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Abstract

This paper studies the late phase dewetting process of nanoscopic thin
polymer films on hydrophobized substrates using some recently derived lubri-
cation models that take account of large slippage at the polymer-substrate
interface. The late phase of this process is characterized by the slow-time
coarsening dynamics of arrays of droplets that remain after rupture and the
initial dewetting phases. For this situation a reduced system of ordinary differ-
ential equations is derived from the lubrication model for large slippage using
asymptotic analysis. This extends known results for the no-slip case. On the
basis of the reduced model, the role of the slippage as a control parameter
for droplet migration is analysed and several new qualitative effects for the
coarsening process are identified.

1 Introduction

A liquid polymer film of nanometer thickness interacting with a hydrophobi-
cally coated solid substrate is susceptible to instability due to small pertur-
bations of the film profile. Typically such films rupture, thereby initiating a
complex dewetting process [1-5]. The influence of intermolecular forces play an
important part in the rupture and subsequent dewetting process, see e.g. [6-8]
and references therein. Due to the small thickness of the film, the competition
between the long-range attractive van der Waals and short-range Born repul-
sive intermolecular forces reduces the unstable film to an even thinner layer
of thickness € that connects the evolving patterns and is closely related to the
minimum of the corresponding intermolecular potential, i.e. the film settles
into an energetically more favorable state [9, 10]. The early stages of this
process are associated with the formation of regions of this minimal thickness,
bounded by moving rims that connect to the undisturbed film and eventually
destabilize [11-13].

In this study we are interested in the long-time dewetting process, which
originates in the breaking up of the evolving patterns into small droplets and
is characterized by its subsequent slow-time coarsening dynamics, which has
been observed and investigated experimentally in [14, 15]. Within a different
context of phase separation of binary alloys, coarsening dynamics is a well-
known widely studied process and is typically described by the Cahn-Hilliard
equation [16]. For the late phases of this process reduced ODE models have
been derived [17] in order to determine properties such as coarsening rates,
which can be time consuming using the underlying partial differential equa-
tions. These studies have recently been extended to describe phase separation
under the influence of an external driving field in [18, 19]. Within the context



of thin liquid films one of the first studies of the coarsening dynamics can be
found in [20] and [21]. These authors consider the one-dimensional no-slip
lubrication model for the profile h(z,t),

Oh = —0, (h38x (Duah — TI(h)) ) (1.1)

and, using asymptotic methods, derive a reduced model that is able to de-
scribe the slow-time coarsening process for large arrays of droplets, including
mechanisms such as collapse as well as collisions of droplets, and predict their
coarsening rate.

Let us recall that the high order of the lubrication equation (1.1) is a
result of the contribution from surface tension at the free boundary, reflected
by the linearized curvature term 0,.h. A further contribution to the pressure
is denoted by II(h) and represents the contribution from the intermolecular
forces. A commonly used expression is given by

o= 22" (") 12

with n = 3 and m = 2 being typical values. It can be written as a derivative
of the potential function U(h),

=1L 19

where the minimal thickness between the droplets is of order 0 < ¢ < 1.
Recently, it has been shown experimentally and theoretically that the early
stages of the dewetting process and the evolving morphology depend markedly
on the magnitude of the effective slip length, which can be of the size of the
height of the liquid film or even larger for nanoscale systems [13, 22-25|. In
order to understand this behavior closed-form lubrication models over a wide
range of slip lengths were derived in |26, 27| from the underlying equations
for conservation of mass and momentum, together with boundary conditions
for the tangential and normal stress, as well as the kinematic condition at the
free boundary, impermeability and Navier-slip condition at the liquid-solid
interface. Asymptotic arguments, based on the magnitude of the slip length
show that within a lubrication scaling there are two distinguished limits [26]:
These are the well-known weak-slip model

Ouh = ~ 0, (M ()0 (Drch —T1()) ) (1.4)

where M(h) = h® 4+ bh? with b denoting the slip-ength parameter, and the
strong-slip model

Re (Qyu + udyu) = %Gx(hﬁxu) + 0y (Dueh — TI(R)) — ﬂ—“h, (1.50)

Oh = —0, (hu), (1.5b)

respectively. Here, u(z,t) denotes the velocity in the lateral direction. The
slip-length parameters b and 3 are related by orders of magnitude via b ~ 1213,



where the parameter v with 0 < v < 1 refers to the vertical to horizontal scale
separation of the thin film. The terms Re(9,u + ud,u), with Re denoting the
Reynolds number, and (4/h)0;(h Oyu) are the inertial and Trouton viscosity
terms, respectively.

Additionally, the weak-slip and the strong-slip models contain as limiting
cases three further lubrication models. One of which is the no-slip model
which is obtained when we set b = 0 in the weak-slip model. The second
one is obtained from the strong-slip model in the limit 8 — oo and describes
the dynamics of suspended free films, see e.g. [28|. For the third limiting
case derived in [26] the slip-length parameter [ is of order of magnitude
lying in between those that lead to the weak and the strong-slip model, i.e.
b <« Br < B. The corresponding intermediate-slip model is given by

Oh = 8, (h28x (Duah — TI(R)) ) . (1.6)

It can be obtained by rescaling time in (1.4) by b and let b — oo or by rescaling
time and the horizontal velocity by 8 and taking the limit § — 0.

In view of the above developments, we would like to understand the effects
of slippage during the late stages of the dewetting process, such as the details
of coarsening mechanisms. Moreover, we would like to know if it is possible to
obtain reduced models to answer these questions. Hence, in this paper we will
focus our investigations on the lubrication models for the slip-regimes, (1.6)
and (1.5a)-(1.5b). It turns out that in the case of the intermediate-slip model
(1.6) the derivation of a corresponding reduced ODE model for the position
and pressure of arrays of droplets can be obtained by following the ideas in
[20], so that we only briefly summarize our results and focus here mainly on
the strong-slip model.

Additionally, using essentially a mixture of the gradient flow structure ap-
proach and asymptotic analysis, the one as well as two-dimensional case for
M(h) = h9, ¢ > 0 has recently been considered in [29]. Within the context
of thin liquid films the relevant case here is M(h) = h?, the intermediate-slip
model, apart form the more frequently considered no-slip case when M (h) =
h3. We note, that within the different context of Darcy’s equation, also the
case M (h) = h was considered in [30], where coarsening rates on the basis of
the gradient flow structure of the corresponding equation were derived. More-
over, for this case they showed that the analysis can be made rigorous. One
focus of the recent work by [29] concerned migration of the droplets and its
underlying causes, where results by [31] on the relation of the direction of
the motion and mass flux were discussed and clarified, i.e. that indeed the
direction of the migration of droplets is opposite to the applied mass flux. We
also like to note at this point that in light of the derivation of the lubrication
models for various slip regimes as given in [26], care needs to be taken when
comparing properties such as migration velocities for the different mobilities,
here h3 and h?, since time and velocity scales differ. Direct comparisons of
these quantities (e.g. [29] Appendix D) may be misleading.

In this article, we begin with the derivation of the steady states for the
strong-slip model and its limiting cases in section 2. In section 3.2 for the one-
dimensional strong-slip model with sufficiently small inertial terms we then



derive a reduced model. In section 3.3 we derive an approximation for the
fluxes between droplets in an array. In section 4.2 (Proposition 4.1) we prove
that in contrast the to no- , and intermediate-slip cases, which was treated in
[29] for any mobility h?, ¢ > 0, in the strong-slip case droplets not necessarily
migrate in the direction opposite to the applied flux. There is a critical value
of slippage B = (. above which droplets migrate in the same direction as the
flux. As a further consequence of that we find that collision of two droplets are
possible for some range of slip parameter (3 in the model (1.5a)-(1.5b), while
for the models (1.1), (1.4) and (1.6) as was shown in [21, 29] that collisions
involve at least three droplets.

The rest of section 4 is devoted to the resulting coarsening patterns for
increasing slippage. Here, we identified another new effect in the strong-slip
case. For the models (1.1), and (1.6) it was shown in [29] that the collision
component of the coarsening process is comparable with the component for
collapse only in the case of (1.1), while it is negligible for (1.6). For the
strong-slip model this component increases when (3 increases and becomes the
dominant component of the coarsening process.

2 Equilibrium and near-equilibrium solutions

Equilibrium solutions Let us briefly revisit the initial boundary value
problem for the weak-slip model (1.4) on the interval [-L, L]. We impose the
following boundary conditions:

Ogezh =0, and 9,h=0 at x==+L, (2.1)

which incorporate zero flux at the boundary and as a consequence imply con-
servation of mass law (2.2):

1 [TL

h = 3%/, h(z,t) dx, ¥t >0, (2.2)

where h = const is the average of the height profile. For these boundary condi-
tions it has been proved in [10] that (1.4) has a unique strong positive solution,
provided the initial data h(0,2) > 0 and h(0,r) € H'(—L, L). For our sub-
sequent analysis it will be useful to summarize their results on equilibrium
solutions ([10], [20]) here:

Theorem 2.1 Equation (1.4) under boundary conditions (2.1) has a family
of positive nonconstant steady state solutions h(x, P, L) parameterized by the
constant pressure P and given by the solution of

P = M (h) — Oysh, (2.3a)
0 = 0,h(—L)=0,h(L). (2.3b)
Moreover, phase plane analysis shows that for fixed value P € (0, Ppag) the
ODE (2.3a) has a family of periodic solutions h(x, P, L) parameterized by the

least period T" = 2L that is nested into a homoclinic loop h(z,P). Every
periodic solution h(z, P, L) restricted to the interval [—L, L] gives a solution
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of (2.3a)-(2.3b). And vice versa every solution of (2.3a)-(2.3b) can be extended
to the periodic solution h(x, P, L) with the least period T' = 2L.

The asymptotics of the homoclinic solution h(z, P) was derived in [20].
If we denote the minimum and the maximum of the homoclinic solution by
hmin(P) and hpqq(P), respectively, then the minima and maxima of all pe-
riodic solutions are bounded by these values. The smallest real root of the
algebraic equation II(h) = P is hy,;,. Hence, expanded in €, it is of the form,

Bomin = € + 2P + O(€3). (2.4)

The elliptic center point h.(P) of (2.3a) is the other real root of II(h) = P
and has the asymptotics,

he = e(eP + o(eP)) ™13, (2.5)
Once hpin (P) is determined, the first integral of equation (2.3a) can be written
as Ly
1 (dh -
—|{— ) =R 2.6
5 (5) =, (26)
where B B B
R(h) =U (h) - U(hmm) - P(h - hmm) . (27)
At the maximum h, = 0 and hence Ay, is determined by the condition

R(hmae) = 0 and its asymptotics is

hma;r = _@ + O(G) (28)
More detailed asymptotic analysis (see [20]) shows that a stable steady
state solution on [—L, L], i.e. a one-dimensional droplet, can be described by
a parabola connected to a thin layer. Then, h,,;, gives approximately the
thickness of this thin layer and h,,q, is the peak of the droplet.
For the boundary value problem for the strong-slip model (1.5a)-(1.5b) on
the interval [—L, L] we put velocities (or fluxes) at the boundary to zero

u=0 at x==L. (2.9)

i.e. we require conservation of mass (2.2). For the profile h(x,t) we assume
that
8,h=0 at x=+L (2.10)

as before.

Theorem 2.2 Steady state solutions of the system (1.5a)-(1.5b) with the
boundary conditions (2.9)—(2.10) with positive height profile exist and are given
by the solutions of (2.3a)-(2.3b) and identically zero velocity profile u = 0.
PROOF The steady states of (1.5a)—(1.5b) are described by

Rehudyu = 40,(hdyu) + hdy(Opeh —TI(R)) — =,  (2.11a)

SRS

0 = —8,(hu). (2.11b)



From (2.11b) and (2.9) it follows that hu = 0. Take any stationary solution
[h(z), wu(x)] with positive height profile. If such solution exists it follows

necessarily
u=0forall x € [-L, L]. (2.12)

Substituting (2.12) in (1.5a) one obtains necessarily that h(x) is a solution
of (2.3a)-(2.3b) which exists when P € (0, Pp4z) as was shown in [10]. Vice
versa any solution of (2.3a)-(2.3b) determines a stationary solution with iden-
tically zero velocity profile for (1.5a)-(1.5b) with the boundary conditions
(2.9)-(2.10). ®

Remark 2.1 The stationary positive nonconstant height profile for (1.5a)-
(1.5b) is a solution h(x, P, L) of (2.3a)-(2.3b) and hence the asymptotics (2.4)-
(2.8) stated for steady states of (1.4) holds for it as well.

Near-equilibrium solutions It is well-known that the driving forces that
underly the initial dewetting scenario of a thin film, from rupture towards
formation of complex fluid patterns, are intermolecular forces. This has been
shown in the framework of the no-slip or weak-slip lubrication models, see e.g.
[7]. The intermediate- and strong-slip models show similar phases of the initial
dewetting scenario, where now interfacial slip has an important influence on
the morphology of the resulting patterns and the time scale on which they
evolve, see [26, 32, 33] for detailed analysis. However, as has been discussed in
[20] intermolecular forces are also important in the late phases when arrays of
near-equilibrium droplets have formed, connected by a thin layer whose height
is determined by the competition between van-der-Waals attractive and Born
repulsive forces. Here, the small flux across this layer plays an important role
in the coarsening dynamics of these arrays of droplets, where the central part
of each droplet is nearly an equilibrium solution we have just discussed in the
previous paragraph.

When Re is sufficiently small, two components of the coarsening regime
can be identified [21, 29], namely collapse and collision. One can qualitatively
explain the driving effects for collapse and collision using the presence of a
generalized gradient flow structure. As it is found in [10] the functional

B(h) = / Uh) + @zh do (2.13)

is a Lyapunov functional for (1.4) with the boundary conditions (2.1), where
U(h) is given by (1.3). Analogously we prove:

Proposition 2.1 A functional

2
E(u,h) = / U(h) + %mﬂ + %h da (2.14)

is a Lyapunov functional for the system (1.5a)-(1.5b) with boundary conditions
(2.9)-(2.10) where U(h) is given by (1.3).

PROOF To show that E(h,t) is an energy functional that decreases on the
positive solutions of (1.5a)—(1.5b) we establish that dE/dt < 0.
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We note that by integration by parts and using (2.10) we have

dE u2
e Re [ uhOudx + | (II(h) — Opph) Oth dx + Re 5 Othdx .
Substitution of dyh from (1.5b), integration by parts of the second and third
term and noting the velocity boundary conditions result in

dE
pr Re/uh Oyu dx —I—/hu Oy (II(h) — Ozzh) dx + Re/ (hu) udyude .
(2.15)
Recall that from equation (1.5a)
4
0z (ash —T1(R)) = ~Re (Gpu + udyu) + - 0u(hdou) - % .
Using this in (2.15) we obtain
E_ [ (10, (hoyu) “Y g
e . (hOzu) u 5 x.
Integration by parts of the first term and noting (2.9) gives
E 2
‘Z—t = —/4h (0pu)? do — / %d:c <0, (2.16)

provided h(z,t) >0, V¢t > 0. R

Lyapunov functionals (2.13) and (2.14) also induce a generalized gradient
flow structure for (1.6) and (1.5a)—(1.5b), respectively. During the coarsening
process in an array of droplets driven by (1.5a)-(1.5b) the energy (2.14) dis-
sipates with the rate given by (2.16). As discussed in detail in [20], in such
a framework the collapse component of the coarsening process is driven by
the dissipation of energy because the energy of two droplets before collapse is
greater than the energy of the remaining one after the collapse of one droplet
plus its surrounding thin layer. In contrast, the migration of droplets does not
change the energy (2.14) of the system (1.5a)-(1.5b). It can be explained by
the presence of the Raleigh principle associated with the generalized gradient
structure. It implies the non-zero flux (or velocity) profile between droplets
in an array and in fact gives rise for the motion of droplets and consequently
for the collision component of the coarsening process. The same description of
the two coarsening effects hold for the intermediate-slip case (1.6) with (2.13).

3 Dimension-reduced model for droplet dy-
namics

3.1 The intermediate-slip case, summary

The description of the slow motion of near-equilibrium droplets in terms of
the equilibrium solutions, like those we have just discussed, with parameters



characterizing the position of the center of the droplet and its pressure that
vary on that slow time scale, was first shown in [20] for the no-slip model.
Based on their work we briefly illustrate the approach for the intermediate-
slip model.

We consider the evolution of one droplet governed by the model (1.6) on
the interval [—L, L] at the boundary at which the fluxes

J(=L)=J_, J(+L) = Jy, (3.1)

are imposed, where J. = oJ1 and 0 < 1. The fourth-order boundary value
problem is complete by requiring two more boundary conditions

ho(—L) =0, hy(L) = 0. (3.2)

Since the flux is very small, i.e. of order o < 1, one can assume the solution
h(z,t) (at every fixed time t) to have the form of a perturbed equilibrium
droplet solution A, initially centered at @ = X, corresponding to an initial
pressure Py, i.e h(z,0) = h(x — Xo, Py), and evolving on the slow-time scale

T = ot. (3.3)
Following [20] we make the ansatz
h(z,7) = h(z — X(7), P(7)) + ohy(z,7) + O(c?), (3.4)

where the position X (7) and the pressure P(7) of the droplet vary slowly in
time and obtain from (1.6) to the leading order in o

_dX _dp
~0uh —— + Oph— = Lhi, (3.5)

where L is the differential operator
Lh =0, (h*0, [II'(R)h — 0zzh]) (3.6)
and the perturbation h; satisfies boundary conditions (3.2) and flux conditions

—h? (8, [TV (h)h1 (= L) — Oypha(—L)]) = J_,
—h? (0 [IV'(R)h1 (L) — Oyuha (L)]) = J4. (3.7)

We introduce then formally the adjoint operator £*,

E*w = (H;r(h) - a;r;r) [ax(628x¢)] ’ (3'8)
the kernel of which is spanned by two functions
v B ") — hmzn
@) =1, and  t(z) = / @) = hamin, (3.9)
0
Using (3.9) and a suitable change of variables so that the linear problem with
nonhomogeneous boundary conditions (3.7) is transformed to one with homo-

geneous boundary conditions, one can impose two necessary conditions (simi-
lar to that used in the Fredholm alternative) on the solvability of (3.5), which
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result in the system of ODEs for the pressure and position of the droplet,
written in the original time scale,

% = Cp(P)(J4 — J-), % = —Cx(P)(J4 + J-), (3.10)

where

Cp(P) = —Ll : (3.11)
—/ Ophdx
—L

The only difference to the no-slip case described in [20] is found in the motion
coefficient Lo
—dx
L h?

— 2 .
/L (h - hmzn)
————dz
L h
In Appendix A we show that (3.11) and (3.12), along with coefficients
for the dimension-reduced model for the strong-slip case in the next section,
converge and do not depend on the droplet position X (¢).

Cx(P) = (3.12)

3.2 Strong-slip case

We again describe the evolution of one droplet on the interval [—L, L] governed
now by the system (1.5a)-(1.5b). We restrict our derivation to the regime
where

0?Re << 1, (3.13)

i.e. for sufficiently small Re numbers in (1.5a)-(1.5b) and assmue again the
evolution of the single droplet occurs on a slow time scale 7 (3.3) and can be
parameterized by the slow evolution of its pressure P(7) and position X (7).
We make the following asymptotic ansatz:

T = ot (3.14a)
h(z,t) = h(z— X(7),P(1)) + chi(z,7) + O(c?), (3.14b)
u(z,t) = oui(z,7) +O0(0?). (3.14c)

At the boundary of the interval we impose flux conditions, which can be writ-
ten in terms of velocity at the boundary:

u(£L) = ouy. (3.15)
In this case we define the fluxes Ji imposed on the droplet as,
J+ = ohpint+. (3.16)

After substitution of (3.14b), (3.14c¢) into (1.5a), (1.5b) and noting (3.13) to
the first order in o we have (in matrix notation)

0
- dX - dP
—0zh — + Oph —
dr +op dr

. [ & ] , (3.17)



where L is the differential operator

. [ h } _ [ 48, (hOyt) + 70y (Dgeh — RIT'(R)) — = ] | 3.18)

- g
u —0y (hu)
The velocity correction term u;(z,t) satisfies the leading order of (3.15)

ui(£L) = ug. (3.19)

Formally, the adjoint operator to L is
— g —
40;(h0zg9) — = + h 0y
(hd:9) = 3 v ] . (3.20)

o { " ] T @) - 0s) 0a(ho)

It is easy to see that the kernel of the adjoint operator is spanned by two

functions,
0
1-[2]
and _
h_hmin
/OW_(yx’ax/x’)x
where

hOyzh — 0,.h*
h3
Again using (3.21)-(3.22) and transformation of the nonhomogeneous bound-
ary conditions (3.19) to a problem with homogeneous boundary conditions,
one can impose two necessary conditions on the solvability of (3.5) which re-
sult in the ODEs (3.30a)-(3.30b). Our derivation below is equivalent to this

procedure.

To derive an equation for P(7) we multiply the second line in the matrix
equation (3.17) by ¢; and integrate over the interval [—L, L]. We can make use
of the fact that d,h is an odd function and LLL Oz (urh) dz = hppin(uy —u_).
This leads us to the equation

A(h, Oyh, Opzh) = 4 hypin (3.23)

L -1
P _ _ ( / aﬁﬁda:) Punin (105 — ), (3.24)
dr —L

which, written in the original time scale, coincides with (3.30a).

Similarly, we multiply the second line in the matrix equation (3.17) by
and integrate over the interval [—L, L]. Again using odd or even symmetry we
get

dx [* _ L _
——/ s 8xhdac——/ s Oy () i, (3.25)
dr J_r —L

which transforms to . ~
dX . f,L (0 ax(hul) dx

E - ffL@Dan;LdCC

(3.26)
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Next we calculate integrals in the denominator and numerator of (3.26). De-
note the numerator by

L
Il = / ¢2 &E(ﬁul) dr.
—L

Then, since 12(x) is an odd function and using (3.22)

— L —
Il = [hulwﬂx:iL — /_L(hul)(awa dx.

Using (3.23), integrate by parts and note that QJLLEZiL = 0, this is equal to
L B - hmzn T

I = hminta(L)(ug +u_) —/ U1 (7_ — hA> dx
L Bh
I _ _

h — hpms Oz h A
= hmian L)(ug +u_ —/ ul (ﬂ) dx + l:wul]
O e R |
4 /L aacul &vﬁ hmzn
L h

Since the third term is zero, making use of the first line from (3.17) and because
h|x:iL = Nmin We get

dz.

L o . _
I = hpinte(L)(ugy +u_) — /_L uy (%) dx — [40,u1 (h — hmm)}x::l:L

L h — hmm T
+/ ———— 40, (huy) dx

. h
Ly _p -
= hminP2(L)(uy +u_) + / . % <4ax(hamu1) — %) dzx
L

Integrating by parts twiceﬁ, where we note that 3xmx:i . = 0 and making use
of the even property (9yzhhi)|z=+1r = 0, we obtain finally
L

Il = hmin¢2(L)(U+ + u_) + /L QJL (8:v:vhl — H/(B)hl) dx

L

= hpmint2(L)(uy +u_) + / i hi (Ozy — IU'(R)) Ophda
).

= hmmwg(L)(m_ + u—

Hence, using odd symmetry of 15(z), we can write

L L7 ‘
/L v Oy () dar = % (/L % _ BAd:):) homin (s + ). (3.28)

The denominator of (3.26) can be written as

(3.27)

L B L _
I2 = /L¢2 &Eh dx = —/Lhax¢2 dx + hmm(%(L) - ¢2(—L))

L
_ _/ (h— hynin) Doty da (3.29)

—L

11



Using (3.28) and (3.29) where () is given in (3.22), the evolution equation
for the droplet (3.26) written in original time scale, finally takes form

W op(P) (s~ 1), (3.30)
‘;—f = —Cx(P) (J4 +J-) (3.30b)

for its pressure P(t) and position X (t), where

1
Cp(P) = — (3.31)
—/ Ophdx
—L
and the mobilty coefficient
L /7 _ 1 . o ~
/ (% — B A(h,O0xh, Gmh)) dz
Ox(P) = —— (hL — . (3.32)
2 / ) (TT — B A(h, Duh, D) (7 — hmm)) da

The coefficients (3.31)-(3.32) depend on the pressure P through the given
droplet stationary height profile h(z, P, L), its minimum Ay, = min h(z, P, L)
€T

and the function A(h,dyh, z,h) defined in (3.23). Next, we provide an asymp-
totic approximation for the fluxes Jy between droplets in an array and finally,
arrive to the coupled system of ODE’s for them. We observe that (3.32) dif-
fers from the corresponding coefficients for no-slip and intermediate slip and
depends now on the slip parameter j3.

In Appendix A we show convergence of the integrals in (3.32). We remark
that for the case of negligible Trouton viscosity (when S — 0) the function
BA(h, Oph,0pph) — 0 and we recover the model (3.10)—(3.12) for the inter-
mediate slip model. On the other hand when 8 — oo, we obtain a model for
suspended films for which the coefficient (3.32) is replaced by

L
/ A(h, B, Duuh) dz
Cx(P) = ——F = . (3.33)
2 / A(h, Buh, D) (B — Bin) d
L

3.3 Approximation for the fluxes between droplets

In order to make use of the reduced models to describe the coarsening process
of a whole array of droplets we derive here asymptotic expressions for the
fluxes that a droplet experiences due to its neighboring droplets, again for the
intermediate-slip model (1.6) and the strong-slip model (1.5a)—(1.5b).

Intermediate-slip case As for the no-slip case [20], we note first that the
fluxes occur through the thin film of height h = O(g), connecting the droplets,
which are assumed to have a typical distance of 1/4. Similarly, we obtain
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expression for the fluxes in the thin film by first scaling the variables to this
inner region as follows

z=dx, H=-, 71=o0t, (3.34)

where o was introduced in (3.14a). For the intermediate-slip case it can be
taken as
o =¢e%. (3.35)

Substitution of (3.34) in (1.6) yields
€207 H, = 0, (H*0.(U'(H) — £%6°0..H)) , (3.36)

with U(H) := U(h/e). Hence, to leading order the quasi stationary problem
is

where V(H) is defined by
d d? d d?
d—}; = HQdQ—IZ;{' which is, in unscaled variables % = th—hZ . (3.38)

and V' (h) = eV(h/e), so that the flux between droplets is J = -9,V (h).

Solving the outer boundary value problem 0.,V (h) = 0 with V' = V (hyin)
at the apparent contact line, i.e. where the droplet merges into the thin film,
we observe that as in [20] for the no-slip case, also here we obtain that the
flux between two neighboring droplets, labeled by k and k£ + 1 is constant and
given by their positions and pressures as

V (hmin(Prev1)) — V(hinin(Pr))
X1 — w(Pry1)] — [Xg +w(Py)]

o1 = B (3.39)
The main difference to the no-slip case is the difference in the mobility and
hence the regime of quasistatic behavior. Furthermore in contrast to (1.1), for
the intermediate-slip we now have
3?2 23

Strong-slip case As we did throughout the paper we neglect the inertial
terms in the strong-slip model to obtain

0 = %@(h@mu) + 0y (Dunh — TI(R)) — (3.412)

u
%7

In addition to (3.34) we set W = ~yu, i.e. we introduce the scalings for the
inner variables as

z=0x, H=—, 7=0t, W=~vu. (3.42)
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The equations in these inner scalings are

_ 04 29 1 () — LW
0 = S Haz(HazWHaZ (£6%0..H — U'(H)) 5 BH (3.43a)
"5—76711 = — 8, (HW), (3.43D)
where

Ti(e H) = é <%)n [1 _ (%)m_ll _ é U (H) . (3.44)

In the film between the droplets the most important term is the intermolecular
potential &/ and surface tension should be negligible. Additionally, as for
the no-slip and intermediate slip cases, we consider only the situation with
constant flux, i.e. in the following balances of terms we assume that the rate
of change in H vanishes, so that o/0 < 1.

We first consider the following case

1 o

= ~1 hence 2 =e0?<1 (3.45)
oy gl

and for small enough o, 06~2 < 1. The leading order equations for this case
are

= BH?0. (U'(H)) + HW, (3.46a)
= 0,(HW), (3.46b)
This implies that
HW = —BH?9, (U'(H)) (3.47)
and used in (3.46b) we obtain
0=20, (H?0, (U'(H))) . (3.48)
If we define V(H) as in the intermediate-slip case and note that in outer scales
2
0,V = ‘i—‘;axh = hﬂ%axh, (3.49)
we can express the flux as
J =uh = —ﬁhQCCl;TZ&Eh = —30,V . (3.50)

Integrating, we can solve for V' and obtain the same expression as in (3.40).

A comparison of the predictions of the lubrication model with the corre-
sponding ODE model for the strong-slip case above, is illustrated in figure
1. Here we follow the evolution of the array of droplets and observe good
agreement except for the actual collapse events.

Finally, note that if we rescale the velocity or flux (3.50) by 3, J = 8J;s,
where Jrg denotes the flux in the intermediate-slip case, and the time in
(3.30a), (3.30b) by 1/, then we recover the ODE model for the intermediate-
slip case in the limit 3 — 0. Moreover, our preliminary asymptotic studies
as well as numerical simulations suggest that further constant-flux regimes,
for which the model (3.30a)-(3.32) remains valid, are possible for large (.
Their complete asymptotic investigation as well as their implications on the
coarsening dynamics and rates is subject of an upcoming paper.
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Figure 1: Comparison of the results of the ODE model(dotted line) and the lubrication
model (solid line) for the strong-slip case. Shown are the evolution of droplet position
and pressure until collapse of the second droplet (left), and until the collapse of the fourth
droplet (right), for € = 0.01, L = 100, Re =0

4 Coarsening dynamics for increasing slip -
lengths

Numerical methods The numerical methods used in the preceeding para-
graph and the following section are now briefly described. For the numerical
treatment of the lubrication models we used the scheme, developed in [26, 34]
and [35]. It solves the lubrication models (1.1), (1.6) and (1.4) with the bound-
ary conditions (2.1), and the strong-slip model (1.5a)-(1.5b) with the bound-
ary conditions (2.9)-(2.10). It is a fully implicit finite difference scheme on a
general nonuniform mesh in space with adaptive time step. At every time step
the nonlinear systems of algebraic equations is solved using Newton’s method.
At every Newton iteration the resulting linear system of algebraic equations
is solved using LAPACK library.

The numerical solutions for the ODE models for the intermediate- and
strong-slip models, i.e.

dP,

r = CP(Pk)(Jk+1,k - sz,k—l)y

dX,

— = ~Ox(P)(Jkrk + 1) (41)

where Cp(Py) and Cx(Py) are given by (3.11) and (3.12) respectively, for
the intermediate-slip model and (3.11) and (3.32), for the strong-slip model
were obtained using a fourth-order adaptive time step Runge-Kutta method
in Matlab. The main difficulty was to calculate numerically the coefficients
(3.11), (3.12) and (3.32). The algorithm of their integration is explained in
appendix A.
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4.1 New coarsening effects

The numerical simulations of the lubrications models all confirmed the forma-
tion and the existence of coarsening behavior for arrays of near-equilibrium
droplets. We find that while there are mainly quantitative differences for the
coarsening process for the intermediate-slip model in comparison to the known
no-slip case, for the strong-slip case some qualitative new effects of the coars-
ening process can be observed, which do not have counterparts for the no- and
intermediate-slip models.

For negligible inertial terms and [ of small to O(1) magnitude we show the
existence of a critical value of the slip parameter (4.4) at which the direction
of the droplet migration changes. This and its consequences are investigated
numerically and analytically in section 4.2.

Moreover, it was shown in |20, 21| that in contrast to the Cahn-Hilliard
equation, used to describe coarsening processes such as phase separating bi-
nary alloys, the lubrication models describing coarsening arrays of droplets,
demonstrate besides Ostwald ripening, i.e. droplet collapse, the existence of
collisions of droplets as another coarsening mechanism. So far this component
was known to be comparable with collapse only for the no-slip model. It was
shown in [29] for the lubrication model (1.4) with mobility M (h) = h?, ¢ > 0,
that the collision component is negligible for ¢ < 2 and saturates for ¢ > 3 be-
coming comparable with collapse. That means that for the intermediate-slip
case (1.6) the collision component of the coarsening process is negligible, while
for the no-slip case it is larger and comparable to the collapse component, but
nevertheless it saturates for ¢ > 3. In contrast we will show in section 4.3,
that in the strong-slip case the collision component continously increases and
eventually becomes dominant as ( increases.

4.2 Slippage as a control parameter for migration

One of the characteristic properties of the weak-slip model (1.4) along with
(1.1) and (1.6) is the following fact: the droplet migrates always opposite to
the effective applied flux, see in particular the detailed discussion in [29]. In
the case of the k-th droplet in the array of N droplets the effective flux applied
on it is
Jepf = k1 + Jk—1. (4.2)
The explanation of the property is straightforward from the migration equation
(3.10) and the expression for the motion coefficient (3.12). One observes that
the integrands of numerator and denominator of (3.12) are always positive
because h(z, P) > hpin for all z and P and hence Cx(P) > 0. Then from
(3.10) it follows that the sign of dX/dt is always opposite to the sign of (4.2).
In contrast, in the case of the strong-slip model the analysis of (3.30b) and
(3.32) shows that a droplet can migrate opposite or in the same direction of the
applied effective flux (4.2), depending on the value of the slippage parameter
(5. This fact is explained by the influence of the new term in the expression
for (3.32), which is connected with the presence of the Trouton viscosity term
in the system (1.5a)—(1.5b).
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Figure 2: Migration of the middle droplet in the array of three droplets (upper-left plot)
for different 3. L =80, ¢ = 0.01, Re =0, P, = 0.4.

Proposition 4.1 When € and the pressure P of the droplet are sufficiently
small, there exist a unique zero 3 = Beit(P,e) << 1 of (3.32) as a function
of B, which has the asymptotics:

2
Berit = Keln (SE—P) + o(e); (4.3)

and such that the direction of the droplet migration is opposite (in the same
direction as) the flux when B < Berit (8 > Berit)-

PROOF The main estimates are done in the appendix A. From (A.20) and
(A.19) follows the existence and uniqueness of (3..;;, which is given by

I 7
h_hmin
/ b= Pomin g,

E

E .
/ A(h, 0uh, Dy ) da
—L

ch't = (4:4:)

Then (4.4) together with estimates (A.15) and (A.19) give (4.3).1

This migration effect is illustrated in figure 2. For a given array of three
droplets (. for the middle one was calculated and then solutions of (3.30a),
(3.30b) with three different values for the slip parameter 31 < B2 = Berit < 3
were obtained. Note that in the case 3 = (i the middle droplet almost does
not move. Using the formula (3.39) and given parameters of the droplet array
one can calculate that the effective flux applied on the middle droplet is always
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Figure 3: The evolution of three droplets for three different § with initial profile and
parameters as in figure 2. The first and second column correspond to middle and the end
of the evolution of the droplets, respectively.

negative. So in the case 8 < B¢rt it moves opposite to the flux and in the case
B > Berit in the same direction of the flux.

Additionally, we recall that for the no-slip model it was shown in [21] that
collisions are typically observed for a system of at least three droplets, when
two bigger droplets are attracted by a smaller droplet in between. For the
strong-slip model (1.5a)—(1.5b) two-droplet collisions are typically admitted
when 3 > fB.¢. An example of a two-droplet collision is shown in figure 3
with 8 = 1. It is a direct consequence of the fact that a droplet can migrate in
the same direction as the flux. We remark that in the case 8 < (.t (see figure
3 with 8 = 0.1 ) the two-droplet collision is not possible and the strong-slip
model behaves just as (1.6).

4.3 Coarsening patterns for increasing slippage

Starting from an initial array of ten droplets as shown in figure 4 we follow
the paths of the first eight droplets in time in figure 5, where we vary slippage
while keeping € = 0.1 fixed. Beginning with the intermediate-slip regime and
increasing slippage for the strong-slip regime we observe several changes in
coarsening behaviour, first due to the existence of f.. for every droplet in the
array and second (also as a consequence of the first fact) that migration and
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Figure 4: Initial profile used for all the coarsening simulations in figure 5

hence collision rates change with slippage in comparison with collapse.

For every droplet in the array with initial pressure P; one can calculate
Berj = Ber(Pj). In the example we chose, the values for G, ; do not differ
much from each other and are approximately contained in the interval I =
[1.18, 1.3]). When slippage is below 1.18 all droplets move opposite to the
flux, but the value of their mobility coefficient in the reduced ODE goes to zero
and hence migration rates also approach zero as  is increased. This effect can
be seen in figure 5 for § = 0.3 and 6 = 0.5. In the former case the first two
coarsening effects are the same as for the intermediate-slip case, namely first
collapse of the 6th droplet and then collision of the 2nd and 3rd ones. But in
the case B = 0.5 migration becomes so slow that the 2nd and the 3rd drops
can not collide, instead the former one collapses first.

The next qualitative change in the coarsening behavior occurs when passing
the critical interval I. We observe that one droplet after another change their
migration direction from opposite to the flux to the same direction of the flux.
For example in the case 3 = 1.25 smaller droplets (like the 2nd, 3rd, 6th and
7th) have already changed their migration direction, but the bigger ones not.
Nevertheless, we do not observe any change in coarsening events in comparison
with the case 8 = 0.5.

To see new events we need to increase slippage further. As a consequemce
the migration coefficients in the reduced model increase and hence the mi-
gration rates. This, together with the fact that now all droplets migrate in
the same direction as the flux, considerably changes the coarsening events in
our example. For example, when 8 = 2 we see that both the 5th and 6th
droplets migrate to the left, before they moved to each other together with
the 4th which now migrates to the right. Moreover, the 2nd and 3rd droplets
do not attract each other anymore, rather, the former one collides with the
first droplet and this becomes the second coarsening event in our system. The
first one is collapse of the 6th droplet.

Increasing slippage even higher, here up to 8 = 3.5, we see that migration
rates increase further, so that now the 4th and 5th droplet collide (first coars-
ening event now) before the 1st and 2nd ones and before the 6th collapses
(second coarsening event). In principle one could increase slippage further, so
that one after the other coarsening event changes from collapse to collision.
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Figure 5: First two coarsening events in the initial array for 6 different slip values:
Intermediate-slip model, strong-slip model with 3 = 0.3, 3 = 0.5, 8 = 1.25, § = 2,
B = 3.5 (arranged from left to right and from top to bottom).
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Figure 6: Coarsening rates for the intermediate-slip regime, strong-slip regime with § =
0.2, 8= 0.05 and 3 = 0.01.

In summary we demonstrated that increasing slippage, here in the inter-
val [0, 3.5], several different coarsening behaviors for an initial droplet array
can be distinguished. They illustrate that the existence of 3. influences the
coarsening dynamics by changing the direction of migration, migration rates,
which decreases to zero when one approaches the critical slippage interval [
and that collisions become dominant after further increase of the slip length.

4.4 Coarsening rates

As was shown in previous sections the value of the slip-length parameter 3 in
the strong slip regime considerably influences the coarsening behavior of an
initial system of droplets and the contribution of collision component depend-
ing on how close this value is to the mean critical slip length of the system (at
which all droplets almost do not move and just collapse). Naturally, this fact
should imply some dependence of the collision dominated coarsening rates on
the value of the slip length.
In [20] the coarsening dynamics of initially well-separated systems of droplets

which experience in general only collapse coarsening effects (so called collapse
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dominated coarsening rates) was investigated and it was shown that the sta-
tistical number of droplets N(t) in such a system changes in time according
to

N(t) o t72/°, (4.5)

Furthermore, [30] considered the lubrication model (1.4) with mobility term
M (h) = h and derived the law (4.5) on the basis of the gradient flow structure
of the equation. As the equation for the evolution of droplet pressures is the
same in the reduced models for all slip-regimes it is natural to expect that
the coarsening rate law for collapse dominated systems does not depend on
the chosen slip regime and is always given by (4.5). Moreover, in [21] it
was shown that for the 1D no-slip regime any initial system of droplets will
coarsen according to (4.5) independent of the proportional number of collision
and collapse events during the coarsening process.

We simulated for various initial configurations and number of points N
the coarsening dynamics of the intermediate-slip regime and found (as was
expected from the results of [29]) that the percentage of collisions is very
small. As is claimed in [29] the intermediate-slip regime is essentially collapse
dominated and hence coarsening rates for it are given by (4.5).

We then solved the reduced system (3.30a), (3.30b) for the corresponding
strong-slip model for the similar initial distributions of droplets and values
for the slip-length parameter 8 = 0.2, § = 0.05 and 8 = 0.01. We observed
firstly that the proportion of collisions becomes dominant and increases with
slippage. Secondly, the corresponding coarsening rates have slopes ~ t~1/3 for
A = 0.2 and decrease to ~ t~2/5 as shown in figure 6. Note, that for the chosen
parameters € and Pjeq, the formula (4.3) entails that the mean critical slip-
length parameter (.5 ~ 0.01. and our chosen slip lengths 5 = 0.05, 3 = 0.2
are beyond the critical values.

The analytical derivation and more precise analysis for the dependence of
collision dominated coarsening rates on the slip length in the strong-slip regime
is subject of our ongoing research.

Conclusions

In this paper we have derived reduced models that capture the slow-time mi-
gration of arrays of droplets driven by intermolecular forces and analysed the
influence of interfacial slippage. We distinguished several new qualitatively
different coarsening behaviors as the slip length is increased. Apart from the
no-slip and intermediate-slip case, also the strong-slip case shows migration
direction of a droplet opposite to the flux, but for the strong-slip case only
below a critical slip length 3... At this value the droplet will stop moving,
and above this value the droplet will migrate in the same direction as the flux.
Along with this transition also the occurrence of the coarsening mechanisms,
i.e. collapse and collision, change. While for the no-slip, intermediate-slip and
for the strong-slip case until the critical slip length, the collision component
becomes at most comparable to collapse, increasing slippage beyond (., col-
lision component becomes dominant. Additionally, the type of collision also
changes; below ., it typically takes at least three droplets for a collision event,
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where the smaller droplet in the middle vanishes. Above [, collisions of just
two droplets are typical owing to the fact that now the droplets move in the
same direction as the flux.

As a result of these different coarsening behaviours we have also illustrated
that the coarsening patterns will take completely different paths as the slip
length is increased.

All of the cases considered in this paper neglect inertial effects and the
limiting cases of very large 5. Comparison with numerical solutions of the
strong-slip lubrication model show that if (3.13) is not satisfied anymore, the
approximations (3.11) and (3.32) seize to be valid for (1.5a)—(1.5b). Addi-
tionally, our preliminary numerical investigations show that for example when
02Re = O(1), then qualitatively new droplet dynamics can be identified. The
pressure inside the droplets are not constant anymore and have a complicated
nonlinear structure. The two components of the coarsening process, collision
and collapse, still exist, but now also oscillatory behavior of droplet formation
appears. The question arises if for regimes, where o?Re > O(1) it is still
possible to obtain reduced models for the late phases of dewetting. This is
subject of our ongoing studies.

A Convergence, numerical integration
and asymptotics for the coefficients Cp(P)
and Cx(P)

Here we show that the coefficient functions in (3.11), (3.12), (3.31) and (3.32)
converge and can be integrated numerically. Below K;, ¢ =1,..,11 everywhere
denote constants.

The contribution to the coefficient Cp(P) to the leading order comes from
the droplet core and we can neglect the contribution from the ultrathin film
when € << 1. Therefore it can be calculated as in [20]:

1 3pP3
pr— L B pr— 4A37
—/ Ophdx
—L

where A = —4/2|U(€)| is a droplet contact angle (see [20]).

For the coefficient Cx (P) we have the formulas (3.12) or (3.32) which can
be written as ratios of improper integrals. In order to prove that these integrals
converge we need to prove that the integrals

Cp(P) (A1)

L (B_hmm)n L 7 7 "(hH
I = / Cmn) i, 1y = / AR, D, Dk (—Bmin)™ dz: (A.2)
—L —L

converge for all P € (0, P4z ), where n =1,2 and m =0, 1.

Let us start from I;,. Using first integral R(h) given by (2.7) for the
steady state equation (2.3a) one can change variables in (A.2) and integrate
both integrals over hpin < h < At

hm(lﬂ') _ . n
I, = 2/ = hanin)” ) (A.3)
h

min P2\/2R(h)
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These integrals are improper at both ends of the integration interval because
R(hmin) = R(hmaz) = 0. One can see that R(h) is of a form:

gy~ KL bl lo)

where hpeq < 0 is the third real root of R(h). Canceling h — Ay, in the
denominator and the numerator the integral becomes improper only at the

end hpar
frmaz (h - hmin)nil

hmin \/h(h - hma;r)(h - hneg)

We assure that I, converges by making a second change of variables in (A.5):

I, =Ko

dh, (A.5)

h = hmazcos(6). (A.6)

Then we find from (A.5)

do. (A7)

. acos(ZZiZ) (005(9) - hmin/hmax)nil 005(9/2)
L= KS/() \/c0s(0)(cos(0) — hneg/hmaz)

The last integral is proper and can be integrated by the three-point Gaussian
quadrature.

Let us now calculate the second type of integrals, namely I ,,, in (A.2). As
before we use (2.7) to change variables and integrate over hpin < h < hpnas:

/hmw A(h, Oyh, Opzh) (B — hpin )™
Iym = 2
h 2R(h)
8 / " Bupin (h = hanin) ™ (W(h) = P)
Boin h2\/2R(h)
hmaz pin (B = Bumin)™ /2R (h)
- 8 dh.
h

min

h3

min

=: 8hpin (I%ym +13,,)

The second integral I3, in (A.8) is a proper integral at both ends of the inte-
gration interval and therfore converges. But the first integral IZI,m is improper
at the both ends. Note that numerator II(h) — P is of the form

 Ka(h = hyin)(h — he) (R + a?)

" , (A.9)

where h,. is given by (2.5) in section 2 and a? is the modulus of two conjugate
complex roots of II(h) = P. Using (A.4) and (A.9) one can simplify I%,m as

follows:
" Romin \/hg(h - hmax)(h - hneg)

Hence I%,m becomes proper at h,i,. To make it proper at the right end h,q,
we use again trigonometric change of variables (A.6) and proceed exactly as
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in case of I; , above. It makes I2l,m a proper integral that can be integrated
by the three-point Gaussian quadrature.

We have in summary that both integral in (A.2) converge (in particularly
does not depend on X(¢)) and can be calculated numerically. The numerical
error of the calculation of (3.12) or (3.32) is algebraic in € due to the usage
of truncated expansions (2.4) and (2.8) in powers of € for A, and s
respectively.

Besides the direct calculation of (A.2) one can estimate these integrals
asymptotically in a limit P, ¢ — 0 following the similar approach in Appendix
of [21]. Such asymtotics we use in the sec.(4.2) for estimating of (... For
such purposes we derive here the leading order asymptotics of integrals Iy 1
and I and prove that I g > 0 and I3 1 < 0 for all sufficiently small P and e.

Applying the Taylor expansion to (2.7) in the neighborhoods of A, and
Rmaz ONE can obtain:

1 7 2
R(h) ~ 4 U Pmin) (= Ponin e D (A1)
[P - U/(hmaév)] (hma;r - h), h — hmax

Analogously one can show:
II(h) — P ~ I(hmin)(h — hmin), B — hmin (A.12)

To estimate I, from (A.11) we note that for h — hyy,y, the ratio (h —
hmin)/\/2R(h) approaches a positive constant. Consequently, for A, — 0,
the factor 1/h? makes the integrand relatively large there. This contribution,
along with the contribution for A — h,,., leads to the estimate,

/hc dh frmaz h Pmin
\/ mzn hmin \/2’P U ma;r ’ homin max —h

(A.13)
where h. given by (2.5) yields an effective cut-off for the influence of the
behavior near h,;,. Both integrals in (A.13) can be integrated analytically.
Denoting them .71171 and .722,1 respectively and expanding w.r.t. P, ¢ — 0 one
obtains to the leading order:

dh

2
Ill,1 ~ K¢+ O(eP); Ill~K7ln (3 P) + Kg + O(eP), (A.14)

Hence the final asymptotics for I; 1 w.r.t. P, € — 0 is of the form:

Let us now estimate the integral I>y. To this end one needs to estimate
integrals .72170 and .72270 in (A.8). For the integral .72170 analogously to (A.13) and
using (A.11), (A.12) and relation between (1.2), (1.3) from the sec.(1) one can
write

h h
max H(h) cen dh
I = / dh \/ Pomin /
270 hmzn h2 V R( mzn

hmaac _ P

—dh, A.16
\/2|P U max | hmin max h ( )
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where both integrals at the right-hand side can be integrated analytically.
Again expanding the results in P, ¢ — 0 one obtains

Ky

o= =+ O(eP), Kg > 1. (A.17)

For the integral .72270 one obtains:

hmaz\ /9R(h 1 1
122,0 - h3( ) dh < V ]%ma;r/2 ( >

1 P
= —+0|— A.18
ot () , (A.18)
where R4 := R(h:) is a maximum of the positive function R(h) which is

attained at h.. Finnaly from (A.17) and (A.18) one obtains that the integral
I is positive for sufficiently small P, € and has the following asymptotics:

K
Lo~ —240(1), Ky >0. (A.19)
€

One should notice that the similar estimation can be applied to the integral
I5 1. The only difference here is that the integrand of .72171 is improper only at
the end h = hj,q, while is zero at h = hy,;,. Hence the main contribution to
.72171 comes from h — hpqz. The final asymptotics for I is of the form:

Iy~ K+ 0(eP), Ky <0, (A.20)

and hence I is negative.
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