
Weierstraß-Institut
für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 – 8633

Analyticity for some operator functions from

statistical quantum mechanics

Dedicated to Günter Albinus

Kurt Hoke, Hans-Christoph Kaiser, Joachim Rehberg

submitted: November 21st, 2008

Weierstrass Institute for Applied Analysis and Stochastics
Mohrenstr. 39
10117 Berlin
Germany

E-Mail: hoke@wias-berlin.de
kaiser@wias-berlin.de
rehberg@wias-berlin.de

No. 1373

Berlin 2008

2000 Mathematics Subject Classification. 81Q10, 35J10, 35P20.

Key words and phrases. Schrödinger operator, analyticity of operator functions, statistical
ensemble of quantum systems, quantum mechanical particle density in many particle systems.

Kurt Hoke gratefully acknowledges financial support by the DFG Research Center Matheon..



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
10117 Berlin
Germany

Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/



Analyticity for some operator functions 1

Abstract

For rather general thermodynamic equilibrium distribution functions the den-
sity of a statistical ensemble of quantum mechanical particles depends ana-
lytically on the potential in the Schödinger operator describing the quantum
system. A key to the proof is that the resolvent to a power less than one of an
elliptic operator with non-smooth coefficients, and mixed Dirichlet/Neumann
boundary conditions on a bounded up to three-dimensional Lipschitz domain
factorizes over the space of essentially bounded functions.

2000 Mathematics Subject Classification: 81Q10, 35J10, 35P20.

2008 Physics and Astronomy Classification Scheme: 31.15.bt.

Keywords: Schrödinger operator, analyticity of operator functions, statistical
ensemble of quantum systems, quantum mechanical particle density in many
particle systems.

1 Introduction

In the investigation of many-particle systems, in particular electronic ones, the
Kohn-Sham equations of Density Functional Theory are a common tool, cf. e. g.
[29], [1], [38], [10], [12], [28]. The particle density N in a statistical ensemble of
(identical) quantum mechanical systems is given by

N (V )(x) =
∞∑

k=1

f(λk)|ψk(x)|2, (1.1)

where H0 is the kinetic part of a Schrödinger operator, and V a variable real po-
tential; ψk and λk are the eigenfunctions and eigenvalues of the Schrödinger op-
erator H0 + V . The argument x in (1.1) is a point in real space, and f is a
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2 K. Hoke, H.-Chr. Kaiser, J. Rehberg

thermodynamic equilibrium distribution function, for instance the Fermi function
f(s) = 1/(1 + es). If H0, V , and f are such that the operator f(H0 + V ) is nu-
clear, then the particle density N (V ) can be represented in terms of f(H0 + V ) by∫

Ω
N (V )W dx = tr

(
Wf(H0 + V )

)
for all W ∈ L∞, cf. e. g. [22]. The analysis of

the Kohn-Sham system is based on properties such as monotonicity, and differen-
tiability of the operator function f(H0 + V ) in its dependence on the Schrödinger
potential V , cf. e. g. [34], [36], [24], [25], [26]. In [22] we have demonstrated that
the functional

φ(V )
def
= tr

(
F (H0 + V )

)
, where F (t)

def
=

∫∞
t
f(s) ds,

is convex and Fréchet differentiable. The functional φ represents the free energy
of a statistical ensemble of quantum mechanical systems, and the gradient of this
functional is the statistical operator (density matrix) ∂φ(V ) = f(H0 + V ), cf. [22].
For special cases the convexity and differentiability of the functional φ has been
proved already in 1990 independently by Caussinac et al. [6] and Nier [34]. These
results have been generalized, i. e. in [36], [35], [23], [24], [25], [26]. Furthermore,
Nier has shown, cf. [36], [35], that the particle density operator N is infinitely
often Fréchet differentiable as a mapping from W 1,2 into W−1,2.

Here we are interested in the analyticity of N for a wider class of Schrödinger op-
erators and for function spaces allowing for more general Schrödinger potentials.
Moreover, we pass to realisations of the underlying Hilbert space in the quantum
mechanics by function spaces adapted to real world problems. More precisely, we
regard function spaces with respect to spatial domains which are just bounded Lips-
chitz domains. This requires inter alia to prove in such a non-smooth situation that
the resolvent of an elliptic operator to a power less than 1 maps L2 continously into
L∞, cf. Theorem 4.3 — a new result which is of interest independently of our usage
here.

The proper choice of boundary conditions for the eigenfunctions of the Schrödinger
operator in quantum mechanical calculations on a bounded domain of real space is
still in debate, cf. e. g. [42] and [43]. Since homogeneous Dirichlet and Neumann
boundary conditions may be of interest, we allow for both of them. Moreover,
we also want to include the quasi two dimensional case of a cylindrical symmetric
domain. That’s why we regard mixed Dirichlet/Neumann boundary conditions.

The analyticity of the particle density operator N , which is equivalent to the an-
alyticity of the operator function V 7→ f(H0 + V ), comes to bear in establishing
steadily converging iteration schemes for the Kohn-Sham system. Indeed, analyt-
icity enables to prove a generalized ÃLojasiewicz–Simon inequality, cf. [8], [14], [16].
This has been used by Gajewski and Griepentrog in the set-up of a descent
method for the free energy of multicomponent systems [16].
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Analyticity for some operator functions 3

2 Preliminaries

Throughout this paper we regard the real space representation of the quantum
mechanics governing the particle system on a bounded up to three dimensional
spatial domain Ω, i. e. we deal with a Schrödinger operator on the Hilbert space
L2(Ω). In order to simplify notations, we omit the indication for Ω in the symbol
for a function space referring to Ω. Moreover, we write L2

R for the real part of
L2 = L2(Ω). Finally, c denotes a generic, positive constant, not always of the same
value.

We always make the following two general assumptions for the spatial domain Ω and
the coefficient function µ of the Schrödinger operator H0 = −∇·(µ∇). In the context
of semiconductor physics H0 is an effective mass Hamiltonian in Ben–Daniel–Duke
form [2], and µ is the inverse effective mass, cf. [40, Ch. 1].

Assumption 2.1. Ω is an interval or a bounded Lipschitz domain in Rd, cf. e. g.
[33, Ch. 1.1.9] or [18, Defn. 1.2.1.2]. We regard one–, two–, and three-dimensional
spatial domains: i. e. d ∈ {1, 2, 3}, cf. Remark 4.4. — Π is an arbitrary closed
subset of the boundary ∂Ω.

Assumption 2.2. The coefficient function µ on Ω is Lebesgue measurable, bounded,
elliptic and takes its values in the set of real, symmetric d× d matrices.

Definition 2.3. W 1,2
Π denotes the W 1,2(Ω)–closure of the set{

ψ|Ω : ψ ∈ C∞(Rd), suppψ ∩ Π = ∅
}
.

H0 is the selfadjoint operator on L2(Ω) which corresponds to the quadratic form

W 1,2
Π 3 ψ 7→

∫
Ω

µ∇ψ · ∇ψ̄ dx.

We denote the domain of H0 by D.

Remark 2.4. The boundary conditions associated with H0 are a homogeneous
Dirichlet condition on Π and a Neumann condition — in the sense of distributions
— on ∂Ω \Π. As, in particular, Π may be the empty set, Assumption 2.1 allows for
a Neumann condition on all the boundary of the spatial domain Ω.

For two Banach spaces we denote the space of linear, continuous operators from X
into Y by B(X;Y ). If X = Y , we abbreviate B(X;X) = B(X), and if X = L2,
we once more abbreviate B(L2) = B. The ideal of compact operators within B is
denoted by B∞, and Br, r ∈ [1,∞[, stands for the Schatten class with index r in
B∞.

In the sequel we always identify a function from L2 with the multiplication operator
induced by this function. In this sense L∞ is embedded into B.
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4 K. Hoke, H.-Chr. Kaiser, J. Rehberg

Definition 2.5. Following Văınberg [44, Ch. 22], cf. also [7], [20, Ch. III.3], we
call a mapping Fj : X → Y, j ∈ N, between two Banach spaces a j-power mapping,
if there is a continuous, mapping Gj : X ⊕ . . . ⊕X → Y which is linear in each of
its j arguments, such that Fj(x) = Gj(x, . . . , x). A mapping F : X → Y is called
analytic in a point x0 ∈ X if there is a ball B ⊂ X around zero and a sequence
{Fj}j∈N of j-power mappings such that

F (x0 + x) = F (x0) +
∞∑

j=1

Fj(x) for all x ∈ B,

and the series converges in Y uniformly for x ∈ B.

Analytic mappings possess many properties, analogous to those of classical holo-
morphic functions, cf. [44, Ch. 22] for details.

3 Main result

First we rigorously define the particle density (1.1) in a statistical ensemble of quan-
tum mechanical systems in thermodynamic equilibrium, cf. e. g. [1] [10], [28], [22]
and the references cited there.

Definition 3.1. Let H0 be the operator from Definition 2.3, and let V be a real
potential such that the operator H0 + V is semibounded from below, selfadjoint
and has pure point spectrum. If f : R → R+ is a sufficiently decaying distribution
function so that f(H0 + V ) ∈ B1, then we define the corresponding particle density
N (V ) by ∫

Ω

N (V )W dx = tr
(
Wf(H0 + V )

)
for all W ∈ L∞. (3.1)

Remark 3.2. According to [22, Thm. 36] N (V ) is a function in the non-negative
cone of L1

R. If {λk} is the sequence of eigenvalues for H0 +V (counting multiplicity)
and {ψk} is the corresponding sequence of (normalized) eigenvectors, then N (V )
equivalently can be expressed by (1.1).

Definition 3.3. For every α > 0 we denote by Υα the contour

{λ : λ = s± iαs, s ≥ 0}

with positive orientation. Pα stands for the set of points in C which are enclosed
by Υα, i. e.

Pα
def
= {λ1 + iλ2 : λ1 > 0, |λ2| < αλ1 }.
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Analyticity for some operator functions 5

The thermodynamic equilibrium distribution function f of the complex quantum
system represents the underlying statistics, cf. e. g. [40, Ch. 1.12] or [21, Ch. 6.3].
Generally, for an electron gas in the three dimensional space, f is the Fermi function

f(s) = 1/(1 + es).

For a two– or one-dimensional electron gas (i.e. d = 1 or d = 2) the distribution
function is f(s) = cF−1/2(−s) or f(s) = cF0(−s), respectively, where Fr is the
Fermi–integral

Fr(s) = 1
Γ(r+1)

∫∞
0

tr

1+exp(t−s)
dt,

cf. e. g. [30]. These distribution functions have singularities in the closed left half
plane. Thus, one cannot ask f to be holomorphic on the whole complex plane. But,
we make the following assumption about the thermodynamic equilibrium distribu-
tion function f , which is fulfilled for the above examples.

Assumption 3.4. For every t ∈ R there is an α > 0 so that the distribution
function f is defined and holomorphic on Pα − t. Moreover, there is an α > 0 such
that

sup
λ∈Pα

|λ9f(λ)| <∞.

The restriction of f to R is real-valued and non-negative.

Remark 3.5. From Assumption 3.4 follows in particular that for every t ∈ R there
is an α > 0 such that

sup
λ∈Pα−t

|λ9f(λ)| <∞, and

∫
Υ

|λ|7|f(λ)| d|λ|,

where Υ is the contour corresponding to Pα − t in the sense of Definition 3.3. This
comes to bear in the proof of Lemma 4.1, cf. Remark 5.7.

Remark 3.6. A distribution function f conforming to Assumption 3.4 satisfies
f(λ̄) = f(λ) for all λ from that connected component of the holomorphy domain
which contains R.

We now state our main result.

Theorem 3.7. Let us make the Assumptions 2.1, 2.2 and 3.4. Then the mapping
L2

R 3 V 7→ N (V ) ∈ L2
R, cf. Definition 3.1, is analytic in every point V ∈ L2

R, cf.
Definition 2.5.
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6 K. Hoke, H.-Chr. Kaiser, J. Rehberg

4 Auxiliary results

Lemma 4.1. If A is a selfadjoint operator on a Hilbert space H the spectrum of
which is contained in [1,∞[, then

sup
λ∈Υ

‖A(A− λ)−1‖B(H) ≤
1

dist(1,Υ)
(4.1)

for all Υ = Υα with α > 0, cf. Definition 3.3.

Proof. By a classical result, cf. e. g. [27, Ch. V.3.5], one has

‖A(A− λ)−1‖B(H) = sup
s∈spec(A)

|s|
|s− λ|

≤ sup
s∈[1,∞[

s

|s− λ|

at least for all λ ∈ Υ. This gives

sup
λ∈Υ

‖A(A− λ)−1‖B(H) ≤ sup
λ∈Υ

sup
s∈[1,∞[

s

|s− λ|
= sup

(λ,s)∈Υ×[1,∞[

1

|1− λ
s
|

= sup
λ∈Υ

1

|1− λ|
=

1

infλ∈Υ |1− λ|
=

1

dist(1,Υ)
.

Proposition 4.2. (Cf. [37, Thm. 6.10], and [19].) For the operator H0 from
Definition 2.3 the semigroup operators e−tH0, t ≥ 0 are integral operators whose
kernels Kt : Ω× Ω → R allow the Gaussian estimates

0 ≤ Kt(x, y) ≤ γ t−
d
2 eεte−b

|x−y|2
t for almost all (x, y) ∈ Ω× Ω, (4.2)

where γ, b, and ε are non-negative constants related to H0.

Theorem 4.3. Let again H0 be the operator from Definition 2.3. For every θ ∈]d
4
, 1],

the operator (H0 + 1)−θ maps L2 continuously into L∞.

Proof. As e−tH0 admits the Gaussian estimate (4.2), the kernels Lt : Ω × Ω → R
belonging to the semigroup operators e−t(H0+δ) satisfy the estimate

0 ≤ Lt(x, y) ≤ γ t−
d
2 e−t(δ−ε)e−b

|x−y|2
t (4.3)

for almost all (x, y) ∈ Ω × Ω, and for all t ≥ 0 and δ ≥ 0. By means of the
representation formula

(H0 + δ)−θ =
1

Γ(θ)

∫ ∞

0

tθ−1e−t(H0+δ) dt,
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Analyticity for some operator functions 7

cf. [39, Ch. 2.6], one estimates for any ψ ∈ L2

‖(H0 + δ)−θψ‖L∞ ≤ 1

Γ(θ)

∥∥∥ ∫ ∞

0

tθ−1e−t(H0+δ)ψ dt
∥∥∥

L∞

≤ 1

Γ(θ)

∫ ∞

0

tθ−1
∥∥e−t(H0+δ)ψ

∥∥
L∞

dt. (4.4)

Using now the Gaussian estimate (4.3), one finds

‖e−t(H0+δ)ψ‖L∞ = vrai sup
y∈Ω

∣∣∫
Ω
Lt(y, x)ψ(x) dx

∣∣
≤ vrai sup

y∈Ω

√∫
Ω
|Lt(y, x)|2 dx ‖ψ‖L2

≤ γ t−
d
2 e−t(δ−ε) ‖ψ‖L2 vrai sup

y∈Ω

√∫
Ω
e−2b

|x−y|2
t dx

≤ γ t−
d
2 e−t(δ−ε) ‖ψ‖L2 vrai sup

y∈Ω

√∫
Rd e

−2b
|x−y|2

t dx

= γ
( π

2b

)d/4

e−t(δ−ε)t−d/4‖ψ‖L2 .

Nota bene
∫

Rd e
−2b |x−y|2/t dx =

(
tπ
2b

)d/2
, cf. the multivariate Gaussian distribution.

Thus, (4.4) can be continued

‖(H0 + δ)−θψ‖L∞ ≤ γ

Γ(θ)

( π
2b

)d/4
∫ ∞

0

tθ−1−d/4e−t(δ−ε) dt ‖ψ‖L2 . (4.5)

The right hand side of (4.5) is finite if δ > ε and θ > d/4. Thus, in this case
(H0 + δ)−θ ∈ B(L2;L∞). Finally, one obtains

‖(H0 + 1)−θ‖B(L2;L∞) ≤ ‖(H0 + δ)−θ‖B(L2;L∞)‖(H0 + δ)θ(H0 + 1)−θ‖B,

where the second factor is finite due to the positivity of H0 and functional calculus.

Remark 4.4. Theorem 4.3 restricts the dimension of the spatial domain Ω to 1, 2,
and 3, cf. also [36]. Indeed, for d ≥ 4 the operators (H0 + 1)−1 generically do not
allow a factorization over L∞. By a classical result, cf. [31, Ch. I.2] (H0 + 1)−1 ∈
B(Lp;L∞) in general requires p > d

2
. Yet, the factorization of (H0 + 1)−θ over L∞

even for some θ < 1 is crucial in the following considerations.

Theorem 4.5. For the operator H0 from Definition 2.3 the resolvent is in a Schatten
class, more precisely: (H0 + 1)−1 ∈ Br for every r > d/2.
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8 K. Hoke, H.-Chr. Kaiser, J. Rehberg

Proof. For every θ ∈]d
4
, 1], the operator (H0 + 1)−θ : L2 → L2 admits a factoriza-

tion over L∞, cf. Theorem 4.3. Hence, it must be Hilbert-Schmidt by a classical
factorization theorem, cf. [32, Prop. 6.3] or [11, Cor. 4.11], which implies the asser-
tion.

Remark 4.6. The argument in the proof of Theorem 4.5 additionally shows that the
left end θ = d/4 of the θ–interval in Theorem 4.3 cannot be improved. Otherwise,
one could conclude (H0 + 1)−d/4 ∈ B2, or, equivalently, (H0 + 1)−d/2 ∈ B1. However,
this is wrong in general, according to Weyl’s asymptotic law for eigenvalues of the
Laplacian.

Remark 4.7. For a Schrödinger operator H0 with a homogeneous Dirichlet bound-
ary condition the assertion of Theorem 4.5 has been proved by Birman and Solom-
yak even for an arbitrary domain Ω, cf. [4, Ch. 11.3] and [3]. The case of a Neumann
boundary condition has been treated in [3], [4], [5], provided that the underlying
domain Ω is a W 1,2 extension domain, i. e. if there is a linear, continuous extension
operator from W 1,2(Ω) to W 1,2(Rd). Indeed, this result holds true also for Lips-
chitz domains, cf. [17, Thm. 3.10], and [33, Ch. 1.1.16]. Having the Dirichlet and
Neumann case at hand, one easily carries this over to the case of mixed boundary
conditions by the classical comparison principle, cf. [9, Ch. 6.2]. It is interesting to
note that the proof of the Gaussian estimates in Proposition 4.2 also fundamentally
rests on the same extension property for the underlying domain Ω.

Corollary 4.8. For the operator H0 from Definition 2.3, and for every V ∈ L2 the
operator V (H0 + 1)−1 : L2 → L2 is not only bounded, but compact and belongs to
the Schatten class B7. More precisely, one can estimate

‖V (H0 + 1)−1‖B ≤ ‖V (H0 + 1)−1‖B7

≤ ‖V ‖L2‖(H0 + 1)−10/13‖B(L2;L∞)‖(H0 + 1)−3/13‖B7 <∞. (4.6)

Proof. ‖(H0 + 1)−10/13‖B(L2;L∞) is finite since 10/13 > 3/4 ≥ d/4, cf. Theorem 4.3.
Further, according to Theorem 4.5, (H0 + 1)−1 belongs to the Schatten class Br for
every r > 3/2 ≥ d/2, in particular (H0 + 1)−1 ∈ B21/13. Hence, (H0 + 1)−3/13 is in
the Schatten class B7.

Lemma 4.9. For the operator H0 from Definition 2.3, and for every V ∈ L2 the
multiplication operator induced by V is infinitesimally small with respect to H0 + 1.

Proof. Due to Theorem 4.3 one can estimate

‖V ψ‖L2 ≤ ‖V ‖L2‖ψ‖L∞ ≤ c‖V ‖L2‖(H0 + 1)4/5ψ‖L2
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Analyticity for some operator functions 9

for all ψ ∈ D = domH0. Since H0 + 1 is selfadjoint and positive, the right hand
side may be further estimated by

c ‖V ‖L2 ‖ψ‖1/5

L2 ‖(H0 + 1)ψ‖4/5

L2 ,

cf. [39, Ch. 2.6 Th. 6.10]. According to Young’s inequality, this is not larger than

ε‖(H0 + 1)ψ‖L2 +
(

1
ε

)4
(c‖V ‖L2)5‖ψ‖L2

for any ε > 0.

Corollary 4.10. For every potential V ∈ L2
R the operator H0 + V

• is selfadjoint like H0,

• has D = domH0 as its domain,

• has, like H0, a pure point spectrum,

• is semibounded from below, and the corresponding lower form bounds may be
taken uniformly with respect to bounded sets in L2

R.

Proof. The first three items follow from Lemma 4.9 by classical perturbation the-
orems. The last assertion has been proved in [25, Prop. 3.3] for d = 1, and in [26,
Prop. 3.4] for d = 2 and d = 3.

Corollary 4.11. If V ∈ L2
R and τ ∈ R \ spec(H0 + V ), then

‖(H0 + 1)(H0 + V − τ)−1‖B <∞. (4.7)

If additionally W ∈ L2
R, then

‖W (H0 + V − τ)−1‖B
≤ ‖W‖L2‖(H0 + 1)−1‖B(L2;L∞)‖(H0 + 1)(H0 + V − τ)−1‖B <∞ (4.8)

and

‖W (H0 + V − τ)−1‖B7 ≤ ‖W‖L2‖(H0 + 1)−
10
13‖B(L2;L∞)‖(H0 + 1)−

3
13‖B7×

× ‖(H0 + 1)(H0 + V − τ)−1‖B <∞. (4.9)

Proof. (H0 + V − τ)(H0 + 1)−1 : L2 → L2 is continuous and bijective. Hence, by
the Open Mapping Theorem, its inverse must be continuous, which proves (4.7).
Now, (4.8) and (4.9) follow from Theorem 4.3, Theorem 4.5, and Corollary 4.8,
respectively, by means of (4.7).
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10 K. Hoke, H.-Chr. Kaiser, J. Rehberg

Lemma 4.12. We regard the operator H0 from Definition 2.3. Suppose V1, V2 ∈ L2
R.

Moreover, let us assume that f : R → R is bounded on bounded sets and satisfies
supt∈[0,∞[ t

3|f(t)| <∞. Then (H0 + V1)f(H0 + V2) ∈ B1.

Proof. For τ ∈ R \ spec(H0 + V2) one estimates:

‖(H0 + V1)f(H0 + V2)‖B1

≤ ‖(H0 + V2 − τ)f(H0 + V2)‖B1 + ‖(V1 − V2 + τ)f(H0 + V2)‖B1

≤
(
1 + ‖(V1 − V2 + τ)(H0 + V2 − τ)−1‖B

)
×

× ‖(H0 + V2 − τ)−1‖2
B2
‖(H0 + V2 − τ)3f(H0 + V2)‖B

According to Corollary 4.11 the term ‖(V1 − V2 + τ)(H0 + V2 − τ)−1‖B is bounded.
Further one can estimate

‖(H0 + V2 − τ)−1‖B2 ≤ ‖(H0 + 1)−1‖B2‖(H0 + 1)(H0 + V2 − τ)−1‖B <∞.

Finally,

‖(H0 + V2 − τ)3f(H0 + V2)‖B ≤ sup
t∈spec(H0+V2)

(t− τ)3|f(t)|

is finite due to the precondition on f and the semiboundedness of H0 + V2 from
below.

Corollary 4.13. If f is a distribution function which meets the preconditions from
Lemma 4.12, and V ∈ L2

R, then N (V ) ∈ L2
R, where N (V ) is according to Defini-

tion 3.1. Thus, (3.1) extends to all functions W ∈ L2:∫
Ω

N (V )W dx = tr
(
Wf(H0 + V )

)
for all W ∈ L2. (4.10)

Proof. According to (3.1) there is

‖N (V )‖L2 = sup
W∈L∞,‖W‖L2≤1

∣∣∫
Ω
WN (V ) dx

∣∣
= sup

W∈L∞,‖W‖L2≤1

∣∣tr (
Wf(H0 + V

)
)
∣∣

≤ ‖(H0 + 1)−1‖B(L2;L∞)‖(H0 + 1)f(H0 + V )‖B1 .

This is finite, due to Theorem 4.3 and Lemma 4.12.

Remark 4.14. Assumption 3.4 entails the precondition of Lemma 4.12 and Corol-
lary 4.13 for the thermodynamic equilibrium distribution function f .
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5 Proof of Theorem 3.7

Let us first recall that B1 is topologically the dual space to B∞, and the duality B∞×
B1 3 (A,C) 7→ 〈A,C〉(B∞,B1) is given by the trace of the product: 〈A,C〉(B∞,B1) =
tr(AC), cf. e. g. [11, Ch. 6] for details.

Assumption 5.1. Let V0 ∈ L2
R from now on be a fixed potential, and let once

and for all ρ ∈ R be a number such that 1 is a lower form bound of the operator
H0 + V0 + V + ρ for H0 from Definition 2.3, and all V ∈ L2

R with ‖V ‖L2 ≤ 1.
Corollary 4.10 ensures the existence of such a ρ.

Definition 5.2. With respect to H0 from Definition 2.3, and V0 and ρ from As-
sumption 5.1 we introduce H

def
= H0 +V0 + ρ. Moreover, M : L2 → B∞ is the linear,

continuous mapping W 7→ WH−1, cf. (4.9).

Henceforth we make Assumption 3.4. Then Lemma 4.12 applies, cf. Remark 4.14;
thus, the operator Hf(H0 + V0 + V ) belongs to B1 for every V ∈ L2

R. Due to
Corollary 4.13 one has for all W ∈ L2

∫
Ω
WN (V0 + V ) dx = tr

(
Wf(H0 + V0 + V )

)
= tr

(
WH−1Hf(H0 + V0 + V )

)
= 〈M(W ), Hf(H0 + V0 + V )〉(B∞,B1).

Hence, one can represent the particle density operator in terms of the linear, con-
tinuous mapping M∗ : B1 → L2,

N (V0 + V ) = M∗(Hf(H0 + V0 + V )) for all V ∈ L2
R. (5.1)

Lemma 5.3. Let M and H = H0 + V0 + ρ be according to Definition 5.2 and A be
a selfajoint operator on L2 such that HA ∈ B1. Then M∗(HA) ∈ L2

R.

Proof. Given (5.1) it only remains to show that M∗(HA) is real valued, or equiva-
lently, that for any W ∈ L∞R the scalar product

∫
Ω
WM∗(HA) dx has a real value.

Indeed, one has∫
Ω
WM∗(HA) dx = 〈M(W ), HA〉(B∞,B1) = tr

(
WH−1HA

)
= tr

(
WA

)
even for all W ∈ L2

R. (5.2)

Thus, splitting W ∈ L∞R into its positive and negative part, W = W+−W−, we may
write

tr
(
WA

)
= tr

(
W

1/2
+ AW

1/2
+

)
− tr

(
W

1/2
− AW

1/2
−

)
.

Both addends on the right hand side are real, because the operators W
1/2
+ AW

1/2
+

and W
1/2
− AW

1/2
− are selfadjoint.
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12 K. Hoke, H.-Chr. Kaiser, J. Rehberg

Remark 5.4. The idea of the proof of Theorem 3.7 is to demonstrate the analyticity
of the mapping L2

R 3 V 7→ Hf(H0 + V0 + V ) ∈ B1 under the Assumption 3.4 by
representing

Hf(H0 + V0 + V )−Hf(H0 + V0) (5.3)

locally as a series
∑∞

j=1HTj(V ) of j-power mappings, cf. Definition 2.5, such that

• for every j ∈ N and V ∈ L2
R the operator Tj(V ) is nuclear and selfadjoint,

• and H
∑k

j=1 Tj(V ) converges for k →∞ in B1 to (5.3).

Then the linear, continuous mappping M∗ : B1 → L2 carries over this representation
in j-power mappings to the mapping

L2
R 3 V 7→ N (V0 + V )−N (V0) ∈ L2

R,

ensuring the analyticity of N , cf. Definition 2.5.

Remark 5.5. The analyticity of the mapping

L2
R 3 V 7→ Hf(H0 + V0 + V ) ∈ B1

is equivalent to the analyticity of the mapping

L2
R 3 V 7→ f(H0 + V0 + V ) ∈ X,

where X is the “weighted” Schatten class {A ∈ B : HA ∈ B1} equipped with the

norm ‖A‖X
def
= ‖HA‖B1 .

In the sequel we show the analyticity of the mapping

L2
R 3 V 7→ Hf(H0 + V0 + V ) ∈ B1

under the Assumption 3.4. First, we introduce the shifted distribution function
g : C → C by

g(λ)
def
= f(λ− ρ), λ ∈ C (5.4)

with respect to ρ from Assumption 5.1. Obviously,

f(H0 + V0 + V ) = f(H + V − ρ) = g(H + V ).

Moreover, with f also g complies with Assumption 3.4, and the function g inherits
all properties asserted in Remark 3.5 from the function f . So, let α > 0 be a
number such that the function g is holomorphic on the set Pα−1, cf. Definition 3.3,
and supλ∈Pα−1 |λ9g(λ)| < ∞. Then

∫
Υ
|λ|7|g(λ)| d|λ| < ∞, where Υ is the contour
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Analyticity for some operator functions 13

corresponding to Pα in the sense of Definition 3.3. Note that Υ encloses the spectrum
of H + V for all V ∈ L2

R with ‖V ‖L2 ≤ 1, cf. Assumption 5.1. According to the
Dunford calculus, cf. e. g. [13, Ch. VII.9], for these V holds

g(H + V ) = − 1

2πi

∫
Υ

g(λ)(H + V − λ)−1 dλ. (5.5)

Applying iteratively the resolvent equation

(H + V − λ)−1 = (H − λ)−1 − (H − λ)−1V (H + V − λ)−1,

we get

(H + V − λ)−1 = (H − λ)−1 + (H − λ)−1

7∑
j=1

(−1)j
(
V (H − λ)−1

)j

+ (H − λ)−1
(
V (H − λ)−1

)7
V (H + V − λ)−1. (5.6)

The first term of (5.6) corresponds to the term N (V0) in the j-power expansion of
N (V0 + V ). The operator

− 1

2πi

∫
Υ

g(λ)(H − λ)−1 dλ = g(H) = f(H0 + V0)

is bounded and self-adjoint. Moreover, the operator Hf(H0 + V0) is nuclear, cf.
Lemma 4.12.

Lemma 5.6. For j ∈ N and V ∈ L2
R we define the j-linear mapping

Tj(V )
def
=

(−1)j+1

2πi

∫
Υ

g(λ)(H − λ)−1
(
V (H − λ)−1

)j
dλ. (5.7)

1. For every V ∈ L2
R, the operator HTj(V ) is bounded, and

HTj(V ) =
(−1)j+1

2πi

∫
Υ

g(λ)H(H − λ)−1
(
V (H − λ)−1

)j
dλ. (5.8)

Moreover, every operator Tj(V ) is bounded.

2. For every V ∈ L2
R, the operator Tj(V ) is selfadjoint.

3. If j ∈ {1, . . . , 7}, then the mapping L2
R 3 V 7→ HTj(V ) maps L2

R boundedly
into B1.
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14 K. Hoke, H.-Chr. Kaiser, J. Rehberg

Proof. 1) Observing that D can be equivalently normed by ‖H · ‖L2 , cf. Defini-
tion 2.3, Corollary 4.10, and Corollary 4.11, one estimates∫

Υ

|g(λ)|
∥∥(H − λ)−1

(
V (H − λ)−1

)j∥∥
B(L2;D)

d|λ|

≤ c

∫
Υ

|g(λ)|
∥∥H(H − λ)−1

(
V (H − λ)−1

)j∥∥
B d|λ|

≤ c

∫
Υ

|g(λ)| d|λ|
(
‖V ‖L2‖H−1‖B(L2;L∞)

)j
sup
λ∈Υ

‖H(H − λ)−1‖j+1
B

where the right hand side is finite, thanks to Theorem 4.3, Corollary 4.11 and
Lemma 4.1. Thus, integration and the application of H may be interchanged, cf.
[41, Ch. IV.4 Thm. 45].

2) One easily verifies for λ ∈ Υ the identity(
(H − λ)−1

(
V (H − λ)−1

)j
)∗

= (H − λ̄)−1
(
V (H − λ̄)−1

)j
. (5.9)

Hence, observing Remark 3.6, one gets from (5.7)

(
Tj(V )

)∗
=

((−1)j+1

2πi

∫
Υ

g(λ)(H − λ)−1
(
V (H − λ)−1

)j dλ

d|λ|
d|λ|

)∗
= − (−1)j+1

2πi

∫
Υ

g(λ̄)(H − λ̄)−1
(
V (H − λ̄)−1

)j dλ

d|λ|
d|λ|.

Now the variable transformation λ 7→ λ̄ shows that the right hand side is equal to
Tj(V ).

3) We demonstrate the assertion exemplarily for HT2(V ): Making use of the resol-
vent equation

(H − λ)−1 = H−1 + λH−1(H − λ)−1 (5.10)

we obtain

HT2(V ) =
−H
2πi

∫
Υ

g(λ)(H − λ)−1V (H − λ)−1V (H − λ)−1 dλ

=
−H
2πi

∫
Υ

g(λ)(H − λ)−1
[
V H−1V H−1

+ λV H−1(H − λ)−1V H−1 + λV H−1V H−1(H − λ)−1

+ λ2V H−1(H − λ)−1V H−1(H − λ)−1
]
dλ.

Now we make use again of the resolvent equation (5.10) in those summands where
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(H − λ)−1 appears exactly once as a factor. Thus,

HT2(V ) =
−H
2πi

∫
Υ

g(λ)(H − λ)−1
[
(V H−1)2 + λV (H−2V H−1 +H−1V H−2)

+ λ2V H−2(H − λ)−1V H−1 + λ2V H−1V H−2(H − λ)−1

+ λ2V H−1(H − λ)−1V H−1(H − λ)−1
]
dλ.

We discuss the summands separately. For the first term we get

− 1

2πi
H

∫
Υ

g(λ)(H − λ)−1(V H−1)2 dλ = Hg(H)(V H−1)2

which belongs to B1 and admits the estimate

‖Hg(H)(V H−1)2‖B1 ≤ ‖Hg(H)‖B1‖V ‖2
L2‖H−1‖2

B(L2;L∞) ≤ c‖V ‖2
L2

according to Theorem 4.3, Lemma 4.12 and Corollary 4.11. If g̃ denotes the function
λ 7→ λg(λ), then

− 1

2πi
H

∫
Υ

λg(λ)(H − λ)−1V H−2V H−1 dλ = Hg̃(H)V H−2V H−1,

− 1

2πi
H

∫
Υ

λg(λ)(H − λ)−1V H−1V H−2 dλ = Hg̃(H)V H−1V H−2,

and one can estimate

‖Hg̃(H)V H−2V H−1‖B1 + ‖Hg̃(H)V H−1V H−2‖B1

≤ 2‖Hg̃(H)‖B2‖V ‖2
L2‖H−1‖2

B(L2;L∞)‖H−1‖B2

≤ 2‖V ‖2
L2‖H−1‖2

B(L2;L∞)‖H−1‖2
B2

sup
s∈spec(H)

|s3g(s)| <∞.

In order to estimate the first of the terms with λ2 we note that the integral∫
Υ

|λ2g(λ)|‖(H − λ)−1V H−2(H − λ)−1V H−1‖B(L2;D) d|λ|

≤ c

∫
Υ

|λ2g(λ)|‖H(H − λ)−1V H−2(H − λ)−1V H−1‖B d|λ|

≤ c sup
λ∈Υ

‖H(H − λ)−1‖2‖V ‖2
L2‖H−2‖B‖H−1‖2

B(L2;L∞))

∫
Υ

|λ2g(λ)| d|λ|

is finite. Hence, one has

− 1

2πi
H

∫
Υ

λ2g(λ)(H − λ)−1V H−2(H − λ)−1V H−1 dλ

= − 1

2πi

∫
Υ

λ2g(λ)H(H − λ)−1V H−2(H − λ)−1V H−1 dλ ∈ B.
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16 K. Hoke, H.-Chr. Kaiser, J. Rehberg

Actually, this integral is a nuclear operator, and can be estimated as follows:

1

2π

∥∥∥ ∫
Υ

λ2g(λ)H(H − λ)−1V H−2(H − λ)−1V H−1 dλ
∥∥∥
B1

≤ c

∫
Υ

|λ2g(λ)|‖H(H − λ)−1V H−1H−2H(H − λ)−1V H−1‖B1 d|λ|

≤ c sup
λ∈Υ

‖H(H − λ)−1‖2
B‖V ‖2

L2‖H−1‖2
B(L2;L∞)‖H−1‖2

B2

∫
Υ

|λ2g(λ)| d|λ|.

This is finite, due to Lemma 4.1, Corollary 4.11, Theorem 4.5, and Assumption 3.4.
The terms

− 1

2πi
H

∫
Υ

λ2g(λ)(H − λ)−1V H−1V H−2(H − λ)−1 dλ,

− 1

2πi
H

∫
Υ

λ2g(λ)(H − λ)−1V H−1(H − λ)−1V H−1(H − λ)−1 dλ

can be treated analogously.

Remark 5.7. We have demonstrated the third assertion of Lemma 4.1 exemplarily
for HT2(V ), thereby using that

∫
Υ
|λ2g(λ)| d|λ| is finite. Analogously, one uses that

the integral
∫

Υ
|λ7g(λ)| d|λ| is finite to prove the assertion for HT7(V ). That is why

we asked for |λ| to the power of 9 in the supremum condition of Assumption 3.4, cf.
Remark 3.5.

Lemma 5.6 shows that the first 7 terms of the expansion of the mapping V 7→
Hf(H0 + V0 + V ) − Hf(H0 + V0) are j-power mappings. To finalise the proof of
Theorem 3.7 it remains to show — according to Definition 2.5 — that the term, cf.
(5.5) and (5.6),

− H

2πi

∫
Υ

g(λ)(H − λ)−1
(
V (H − λ)−1

)7
V (H + V − λ)−1 dλ (5.11)

may be represented as a series of j-power mappings, uniformly converging in some
ball of L2

R. Let us begin with the estimate

sup
λ∈Υ

∥∥H(H − λ)−1
(
V (H − λ)−1

)7∥∥
B

≤ sup
λ∈Υ

∥∥H(H − λ)−1
(
V (H − λ)−1

)7∥∥
B1

≤ sup
λ∈Υ

‖H(H − λ)−1‖8
B‖V H−1‖7

B7

≤ 1
dist(1,Υ)8

(
‖V ‖L2‖(H0 + 1)−

10
13‖B(L2;L∞)‖(H0 + 1)−

3
13‖B7‖(H0 + 1)H−1‖B

)7

<∞, (5.12)
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cf. Lemma 4.1, Corollary 4.8, and Corollary 4.11. This leads to the estimate

sup
λ∈Υ

∥∥H(H − λ)−1
(
V (H − λ)−1

)7
V (H + V − λ)−1

∥∥
B

≤ sup
λ∈Υ

∥∥H(H − λ)−1
(
V (H − λ)−1

)7
V (H + V − λ)−1

∥∥
B1

≤ sup
λ∈Υ

∥∥H(H − λ)−1
(
V (H − λ)−1

)7∥∥
B1

sup
λ∈Υ

‖V (H + V − λ)−1‖B

≤ c ‖V ‖7
L2‖V (H + V )−1‖B <∞,

cf. Corollary 4.11. From this we draw two conclusions: First, the integral∫
Υ

|g(λ)|
∥∥(H − λ)−1

(
V (H − λ)−1

)7
V (H + V − λ)−1‖B(L2;D) d|λ|

converges. Thus, (5.11) is identical with

− 1

2πi

∫
Υ

g(λ)H(H − λ)−1
(
V (H − λ)−1

)7
V (H + V − λ)−1 dλ. (5.13)

Second, the integral∫
Υ

|g(λ)|
∥∥H(H − λ)−1

(
V (H − λ)−1

)7
V (H + V − λ)−1

∥∥
B1
d|λ|

also converges. Hence, the mapping, which assigns to V ∈ L2
R the expression (5.11),

in fact takes its values in B1.

Now we regard the — for the time being formal — series expansion

(H + V − λ)−1 =
(
(1 + V (H − λ)−1)(H − λ)

)−1

= (H − λ)−1
(
1 + V (H − λ)−1

)−1
= (H − λ)−1

∞∑
j=0

(−1)j
(
V (H − λ)−1

)j
,

and make use of it in (5.13), respectively. This gives for (5.11) the expression

− 1

2πi

∫
Υ

g(λ)H(H − λ)−1
(
V (H − λ)−1

)7
V (H − λ)−1

∞∑
j=0

(−1)j
(
V (H − λ)

)j
dλ.

(5.14)
According to Lemma 4.1, Theorem 4.3, and Corollary 4.11 there is the inequality

‖V (H − λ)−1‖B ≤ ‖V ‖L2‖H−1‖B(L2;L∞) sup
λ∈Υ

‖H(H − λ)−1‖B

≤ 1
dist(1,Υ)

‖V ‖L2‖H−1‖B(L2;L∞). (5.15)
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18 K. Hoke, H.-Chr. Kaiser, J. Rehberg

Hence, the series
∑∞

j=0(−1)j
(
V (H − λ)

)j
absolutely converges in B if

‖V ‖L2 <
dist(1,Υ)

‖H−1‖B(L2;L∞)

. (5.16)

Consequently, (5.14) holds strictly for those V ∈ L2
R agreeing with (5.16).

We investigate now for all j > 7 the mappings HTj, where Tj is given by (5.7). Due
to the first assertion of Lemma 5.6, (5.12), and (5.15), HTj admits the following
estimate:

‖HTj(V )‖B1

≤
∫

Υ

|g(λ)|
∥∥H(H − λ)−1

(
V (H − λ)−1

)7(
V (H − λ)−1

)j−7∥∥
B1
d|λ|

≤ sup
λ∈Υ

∥∥H(H − λ)−1
(
V (H − λ)−1

)7‖B1×

× sup
λ∈Υ

∥∥(
V (H − λ)−1

)j−7‖B
∫

Υ

|g(λ)| d|λ|

≤ c ‖V ‖7
L2

(
‖V ‖L2

‖H−1‖B(L2;L∞)

dist(1,Υ)

)j−7

.

Thus, HTj is a j-power mapping from L2
R into B1 for every j > 7. Moreover, for

V ∈ L2
R satisfying (5.16), the series

∞∑
j=8

∫
Υ

|g(λ)|
∥∥H(H − λ)−1

(
V (H − λ)−1

)7(
V (H − λ)−1

)j−7‖B1 d|λ|

converges. Thus, for V ∈ L2
R satisfying (5.16) one may interchange summation and

integration in (5.14) (cf. e. g. [41, Ch. IV.4 Thm. 37]). Therefore, (5.11) is an
absolutely converging series

− H

2πi

∫
Υ

g(λ)(H − λ)−1
(
V (H − λ)−1

)7
V (H + V − λ)−1 dλ =

∞∑
j=8

HTj(V )

in B1 for all V ∈ L2
R satisfying (5.16). As a result

∑∞
j=1HTj(V ) converges absolutely

and uniformly in B1 for all V ∈ L2
R with ‖V ‖L2 < c < dist(1,Υ)/‖H−1‖B(L2;L∞). If,

additionally, ‖V ‖L2 ≤ 1, then

Hf(H0 + V0 + V ) = Hf(H0 + V0) +
∞∑

j=1

HTj(V )

according to the Dunford calculus, cf. (5.5). Now the conclusion of Remark 5.4
finishes the proof of Theorem 3.7.
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6 Concluding remarks

Theorem 4.3 restricts the dimension of the spatial domain Ω to 1, 2, and 3, cf.
Remark 4.4. On the other hand these are just the dimensions we are involved with
in the underlying real space representation of quantum mechanics.

The proofs in this paper have been done in such a way that they work simultaneously
for the space dimensions d = 1, 2, 3, and the decay properties of the thermodynamic
equilibrium distribution function f we impose in Assumption 3.4 are accordingly.
However, the spatially one- and two-dimensional case could be treated more easily
separately assuming less. This is due to the fact that for d = 1, 2 one has better
summability of the resolvent of an elliptic operator, and more regularity for the
solution of an elliptic PDE.

Remark 6.1. The first term of the j-power expansion of the mapping

V 7→ Hf(H0 + V0 + V )−Hf(H0 + V0)

corresponds to the Fréchet derivative of the operator function

V 7→ f(H0 + V0 + V ).

Hence, the Fréchet derivative ∂N of the particle density operator N , cf. Defini-
tion 3.1, is given by

∂N (V0)[V ] = M∗(HT1(V )
)

for all V0, V ∈ L2
R, (6.1)

where H is according to Definition 5.2, cf. Remark 5.4 and Definition 2.5. Thus, we
can conclude from Lemma 5.6 and (5.2)∫

Ω

W∂N (V0)[V ] dx =

∫
Ω

WM∗(HT1(V )
)
dx = tr

(
WT1(V )

)
=

1

2πi

∫
Υ

g(λ) tr
(
W (H − λ)−1V (H − λ)−1

)
dλ (6.2)

for all V0, V ∈ L2
R and all W ∈ L2

R, where H = H0 + V0 + ρ, and ρ is a number such
that 1 is a lower form bound of H0 +V0 +V +ρ. The function g is according to (5.4).
Moreover, Υ is a contour in the sense of Definition 3.3 which includes all eigenvalues
of H0 + V0 + V + ρ. If {λk} is the sequence of eigenvalues for H0 + V0 (counting
multiplicity) and {ψk} is the corresponding sequence of (normalized) eigenvectors,
then

tr
(
W (H − λ)−1V (H − λ)−1

)
=

∞∑
k,`=1

1

(λk + ρ− λ)(λ` + ρ− λ)
〈Wψk, ψ`〉L2〈V ψ`, ψk〉L2 ,
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cf. e. g. [36], [24, §6.5]. Thus, one obtains from (6.2)∫
Ω

W∂N (V0)[V ] dx =
∞∑

k,`=1

λk=λ`

f ′(λk)〈Wψk, ψ`〉L2〈V ψ`, ψk〉L2

+
∞∑

k,`=1

λk 6=λ`

f(λk)−f(λ`)
λk−λ`

〈Wψk, ψ`〉L2〈V ψ`, ψk〉L2 . (6.3)

Remark 6.2. If the distribution function f , in addition to Assumption 3.4, is
strictly monotone, then (6.3) implies∫

Ω

V ∂N (V0)[V ] dx

=
∞∑

k,`=1

λk=λ`

f ′(λk)
∣∣〈V ψ`, ψk〉L2

∣∣2 +
∞∑

k,`=1

λk 6=λ`

f(λk)−f(λ`)
λk−λ`

∣∣〈V ψ`, ψk〉L2

∣∣2 < 0

for all V ∈ L2
R which do not vanish identically. Thus, the particle density operator

N , cf. Definition 3.1, is injective due to∫
Ω

(
N (V1)−N (V2)

)
(V1 − V2) dx

=
∫ 1

0

∫
Ω

(
∂N (V2 + t(V1 − V2))[V1 − V2]

)
(V1 − V2) dx dt < 0,

cf. the proof of Lemma 1.1 in [15, Ch. 3].

Remark 6.3. If N is a given amount of particles in the system, then one calls a
number ε = ε(V ) which satisfies∫

Ω

∞∑
k=1

f(λk)|ψk|2 dx =
∞∑

k=1

f(λk − ε) = N,

a Fermi level of the system. If the distribution function f is strictly decreasing,
then the Fermi level is uniquely determined. It has been proved in [36], [24] that
the Fermi level is continuously Fréchet differentiable on compact subsets of L2

R. We
conject the analyticity of the Fermi level with respect to the potential in the Schrö-
dinger operator. The adequate instrument for proving this would be the implicit
function theorem, which also works in the context of analytic mappings between
Banach spaces, see [44, Ch. 22].
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