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Abstract

Based on Jamshidians framework, [8], a general strategy for the quasi-analytical

valuation of large classes of LIBOR derivatives will be developed. As a special case we

will address the quasi-analytical approximation formula for swaptions of Brace Gatarek

and Musiela in [2] and show that a similar formula can be derived with Jamshidian's

methods as well. As further applications we will study the callable reverse 
oater and

the trigger swap. Then, we will study the thorny issues around simultaneous calibration

of (low factor) LIBOR models to cap(let) and swaption prices in the markets. We will

argue that a low factor market model cannot be calibrated to these prices in a stable

way and propose an, in fact, many factor model with only the same number of loading

parameters as a two factor model, but, with much better stability properties.

1 Introduction

Recently, several models for LIBOR rates and valuation methods for LIBOR rate related

derivatives have appeared, e.g. Brace, Gatarek and Musiela (1997), [2], Jamshidian (1997),

[8]. The advantage of these approaches is that they model the LIBOR rate process directly

as the primary object in an arbitrage free way instead of deriving it from the term structure

of instantaneous rates modelled in a HJM framework by Heath, Jarrow and Morton (1992),

[7]. Whereas in Brace et al. [2] the LIBOR process was constructed in the numeraire mea-

sure induced by the continuously compounded spot rate serving as an instantaneous saving

bond, Jamshidian, [8] showed that because of their payo� homogeneity LIBOR and swap

derivatives can be priced and hedged in an arbitrage free framework of zero-coupon bonds

without assuming the existence of an instantaneous saving bond.

In this sequel we study the valuation of fairly general LIBOR related derivatives in a LI-

BOR market model within the framework of Jamshidian, [8] and we discuss the calibration

of the market model to market prices of cap(let)s and swaptions.

In section (2) we review some general arbitrage theory and general methods for deriva-

tive pricing developed in [8] and by using the results of section (2) we (re)derive in section

(3) the dynamics of the general LIBOR process. The notion of LIBOR market models is

introduced in section (3) as well.

Via a slight extension of an idea of Brace Gatarek and Musiela which has led to their

swaption approximation formula in [2] we will derive in section (4) a multi-dimensional,

log-normal approximation for the simultaneous distribution of di�erent forward LIBORs,

at di�erent forward times and with respect to di�erent forward (numeraire) measures.

Next, we will show in (4) that it is possible to value large classes of LIBOR derivatives by

quasi-analytical approximation formulas based on this log-normal approximation and two

important classes are identi�ed.
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Applications will be given in section (5). In particular, we address the quasi-analytical

swaption approximation formula of Brace et al., [2] and show that a similar formula can be

derived with Jamshidian's methods as well. In (6) we will argue, however, that the rank

1 assumption with respect to the volatility correlation matrix in [2] turns out to be too

restrictive when the resulting swaption formula is used for model calibration to a whole

family of cap and swaption prices. Therefore, in (5) we also derive a multi-factor swaption

approximation formula in a (Jamshidian) LIBOR market model. As further applications

we tackle in (5) the callable reverse 
oater and the trigger swap.

In section (6) we study the calibration of market models to the prices of (liquidly traded)

cap(let)s and swaptions and explain (at least partially) why low factor models are generally

di�cult to calibrate in a stable way. Therefore, as an alternative to low factor models, we

propose via the identi�cation of a special correlation structure a market model which is,

in a sense, a many factor model, however, with the same number of model parameters as

a two factor model. We will argue that this model has more ability to match the actual

nature of LIBOR correlations in the markets and therefore the calibration of this model

will be more stable.

2 Some arbitrage theory

We will review some de�nitions, methods and results on arbitrage theory and option pricing

developed by Jamshidian, [8], in a self contained way. However, since we want to avoid too

much bracket calculus and compensator analysis in this paper, we re-derive some important

results in a somewhat di�erent way.

2.1 Arbitrage free systems, self-�nancing trading strategies, complete

markets

We �x some � > 0 large enough and consider a continuous trading economy on the interval

[0; � ]: Let E be the collection of continuous semi-martingales on [0; � ]; with respect to a

complete �ltered probability space (
; (Ft)0�t�� ; IP) satisfying the usual conditions. Let

further E+ := fX 2 E j X > 0g; En := fX j X = (X1; ::;Xn); Xi 2 Eg etc. A price system

B 2 En on the probability space (
; (Ft)0�t�� ; IP) will be called a market. We now recall

some basic de�nitions from Jamshidian, [8].

De�nition 2.1.1 (arbitrage) The price system (market) B 2 En is said to be arbitrage

free (AF) if there exists a �; � 2 E+ with �0 = 1; such that �Bi are martingales for all

1 � i � n: The process � is called a state price de
ator.
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Note that the state price de
ator makes de
ated prices martingales in the actual measure.

See also Du�e, [5].

De�nition 2.1.2 (self-�nancing trading strategies) Let B 2 En and � = (�1; ::; �n)

be a vector of adapted Bi�integrable processes �i: Then, the pair (�;B) is called a self-

�nancing trading strategy (SFTS) if �t �Bt = �0 � B0 +
R t
0 �s � dBs for all 0 � t � �:

De�nition 2.1.3 (complete markets) The price system B 2 En on (
; (Ft)0�t�� ; IP) is
called a complete market if for any T ; 0 � T � � and any random variable CT 2 FT (an

FT�claim) there exists an SFTS (�;B) such that �T �BT= CT :

The following fundamental completeness theorem is essentially equivalent to related theo-

rems in Delbaen and Schachermayer, [4] and in Harrison and Pliska, [6].

Theorem 2.1.4 (completeness) An arbitrage free system B 2 En on (
; (Ft)0�t�� ; IP)
is complete if and only if there exists exactly one � 2 E+ with �0 = 1; such that �Bi are

martingales for all 1 � i � n:

2.2 Itô processes

The results obtained in this sequel are based on stochastic models for price systems gov-

erned by Itô processes; processes which can be represented by a stochastic Itô-integral. We

will study this important class of price systems in more detail.

Let W be a d�dimensional Brownian motion on the probability space (
;F ; (Ft)0�t�� ; IP);
where (Ft) is the by W generated natural �ltration Ft := �fWs j 0 � s � tg. On the same

probability space we consider a price system given by the Itô processes

lnBi : = lnBi(0) +

Z t

0
(�i � 1

2
j�ij2)ds+

Z t

0
�i � dW;

ln � : = ln �(0) +

Z t

0
(�r � 1

2
j'j2)ds�

Z t

0
' � dW; (1)

where r(t; !); �i(t; !); i = 1; ::; n are scalar processes and '(t; !); �i(t; !); i = 1; ::; n are

d�dimensional vector processes, all adapted and satisfying the usual requirements for the

existence of the Itô integrals. So, by taking the exponential in (1) we have

Bi = Bi(0) exp

�Z t

0
(�i �

1

2
j�ij2)ds+

Z t

0
�i � dW

�
and

� = �(0) exp

�Z t

0
(�r � 1

2
j'j2)ds�

Z t

0
' � dW

�
(2)

and application of Itô's lemma to the processes (2) leads to the system of stochastic di�er-

ential equations

dBi

Bi

= �idt+ �i � dW = �idt+
dX

k=1

�ikdWk;
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d�

�
= �rdt� ' � dW = �rdt�

dX
k=1

'kdWk: (3)

From the explicit representations in (2) it is easily seen that �Bi are martingales for every

i; whenever �1
2
j�i � 'j2 = �i � 1

2
j�ij2 � 1

2
j'j2 for every i; or equivalently,

�i = r + �i � '; for i = 1; ::; n: (4)

Hence the price system B is arbitrage free if there exist r and ' such that �i and �i

satisfy (4) for every i: The vector process ' is called the market price of risk. Now, the

following proposition follows from theorem (2.1.4), some linear algebra and a martingale

representation argument for the second part.

Proposition 2.2.1 Suppose for each (t; !) the n � d matrix �; de�ned by �[i; k] := �i[k]

has constant rank q; q � min(n; d): Then we have,

i) For q = n; the market is arbitrage free but incomplete. In this case necessarily d � n:

ii) If q = d = n� 1 and 1 =2 range(�); the market is arbitrage free and complete.

2.3 Derivative pricing

Assume an arbitrage free price system B 2 En; � 2 E+ and let CT 2 FT ; T 2 [0; � ] be a

claim such that there exists an SFTS or hedging strategy (�;B) with �T � BT = CT : Since

(�; �B) is also an SFTS, see Jamshidian, [8], it follows that

�TCT = �T � �TBT = �0 � �0B0 +

Z T

0
�s � d(�sBs)

and by the martingale property of the integral in the right-hand-side we �nd for t < T;

IE[�TCT j Ft] = �0 � �0B0 +

Z t

0
�s � d(�sBs) = �t � �tBt:

Hence

�t � Bt;= �
�1
t IE[�TCT jFt]:

In an incomplete market where the price de
ator � is not unique it follows that the right-

hand-side does not depend on the choice of �: On the other hand, if (~�; ~B) is another hedging

SFTS with ~�T � ~BT = CT ; it follows that �t � Bt = ~�t � ~Bt for any t < T: Hence, the two

SFTS's have always the same price. Therefore, the time t < T value of the claim CT is

properly de�ned by

Ct := �
�1
t IE[�TCT j Ft]: (5)

As a result, in a complete market where � is uniquely determined, any FT�measurable
claim CT can be hedged by an SFTS and the price Ct of this claim at a prior time t < T
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is given by (5).

We introduce the notion of numeraire measures and will give di�erent representations for

the claim price Ct in (5) by using numeraire measure transformations.

De�nition 2.3.1 (numeraire measure) Let B 2 En be an arbitrage free price system

B 2 En; � 2 E+ and let �A be a martingale, where A > 0: We will de�ne the A�numeraire

measure IPA as follows. De�ne the probability measure IPA by
dIPA

dIP
= MA(�); where the

martingale MA is given by MA := �A
A(0)

:

The following useful lemma is easy to prove.

Lemma 2.3.2 If �A and �X are martingales then X=A is a IPA martingale.

Indeed, for 0 � t; s; t+ s � � we have

IEA[
X(t+ s)

A(t+ s)
j Ft] =

IE[MA(�)
X(t+s)
A(t+s)

j Ft]

IE[MA(�) j Ft]
=

IE[MA(t+ s)
X(t+s)
A(t+s)

j Ft]

MA(t)

=
IE[�(t+ s)

X(t+s)

A(0)
j Ft]

�(t)
A(t)

A(0)

=
X(t)

A(t)
:

Now we can give an alternative representation for the option price (5) in terms of the

Bi�numeraire.

Proposition 2.3.3 (option price in the Bi�numeraire) Suppose that Bi > 0 for some

�xed i and CT is an option (FT �claim) which can be hedged with an SFTS. Then, we have

Ct = �
�1
t IE[�TCT j Ft]

= Bi(t)IEBi
[
CT

Bi(T )
j Ft]: (6)

Proof Since �C and �Bi are martingales it follows from lemma (2.3.2) that C=Bi is a IPBi

martingale, hence Ct
Bi(t)

= IEBi
[ CT
Bi(T )

j Ft]:

Representation (2.3.3) turns out to be very useful in general and in particular in the

case where Bi is a T�maturity zero coupon bond with Bi(T ) = 1: Then, we get simply

Ct = Bi(t)IEBi
[CT j Ft]:

3 Jamshidian LIBOR rate models and LIBOR rate deriva-

tives

3.1 The LIBOR rate process
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De�nition 3.1.1 (LIBOR processes) Suppose B 2 En+ and �i > 0 for i = 1; ::; n � 1:

The n� 1 dimensional LIBOR process L 2 En�1+ is de�ned by

Li := �
�1
i (

Bi

Bi+1

� 1):

De�nition (3.1.1) is motivated by the practically important situation where for each i the

Bi represents the price of a zero-coupon bond with face value 1 at maturity date Ti and

where �i = Ti+1 � Ti for i = 1; ::; n � 1: Then Li thus de�ned is just the e�ective rate or

LIBOR rate seen at time t over the period [Ti; Ti+1]:

We will now derive the dynamics of the LIBOR process L when the B�dynamics is given by
the system (3) under the no-arbitrage condition (4). Inserting the explicit representations

(2) for the Bi in (3.1.1) and applying Itô's lemma yields straightforwardly,

dLi = �
�1
i

Bi(0)
Bi+1(0)

d exp
hR t

0 (�i � �i+1 � 1
2
j�ij2 + 1

2
j�i+1j2)ds+

R t
0 (�i � �i+1) � dW

i
=

�
�1
i

Bi(0)

Bi+1(0)
exp

hR t
0 (�i � �i+1 � 1

2
j�ij2 + 1

2
j�i+1j2)ds+

R t
0 (�i � �i+1) � dW

i
�

�f(�i � �i+1 � 1
2
j�ij2 + 1

2
j�i+1j2)dt+ (�i � �i+1) � dWg+

+1
2
�
�1
i

Bi(0)
Bi+1(0)

exp
hR t

0 (�i � �i+1 � 1
2
j�ij2 + 1

2
j�i+1j2)ds+

R t
0 (�i � �i+1) � dW

i
�

�j�i � �i+1j2dt =
�
�1
i (1 + �iLi)(�i � �i+1 + �i+1 � (�i+1 � �i))dt+ (�i � �i+1) � dW ) =

�
�1
i (1 + �iLi)(�i � �i+1) � (dW + ('� �i+1)dt):

By the introduction of the absolute LIBOR volatilities

�i := �
�1
i (1 + �iLi)(�i � �i+1) (7)

and the drifted Brownian motions

dW
(j) := dW + ('� �j)dt; (8)

we may write

dLi = �i � dW (i+1) (9)

= �i � (dW + ('� �n)dt�
n�1X
j=i+1

(�j � �j+1)dt)

= �
n�1X
j=i+1

�i � (�j � �j+1)dt+ �i � dW (n)

= �
n�1X
j=i+1

�j�i � �j
(1 + �jLj)

dt+ �i � dW (n)
: (10)

From de�nition (3.1.1) and lemma (2.3.2) it follows that Li is a martingale with respect

to the measure IPBi+1
and then from (8), (9) and general representation theorems for
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martingales it follows that (W (i+1) j 0 � t � Ti) is standard Brownian motion under IPBi+1
;

for 1 � i < n: On the other hand, since Bj+1=Bj = (1+�jLj)
�1 is a martingale under IPBj

;

we can derive similarly that (W (j)(t) j 0 � t � Tj) is standard Brownian motion under

IPBj
; for 1 � j < n: Combining we get,

Corollary 3.1.2 for each j = 1; : : : ; n the process

W
(j)(t) =W (t) +

Z t

0
('� �j)ds 0 � t � Tj ^ Tn�1

is a d�dimensional Brownian motion under the measure IPBj
:

In practice it is more usual to deal with relative volatilities de�ned by 
i := �i=Li: In terms

of the 
i; also called the factor loadings, (9) and (10) read in stead

dLi = Li
i � dW (i+1) (11)

= �
n�1X
j=i+1

�jLiLj
i � 
j
(1 + �jLj)

dt+ Li
i � dW (n)
: (12)

Remark 3.1.3 (numeraire notation) From now on we will use for the numeraire mea-

sure IPBj
the shorter notation IPj and for the related expectation we will write IEj :

3.2 LIBOR market models

A very important LIBOR model is the so called LIBOR market model de�ned as follows.

De�nition 3.2.1 (LIBOR market model) The LIBOR model, (11) or (12), is called a

market model if it is speci�ed by a deterministic relative volatility structure, i.e. the

factor loadings


i(t; !) =: 
i(t); i = 1; ::; n� 1; (13)

are assumed to be bounded deterministic functions of time t:

Remark 3.2.2 (existence of the LIBOR process) In Jamshidian, [8], Th. 7.1, it is

shown that for any volatility structure of the type 
i(t; L); where 
 is bounded and locally

Lipschitz in L; there exists an arbitrage free system of bond prices satisfying the zero

coupon bond constraint Bi(Ti) = 1 for which the associated LIBOR process L is positive

and satis�es (12). So, in particular, this holds for the market model (3.2.1).

3.3 Valuation of LIBOR derivatives, forward transporting arguments

We now illustrate the importance of corollary (3.1.2) by the following example.

Example 3.3.1 Suppose we are given a tenor structure 0 < T1 < T2 < :: < Tn with

intervals �i := Ti+1 � Ti and an arbitrage free system B 2 En+ of Ti maturity bonds Bi;

for i = 1; ::; n; with Bi(Ti) = 1: Let C be an option with payo� CTi+1
at Ti+1; which
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is a function of the LIBOR rate Li(Ti); say CTi+1
= f(Li(Ti)). Then, the measurability

conditions of Th. (5.2) in [8] are satis�ed and it follows that such an option can be hedged

with an SFTS. Next, using the Bi+1 numeraire, we get for the t < Ti price of the option,

Ct = �
�1
t IE[�Ti+1

CTi+1
j Ft] = Bi+1(t)IEi+1[

CTi+1

Bi+1(Ti+1)
j Ft] = Bi+1(t)IEi+1[f(Li(Ti)) j Ft]:

Now, in a market model where L has deterministic volatilities (13), we get by integrating

(11), Li(Ti) = Li(t) +
R Ti
t Li
i � dW (i+1)

; where W (i+1) is Brownian motion under IPi+1:

Hence, ln[Li(Ti)=Li(t)] = �1
2

R T
t j
ij2ds +

R Ti
t 
i(t) � dW (i+1) and so ln[Li(Ti)=Li(t)] has

a normal distribution under IPi+1; with mean �1
2

R T
t j
ij2ds and variance

R T
t j
ij2ds): A

well known example is a [Ti; Ti+1]�caplet with strike K; de�ned by the payo� function

f(x) = max(x�K; 0); for which we recover Black's market caplet formula in this way.

A useful technique for the valuation of a LIBOR derivative, speci�ed by several payo�'s at

di�erent tenors, is the method of forward transported cash 
ows, [8]. Consider, as in example

(3.3.1), a tenor structure (Ti) together with an arbitrage free system B of Ti�maturity
bonds Bi: Let further C be an option contract which speci�es for each i; 1 � i � n� 1 at

date Ti+1 a payo� Ci; where Ci is supposed to be measurable with respect to the LIBOR

process L up to time Ti: For the valuation of the option contract it is equivalent to deliver

instead of the cash at Ti+1; an amount Ci=Bn(Ti+1) of Bn bonds which in turn guarantees

a "forward transported" cash payment of Ci=Bn(Ti+1) at time Tn: Since the Tn payo�

Ci=Bn(Ti+1) = Ci
Bi+1(Ti+1)

Bn(Ti+1)
is measurable with respect to the LIBOR process up to Tn�1

for every i, the option contract may be de�ned equivalently by a single aggregated payo�

C(Tn) at time Tn; which is L measurable up to Tn�1: Then, by Th. (5.2) in [8] and the

constraint Bn(Tn) = 1; it follows that the option value at t < T1 is given by

C(t) = Bn(t)IEn(C(Tn)):

This value can be computed, at least in principal, by Monte Carlo simulation, for instance,

by simulation of the SDE (12) in the IPn�measure.

4 Approximate valuation of LIBOR derivatives in a LIBOR

market model

For a LIBOR market model (3.2.1), where the volatilities 
j are deterministic functions, we

will design a procedure for the valuation of a large class of LIBOR derivatives based on a log-

normal approximation of the LIBOR process L in this model. In particular, this procedure

can be applied to the European swaption and thus covers the swaption approximation

formula developed in Brace et al., [2].

4.1 Log-normal approximations of forward LIBOR rates

We consider a market model for the forward LIBOR rates Lj; j = 1; ::; n � 1; for a �xed

tenor structure 0 < T1 < � � � < Tn: For l;m with 1 � m � l < n; the integrated version of
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(11) reads

Ll(Tm) = Ll(t) exp

Z Tm

t

"
�j
lj2
2

ds+ 
l � dW (l+1)

#
(14)

and for any i 2 fm; ::; ng; 0 � t � Tm; we derive from (7) and (8),

dW
(l+1) = dW

(i) �
n�1X
j=l+1

�jLj
j

1 + �jLj
dt+

n�1X
j=i

�jLj
j

1 + �jLj
dt

= dW
(i) +

lX
j=m

�jLj
j

1 + �jLj
dt�

i�1X
j=m

�jLj
j

1 + �jLj
dt; (15)

where an empty sum is de�ned to be 0. We thus have,

Ll(Tm) =

Ll(t) exp
R Tm
t

��j
lj2
2

ds+
Pl

j=m
�jLj
j �
l
1+�jLj

ds�Pi�1
j=m

�jLj
j �
l
1+�jLj

ds+ 
l � dW (i)
�
: (16)

In [2], Brace Gatarek and Musiela study a continuous family of forward LIBOR rates

K(t; T ); T � t; over the period [T; T + �]; for �xed � > 0 and they derive the t�dynamics
of K in the risk neutral measure from a Heath Jarrow and Morton framework. Next, a log-

normal volatility structure forK is assumed and a �rst order approximation for L combined

with a certain rank 1 assumption is used to derive a tractable approximation formula for the

European swaption. In this sequel, where we employ Jamshidian's framework, we obtain

an analogous approximation by approximating the processes Lj under the integral in (16)

by their initial values Lj(t); thus yielding a log-normal approximation for the distribution

of Ll(Tm); m � l < n under the measure IPi; m � i � n: So we obtain,

Ll(Tm) � Ll(t) exp
R Tm
t

��j
lj2
2

ds+ 
l � dW (i)
�
�

� exp
�Pl

j=m
�jLj(t)

1+�jLj(t)

R Tm
t 
j � 
lds�

Pi�1
j=m

�jLj(t)

1+�jLj(t)

R Tm
t 
j � 
lds

�
= Ll(t) exp

�Pl
j=m

�jLj(t)

1+�jLj(t)
�jl �

Pi�1
j=m

�jLj(t)

1+�jLj(t)
�jl

�
�

� exp
�
�1

2
�ll +

R Tm
t 
l � dW (i)

�
; (17)

where we have introduced the deterministic quantities

�
(m)
jl (t) := �

(m)
jl :=

Z Tm

t


j � 
lds; j; l 2 fm; : : : ; n� 1g: (18)

For m � l < n and m� 1 � k < n; we introduce further

�
(m)
lk (t) := �

(m)
l;k :=

lX
j=m

�jLj(t)

1 + �jLj(t)
�

(m)
jl �

kX
j=m

�jLj(t)

1 + �jLj(t)
�

(m)
jl � 1

2
�

(m)
ll ; (19)

hence �
(m)
ll = ��(m)

ll =2 and a path-wise approximation for the LIBOR process is given by

ln
Ll(Tm)

Ll(t)
� �

(m)
l;i�1 +

Z Tm

t


l � dW (i)
; (20)
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under the measure IPi; m � i � n: Since (W (i)(s) j t � s � Tm) is Brownian motion under

IPi; m � i � n; at time t the joint distribution under IPi of the forward log-LIBOR rates

may be well approximated as a multivariate normal distribution with,

IEi[ln
Ll(Tm)

Ll(t)
] = �

(m)
l;i�1(t); (21)

Cov[ln
Ll(Tm)

Ll(t)
; ln

Ll0(Tm0)

Ll0(t)
] =

Z Tm^Tm0

t


l � 
l0ds = �
(m^m0)

ll0 (t); (22)

where m � l < n; m
0 � l

0
< n; (m _m0) � i � n: For the forward LIBOR correlations we

thus get

�[ln
Ll(Tm)

Ll(t)
; ln

Ll0(Tm0)

Ll0(t)
] =

�
(m^m0)
ll0

(t)q
�

(m)
ll (t)

q
�

(m0)
l0l0 (t)

: (23)

For constant loadings 
j this yields

�[ln
Ll(Tm)

Ll(t)
; ln

Ll0(Tm0)

Ll0(t)
] =


l � 
l0(Tm ^ Tm0 � t)

j
ljj
l0 j
p
Tm � t

p
Tm0 � t

;

which reads for m � m
0
;

�[ln
Ll(Tm)

Ll(t)
; ln

Ll0(Tm0)

Ll0(t)
] =


l � 
l0
j
ljj
l0 j

s
Tm � t

Tm0 � t
; m � m

0; m � l; m
0 � l

0
: (24)

Note that the correlations between the forward log-LIBORS do not depend on the choice

of the measure IPi, but the drifts do.

4.2 A general class of LIBOR derivatives

We specify a general class C of LIBOR derivatives and we will map out a strategy for the val-

uation of these derivatives. As usual we consider a tenor structure (Ti)1�i�n together with

an arbitrage free system B of Ti maturity bonds Bi: First, we start with the introduction

of a subclass C0; C0 � C:

De�nition 4.2.1 (C0) A derivative contract C0 belongs to the class C0 when it speci�es for

each 1 � j < n a payo� Cj at time Tj+1 via an explicitly given function fj of the forward

LIBORs Ll(Tm); 1 � m � l < n; m � j: So, Cj =: fj(Ll(Tm); 1 � m � l < n; m � j):

Examples of C0�derivatives are the cap, swap, trigger swap and the reverse 
oater, which

are studied in this sequel. Next, we de�ne the larger class C � C0 as the family of derivatives
C which are (generalized) "callable" C0 options with maturity T1 in the sense of the following
de�nition.

De�nition 4.2.2 (C) A derivative contract C belongs to the class C when it is speci�ed

by a payo�  (C0(T1)) at T1 for a certain derivative C0 2 C0 and some real valued reward

function  : y !  (y):
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The most important case is where  (y) = max(y; 0) and thus C0 will be "called" at T1

whenever its value is positive, or in other terms, the holder of a contract C has the right to

enter into a contract C0 at T1: Examples of C�derivatives are the swaption and the callable

reverse 
oater, also studied in this sequel.

Now, the log-normal approximation method for the forward LIBOR rates in a market

model, combined with the forward transporting technique, provides us with an, in princi-

ple, feasible strategy for the valuation of C0 and C derivatives.

For a C0 derivative, the option value at t < T1 is given by,

C0(t) =
n�1X
j=1

Bj+1(t)IEj+1[fj(Ll(Tm); 1 � m � l < n; m � j) j Ft]

= Bn(t)
n�1X
j=1

IEn[
1

Bn(Tj+1)
fj(Ll(Tm); 1 � m � l < n; m � j) j Ft]

= : B1(t)	(Ll(t); 1 � l < n):; (25)

where the claim value relative to the B1�bond is denoted by 	 and is LIBOR measurable

indeed. Hence, after making the log-normal approximations in a market model the valua-

tion of C0 or, equivalently, the identi�cation of 	 in general comes down to the computation

of multivariate Gaussian integrals. In several cases, however, the problem reduces consid-

erably. E.g. for a cap each term in (25) leads to a well known Black-Scholes expression,

see (3.3.1) and for the reverse 
oater we get something similar, see (38). In the case of a

trigger swap the involved multi-dimensional integrals can be done by faster routines when a

special correlation structure is imposed on the LIBOR model, see section (6) and Curnow,

Dunnett, [3].

Next, for the valuation of a C derivative we thus get,

C(t) = B1(t)IE1[ (C0(T1)) j Ft]

= B1(t)IE1[ �	(Ll(T1); l � 1) jFt] (26)

So, if the valuation problem for the C0 option is solved, i.e. the function 	 is identi�ed,

the value of C is obtained, in principal, by multivariate normal integrals again. However, if

the 
i are calibrated and if the time span Tn � T1 of the tenors is not too long, in practice

only the �rst few eigenvalues of the LIBOR-correlation matrix

�[ln
Ll(T1)

Ll(t)
; ln

Ll0(T1)

Ll0(t)
] (27)

are signi�cantly positive and so, by a low rank (eg. rank 1) approximation of this matrix,

L(T1) can be approximated by a IRn�1 valued random variable L(T1)(�); where � is a low

dimensional (e.g. a scalar) standard normal random variable under IP1. Hence, we thus get
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a low-factor (e.g. one-factor) approximation for the value of C(t) in (26), where only the

computation of a low dimensional (e.g. scalar) Gaussian integral is needed.

5 Applications

As a �rst application of the method presented in section (4.2) we consider in section (5.1)

the European swaption and in section (5.2) we will sketch the route which leads to a

multi-factor approximation formula which covers the results of Brace et al. in [2]. Then,

subsequently, in section (5.3) we will tackle the callable reverse 
oater and in section (5.4)

the trigger swap.

Through the whole section (5) we assume a tenor structure (Ti)1�i�n as before.

5.1 European swaption

A [T1; Tn]�swap on a certain principal is a contract to pay a �xed rate � and to receive

spot LIBOR at the settlement dates T2; ::; Tn: The present value of this contract for a $1

principal is equal to

Swap(t) :=
n�1X
j=1

Bj+1(t)IEj+1[(Lj(Tj)� �)�j jFt]

= B1(t)�Bn(t)� �

nX
k=2

�k�1Bk; t < T1; (28)

since Lj is a IPj+1�martingale, however, (28) also follows by a simple portfolio argument.

Now the swap rate S(t) is de�ned as that �xed rate � for which Swap(t) = 0: Hence,

S(t) =
B1(t)�Bn(t)Pn
k=2 �k�1Bk(t)

: (29)

A swaption contract with maturity T1; strike � and principal $1 gives the right to contract at

T1 to pay a �xed coupon � and receive the T1�swap rate at the settlement dates T2; ::; Tn:

As, equivalently, one can contract for receiving spot LIBOR instead of the T1�swaprate,
according to (25) and (26), the price of the swaption at t < T1 can be given by

Swpn(t) = B1(t)IE1

2
4
0
@n�1X
j=1

Bj+1(T1)IEj+1[(Lj(Tj)� �)�j j FT1 ]

1
A
+

jFt

3
5 ;

where (�)+ := max(�; 0): By using the martingale property again, this simpli�es to

Swpn(t) = B1(t)IE1

2
4
0
@n�1X
j=1

Bj+1(T1)[(Lj(T1)� �)�j ]

1
A
+

jFt

3
5 : (30)

In terms of the swap rate the expression between brackets in (30) is equal to

(S(T1)� �)
nX

k=2

�k�1Bk(T1);
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which is positive whenever S(T1) > �: Hence, by denoting the FT1 measurable event

fS(T1) > �g with A; for (30) we may write

Swpn(t) =
Pn�1

j=1 B1(t)IE1 [1ABj+1(T1)(Lj(T1)� �)�j jFt]

=
Pn�1

j=1 Bj+1(t)IEj+1 [1A(Lj(T1)� �)�j jFt] ; (31)

where we changed numeraires again for the second expression.

The representation (31) for the swaption price is completely general in the sense that

it represents the option price in any arbitrage free model of Ti maturity bonds Bi. Note

that (31) is similar to a representation derived in Brace et al. [2], however, (31) is derived

without assuming an instantaneous saving bond numeraire and thus even holds when the

market is incomplete.

5.2 Multi-factor swaption approximation

Starting out with (31) we can now mimic the procedure of Brace, Gatarek and Musiela in [2]

and derive an analogous swaption approximation formula for a Jamshidian market model.

However, in [2] there is made a rank 1 approximation with respect to a covariance matrix

of forward LIBORS and in section (6) we will argue that this assumption is too restrictive

when the resulting formula is used for certain calibration purposes, see conclusion (6.1.2).

Therefore, we will redo the procedure in [2] in short in Jamshidians terms while we drop

the rank 1 assumption and thus obtain a more general result.

The set A in (31) can be characterized further as

A = fS(T1) > �g =
�

1�Bn(T1)Pn

k=2
�k�1Bk(T1)

> �

�
=

fBn(T1) +
Pn

k=2 ��k�1Bk(T1) < 1g = fPn
k=2 ckBk(T1) < 1g =�Pn

k=2 ck

�Qk�1
l=1 (1 + �lLl(T1))

��1
< 1

�
;

where we have introduced the constants ck := ��k�1 for 2 � k < n and cn := 1 + ��n�1:

We now assume a LIBOR market model (3.2.1). Let Y be the FT1�measurable random
(n� 1)�vector de�ned by

Yl := ln
Ll(T1)

Ll(t)
;

for l = 1; ::; n � 1: By taking m = 1 in (21) and (22) we have with respect to IPj+1;

conditional Ft;

IEj+1[Yl] = �
(1)
lj and (32)

Cov[Yl; Yl0 ] =

Z T1

t


l � 
l0ds = �
(1)
ll0 : (33)
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Since in practice only the �rst few eigenvectors of the matrix �(1) are signi�cantly positive,

we assume that for a �xed r; 1 � r < n; the matrix �(1) admits a decomposition

�(1) =: ��T

for an (n� 1)� r matrix �: In fact, if �1 > :: > �r > 0 are the non-zero eigenvalues of �(1)

and g1; ::; gr are corresponding orthonormal eigenvectors satisfying gi � gj = �ij we can take

�ip =
p
�pgp[i]; where 1 � i < n and 1 � p � r: Hence, for Y we write

Yl = �
(1)
lj +

rX
p=1

�lp&p

where & := [&p; 1 � p � r] is a random vector with standard normal N (0; Ir) distribution

under the measure IPj+1 and the indicator function of the set A now reads

1A = 1�
1�
Pn

k=2
ck

�Qk�1

l=1
(1+�lLl(t) exp[�

(1)

lj
+
Pr

p=1
�lp&p] )

�
�1

�0
�:

Next, we introduce the function

fj(z) =: fj(z1; ::; zr) := 1�
nX

k=2

ck

0
@k�1Y

l=1

(1 + �lLl(t) exp(�
(1)
lj +

rX
p=1

�lpzp))

1
A
�1

and for i = 0; ::; n � 1 the IRr�column vectors di by d0 � 0 and

di[p] :=
iX

j=1

�jLj(t)

1 + �jLj(t)
�jp; i = 1; : : : n� 1; p = 1; : : : ; r: (34)

It follows that

�
(1)
lj � �

(1)
lk = �Pj

i=1
�iLi(t)

1+�iLi(t)

Pr
p=1 �ip�lp +

Pk
i=1

�iLi(t)

1+�iLi(t)

Pr
p=1 �ip�lp

= �(dk � dj) [l]:

We thus get the following relationship for the fj;

fj(z) = fi(z + di � dj):

If Gj is the region in IRr de�ned by

Gj := fz 2 IRrj fj(z) � 0g;

then clearly

Gj = dj � d1 +G1;

where as usual the set x+A is de�ned by fx+ aj a 2 Ag: We may also write,

Gj = dj +G0;
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where

G0 := �d1 +G1 = �d1+�
z 2 IRr j 1�Pn

k=2 ck

�Qk�1
l=1 (1 + �lLl(t) exp(�(z + dl � d1) [l] � 1

2
�

(1)
ll ))

��1
> 0

�

=

�
z 2 IRr j 1�Pn

k=2 ck

�Qk�1
l=1 (1 + �lLl(t) exp(�(z + dl) [l]� 1

2
�

(1)
ll ))

��1
> 0

�
:

Finally, by substituting the above expressions in (31) we derive straightforwardly the swap-

tion approximation formula,

Swpn(t) �Pn�1
j=1 �jBj+1(t)Lj(t)

R
��j+dj+G0

�
(r)(z)dz+

�Pn�1
j=1 ��jBj+1(t)

R
dj+G0

�
(r)(z)dz; (35)

where �(r) is the r�dimensional normal density given by

�
(r)(z) :=

1

(2�)r=2
exp[�jzj

2

2
]:

For r > 1; the multi-factor case, (35) can be easily implemented by Monte Carlo simulation

of the r�dimensional standard normal distribution. If we assume r = 1; as in [2], � becomes

a column vector and the dj are now scalars. For the integration we get simply G0 = [z0;1[

where z0 is the unique root of the equation

1�
nX

k=2

ck

 
k�1Y
l=1

(1 + �lLl(t) exp(�l(z + dl)�
1

2
�

(1)
ll ))

!�1
= 0

and now (35) simpli�es to

Swpn(t) �Pn�1
j=1 �jBj+1(t)Lj(t)N (�z0 � dj + �j)�

Pn�1
j=1 ��jBj+1(t)N (�z0 � dj): (36)

In fact, this formula is equivalent with theorem 3.2 in Brace et al., [2].

5.3 Callable reverse 
oater

Let K;K 0
> 0: A reverse 
oater (RF) contracts for receiving Li(Ti) while paying max(K �

Li(Ti);K
0) at time Ti+1 for i = 1; ::; n � 1, with respect to a unit principal.

A callable reverse 
oater (CRF) is an option to enter into a reverse 
oater at T1: The option

will be exercised at T1 when the value of the reverse 
oater at T1 is positive.

For the reverse 
oater, the Ti+1�cash
ows are given by

CTi+1
:= �iLi(Ti)� �imax(K � Li(Ti);K

0)

= �i(Li(Ti)�K
0)� �imax(K �K

0 � Li(Ti); 0):
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So, the aggregated forward transported payo�s at Tn are equal to
Pn�1

i=1

CTi+1

Bn(Ti+1)
and ac-

cording to (25), for the T1 value of the RF we have

RF (T1) = Bn(T1)IEn

 
n�1X
i=1

CTi+1

Bn(Ti+1)
jFT1

!
: (37)

Next, by (26), for the t < T1 value of the CRF we get

CRF (t) := B1(t)IE1

2
4Bn(T1)IEn

 
n�1X
i=1

CTi+1

Bn(Ti+1)
jFT1

!+

jFt

3
5

= Bn(t)IEn

2
4IEn

 
n�1X
i=1

CTi+1

Bn(Ti+1)
jFT1

!+

jFt

3
5 :

Let us assumeK 0 = 0; so CTi+1
:= �iLi(Ti)��imax(K�Li(Ti); 0) and consider some special

cases. When, for example, K � 2Li(0); the probability that LIBORS exceed K within the

period [0; Tn] can be neglected in practice if the time period Tn is not too long. So, when

the option is called the cash
ows are practically given by CTi+1
:= 2�i(Li(Ti) �K=2) and

we see that the option is basically a swaption on a doubled principal with strike rate K=2:

If, however, K � Li(0) we may neglect the possibility that LIBORS fall below K=2 and

practically speaking the CTi+1
:= �iLi(Ti) � �imax(K � Li(Ti); 0) will be surely positive

for every i and so the option will be exercised in any case, yielding a cash
ow equal to the

di�erence of the LIBOR rate on a forward loan with unit principal and the cash
ow of a


oor over the period [T1; Tn] with strike K: Therefore, in this situation the valuation of the

CRF involves the valuation of a 
oor. We thus observe that the CRF has both cap/
oor

and swaption characteristics.

We will continue with the valuation of the RF and CRF in the special case where K 0 = 0.

The general case goes in a similar way. From (37) and the payo� speci�cations we have for

the reverse 
oater,

RF (t) = Bn(t)IEn

hPn�1
i=1

�iLi(Ti)��imax(K�Li(Ti);0)
Bn(Ti+1)

j Ft

i
=

Bn(t)IEn

hPn�1
i=1

�iLi(Ti)
Bn(Ti+1)

j Ft

i
�Bn(t)IEn

hPn�1
i=1

�imax(K�Li(Ti);0)
Bn(Ti+1)

jFt

i
=:

(1)� (2):

(1) simpli�es to
Pn�1

i=1 Bi+1(t)IEi+1

h
�iLi(Ti)

Bi+1(Ti+1)
jFt

i
=
Pn�1

i=1 Bi(t)�Bi+1(t) = B1(t)�Bn(t);

whereas (2) is equal to the price of a 
oor with strike K over [T1; Tn]: Hence, for the reverse


oater price we get

RF (t) = B1(t)�Bn(t)�
n�1X
i=1

Bi+1(t)IEi+1[�imax(K � Li(Ti); 0)jFt]; (38)

which can be evaluated analytically in a LIBOR market model since in a market model the

terms in the sum can be expressed by Black-type formulas, e.g. see example (3.3.1).
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It is clear that RF (t) is non-increasing as function of K. Let K�(t) be such that the value

of the RF contract is zero. Then, by (26), we get for the price of the CRF the equivalent

representations

CRF (t) := B1(t)IE1 [RF (T1)
+jFt] = Bn(t)IEn

h
RF (T1)

+

Bn(T1)
jFt

i
=

B1(t)IE1

h
RF (T1)1[K�(T1)>K]jFt

i
= Bn(t)IEn

�
RF (T1)1[K�(T1)>K]

Bn(T1)
jFt

�
; (39)

which give, at least in principal, a Monte Carlo procedures for the option price of the

CRF. However, we will analyze (39) further in order to get more tractable approximations.

Substitution of (38) in (39) gives

CRF (t) = B1(t)IE1

h
1[K�(T1)>K]jFt

i
�B1(t)IE1

h
Bn(T1)1[K�(T1)>K]jFt

i
+

�B1(t)IE1

h
1[K�(T1)>K]

Pn�1
i=1 Bi+1(T1)IEi+1[�imax(K � Li(Ti); 0)jFT1 ]jFt

i
=: (I)� (II)� (III):

By numeraire changes we get

(II) = B1(t)IE1

h
Bn(T1)1[K�(T1)>K]jFt

i
= Bn(t)IEn

h
1[K�(T1)>K]jFt

i
and

(III) =
Pn�1

i=1 Bi+1(t)IEi+1

h
1[K�(T1)>K]IEi+1[�imax(K � Li(Ti); 0)jFT1 ]jFt

i
=:
Pn�1

i=1 Bi+1(t)IEi+1

h
1[K�(T1)>K]Fi(T1;K)jFt

i
;

where Fi is de�ned such that Bi+1(t)Fi(t;K) is the price of a 
oorlet with strike K over

the period [Ti; Ti+1]: Resuming, we have

CRF (t) := B1(t)IE1

h
1[K�(T1)>K]jFt

i
�Bn(t)IEn

h
1[K�(T1)>K]jFt

i
+

�Pn�1
i=1 Bi+1(t)IEi+1

h
1[K�(T1)>K]Fi(T1;K)jFt

i
: (40)

So far, the expression (40) for the price of the callable reverse 
oater is still completely

general.

We now assume a LIBOR market model and proceed with the derivation of an approx-

imation formula for the CRF in such a model. Since in a market model F can be expressed

as a Black-type formula, the relative price RF=B1 can be considered as an explicitly known

function 	 of L(t) and K;

RF (t) =: B1(t)	(L1(t); ::; Ln�1(t);K)

= B1(t)�Bn(t)�
n�1X
i=1

Bi+1(t)Fi(T1;K):

Further, since 	 is decreasing in K we have

1[K�(T1)>K] = 1[	(L1(T1);::;Ln�1(T1);K)>0]:
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Just as for the swaption approximation in (5.1) we assume a rank�r decomposition, 1

� r < n of the matrix �(1) in (22) again. However, for simplicity, we now only show the

derivation of a CRF-approximation formula for the case r = 1: The multi-factor case r > 1

can be derived similarly along the lines which has led to (35). We thus assume that for

some column vector � � 0 we have

�(1) = ��T :

For a �xed i 2 f1; : : : ; ng we approximate the forward LIBORs at T1 by

Ll(T1) = Ll(t) exp Yl = Ll(t) exp[�
(1)
l;i�1 + �l&]; 1 � l < n;

under the measure IPi; where the real variable & is, conditional Ft, under IPi normal N (0; 1)

distributed. Next, we introduce the functions hi by

hi(&) := 	(L1(t) exp[�
(1)
1;i�1 + �1&]; ::; Ln�1(t) exp[�

(1)
n�1;i�1 + �n�1&];K):

It is easy to see that hi(�1) = �Pn�1
j=1 �jK and hi(1) = 1: Moreover, since @	=@Lj > 0

for every j; there is a unique &i for which hi(&i) = 0: Hence, we may write

1[K�(T1)>K] = 1[&>&i]:

We de�ne the scalars di like in (34), where we take r = 1 and in the same way it follows

that �
(1)
li � �

(1)
lk = �l(dk � di) and so hi(&) = h1(& � di�1); hence

&i = &1 + di�1:

Now we return to the price of the CRF given by (40) and we abbreviate this expression by

CRF (t) = (�) � (��) � (� � �) and work out the terms separately. In the sum (***), each

Fi(T1;K) can be expressed as a Black formula involving Li(T1) = Li(t) exp[�i&� �2
i

2
] in the

measure IPi+1: In particular,

Fi(T1;K) = IEi+1[�imax(K � Li(Ti); 0)jFT1 ] =

�iKN (
� ln

Li(T1)

K
+ 1

2

R Ti
T1

j
ij2dsqR Ti
T1

j
ij2ds
)� �iLi(T1)N (

� ln
Li(T1)

K
� 1

2

R Ti
T1

j
ij2dsqR Ti
T1

j
ij2ds
)

and can be re-expressed as a function of &; say Fi(&);

Fi(&) : = �iKN (
� ln

Li(t)
K

� �i& +
�2
i

2
+ 1

2

R Ti
T1
j
ij2dsqR Ti

T1
j
ij2ds

) +

��iLi(T1)N (
� ln

Li(t)
K

� �i& +
�2
i

2
� 1

2

R Ti
T1
j
ij2dsqR Ti

T1
j
ij2ds

):
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It follows that the i�th term in (***) is approximately equal to Bi+1(t)
R
&>&i+1

Fi(&)�(&)d&:

Together with the approximations for (*) and (**) and using &i+1 = &1 + di we now have

the following (one-factor) approximation formula for (40).

CRF (t) = B1(t)N (�&1)�Bn(t)N (�&1 � dn�1)�
n�1X
i=1

Bi+1(t)

Z 1

&1+di

Fi(&)�(&)d&;

where the integrals can be computed by quadrature.

5.4 Trigger swap

The trigger swap is a contract of type C0 which is speci�ed as follows. At the �rst tenor Ti

for which Li(Ti) > Ki; the counter party has to enter into a swap with �xed coupon � over

the remaining period [Ti; Tn]: If we de�ne the index � by � := min1�p<nfp jLp(Tp) > Kpg;
by forward transporting arguments the t < T1 price of the trigger swap can be represented

by

Trswp(t) = Bn(t)IEn

hPn�1
j=�

1
Bn(Tj+1)

(Lj(Tj)� �)�j j Ft

i
=

Bn(t)IEn

hPn�1
p=1 1[�=p]

Pn�1
j=p

1
Bn(Tj+1)

(Lj(Tj)� �)�j jFt

i
=

Bn(t)IEn

hPn�1
p=1 1[�=p]

Pn�1
j=p IEn

h
1

Bn(Tj+1)
(Lj(Tj)� �)�j j FTp

i
j Ft

i
; (41)

since T� is a stopping time. We proceed by changing numeraires in (41),

Trswp(t) = Bn(t)IEn

hPn�1
p=1 1[�=p]

1
Bn(Tp)

Pn�1
j=p Bj+1(Tp)IEj+1

�
(Lj(Tj)� �)�j jFTp

� j Ft

i
= Bn(t)IEn

hPn�1
p=1 1[�=p]

1
Bn(Tp)

Pn�1
j=p Bj+1(Tp)(Lj(Tp)� �)�j j Ft

i
;

where is used that Lj is a IPj+1�martingale. Next, by plugging in the de�nition of LIBOR,

Trswp(t) =
n�1X
p=1

Bn(t)IEn

2
41[�=p] 1

Bn(Tp)

0
@1�Bn(Tp)� �

n�1X
j=p

Bj+1(Tp)�j

1
A j Ft

3
5 : (42)

and by changing numeraires again we get the following expression for the value of the trigger

swap

Trswp(t) =
Pn�1

p=1 Bp(t)IEp

h
1[�=p]jFt

i
�Pn�1

p=1 Bn(t)IEn

h
1[�=p]jFt

i
+

�Pn�1
p=1

Pn�1
j=p ��jBj+1(t)IEj+1

h
1[�=p]jFt

i
: (43)

Remark 5.4.1 If all the Kp are zero, we have � = 1 with probability 1 and we get a swap

contract which swaps LIBOR against a �xed coupon �. Indeed, by next setting (43) equal

to zero we yield the usual swap rate again.

Remark 5.4.2 Using the swap rate formula (29) for the [Tp; Tn] swap rate Sp;n and chang-

ing to the annuity numeraires IPp;n de�ned by the annuity Bp;n :=
Pn�1

j=p Bj+1�j we get from
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(42) and numeraire change another interesting representation for the trigger swap,

Trswp(t) =
Pn�1

p=1 Bn(t)IEn

h
1[�=p]

1
Bn(Tp)

Bp;n(Tp)(Sp;n(Tp)� �) j Ft

i
=
Pn�1

p=1 Bp;n(t)IEp;n

h
1[�=p](Sp;n(Tp)� �) j Ft

i
:

Moreover, from lemma (2.3.2) we see that Sp;n is a martingale under IPp;n and follows

even a driftless geometrical Brownian motion under IPp;n in a swap market model. See

Jamshidian, [8]. However, the simultaneous distribution of Sp;n and � under this annuity

measure is a mess and therefore we rather stick to the LIBOR measure representation (43).

For the computation of the trigger swap we need to get hold of the conditional probabilities

IEi

h
1[�=p]jFt

i
;

for i = p; ::; n; p = 1; ::; n � 1: The FTp measurable trigger event [� = p] depends on the

LIBOR history up to Tp and we have

[� = p] = fLp(Tp) > Kpg \
\

1�j<p
fLj(Tj) � Kj g (44)

for p = 1; ::; n � 1; with the usual convention that an intersection of subsets of 
 over an

empty index set is equal to 
 itself. For the log-LIBORs (44) reads

[� = p] =

8<
:fln Lp(Tp)Lp(t)

> ln
Kp

Lp(t)
g \

\
1�j<p

fln Lj(Tj)
Lj(t)

� ln
Kj

Lj(t)
g
9=
; : (45)

Now we recall the normal approximations for the log-LIBOR distributions under the di�er-

ent measure IPi in section (4.1), yielding the moments (21), (22). Hence, the distribution

of [ln
Ll(Tl)
Ll(t)

]l=1;::;p; under a �xed IPi; i 2 fp; ::; ng; conditional Ft; is in this approximation

p�variate normal, N (�(p;i�1);�(p)); where

�
(p;i�1)
l := �

(l)
l;i�1 l = 1; ::; p and (46)

�
(p)
l1l2

:= �
(l1^l2)
l1l2

= l1; l2 = 1; ::; p (47)

It is important to note that even in the case of a one factor model the matrices �(p) are now

generally of full rank p due to the fact that we are now dealing with LIBORS at di�erent

tenors instead of LIBORS at a �xed maturity T1 as in the previous applications.

In a once calibrated market model the covariance matrices �(p) and drifts �(p;i�1) are

directly available. So, if we denote the r�dimensional normal density with drift vector

� 2 IRr and correlation matrix G 2 IRr�r by nr(z1; ::; zr; �;G); we thus �nd by (45) for

i = p; ::; n;

IEi

h
1[�=p]jFt

i
=
R ln K1

L1(t)
��(p;i�1)

1

�1 dz1::
R ln Kp�1

Lp�1(t)
��(p;i�1)

p�1

�1 dzp�1
R1
ln

Kp

Lp(t)
��(p;i�1)

p
dzp�

�np(z1; ::; zp; 0;�(p)) (48)
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Note. For p = 1; integrals over z1; ::; zp�1 have to be interpreted as 1:

By substituting the expressions (48) in (43) we have established an approximation al-

gorithm for the trigger swap in a Jamshidian market model. Moreover, when a special

correlation structure is imposed on the model, the multi-dimensional integrals can be done

by faster routines because of the constant integration bounds. See section (6) and Curnow,

Dunnett, [3].

6 Simultaneous calibration of LIBOR market models to

caps and swaptions, special correlation structures

When dealing with LIBOR rate models the calibration of the factor loadings 
i is always

a main issue. In a general LIBOR model, given by (11) or (12), the 
i
0
s even represent

fairly arbitrary processes. In a market model, however, the 
i
0
s are deterministic and in

(6.1) we will see that a market model with constant 
i
0
s is already quite rich, in the sense

that it contains enough degrees of freedom for simultaneous valuation of a large family of

caps and swaptions. Since these plain vanilla options are liquidly traded in the markets,

their prices can be considered as "correct" to some extent and can be used as benchmarks

for calibration of the LIBOR model. A once calibrated model can be used subsequently for

the valuation of exotic options such as the trigger swap or the callable reverse 
oater, along

the lines explained in the previous sections.

6.1 Constant factor loadings

We assume a tenor structure 0 < T1 < � � � < Tn as usual and now consider a LIBOR market

model with constant factor loadings 
i: From example (3.3.1) it follows that in this model

the price of a [Ti; Ti+1]�caplet can be given by a Black-Scholes formula, involving an input

volatility j
ij and an input "risk-free rate" equal to zero. See e.g. [1]. As a consequence,

the norms j
ij of the 
i 0s are already determined by the market caplet prices as being the

implied [Ti; Ti+1]�caplet volatilities. However, the individual components of the 
i; the


ik; k = 1; ::d which re
ect the correlation structure of the increments of forward LIBORs

cannot be recovered from the caplet prices at all. But, clearly, the swaption prices do

depend on this speci�c correlation structure and are thus plausible candidates for further

calibration of the model or the recovering of the 
ik: We note that the total of di�erent

caplet and swaption prices on the given tenor structure has the number n(n� 1)=2: Since

any orthogonal transformation applied to an IRd�Brownian motion leads to an equivalent

Brownian motion with the same distribution, multiplication of the matrix [
ik] on the right

with a d� d orthogonal matrix gives an equivalent market model. So, in fact, the essential

model parameters to be calibrated are the n(n� 1)=2 inner products 
i � 
j rather than the


i itself. Because this number is just equal to the total of caplet and swaption prices, we

conclude the following.
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Conclusion 6.1.1 A market model with constant loadings is determined by the inner prod-

ucts 
i � 
j and thus contains just enough dergrees of freedom to be calibrated to a complete

system of cap(let) and swaption prices on the given tenor structure.

Unfortunately, however, calibrating a market model with full rank volatility matrix [
i � 
j ]
is very di�cult in practice and, besides, generally the system of cap and swaption prices

is only partially given. Therefore, as an alternative, we consider the calibration of a lower

factor market model, where the volatility matrix may have lower rank and where possibly

a lower number of market prices are given. Assume a market model is given with an

(n� 1)� (n� 1) covariance matrix �;

� := [
i � 
j ]; where 1 � rank(�) < n:

From ordinary matrix theory it follows that the nonnegative de�nite symmetric matrix �

of rank r admits a decomposition

� = ��T ; for an (n� 1)� r matrix �: (49)

This decomposition is not unique, for two such decompositions ��T = ~�~�T ; there exists an

orthogonal r � r matrix Q such that ~� = �Q: However, if the submatrix �r = [�ij ]1�i;j�r
has already rank r, there exists a unique lower matrix �; i.e. �kl = 0 for l > k with �kk > 0

for k = 1; ::; r such that (49) holds. If rank(�r) < r then, for a suitable permutation

matrix Q; the matrix Q�QT has a unique 'lower matrix' decomposition (49). In this way

we observe that there are in fact

(n� 1) + (n� 2) + ::+ (n� r) =
1

2
r(2n� r � 1) (50)

essential parameters in the model to calibrate and we thus need to sort out properly
1
2
r(2n� r � 1) caps and swaptions for the calibration. For example, in a one factor model

where d = r = 1; there are only n� 1 parameters to calibrate with. Indeed, the one factor

model is completely determined by the n� 1 implied caplet volatilities.

Let us now try to calibrate a LIBOR market model with constant factor loadings to both

cap and swaption prices by using the rank 1 swaption approximation formula (36) in section

(5.1). For constant 
i
0
s we get from (18),

�
(m)
jl (t) = 
j � 
l(Tm � t) (51)

and the assumption

rank(�
(1)
jl (t)) = rank(
j � 
l(T1 � t)) = 1;

used in the derivation of (36), implies that there is a constant column vector � := [�1; ::

; �n�1]T such that


j � 
l = �j�l; 1 � j; l < n:
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As a consequence, for the dynamics of the LIBOR process L; for instance in the IPn measure

given by (12), we now get

dLi = �
n�1X
j=i+1

�jLiLj�i�j

(1 + �jLj)
dt+ Li
i � dW (n)

: (52)

However, (52) can be described by a single scalar IPn�Brownian motion w(n) in a complete

equivalent way,

dLi = �
n�1X
j=i+1

�jLiLj�i�j

(1 + �jLj)
dt+ Li�idw

(n)
:

Hence by a one-factor model where, since �i = j
ij; the factor loadings are already deter-

mined by the cap-prices and there is no freedom left for further calibration to swaption

prices. From the above we see that the rank one assumption on � in [2] is in essence the

assumption of a one-factor model and we conclude the following.

Conclusion 6.1.2 Simultaneous calibration of a LIBOR market model with constant factor

loadings 
ik to the prices of caplets and swaptions by using the rank 1 swaption approxi-

mation formula (36) is not possible.

Of course, one might oppose that one should use time dependent 
0s instead of constants in
order to generate more degrees of freedom. However, then conclusion (6.1.2) still indicates

that this would result very likely in a model for which the calibration to swaption prices

behaves instable. Therefore, one should rather use multi-rank swaption formulas, where

the choice of the rank depends on the number of swaption prices one wants to calibrate

to, although the implementation will not be easy and stability problems still may occur for

reasons explained in (6.3).

6.2 Implied LIBOR correlations from the cap and swaption markets

We next present another way of calibrating a market model to caplet and swaption prices.

In fact, it is a method for recovering the correlation structure of instantaneous forward LI-

BOR increments from the cap/swaption markets and is widely used by interest rate traders

and described in the more practical oriented �nancial literature, e.g. Rebonato, [10]. How-

ever, also in this method simplifying approximations are involved and the substantiating

arguments used in the literature are generally rather vague. Therefore, we will study below

the implied correlation method in more detail by using bracket calculus from stochastic

analysis. See, e.g. [9].

With respect to a usual tenor structure fTjg; j = 1; ::; n; we consider [Tp; Tq]�swaps, for
1 � p < q � n: The swap rate at time t is denoted by S(t; Tp; Tq) =: Sp;q(t) and given by

Sp;q(t) =
Bp(t)�Bq(t)Pq
k=p+1 �k�1Bk(t)

=

Pq
i=p+1 �i�1Bi(t)Li�1(t)Pq

k=p+1 �k�1Bk(t)
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=:

q�1X
i=p

wi(t)Li(t); (53)

where t < Tp and the wi(t) :=
�iBi+1(t)Pq

k=p+1
�k�1Bk(t)

are weight factors which satisfy
Pq�1

i=p wi = 1:

In di�erential form we get

dSp;q :=

q�1X
i=p

widLi +

q�1X
i=p

Lidwi +

q�1X
i=p

dhLi; wii;

from which we derive by using some bracket calculus,

dhSp;qi := dhSp;q; Sp;qi =Pq�1
i;j=pwiwjLiLj(dhlnLi; lnLji+ 2dhlnwi; lnLji+

dhlnwi; lnwji) (54)

Now, in practice, it turns out that compared to the behaviour of the Li the behaviour of

the weight factors wi is rather smooth and therefore, in a good approximation, we assume

that their quadratic variation processes are identically zero and the di�erentials in (54)

involving the wi can thus be neglected. This yields

dhSp;qi = S
2
p;qdhlnSp;q; lnSp;qi �

Pq�1
i;j=pwiwjLiLjdhlnLi; lnLji

=
Pq�1

i;j=pwiwjLiLj
i � 
jdt (55)

and after introducing the relative volatility process �p;q for the swap rate by dhlnSp;qi =:
�
2
p;qdt; we get

S
2
p;q�

2
p;q �

q�1X
i;j=p

wiwjLiLj
i � 
j

=

q�1X
i;j=p

wiwjLiLjj
ijj
j j�ij ; (56)

where the correlation matrix � is de�ned by �ij := 
i � 
j=j
ijj
j j:

Along with the LIBOR market model we now also assume a SWAP market model with

constant loadings �p;q, see [8], although, in fact, we cannot have both deterministic LIBOR

volatilities and deterministic swap volatilities! So, again an approximation. Because the

�p;q can now be identi�ed as the implied Black volatilities quoted in the markets via the

swaption prices and the j
ij are quoted via the cap(let) prices as well, there are in princi-

pal just enough equations in (56) to solve for the unkowns �ij: However, when the market

provides not enough quotes and we thus have to many unkowns, we need to come up with

sensible improvisations. For instance, we could apply certain regularization techniques. See

e.g. [12].
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6.3 Special correlation structures

Consider a market model with constant loadings 
j; which has only a few factors, say

d = 2 or d = 3: Although the norms j
j j can be easily identi�ed as the implied caplet

volatilities, the stable calibration of the components 
jk turns out to be a perennial problem

in practice. This stability problem can be explained, at least partially, by an intrinsic

problem concerning the correlation structure of any low factor model. To see this, we

consider again the correlation structure (23) of the forward LIBORS at a �xed tenor, say

at T1;

�[ln
Ll(T1)

Ll(t)
; ln

Ll0(T1)

Ll0(t)
] =


l � 
l0
j
ljj
l0 j

:

It is observed in practice that for a �xed l the correlation decays more or less like a negative

power of l0 or maybe even like an negative exponential when l0; l0 � l increases. Besides, it

is observed that for �xed p the correlation between Ll and Ll+p increases when l increases.

Now, in particular, the kind of decay behaviour is actually not consistent with the decay

behaviour resulting from a two or three factor market model, where the number of Brownian

motions is two or three. In the later models the correlations are inclined to decay more

or less like a cosine function of l � l
0
; due to the low number of factors, respectively the

low rank of the covariance matrix �. This intrinsic problem of any low factor model also

discussed in [10] is best illustrated by a very simple example (6.3.1) below and will be a

main cause of occurring instability when one tries to calibrate such models to market prices

of caps and swaptions simultaneously, as arbitrage free market prices of swaptions will be

consistent with market LIBOR correlations.

Example 6.3.1 In a two factor model, d = 2; the 
i can be represented as


i =: j
ij(cos�i; sin�i)

yielding correlations

�ij = cos(�i � �j):

Now suppose, for instance, that n = 20 and that the market tells us the correlations �1;j

behave like �1j = 18=(17 + j); thus falling down from 1 to 0:5. Then, if we calibrate this

two-factor model, i.e. the �i; to these correlations it is easily seen that, as an immediate

consequence, the correlations �j;19 have to be �j;19 =
9

17+j
+
p
3
2

r
1�

�
17
18
+ j

18

��2
; see �gure

(1). However, the behaviour of the correlations �j;19 in �gure (1) is clearly not consistent

with their real behaviour in the market which should look more or less the same as �1;j;

mirrored at j = 10.

As a solution for this intrinsic low factor calibration problem we propose an alternative

market model by the identi�cation of a natural form for the correlation structure which

matches the correlation behaviour in practice directly, but, only involves a relatively small

number of essential parameters, in fact, the same number as in a two factor market model.
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Figure 1:

Assumption 6.3.2 (special correlation structure) For a sequence b = (b1; ::; bn�1)
with jblj and jbl=bl+pj nondecreasing in l; we postulate a correlation structure of the form,


l � 
l0
j
ljj
l0 j

=
bl^l0
bl_l0

:

A trivial example for b is bl = l: Under assumption (6.3.2) we have for the log-LIBORS,

�[ln
Ll(Tm)

Ll(t)
; ln

Ll0(Tm0)

Ll0(t)
] =

bl

bl0

s
Tm � t

Tm0 � t
; m � m

0; l � l
0; m � l; m

0 � l
0
: (57)

The matrix (57) is indeed nonnegative in l; l0 and in general of full rank and thus speci�es, in
fact, a many factor market model. However, the number of degrees of freedom is the same

as in a two factor model and example (6.3.3) below shows that a market model based on

(57) has much more potential to describe LIBOR correlations realistically. Indeed, because

of the extra condition it is also covered that the correlation between Li and Li+p increases

with i:

Example 6.3.3 Consider the increasing sequence b with

bl = exp (�l�);

for � > 0 and 0 < � < 1: Then, indeed bl=bl+p increases to 1 as l!1 and, e.g. if we take

n = 20; � = 0:1 and � = 0:8; we observe realistic behaviour of the functions j ! �i;j for

various i; see �gure (2).

Besides, due to this special correlation structure, in several situations such as in the trigger

swap formula the involved multi-variate normal probabilities and expectations can be eval-

uated by faster routines, see [3]. For the calibration of this model we can take the norms j
ij
from the implied cap(let) volatilities and then calibrate the bi's against a suitable chosen
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Figure 2: j ! �i;j ; i = 1; 5; 10; 15; 19 for bk = e
0:1�k0:8

set of swaptions, e.g. by using swaption approximation formulas, Monte Carlo methods or,

maybe more practically, by using (56) from the cap/swaption market, yielding

S
2
p;q�

2
p;q �

q�1X
i=p

w
2
iL

2
i j
ij2 + 2

q�1X
i;j=p; i<j

wiwjLiLjj
ijj
j j bi
bj
: (58)

In principle the system (58) is over-determined but we may choose a suitable set of implied

swaption volatilities and then solve for the parameters bi or, alternatively, we may calibrate

b as a least square solution of (58). Note �nally that the choice of b = (1; ::; 1) gives the

one factor model again and in this sense we can see the model (57) as an alternative depart

from the one factor model, in fact, to a many factor model but with the dimensionality of

a two factor model!

7 Simulation experiments and statistical tests

Statistical tests by O. Kurbanmuradov have shown that the distribution of the log-normal

LIBOR approximations in the IPn measure are hardly distinguishable from the LIBOR dis-

tribution simulated by true Monte Carlo of the SDE (12). However, LIBOR simulation by

the approximate distribution is considerably faster than Monte Carlo simulation of the SDE.

The general swaption formula (31) is tested by Monte Carlo simulation of the log-normal

LIBOR approximations with a correlation structure of the type (6.3.3). It turned out that,

in contrast to correlation parameters of two or three factor models, the parameters � and
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� behave stable with respect to the price of the swaption. Besides, it is shown that the

one-factor approximation (36), which corresponds to � = 0; may di�er substantially from

the general formula (31) when � > 0:

In a subsequent paper we will study the calibration of these many factor models with

low dimensional correlation structures to the cap/swaption markets in more detail. Also

we will improve the Monte Carlo methods by variance reduction techniques such as control

variates and importance sampling for SDE's, see e.g. [11].
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