
function with suppu = 2, then Bpsu is an accurate approximation of u on the whole of 2 except
on a thin boundary layer of width decreasing with M. Moreover, the operator Bjs can be defined
in such a way that the essential support of Bpsu does not extend outside (2.

Throughout this section we suppose that 7, 7 satisfy the requirements of Theorems 1 and 4,
and that Mj p and My, p are the quasi-interpolants generated by 7 and 7 respectively. Finally,
we suppose that there exists a constant Cr, independent of the step size h such that

goan,h,D(t) = sup Z |Rpp,p(x — m)| < Créogon(t), k=0,1,2....
xeR™ |[x—m|>t

12



For instance, if 7 is one of the functions defined in (11), such a condition follows from Corollary 1.

We begin by sketching a straightforward way to construct a boundary layer approximate
approximation operator By of type (3). Corollary 2 shows that modulo the saturation terms
E R, the multi-resolution operator Ag + E Ap(I — Ag_1) performs as the quasi-interpolant

k=0
Aps on the finest resolution. Thus, if w is smooth in Q, the multi-resolution approximation

M-t U, k=0,

ZAkuk_AMu+ZRku 11’“:{(1—& Du, k>1 (26)

achieves high accuracy inside and leaves only a thin boundary layer of width N,hps = ™ N ke
where the error is large. Of course, the use of such a scheme is meaningless since one could have
applied Ajs at once. Also, its numerical cost of order O(h};") becomes unacceptable if we wish
to make the boundary layer very small by making a large number of iterations M. On the other
hand, if w € C¥(9Q), Theorem 1 guarantees that

[ik(x)| = Oéo + (eVD)V)), x€Q\Qg,
whereas for points outside the domain, one has
(3)] = [ u(x)]| < op(hi, dist(x, 2)),

so |Uk(x)| < & if dist(x, ) > Nhg_1. Hence, if we can truncate those terms in Agy which
contain Ug(hrm) with argument Arm such that dsg(hrm) > Nshi_1 and neglect the saturation
terms, then (26) reduces to the boundary layer approximate approximation (3) with

_ [u(hom), k=0,
Chm = {ﬂk(hkm), k>1,
and
_ [{m € Z" : mho € Q}, k=0,
%_{MWZW@MQSMMALkZL
Such a truncation retains the ability of the initial scheme to diminish the remainder boundary

layer exponentially with M, while the computational cost is reduced to O(h’j/[_l). The price paid
is the introduction of an error of order O((hov/D)M)).

5.1 Boundary layer approximate approximations with support inside 2

In this section we use Theorem 6 to introduce boundary layer approximate approximations of
the type (3) with support essentially contained in the domain of definition 2 of u. Here we use
the term “essentially” to describe the fact that |Basu(x)| is of order O(EOHUHLw(ﬁ)) for x € 0Q
and decays to zero faster than any negative power of dist(x, ) if x € R™ \ Q. Otherwise, if u
is smooth enough in , then Bpsru(x) is a high order of (approximate) approximation for x in
Q\ Spry1, where Spr11 is a boundary strip of width decreasing exponentially with M.

For k = 1,2, ..., we introduce the boundary layers (see Figure 1) in

. Q, k=0,
PO\ QN B> 1

where N, is a free parameter such that

13



Tn

S1=Q\ QN +N.)ho

Sz = Q\ QN 1N )my
Sz = Q\ QN +N,)ho

' Sa=Q\ YN, +N,)hs

_

T

o0

Figure 1: Illustration for the nested subdomains Q(n,4n,)r, and their
complements S in respect to .

We define also the operators of multiplication by characteristic functions

XI:’U,(X) _ {’U,(X), X € QNohk

0 , otherwise.

and the multi-resolution operator

M
b= AoXS + ) Ar( — Ao ),
k=1
where { A}, {Ax}Y are the quasi-interpolants from (23). In analogy with the notation in the
beginning of 5, one can introduce also discrepancy functions g, and write

M *
XO“’: k=0
i = i U = ~
M kz:%AkUk’ e {(Xk* — A1 A u, k> 1

Now we will show that Bj,u is essentially supported in 2. We notice first that if A" is a
characteristic function of some set, then by Lemma 1, we have
|Mp pXu(x)| < gop(h™" dist(x,supp X)).

By Theorem 6,

M-1

Biju = AuXipu+ Y ReXfu

k=0

and hence
A ru(x)| < go,o(No + by dist(x, D) [ull @y x € R*\ 9,

as dist(09, supp A%) = Nohy by definition. In other words, B} ulaq is of the same order as the
saturation error if N, > N,, and |B},u(x)| decreases faster than any power of dist(x, Q) for large
x as we declared in the beginning.

In the present form, however, the summation is performed upon the whole of R™, due to
the unbounded support of g, so it remains to truncate using the idea in the same spirit as we
did in the beginning of section 5. In virtue of Theorem 1, i is of order O(é + /DAY ;) for
X € Q(No-l—ﬁs)hk_l’ so the contribution to Agi from points in Q(No-l-ﬁs)hk_l can be neglected.
In the following definition, we introduce the operator Bjs in which the summation is performed
layer by layer with only minimal overlapping:



Definition 1 Let {X3}Y be the operator sequence
Xo= XY, Aeu(x) = {u(x), x € Q: Nohg < dan(x) < (No + No)hi
0 0 , otherwise.

Then the multi-resolution operator

M
BM = A()X(T + Z Aka(X]: - Ak—lXI:—l)' (27)
k=1

is called the boundary layer approzimate approzimation operator subordinate to {A}.

Alternatively, as we indicated in the beginning of this section, we can rewrite (27) in the form

Baru(x Z Z ckm'r]( e \};k_m) (28)

k=0mecQ,

with coeflicients

Xgu(hom), k=0

Ckm = uk(hgm) = { (X = Apr X Ju(hem), k> 1. )

and

Q_{{mEZ”:thEQ}, k=0,
FTU{m e Zn : Ny < dog(x) < (No + Nhi_1}, k> 1.

Remark 2 The practical implementation of Theorem 6 does not require an explicit formula for
7. Indeed, in order to calculate Bpsu(x) by (28) one has to compute the coefficients cg m, i.e.,
to tabulate (A} — Ap_1 X7_;)u at the points hxm (cf. (29)). By Remark 1, the computation of
Az Ar u(hkm) requires only summation for indices v, for which

|hikm/hy_y — v| = |pm — | < N,

where N, is such that (9) holds for 7. These (u~*(2N, + 1))* (or just p~ ' (2N, + 1), if 7 is a
radial function) values can be pre-computed using numerical Fourier inversion of (18).

6 Accuracy

In this section we estimate the error if functions belonging to certain function spaces over {2 are
approximated with the operator Bps. Since the cubature formula for the integral operator P is
obtained by

hrym
Pu PBpru(x Ck,m
= 2 om0

for the study of the cubature error it is therefore sufficient to estimate (I — Bjs)u in integral
norms, for example in L, or weak Sobolev norms, but on the whole of R"™.

6.1 Ly-estimates

Theorem 7 Suppose that Q is a domain in R™ with compact closure and Lipschitz boundary
and let u € Wlfv(ﬂ) with N > n/p. For any ¢ > 0 there exists D > 0 and a boundary layer
approzimation Bys such that

lu = Bagulz,(mn) < ex(DR)V||Vivulz, ) + o™ h) 2|l 1.0y + el lull g -
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supp Ay - supp Xp—1, X},

supp Xg41 supp(f — AXp41) supp(l — X)
supp X
o1 S\ Skt Q
|H N,hy, (No+Ns)hg Nohp—1 (No+Ng)hy 1
(No—l—]rfs)h;g (No"‘j\vfs)hkfl

Figure 2: Sketch of the mutual disposition between the layer S \ Sk+1 and the support of
the cut-off operators Xy, A7, I — Xy, etc. The bottom numbers denote distance
to the boundary 99.

Proor. We will estimate the L, norm of (I — Bas)u on each of the layers St \ Sp41, Sar+1 (cf.
Fig. 2) and on the exterior domain R™ \ .

To estimate ||Basul|z,(rn\q) We decompose Bps by Theorem 6:

M
By = Ang + Z Aka(XI: — Ak—lX]:_l)
k=1

M
= Ao + 3 (Apdy — Ap 1 ) + Ra1 4y — Ae(] — %) — A1 27,))
k=1
M ~
= AnXir — 3 (AT = )T = Ak1) — Ror) Xy

k=1

where we used in the last equation that (I — A%)A} = (I — Ak)A7_;. Thus, by Theorem 3 we
get immediately

B Ly mma) < PP llgo,o(] - | + No)ll o, re) 1l oa)

M
+ 3 (B g0,n( - |+ (No + Fo)u™zpme) + By 5 190,80 (| |+ Moy ) 2l 2oogay
k=1

< cuh™lgo,0( - | + No)llz ()12l o) )
30
Setting for brevity

dN:No‘I'Ns: and dN:No‘I'Ns:

we obtain analogously
[ = Barv Ly (a4
Mo i
< lu — A X3pull(spre) T D (hZ Pllgo,n(| -1 + dvu™" — dvp™ )|z, @
k=1
B2 190,82y (| |+ No = divi® R 1 ) 1] 2o
M
< lw = A AUl (sprp0) T h"/p||u||Lm(n) > (Mk"/p||go,D(| |+ dypt = dvp™ e
k=1
490,201 | 4+ No— dyp ) )

(31)
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To estimate ||u — Barul|L,(s,\5,,,) We use the representation

M L
Z Aka(XI: — Ak_lX]:_l) + ALXL* + Z (Ak(f — Xk)(I — Ak_1) — Rk—l)X]:_l .
k=L+1 k=1

By Theorem 3 we obtain

H f: A (¢ — A1 )

Lp(Sz\SL+1)
k=L+1 ?
y ) (32)
< WPy Y B Plg0,01 - | + i — dyp) gy
k=L+1
as well as
L-1 B
I Z (Ak(I - X )] — Ag_1) — Rk—l)XI:—lu||Lp(sL\SL+l)
k=1
(33)

L-1
< BP ||y D (#5777 260l190,0( - | + No — dnps*75)| 1, m)
k=1

+ ,Ul(k—l)”/pHgO,Rn,u,DO |+ N, — dN,u'k_L)HL;D(Rn)) ’

showing that these terms are small if N, and N, are chosen large enough, and additionally tend
to zero together with A.

Consequently, besides the estimate

Pa o
||u_ALXLu||Lp(SL\SL+1) < hL\/_ Z ||3 uHLp(Q)
|ee|=N
al €al’,
+2 Z hr, \/_| | (T’ )||3 u||Lp(5L\5L+1)’
|ex|=0

which follows immediately from Theorem 2, it remains to study

I(AL(T — XL)(I — Ap—1) = Rp-1)XF_1ullL,(5.\S5.01) -
In view of

IRL-1 A7 _1ullL,(sp\S541) < (meas (ST \ 5L+1))1/p||RL—1XE—1U||LM(SL\SL+1)

e (34)
< (meas (St \ Sz+1))"FCr £0p0||u||Loc(Q) )

and B
ICALT = A2 )(T = Ap-2) = Re-1) A2 8llp®\0 i, 5, wgng ) (35)
< 287" Bollgo. (| | + Nz, eyl zoni) »
we are left with the estimation of

AL = X)(T — Ap )X _qullp ey < Mo — X2)(I — Ap-1)dllL,c,)
+ (meas G1) P po [ldo,0(] - | + W) ||, (me)lllwavay -

where G, = SL N Qy 5, _n,yh,_,» and @ € WY (R™) is the extension of u € W2 (Q) with

lellwy@mny = llellw)-
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The function (I — X7)(I — Ar_1)d(z) is discontinuous on G, In order to apply Theorem 2 we
introduce the smooth counterpart ¢y, of the characteristic function A%. That means, we require
that ¢, € C’év(R”) is constant with the exception of small neighbourhoods of the jumps of AL
not containing grid points and that ¢r(hrm) = Xz(hrm), m € Z™. Obviously such a function
with

10%¢L [z, < enh, 0< o <N,

exists. Furthermore, we introduce the continuous analogue of the quasi-interpolant Az,_;

Rivu(x) = (VDhsoa) ™ [ o))y

and the function Uz, = (I — ¢1)(I — Kz_1)@. With this notation we have
Ap(I = X)) — Ap_1)i = AU + Ap(I — o) (K1 — Ap_1)d. (36)
and from Theorem 2 we obtain

IALTL] L, (6y) < ||ﬁL||Lp(GL) + (- ALWLIILP(GL) < ||ULllz,(61)

« b) o o Ea b) o

VDY Y D) e o Y (/B ) g o
la|=N lex|=0

Now the rough estimate

«

~ [8 A
10°UL| L r») < Cn Y

P2 e gyt 1P Rl g

together with the moment condition of # implies

10%UL 1, (r") < CNIIVNullz ) Y
8

_a Bl N-181 [ 1) 1118 dx
_ Gta gyt (VD) R/ () ]9 dx,

resulting in ~
10%UL|L,mm) < €nDhL-1]|V N, e0) (37)

with a constant ¢, p depending only on 7, D and u. The second term in (36) can be written as
the difference between an integral operator and its semi-discretization

An(l = pr)(Raoa = o) = %y [ 00 (7o 2 )av)dy = 3 0 (73)iliko-n)

L-1 jezn

with the smooth kernel function

OL(x,y):=D™" _12 n(xbm)ﬁ(m%y)-
m¢hy " supp X1,

This difference can be estimated by using the Taylor expansion of 4 € Wlfv(R”) in the following
form (cf. [7],[1]):

Il AL( — ¢L)(’€L 1= Ap1)ill|z,6p) < e(Dhr_1)V |V Nullz )

(D)ol 6 pa(n. D) eap(i, D) g
+|§o = UHL”(G“[;) Bi(a— B)
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with some constant ¢ not depending on % and h. Summing up the last estimate together with
(30)—(35) and (37) we see that for u € W)Y ()

l[w — Bagullz, ey < lu — A Xirulln,(sp00) + (DAY Vvullz, ()
N-1
+ > (DR)™ 8a]|0%ul| 1) + RMPEM 0l ()

|ex|=0

where the numbers 6o, which depend on €5 and é3, can be made arbitrarily small for D large
enough, and 6(1) is determined by the functions go and is sufficiently small if the parameters N
and N, are appropriately chosen. Thus we have only to apply Lemma 2 (see also Theorem 3)
and the proof of Theorem 7 is complete. N

6.2 Pointwise estimates

In a similar way one can show the following pointwise result

Theorem 8 Suppose that u € CN(Q) and the boundary layer approzimate approzimation oper-
ator By, is defined by (27). Then for any € > 0 and x € 2\ Sar41, there exist D > 0 and positive
integers Ny and N, such that the accuracy of approzimation satisfies the estimate

(2 = B )u(x)| < «(vVDhi )V ||V vl g () + ellellom-1 @y
where 0 < k < M denotes the index for which x € Sk \ Sg+1-

Thus the behaviour of Bpru(x) is actually very close to that of Azu(x) for some positive k < M,
where k increases as the distance from x to the boundary decreases. This leads to the effect that
the approximation becomes better in points x € @\ Sps41 which lie nearer the boundary 912.

6.3 Estimates in weak norms

Quasi-interpolation on uniform meshes of the form (1) has the remarkable property that it
converges in weak norms, since the saturation error, which is caused by fast oscillating functions,
converges weakly to zero. The same property holds for the case of nonuniform meshes considered
here. In the proof of Theorem 7, the approximation error (I — Bas)u was decomposed into

M
(1= Bu)u = (I — A &ir)u+ 3 (A(] — %) — A1) — Rio1) XLy
k=1

The second term consists of functions with Ly-norms which do not exceed c(Dh)NHVNuHLP(Q)

and h”/p5(1)||u||Lw(Q), respectively, plus small oscillating functions. Therefore one can show
similarly to [7] that for s > 0

|32 (AT = (1~ i) - R ) A, < en(DR)||Vaved o

k=1
n/ps(1) N jal€a(: D)) ga
+ BP0 [l @) + cs k° Y (hV/D) THa ullL,(q) 5
|a|:0 :

where HJ = H;(R”) denotes the Bessel potential space equipped with the norm

lullzzg = IF 7ML+ 4n2| - )2 Fullz, = (T - A) ullz, -
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Thus it remains to estimate ||(] — A X3 )u||g-s. For integer s > 0 we have
P

(I = Ane X5 )ull gz» < e([|AneXir)ull L rma) + 1 — A X3 ull(wyay)
with ¢ = p/(p — 1), and from Lemma 2 one gets for 0 < r < s/n, r < 1/q

1 Xspppn (T = Ane X5 ullwzcay < el Xspys (T — An&ip)ullL, ) < chiy /pHuHWN(Q) :

Furthermore,

I~ Xsppy ) — At Xy Yl wagay = \Aw (I — An Xy u g dx]
M+1

||‘P||Ws(n) 1

Eal\",
< eo(DRY Vvl + co i 3 (haev/D) ol D) g

l|=0
so that the following approximation result is valid.

Theorem 9 Suppose that Q is a domain in R™ with compact closure and Lipschitz boundary
and let u € Wlfv(ﬂ) with N > n/p. Then for any € > 0 there exists D > 0 and a boundary layer
approzimation Bys such that

lu = Bagullgrsrny < (ex(DRYN + ca(W™R) /P47 Jull vy + € b° Ilull -1 qy -

where 0 < r < s/m andr < (p—1)/p.

6.4 Numerical examples

Here we give some numerical examples to illustrate the overall approximation properties of the
operator Bjs defined by (27), and especially the behaviour of the error near the boundary. We
shall use the boundary layer approximate approximation (28) generated by the functions 7, 74,
7 based on the Gaussian (see (11)), providing second, fourth, and sixth order of approximate
convergence. The corresponding adjoint functions 7, 74, s are given by (21). In all cases we
use D = 3, which assures saturation levels of magnitude 1 x 1072, 1 x 10! and 1 x 1071°
for quasi-interpolants My, p based on 72, 74, 76, respectively. The step refinement ratio in all
examples is p~! = 3.

We recall that by Theorem 8, Bjs performs approximately as A on the k-th boundary strip
Sk \ Sk+1, l.e., the nearer the boundary, the better approximation. The approximation results
are plotted over the boundary layer

SM_|_1 \ So = {X € (No + Ns)hM_|_1 S dlSt(X,aQ) S (No + Ns)ho}

in order to illustrate the interplay between the different quasi-interpolants building the operator
Bas. Since the step-size used by Bjs is proportional to the distance from the boundary, one can
determine the order of the formula used by the slope of the error plot |(I — Bas)u| against the
distance to the boundary in logarithmic scales.

Consider the plot in Fig. 3a showing the error from the approximation of cos(1000t) near
the boundary using the second-order formula based on the Gaussian. One can clearly see the
step-wise increase of the accuracy towards the boundary until a saturation is reached. The error
remains unchanged within Si \ Sky1 for fixed k, since the step does not change there. Observe
also the slope of the “staircase” — it is approximately two. In Fig. 3b the same function is
approximated using the sixth-order formula based on 7g. Here the slope is approximately 6 : 1,
but the saturation error is higher.
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u(t) = cos(1000*t); D=3; ut = 3; u(t) = cos(1000*t); D=3; ut = 3;

1 O(hz)-fo‘rmula 1r o(h®)-formula
0.01 g 0.01 |
0.0001 1 0.0001 -
1e-06 1 1e-06
1e-08 g 1e-08 |
le-10 B le-10
1le-12 1 le-12 |
le-14 1 le-14 |
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1e-10 1e-08 1e-06 0.0001 0.01 1 1e-10 1e-08 1e-06 0.0001 0.01

Figure 3: Boundary layer error plots for (I — Bar)cos(1000t) using a) O(h?)-order formula,
and b) O(h®)-order formula.

The last example represent boundary error plots for approximation of the function

_ [ cos(100 |x|?), z1 >0, z5 >0,
(21,22) = { 0 , otherwise,

as an illustration for the action of a two-dimensional operator built as the product By

1Bar, 2Bas, of one-dimensional operators ;Bps, acting on the i-th argument of x = (z1,z2).
These one-dimensional operators are based on the generating functions 7, and 7, which provide
approximate order of convergence of O(h?) and O(h®), respectively. In similarity with the pre-
vious examples, we use D = 3 and step refinement ratio in all examples is x=! = 3 in both the
z1 and zy-directions. Again, the approximation results are plotted in logarithmic scales only in

the interesting area near the vertex of the angle.

== \“\\\“\ \' "/'

\\\\\\\ ““‘“““;‘:“:IE:"":: M l ) ‘\ """"""',,,,,,,
Tz \\\\\\\\\\\\\“\‘\‘i\!!‘\‘\\\\r!l!llilllll‘lllllllllllllll[[/]f

2%

1e-05

Sy

1le-05

T

':III

I
1e-10 \\‘\\‘&2‘“ XN -4[ =
\‘\ N \\\:«:‘.'l I!III!, i 1e-10
1e-15 “33\ S l’"’;;l'i"
TR i

Figure 4: Boundary layer error plots for the function cos(lOO |X|2) with support on the first
quadrant of R? using product of one-dimensional multi-resolution operators pro-
viding a) order O(h?) of approximate convergence; b) order O(h®) of approximate
convergence.

Precisely as in the one-dimensional examples, one can see clearly the gradual increase (Fig. 4a)
of accuracy in the direction towards the boundary when the second-order formula is used. The
plot in Fig. 4b shows the approximation results when a sixth-order formula is used. In this case

the saturation level is reached already after two iterations.
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7 Cubature of potentials in domains

In this section we derive some estimates for the cubature of integral operators, that often appear
in problems of mathematical physics. As mentioned in the beginning, the cubature formula Pru
for the integral operator

Pu(x) = [ k(x—y)u(y)dy.

is easily obtained from the boundary layer approximate approximations of the density u and

defined as

M
y — hym
Pru(x) := PBpru(x) = Z Z Ck,m / k(x—y)n (7) dy , (38)
k=0 hyme Q) R™ kv D
if n is chosen such that the integrals can be obtained analytically or by simple one-dimensional
quadrature. For instance, the approximation by (38) of the harmonic potential H using the
generating functions 757 from (11) is obtained after calculating

ML) ),
R

Hnam (%) = = 5 Jen e — v

1 Ix|? 2 M2 L(_n/2—1)(|x|2)
n/2-2 T d -n/2_—|x| E : 7
/0 ¢ ¢ 47+ 1)

= _4|X|"_27rn/2 =

Here Lgca) denote the generalized Laguerre polynomials (12). Some further examples for the
action of different potentials of mathematical physics on the generating functions 7537 in any
space dimension, including the elastic, hydrodynamic and diffraction potentials, can be found in

[2], [3] and [9].

It is well known that many interesting operators are bounded mappings
P:L,(Q) —» W (), (39)

with Q, @ C R"; we write P € L(Lp(R2), W;*(£21)). Note that the case m = 0 corresponds
to singular integral operators, whereas the volume potentials associated with partial differential
equations satisfy relation (39) with m > 0. In any case the kernel function k(x —y) is singular at
the diagonal x = y, so that the approximation of such multivariate integrals is quite complicated.
If the operator P is such that (39) holds with = ; = R™, Theorems 7 and 9 imply immediately:

Theorem 10 Let u € WY (Q) with N > n/p and P € L(Ly(R"™), H*(R™)). For any ¢ > 0
there exists D > 0 such that

1Pu— Paul|prm) < eo( DAY |V ivulln,a) + ca(6™ R)/Pllull oo 0) + €llullyyn—2 ) -
If additionally P € L(H,™(R"), Ly(R")) then
1P = Pl < (ex(DRYY + call B0 fullway + & B [l
where 0 < r < m/n, r<(p—1)/p.

However, very often the integral operator P fulfills (39) only for bounded domains £, ; C R".
Important examples are the harmonic or elastic potentials. In this case we are interested in the
estimation of Pu — Ppu on some bounded domain €. Since in general supp Bysu = R™ we have
to consider also integrals of the form

/ k(x — y)Byu(y)dy , x€ Q.
R™\Q
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To this end we choose a ball Bg with radius R around the origin such that Q, @y C Bgr and
suppose that the kernel satisfies the estimate

|0%(x —y)| < ra(ly|), for x€Qy,y€R"\ Bgr,
for some function ro(z) of at most polynomial growth and the multi-indexes 0 < |a| < m.

Lemma 4 For any N > 0 there exists constants cy o r such that

< ¢jaR hN(meas Ql)l/p||u||Lw(Q) .

9%k(- — ) Bagul(y)d
| /R"\BR (=) Bau¥)dy |, o,y <

If R — oo then cn,o,r — 0.

Proor. We estimate

| / Ok(y ~y) D ck,mn(%) dy|”

R”\Bpg hymecQy

<cllullf o [ ralsh] X ”(%) )’

R”\Bpg hymecQy

.y Q P
<elull ([ rallyDgon(dist(i, 32 ay)"
R™\Br

Let 7o(y) < ¢;ly|? for |y| — oo. From the rapid decay of go p one obtains

. Q 14 . _
gO,D(dlst(%ka h_:)) - gO,D(No + h’kl dlSt(Y7 Q)) S cNh;cv dlSt(Y7 Q) N

for any N. Now it is clear that for N > n + j the inequality

. y 9k N/ |Y|j
Ta dist(2L, Z*)) dy < ch L A
/. o, "D g p(@ist G N ay <end! [ o ay

proves the assertion. W

Now we are in a position to prove

Theorem 11 Let w € WY (Q) with N > n/p and P € L(Ly(Q), W(Q1). Under the assump-
tions made above for any ¢ > 0 there exists D > 0 such that

1Pu = Paullwpa,) < ex(DR)Y [V vullz,ca) + ca(™ ) l|ull o) + ellullpv—:(qy -
If additionally P € LW, 1y(Q)), Lp(h)) then
1Pu — Pyullzy ) < (ed(DRYY + eal™A) P+ full ey + € ™ [l
where 0 < r < m/n, r<(p—1)/p.
PRrooF. Fix the ball Bg and split
Pru(x) = PBpyu(x) = PAg,Byu(x) + P(1 — X, )Baru(x) .

The W;*(€Q1)-norm of the second term is bounded by chNH'U,HLw(Q) due to Lemma 4, whereas
the difference

|Pu — PXBpBuullwrq,) < crllv — Buullz,(sg)
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can be estimated using by Theorem 7.

The same arguments apply also for the assertion concerning the L,(;)-norm of Pu — Ppu, if
we use the inequality

|1Pu — PXppBarullL,(a,) < erlle = Buullwrm _ (Br)y < ¢llu— Burullgrmgn)
and Theorem 9. N

Summarizing, for a large class of domain integral operators with singular kernels one can define
cubature formulae retaining the order O(hY) plus some small saturation error, if the boundary
layer approximate approximations of the density is used with appropriate parameters g and M.

Let us consider two simple examples:

Example 1. Consider the logarithmic potential

1 1
- — - 4
Hou() = 5 [ uy) ey
Note that the mapping
Ha: Ly(Q) - W2(Q), 1<p<oo,

is bounded, if 2 is a bounded domain. Thus, in this case Theorem 11 yields the estimate
[Haw = Hapullwaay < el(DRYV |V avul|z,a) + ea(u™ h) P |lul| L) + ellull (g -

Consequently, if the boundary layer approximate approximations are such that u™ is of the same
order of magnitude as h’YP~!, we get the approximation order O(h") modulo saturation error.
If we measure the error in a weaker norm than Wg, the small saturation error tends to zero
together with h. For example, if u € WV (Q2) with N > 1 we obtain

1£2u — Lapully(y < (cx(DRYY + cop™b)||ullwa(a) + € B [lullyyz—2qy

such that already the choice p™ x hY¥~1 leads to O(h"Y) order plus a very small error term
converging to zero with the rate O(h?). Note that Sobolev’s imbedding theorem can be used to
prove the convergence of the cubature £, ; with respect to the uniform norm.

Example 2. The Poisson integral

1 x -yl
n 7t = - d ’ Rn: t )
PrGo8) = oy /Rn ply)emp (- =57 )dy, xe >0

gives a partial solution of the homogeneous heat equation with the initial condition u(x,0) =
@(x). If the basis function 7 is the Gaussian or some related function then obviously the integrals

7 Jon 1 (o) esw (= P

have simple analytic expressions. Since for fixed ¢ > 0 the kernel function is smooth the Pois-
son integral generates a bounded mapping from Sobolev or Bessel potential spaces of arbitrary
negative order into usual function spaces. Therefore from Theorem 11 it follows that

1P(-, 1) P Dllza(men) < (xRN + cou™ )l

with constants depending on ¢ > 0 but not on ¢ and h. Hence, Py represents a semi-analytic
cubature of order O(h") without saturation errors.
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