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Abstract. We analyze some parameter choice strategies in regularization of in-
verse problems, in particular the (modified) L-curve method and a variant of the
Hanke–Raus rule. These are heuristic rules, free of the noise level, and they are
based on minimization of some functional. We analyze these functionals, and we
prove some optimality results under general smoothness conditions. We also devise
some numerical approach for finding the minimizers, which uses model functions.
Numerical experiments indicate that this is an efficient numerical procedure.

1. Problem formulation and theoretical background

The choice of the regularization parameter in inverse problems is an important issue,
and the key to successfully solving such problems. Among the many parameter
choice strategies there are those with a sound mathematical foundation, and others,
which are heuristic. Nevertheless, some of these heuristic rules are widely used, as
for instance the L-curve method. It is known that such heuristic parameter choice
rules cannot be convergent, i.e., reliable under any circumstances, as they do not use
the noise level. Here we discuss the (modified) L-curve and a variant of the Hanke-
Raus rules. Both are based on minimizing a corresponding (non-linear) functional
of the regularization parameter, and both use the (realized) discrepancy to judge a
given regularization parameter.

We establish a mathematical calculus, which allows to prove optimality for both
parameter choices, provided that the corresponding functional has an interior global
minimum, an assumption which cannot be guaranteed, in general. Moreover, we
use model functions to devise a numerical procedure for obtaining a minimizer,
approximately.

The analysis is mainly restricted to Tikhonov regularization of linear problems in
Hilbert space. Precisely, suppose that we are given noisy data

(1) yδ = Ax+ δξ,

where A : X → Y is a (compact) linear operator acting between (real) Hilbert spaces,
and ξ is noise, norm–bounded by one. The factor δ represents the noise level, which
in most of this study is supposed to be unknown. In order to approximately solve
this equation for the unknown element x ∈ X one must use regularization. Here we
consider linear regularization gα, thus we consider the one-parameter family

(2) xα,δ = gα(A∗A)A∗yδ, α > 0,

as candidates for the approximate solution. Details on the construction and prop-
erties are postponed to Section 3.

There are two important quantities, relevant in this context, and influencing the
choice of the regularization parameter. These are

f(α) := ‖xα,δ‖2, α > 0, and(3)

ρ(α) := ‖Axα,δ − yδ‖2, α > 0.(4)
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The former is the (squared) solution norm. The latter is called the (squared) dis-
crepancy, and it admits the alternative representation

(5) ρ(α) = ‖rα(AA∗)yδ‖2, α > 0,

with the residual function rα(t) := 1− tgα(t), see Section 3 for details. It remains to
choose the regularization parameter α. Under smoothness assumptions, say ϕ, the
discrepancy as a function of α typically has the magnitude of

√
αϕ(α)+δ. In the L-

curve parameter choice this contribution was weighted by the norm of xα,δ. As was
pointed out in [11], under the framework of Tikhonov regularization, this principle
is related to the following modification, which aims at minimizing the functional

(6) Ψµ(α) := ‖Axα,δ − yδ‖2‖xα,δ‖2µ −→ MIN!

The tangent slope value is −1/µ when the regularization parameter is chosen by the
L-curve method at (

log ‖Axα,δ − yδ‖2, log ‖xα,δ‖2
)
.

Actually, in loose terms this minimization corresponds to minimizing ϕ(α) + δ/
√
α.

But this can also be achieved by directly weighting the discrepancy by the fac-
tor 1/

√
α. The resulting heuristic parameter choice was presented in [3, Sect. 4.5

(4.115)]. It requires to minimize the function

(7) Ψ(α) :=
‖Axα,δ − yδ‖2

α
−→ MIN!

Remark 1. We mention that the discrepancy principle can also be derived from
minimizing the functional

ΨD(α) :=
∣∣ρ(α)− c2δ2

∣∣2 −→ MIN,

where the constant c > 1 is chosen appropriately. The present model function
approach also applies to this principle, however, the analysis was presented in [8, 12],
and we do not repeat it here.

The theoretical results which are related to such choices of regularization parameter
use the realized discrepancy. Precisely, if by some method the parameter α∗ has
been chosen, then we let

(8) δ∗ := ‖Axα∗,δ − yδ‖
be the realized discrepancy according to this parameter choice. In principle, this
quantity can be observed from the computations, and this knowledge can be used
for predicting error bounds.

For applying any of the above parameter choice we must address the following
questions.

(1) Does such minimizer α∗ from (6) or (7), respectively, always exist?
(2) If it exists, what is the quality of the chosen reconstruction?
(3) Is the realized discrepancy δ∗ of similar size as the error level δ?

Therefore our subsequent analysis is as follows. We first provide some preliminary
analysis which points at the existence of minimizers for the functionals of interest.
Next we provide theoretical error bounds in terms of the relation between the true
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error level δ and the realized discrepancy δ∗, granted that some minimizer exists. We
then turn to the model function approach to speed up the search for a regularization
parameter α∗, and we indicate that this is a reasonable way. At the same time we
observe that the use of the rule from (7) is limited in real applications. This is shown
by relating the true noise level to the realized discrepancy.

We conclude the study with a simple one–step proposal, which arises from numerical
experiments.

2. Preliminary analysis for Tikhonov regularization

Tikhonov regularization is derived from minimizing the functional

(9) Tα(x) := ‖Ax− yδ‖2 + α‖x‖2 −→ MIN,

for given parameter α > 0. In Hilbert space this is a smooth convex functional and
the following is known, see e.g. [8]. The unique minimizer xα,δ of (9) is given as

(10) xα,δ := (A∗A+ αI)−1A∗yδ, α > 0.

Moreover, the minimization problem obeys the following variational form

(11) 〈Ax,Ag〉+ α〈x, g〉 = 〈yδ, Ag〉, g ∈ X,
and xα,δ is the unique solution to this.

2.1. The fundamental function h(α). It turns out to be interesting to study the
Tikhonov functional (9) at the minimizer xα,δ, i.e., we let

(12) J(α) := Tα(xα,δ) = ‖Axα,δ − yδ‖2 + α‖xα,δ‖2, α > 0.

Functionals of this type were used to derive a model function approach in [8, 12],
and we will recourse to this idea in Section 4.

Here we make the following observation. If we insert g := xα,δ in (11) then we obtain
that

(13) 〈yδ, Axα,δ〉 = ‖Axα,δ‖2 + α‖xα,δ‖2.

The latter function will be fundamental and we assign

(14) h(α) := ‖Axα,δ‖2 + α‖xα,δ‖2, α > 0.

If, in real Hilbert space, we rewrite the functional J from (12) then we obtain that

J(α) = ‖Axα,δ‖2 − 2〈yδ, Axα,δ〉+ ‖yδ‖2 + α‖xα,δ‖2.

Using the identity (13) and the function h from (14) yields the identity

(15) ‖yδ‖2 = J(α) + h(α), α > 0.

The behavior of these functions depends on the given data yδ, in particular it proves
important whether these belong to the domain of the Moore-Penrose inverse or not.
To describe this we let Q : Y → Y denote the orthogonal projection onto R(A), the
closure of the range of the operator A. It is well known that the data yδ belong to
the domain of the Moore–Penrose inverse exactly if Qyδ ∈ R(A).
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Properties of the function h can be derived from known properties of the func-
tional J , cf. [8, Lemma 2.3].

Lemma 1. The function h(α), α > 0, is decreasing and convex. If Qyδ 6= 0 then it
is strictly decreasing and strictly convex.

The impact for the functions f and ρ is summarized as follows.

Lemma 2. The following representations hold for the functions f and ρ from (3)
and (4).

(1) f(α) = −h′(α), α > 0, and
(2) ρ(α) = ‖yδ‖2 − (h(α)− αh′(α)), α > 0.

Moreover, it holds that

(16) ρ′(α) = −αf ′(α), α > 0.

Proof. We know from (15) that J ′(α) = −h′(α). We also know from [8] that J ′(α) =
‖xα,δ‖2 = f(α), which yields the first assertion. The second assertion follows
from ρ(α) = J(α) − αJ ′(α). The final assertion follows from differentiating the
representation in the second item. ¤

The following consequences are important, cf. [8, Lemma 2.3].

Corollary 1. If Qyδ 6= 0 then f ′(α) < 0 and ρ′(α) > 0, α > 0. Thus, the function
f is strictly decreasing and the function ρ is strictly increasing in this case.

Proof. We know from [8, Lemma 2.3] that the functional J is strictly increasing and
strictly concave if Qyδ 6= 0. Hence, the function h must be strictly decreasing and
strictly convex, in this case. Consequently, we have that h′(α) < 0 and h′′(α) > 0.
The proof can be completed using Lemma 2 and its consequence that ρ′(α) =
αh′′(α). ¤

Remark 2. We stress that all the above results could have been obtained using
spectral calculus, and we sketch this in case that the operator A∗A is compact and has
singular numbers t1 ≥ t2 ≥ · · · ≥ 0, and corresponding singular functions u1, u2, . . . .
Let us abbreviate yj := |〈yδ, uj〉|. Then we can take the representation of the solution
from (10) to derive the explicit form for the function h from (14) as

(17) h(α) =
∑
tj>0

t2j

(tj + α)2y
2
j +

∑
tj>0

αtj

(tj + α)2y
2
j =

∑
tj>0

tj
tj + α

y2
j .

So, for historical reasons we found it useful to derive the above properties without
using spectral calculus, but we will use this in our subsequent analysis, occasionally.

We add the following technical assertion, where we make use of spectral calculus.

Lemma 3. It holds true that

(18) 2 (−h′(α))
2 ≤ h(α)h′′(α), α > 0.
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Proof. Using the Cauchy Schwartz inequality, we have that

−h′(α) =
∑
tj>0

tj

(tj + α)2y
2
j =

∑
tj>0

t
1/2
j

(tj + α)1/2
yj

t
1/2
j

(tj + α)3/2
yj

≤

∑
tj>0

tj
tj + α

y2
j

1/2∑
tj>0

tj

(tj + α)3y
2
j

1/2

= (h(α))1/2

(
h′′(α)

2

)1/2

.

Squaring this inequality yields (18), and completes the proof. ¤

2.2. Minimizers: existence and properties. We turn to analyzing the func-
tionals from (6) and (7), respectively. The modified L-curve method is based on
minimizing the functional in (6), which, for given fixed parameter µ > 0, reads as

(19) Ψµ(α) := ‖rα(AA∗)yδ‖2‖xα,δ‖2µ, α > 0,

and properties of this functions are important. With the functions f and ρ from (3)
and (4), respectively, we have that Ψµ(α) = ρ(α)fµ(α).

Lemma 4. For Tikhonov regularization we have the representation

Ψ′
µ(α) = fµ−1(α)f ′(α) (µρ(α)− αf(α)) ,

Ψ′′
µ(α) =

(
fµ−1(α)f ′(α)

)′
(µρ(α)− αf(α))− fµ−1(α)f ′(α) ((µ+ 1)αf ′(α) + f(α)) .

This can be translated into necessary and sufficient conditions for minimal values.

Corollary 2. Any minimizer α∗ of the functional (6) must satisfy the first order
condition

(20) µ‖rα∗(AA
∗)yδ‖2 = α∗‖xα∗,δ‖2.

Any such stationary value α∗ is a minimum provided that

(21) −(µ+ 1)α∗f
′(α∗) < f(α∗).

We turn to the second approach using the functional from (7).

Lemma 5. For Tikhonov regularization we have that

Ψ′(α) = − 1

α2

(
ρ(α) + α2f ′(α)

)
,(22)

Ψ′′(α) =
1

α3

(
ρ(α) + α2f ′(α)

)
− (f ′(α) + αf ′′(α)) .(23)

Again, this results in necessary and sufficient conditions for minimizers.

Corollary 3. Any minimizer α∗ of the functional (7) must satisfy the first order
condition

(24) ‖rα∗(AA
∗)yδ‖2 = −α2

∗f
′(α∗).

Any such stationary value α∗ is a minimum provided that

(25) α∗f
′′(α∗) < −f ′(α∗).
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We turn to a first discussion whether minimizers exist, and we start from the ob-
servation first pointed out in [11, Lemma 6]. We formulate this criterion for the
functional Ψµ from (6), only.

Theorem 1. Let 0 < α1 < α0 <∞. There is a minimizer α∗ for Ψµ in (α1, α0) if

(26) µρ(α1) > α1f(α1) and µρ(α0) < α0f(α0).

Proof. The function Ψµ is continuous, and hence must have a minimum, say α∗
in [α1, α0]. We claim that this must be an interior point. To this end, a look into
Lemma 4 reveals that both conditions from (26) are equivalent to Ψ′

µ(α1) < 0 and
Ψ′

µ(α0) > 0. In particular there must be points α0 > β1 > α1 and α1 < β0 < α0

with Ψµ(β1) < Ψµ(α1), Ψµ(β0) < Ψµ(α0), and the end points cannot be minimal
values. ¤

If one wants to use the functionals in numerical implementation, then one has to find
an initial parameter α0, possibly large, where to start searching for the stationary
value α∗. In general this may be difficult.

Theorem 2. For Tikhonov regularization there is no initial parameter α0 > 0 such
that

(27) µ‖rα0(AA
∗)yδ‖2 < α0‖xα0,δ‖2,

which does not depend on the data yδ.

Proof. We rewrite both sides by spectral calculus and obtain the equivalent inequal-
ity

µ
∑
tj>0

α2
0

(tj + α0)2
y2

j <
∑
tj>0

α0tj
(tj + α0)2

y2
j .

If this is to hold for any square summable sequence yδ, then, by letting successively yj

be the jth unit vector, it must necessarily hold that

µ
α2

0

(tj + α0)2
<

α0tj
(tj + α0)2

, for all j = 1, 2, . . . ,

but the latter holds only for tj > µα0, and hence α0 must equal zero, which is a
contradiction. ¤

Similarly, one can prove

Theorem 3. For Tikhonov regularization there is no initial parameter α0 > 0 such
that

(28) ‖rα0(AA
∗)yδ‖2 < −α2

0f
′(α0),

which does not depend on the data yδ.

In a similar fashion one can verify that, for both functionals Ψµ and Ψ, there is no
parameter α1 in the range (0, ‖A∗A‖) which obeys the reverse inequalities from (27)
and (28), respectively, regardless of the data yδ. These results already exhibit the
difficulties for numerical use, and this is in conformance with Bakushinski’s veto,
which asserts that principles which do not use the noise level δ, explicitly, must fail,
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at least for some instances. The applicability of the functionals from (6) and (7) thus
depends on additional behavior of the singular values tj > 0 of the operator A∗A
and (in relation to) the data yδ.

2.3. The reciprocal solution norm. Here we briefly analyze the function f from (3),
or more specifically its companion

(29) g(α) :=
1

‖xα,δ‖
, α > 0.

Lemma 6. For Tikhonov regularization the function g from (29) is a concave in-
creasing function. It holds that limα↘0 g(α) = 0 if and only if Qyδ 6∈ R(A).

Proof. For Tikhonov regularization we can rewrite f , using spectral calculus, see
Remark 2, and obtain the explicit representation as

(30) f(α) =
∑
tj>0

tj

(tj + α)2y
2
j .

Term-wise differentiation provides us with

(31) f ′(α) = −2
∑
tj>0

tj

(tj + α)3y
2
j , α > 0.

The latter function is finite for all α > 0, such that we may interchange differ-
entiation and summation. Observe that (31) shows that the function f is strictly
decreasing, and its reciprocal will thus be increasing.

By the definition, it yields that g = 1/
√
f , and differentiation provides us with the

first and second derivatives

g′ = − f ′

2f 3/2
,(32)

g′′ =
3

4f 5/2

(
(f ′)

2 − 2

3
ff ′′

)
.(33)

Concavity of g is established if the difference in the brackets is non-positive. This
will be shown by using the Cauchy Schwartz Inequality, similar to the proof of
Lemma 3. To this end we observe that

f ′′(α) = 6
∑
tj>0

tj

(tj + α)4y
2
j , α > 0.

Hence we can bound

−f ′(α) = 2
∑
tj>0

tj

(tj + α)3y
2
j = 2

∑
tj>0

√
tj

tj + α
yj ·

√
tj

(tj + α)2yj ≤ 2f 1/2

(
f ′′

6

)1/2

.

Squaring the above inequality yields concavity of g.

We see from (30) that f(α) → 0, and hence that g(α) →∞, as α→∞. It remains
to prove that limα↘0 g(α) = 0 if and only if yδ 6∈ R(A). By monotonicity the limit
exists, and it is bounded away from zero exactly if {‖xα,δ‖, α > 0} is bounded. The
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fundamental dichotomy from regularization theory, see [3, Prop. 3.6] asserts that
this is the case if and only if Qyδ ∈ R(A), and the proof is complete. ¤

The following consequence is interesting.

Corollary 4. Suppose that Qyδ 6∈ R(A). For Tikhonov regularization the inverse
function

s −→ g−1(s), s ≥ 0,

is convex, increasing, and obeys lims↘0 g
−1(s) = 0.

Remark 3. Increasing and continuous functions, say ϕ, which obey limt↘0 ϕ(t) = 0
are called index functions, as these are used to represent smoothness in terms of
general source conditions, see (36).

3. Theoretical error bounds

Here we neglect the difficulties for finding non-trivial minimizers of the functionals,
and we assume that we have found some. Then we may ask for certain optimality
properties of the chosen parameter, say α∗.

In addition, we present the following theoretical error bounds for more general classes
of regularization, where the solutions are given as xα,δ := gα(A∗A)A∗yδ, where gα is a
one-parameter family of complex functions, used as operator functions via spectral
calculus, and we refer to [3] for a monograph. Tikhonov regularization is given
via gα(t) := 1/(t+ α), α > 0.

One crucial property of such general linear regularization schemes is their qualifi-
cation, i.e., the ability to react to given smoothness. In this context the residual
function rα(t) := 1− tgα(t), α > 0, is important, and by its very definition we have
that ρ(α) := ‖rα(A∗A)yδ‖2, which was already stated in Section 1. Several method
dependent constants are relevant. We let

(34) γ0 := sup
α>0

sup
0<t≤‖A∗A‖

|rα(t)| = sup
α>0

sup
‖yδ‖≤1

‖rα(A∗A)yδ‖2.

Furthermore, noise propagation requires to know

(35) γ∗ := ‖gα(A∗A)A∗ : Y → Y ‖.
For smoothness given in terms of general source conditions of the type

(36) x ∈ Hϕ := {x, x = ϕ(A∗A)v, ‖v‖ ≤ 1} ,
the notion of qualification has been introduced in [10]. Here the function ϕ is
supposed to be an index function as described in Remark 3, and we recall

Definition 1. A regularization is said to have qualification ψ (with constant γ ≥ 1)
if

|rα(t)|ψ(t) ≤ γψ(α), α > 0.

For Tikhonov regularization we have that rα(t) = α/(t + α), and hence γ0 = 1. Its
(maximal up to constants) qualification is known to be ψ(t) = t, t > 0, see [10],
again.
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3.1. Bounding the bias. The following results generalize previous analysis from [4].
In approaches which are based on using the discrepancy one always has a bound for
the bias in terms of the realized discrepancy, and we shall first establish this. To do
so we will use the modulus of continuity, which is given as

ω(A+, Hϕ, δ) := sup {‖x‖, x ∈ Hϕ, ‖Ax‖ ≤ δ}), δ > 0,

see [7] for details.

Proposition 1. Let gα be a regularization (with constant γ0), using data (1). For
any parameter choice α∗ let δ∗ be the realized discrepancy according to this parameter
choice.

If the true solution obeys x ∈ Hϕ then

(37) ‖rα∗(A
∗A)x‖ ≤ (1 + γ0)ω(A+, Hϕ,max {δ, δ∗}).

Consequently, it holds true that

(38) ‖rα∗(A
∗A)x‖ ≤ 4γ0ϕ(Θ−1(max {δ, δ∗})).

Proof. Using the triangle inequality we bound

‖rα(AA∗)y‖ ≤ ‖rα(AA∗)yδ‖ + ‖rα(AA∗)(y − yδ)‖ ≤ δ∗ + γ0δ.

Let z := 1
γ0
rα(A∗A)x. Notice that we can rewrite the above bound as

‖Az‖ ≤ δ +
δ∗
γ0

≤ (1 +
1

γ0

) max {δ, δ∗} .

Moreover, under x ∈ Hϕ with x = ϕ(A∗A)v, it holds that

z = ϕ(A∗A)
rα(A∗A)

γ0

v,

and ‖ rα(A∗A)
γ0

v‖ ≤ 1, hence z ∈ Hϕ.

Therefore, by the definition of the modulus of continuity we have that

‖z‖ ≤ ω(A+, Hϕ, (1 +
1

γ0

) max {δ, δ∗})),

which implies (37) using monotonicity, and multiplying by γ0. The final consequence
is the well known bound for the modulus of continuity, as ω(A+, Hϕ, δ) ≤ 2ϕ(Θ−1(δ),
which follows from spectral cut–off. ¤

Remark 4. The above bound strongly suggests to have δ∗ of similar size as the noise
level δ. In case the latter is known to us this goal is achieved by the discrepancy
principle.

Notice also, that the bound on the bias was obtained without any requirement on
the qualification of the chosen regularization, a drawback which is responsible for
saturation, and we refer to [9].

The final assertion uses the fact that the modulus of continuity is a lower bound
for any method of reconstruction, and thus the bound obtained for spectral cut–off
may be used to bound the modulus, we refer to [7] for details.
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3.2. Controlling the overall error. Thus, if we want to bound the overall error
for a chosen parameter choice rule, we must assess the noise propagation. For both
the above rules from (6) and (7) this can be done, and we present the following
results which extends previous bounds to the situation of general source conditions.
We emphasize, that parameter choice rules which use the discrepancy require higher
qualification than smoothness of the true solution. Precisely, if x ∈ Hϕ, then the
qualification is required to be at least

(39) Θ(t) :=
√
tϕ(t), 0 < t ≤ ‖A∗A‖.

For the modified L-curve functional from (6) we need an additional assumption,
called ∆2-condition, for the inverse function g−1 corresponding to (29).

Assumption 1. There is a constant C2 ≥ 1 such that

(40) g−1(2s) ≤ 2C2g−1(s), s > 0.

Remark 5. Notice that in Corollary 4 and for Tikhonov regularization the func-
tion g−1 was shown to be convex and increasing, and hence the constant C2 cannot
be less than 1, in this case. Furthermore, and more importantly, the validity of such
∆2-condition depends on the interplay between the singular numbers of A∗A and
the data yδ.

Theorem 4. Fix any µ > 0, and let α∗ be a global minimizer of (6). Suppose that
x ∈ Hϕ, and that the function g−1 from Corollary 4 obeys Assumption 1.

If the regularization gα has qualification Θ with constant γ then

(41) e(xα∗,δ, x, δ) ≤

(
4γ0 + γ∗

(
2µ+1γ

δ

δ∗

)C2
µ

)
ϕ(Θ−1(max {δ, δ∗})),

where δ∗ > 0 denotes the realized discrepancy as in (8).

Proof. We use the natural error decomposition to deduce that

e(xα∗,δ, x, δ) ≤ ‖rα∗(A
∗A)x‖ + γ∗

δ
√
α∗
.

The bias was bounded in Proposition 1, and yields that

‖rα∗(A
∗A)x‖ ≤ 4γ0ϕ(Θ−1(max {δ, δ∗})).

We turn to bounding the noise term. Being a minimizer of Ψµ, we also have the
inequality Ψµ(α∗) ≤ Ψµ(α̂), where α̂ is chosen from Θ(α̂) = δ. We bound

‖Axα̂ − yδ‖ ≤ (‖Axα̂ − Ax‖ + ‖Ax− yδ‖)
≤ (‖rα(AA∗)Ax‖ + δ) ≤ γ(Θ(α̂) + δ) = 2γδ,

where we used that γ ≥ 1. Therefore, using the realized discrepancy, we have that

‖xα∗,δ‖2µδ2
∗ ≤ (2γδ)2 ‖xα̂,δ‖2µ,

which implies that

g(α̂) ≤
(

2γ
δ

δ∗

)1/µ

g(α∗).
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If (2γδ/δ∗)
1/µ ≤ 1 then this implies that α̂ ≤ α∗, since g is increasing. Otherwise,

let κ be the smallest integer such that 2κ is larger than or equal to (2γδ/δ∗)
1/µ > 1.

Iterating the ∆2 condition κ times yields

α̂ ≤ 2C2κα∗ ≤ 2C22C2(κ−1)α∗ ≤
(

2µ+1γ
δ

δ∗

)C2
µ

α∗.

This allows to bound the noise propagation as

γ∗
δ

√
α∗

≤ γ∗

(
2µ+1γ

δ

δ∗

)C2
µ δ√

α̂
= γ∗

(
2µ+1γ

δ

δ∗

)C2
µ

ϕ(Θ−1(δ)).

This gives the error bound from (41) and completes the proof. ¤

Remark 6. To the best of our knowledge, Theorem 4 is the first optimality result for
the modified L-curve method (6) within the deterministic noise model. Since this
holds true for any chosen parameter µ > 0, we may use the equivalency analysis of
the modified L-curve and original L-curve method in [11, Thm. 1], to conclude that
for the (true but unknown) parameter µ0, a similar result is valid for the original
L-curve method.

A similar and simpler reasoning applies for the second criterion (7) and provides us
with

Theorem 5. Suppose that x ∈ Hϕ, and let α∗ be a minimizer of (7). If the regu-
larization gα has qualification Θ with constant γ then

(42) e(xα∗,δ, x, δ) ≤ 2γ0

(
2 + γ∗

δ

δ∗

)
ϕ(Θ−1(max {δ, δ∗})),

where δ∗ > 0 denotes the realized discrepancy as in (8).

Proof. We use the natural error decomposition to deduce that

e(xα∗,δ, x, δ) ≤ ‖rα∗(A
∗A)x‖ + γ∗

δ
√
α∗
.

The bias was bounded in Proposition 1, and we turn to bounding the noise term.
We first claim that

(43)
‖Axα∗,δ − yδ‖√

α∗
≤ 2γϕ(Θ−1(δ)).

Indeed, for α̂ with Θ(α̂) = δ we have by the choice of α∗ as minimizer that

‖Axα∗,δ − yδ‖√
α∗

≤ ‖Axα̂,δ − yδ‖√
α̂

≤ ‖rα̂(AA∗)Ax‖ + δ‖rα̂(AA∗)‖√
α̂

≤ 1√
α̂

(γΘ(α̂) + γδ) = 2γ
δ√

Θ−1(δ)
= 2γϕ(Θ−1(δ)),

which proves (43). In a second step we bound the error term as

δ‖gα∗(A
∗A)A∗‖ ≤ γ∗

δ
√
α∗

= γ∗
δ

δ∗

‖Axα∗,δ − yδ‖√
α∗

≤ 2γγ∗
δ

δ∗
ϕ(Θ−1(δ)).
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Overall this results in the error bound

e(xα∗,δ, x, δ) ≤ (1 + γ0)ω(A+, Hϕ,max {δ, δ∗}) + 2γ0γ∗
δ

δ∗
ϕ(Θ−1(δ))

≤ 2γ0

(
ω(A+, Hϕ,max {δ, δ∗}) + γ∗

δ

δ∗
ϕ(Θ−1(δ))

)
≤ 2γ0

(
2ϕ(Θ−1(max {δ, δ∗})) + γ∗

δ

δ∗
ϕ(Θ−1(max {δ, δ∗}))

)
≤ 2γ0

(
2 + γ∗

δ

δ∗

)
ϕ(Θ−1(max {δ, δ∗})),

which is (42) and thus completes the proof. ¤

Remark 7. For power type source conditions, i.e., when ϕ(t) := tp, for some p > 0,
such result was obtained in the original study [4].

Notice, that we need to require higher qualification, and this leads to early saturation
if the underlying smoothness is close to the maximal covered by the regularization.
This can be overcome by considering a different functional, as e.g.

(44)
1√
α
‖r2

α(A∗A)yδ‖ −→ MIN!

This corresponds to one times iterated regularization. It may overcome the early
saturation if only the underlying regularization has qualification of ρ(t) =

√
t, at

least. Such modifications may be obtained in more generality, the most prominent
one is called Hanke–Raus parameter choice, see [4], and we refer to [3, Sect. 4.5].

4. Use of model functions to speed up parameter search

The theoretical results from Section 3 are non-constructive, and it remains to design
efficient methods for finding minimizers of the functions Ψµ, and Ψ from (6) and (7),
respectively. Recent work to accomplish this task uses some fixed–point iteration,
we refer to [1, 2]. This approach uses the observation captured in Theorem 6, below.
Specifically, if for some α0 the assumption (53) is fulfilled then the function

(45) Φµ(α) := µ
ρ(α)

f(α)
, 0 < α ≤ α0,

obeys that α1 := Φµ(α0) < α0, and this gives rise to an iterative procedure for
finding a stationary point. We add that a similar iterative procedure could be
designed for the Hanke–Raus type method, based on Theorem 7. We shall compare
the performance of both, the iterative approach from [1] and the model function
approach, outlined next.

Here we use some results on the use of model functions for the determination of
the regularization parameter. This approach was first proposed in [8], and later
improved in [12]. While these studies consider the use of model functions for finding
the regularization parameter based on the discrepancy principle, the recent study [6]
proposes to use this in context of the modified L-curve criterion from (6) which is
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the first attempt on some error free criterion. In this section, we will revisit the
model function approach and introduce a new presentation of the model function
under the framework of (6) and (7).

Within the model function approach we reduce the above sum in (17) to one term,
i.e., replace the function h by a two-parameter family

h(α) ∼ m(α) =
C

T + α
.

Remark 8. Notice, that in our approach to the model function, the sign of C is
positive, in contrast to the function introduced in [12].

The parameters C and T are determined point-wise, i.e., at given parameter α the
values of h(α) and its first derivative h′(α) coincide with the values m(α) and its
first derivative m′(α). Formally we let

(46) m(α) = mC,T (α) :=
C

T + α
, α > 0,

Thus, for fixed value of α, this results in the system

C

T + α
= h(α) = ‖Axα,δ‖2 + α‖xα,δ‖2,

C

(T + α)2
= −h′(α) = f(α) = ‖xα,δ‖2,

for the determination of C, T . The solution can be seen to equal

C =
(‖Axα,δ‖2 + α‖xα,δ‖2)

2

‖xα,δ‖2
, and T =

‖Axα,δ‖2

‖xα,δ‖2
.

We shall first analyze C and T as functions of the parameter α. The following
monotonicity properties were shown in [12, Lemma 3.1–3.3]. Recall the definition
of the projection Q from § 2.

Lemma 7. Suppose that ‖Qyδ‖ > 0.

(1) The functions C = C(α) and T = T (α) are positive and non-decreasing.

(2) The quotient α→ C(α)
T (α)

is non-increasing.

(3) It holds C(α)
T (α)

< ‖Qyδ‖2, and limα↘0
C(α)
T (α)

= ‖Qyδ‖2.

Proof. With the help of the functions f and h from (3) and (14) we have that C =
h2/f and T + α = h/f . Differentiating this yields that

C ′ =
h

f

(
−2f 2 + h(−f ′)

)
,

and T ′ = (T + α)′ − 1 =
−2f 2 + h(−f ′)

f 2
.

In both cases the enumerators are non-negative by Lemma 3, which yields mono-
tonicity of both the functions C and T .
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To prove the second assertion we rewrite

C(α)

T (α)
=

h2(α)

h(α) + αh′(α)
.

Notice that h(α) + αh′(α) =
∑

tj>0

t2j

(tj+α)2
y2

j > 0. Differentiation yields(
C(α)

T (α)

)′
=
αh(α)

(
2 (h′(α))2 − h(α)h′′(α)

)
(h(α) + αh′(α))2 ,

hence Lemma 3 applies and completes the proof of the second assertion.

The upper bound for the quotient is proved, once we have shown that

(47) h2(α) < (h(α) + αh′(α)) ‖Qyδ‖2.

But this follows from the Cauchy Schwartz inequality as

∑
tj>0

tj
tj + α

y2
j =

∑
tj>0

tj
tj + α

yjyj ≤

∑
tj>0

t2j

(tj + α)2y
2
j

1/2∑
tj>0

y2
j

1/2

.

Equality is not possible, since
tj

tj+α
< 1. Finally, it holds that

lim
α↘0

h(α) = ‖Qyδ‖2 as well as lim
α↘0

(h(α) + αh′(α)) = ‖Qyδ‖2,

from which we complete the proof of the Lemma. ¤

To simplify the presentation we introduce the auxiliary functions

fm(α) = −m′(α),(48)

and ρm(α) := ‖yδ‖2 − (m(α) + αfm(α)), α > 0,(49)

which should be compared with Lemma 2.

Lemma 8. Fix any value α0 > 0, and let m be the model function at this point.
Then fm(α0) = f(α0) and ρm(α0) = ρ(α0).

Moreover, it holds that

(50) lim
α↘0

ρm(α) = ‖yδ‖2 − C(α0)

T (α0)
> 0.

Proof. Since, at any given α0, it holds that f(α0) = −h′(α0), the value fm(α0) coin-
cides with f(α0). Moreover, since the discrepancy ρ is expressed in terms of the value
and the first derivative of the model function we also have that ρm(α0) = ρ(α0). The
last assertion follows since limα↘0m(α) = C(α0)/T (α0), and limα↘0 αm

′(α) = 0.
¤

The model function approach is algorithmically described in [6]. Precisely, at a given
instance α0, and with corresponding pair of constants C(α0), T (α0), we replace Ψµ
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from (6) and Ψ from (7) by their model counterparts

Ψmodel
µ (α) := ρm(α) (fm(α))µ , α > 0,(51)

and Ψmodel(α) :=
ρm(α)

α
, α > 0.(52)

As seen from Lemma 8, the model functions will coincide with the original ones
at the given parameter α0. However, this will not be the case for the derivatives,
which can be seen from Figure 3. Nonetheless, the derivatives are almost identical
for small values α0, see Figure 6, and this gives rise to the one-step proposal in § 5.3.

4.1. Model function approach for the modified L-curve method. Here, the
search for a parameter starts at any α0 which obeys (27), and minimizes the substi-
tute Ψmodel

µ for the functional (6). If the update still obeys (27) then we continue,
and if this is violated then the procedure is stopped. Therefore we have to prove
that the update from αk to the next αk+1 points towards zero, i.e, that αk+1 < αk.

The following result is crucial for the model function approach for the modified
L-curve.

Theorem 6. Suppose that α0 obeys (27), i.e., it holds that

(53) µ‖rα0(AA
∗)yδ‖2 < α0‖xα0,δ‖2.

The following assertions hold true.

(1) The functional Ψmodel
µ is increasing at α0.

(2) There is 0 < α1 < α0 such that µρm(α1) > α1fm(α1). Hence there is a
minimizer α in the interval (α1, α0).

(3) The minimizer obeys the first order condition µρm(α) = αfm(α).

Proof. Analogously to Lemma 4 we have the expression for the first derivative as(
Ψmodel

µ

)′
(α) = fµ−1

m (α)f ′m(α) (µρm(α)− αfm(α)) .

from which we derive the last assertion.

At α0 the functions ρm and fm coincide with the original functions, see Lemma 8,
and hence, since f ′m < 0, we have that

(
Ψmodel

µ

)′
(α0) > 0, if condition (53) holds.

This proves the first assertion.

To prove the second assertion we use Lemma 8 to see that µρm(α) → ‖yδ‖2 −
C(α0)/T (α0) > 0, while αfm(α) → 0, as α ↘ 0. Hence, under (53) there must be
0 < α1 < α0 for which the inequality holds. The right hand side converges to C/T
as α → 0, such that there is α1 for which µρm(α1) > α1fm(α1). Finally, as in the
proof of Theorem 1 we conclude from this that there is a minimizer inside (α1, α0),
which completes the proof of the second assertion, and of the theorem. ¤

Remark 9. From this theorem we obtain that the iterate α satisfies α < α0, and
hence we can continue successive minimization as long as condition (53) (with α
instead of α0) holds. We depict this in the Figure 1, below.
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Algorithm 1 (Modified L-curve method)
Input: yδ, search range [αmin, αmax] with

µ‖rαmax(AA
∗)yδ‖2 < αmax‖xαmax,δ‖2.

1: Let k := 1; Choose initial guess αk := αmax.
2: While (µ‖rαk

(AA∗)yδ‖2 < αk‖xαk,δ‖2) do:
(1) build the model function m(αk) at αk;
(2) Let αk+1 := arg min Ψmodel

µ ;
3: Return α∗ as last parameter where while() condition was fulfilled.
Output: Return x(α∗).

Figure 1. The model function algorithm for the modified L-curve
approach (Algorithm 1).

4.2. Model function approach for the functional Ψ. By the construction, it
is natural to use the same model function for searching for a minimizer of the
functional Ψ from (7), and the following result corresponds to Theorem 6. The
proof is similar and we omit it.

Theorem 7. Suppose that for some parameter α0 with corresponding model func-
tion m at α0 obeys

(54) ρ(α0) < −α2
0m

′′(α0).

The following assertions hold true.

(1) The functional Ψmodel is increasing at α0.
(2) There is 0 < α1 < α0 such that µρm(α1) > −α2

1m
′′(α1). Hence there is a

minimizer α in the interval (α1, α0).
(3) The minimizer obeys the first order condition µρm(α) = −α2m′′(α).

Remark 10. The analysis for the functional Ψ is less intuitive, since the condi-
tion (54) cannot be checked “automatically”. However, observe that

−α2
0m

′′(α0) =
2α2

0C(α0)

(T (α0) + α0)
3 ,

which is easy to compute, once the quantities C(α0) and T (α0) are computed.

5. Observations from numerical experiments

Here we discuss some numerical experiments, carried out in matlab. The tests were
performed for the function shaw(n) with the discretization level n = 64. The readers
are encouraged to find the background on shaw(n) in the original monograph [5]
which will not be repeated within the current context.

5.1. Realized discrepancy. As we can see from Section 3, the error bound for each
method is essentially dependent on the exact noise level and realized discrepancy,
namely max{δ, δ∗}. It is interesting to investigate how the realized discrepancy will
perform for the different methods.
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We first recall from Corollary 1 that the function ρ is strictly increasing. This
actually shows the possibility that the realized discrepancy may be comparably large
when α∗ is too far away from an reasonable choice α̂ which obeys Θ(α̂) = δ. This
is confirmed by simple numerical tests within the regularization tool box from [5].
We applied both parameter choice rules for the function shaw(64) along a sequence
of 20 noise levels in the range [0.0186, 0.1958]. For the chosen 20 regularization
parameters the realized discrepancies were computed. Below we draw the resulting
relationship δ∗ = δ∗(δ) for both, the modified L-Curve and the Hanke–Raus type
rule. This exhibits, that both parameter choices provide amplified discrepancies,
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Figure 2. Realized discrepancies along the noise levels. The dashed
lines are from linear regression δ∗ ∼ δ. This gives the values of CL =
7.782 and CHR = 13.02, respectively.

but the modified L-curve is better by a factor of almost two.

Remark 11. It is worth to remind that within the classical discrepancy principle, the
corresponding realized discrepancy will be Cdiscr · δ, for some constant Cdiscr > 1.
Our numerical tests in this subsection behave similarly to the discrepancy principle
with constants Cdiscr = 8 and Cdiscr = 13, respectively.

Next, we exhibit the closeness of the model functions Ψmodel
µ (with µ = 1) and Ψmodel

to the original functions Ψµ,Ψ, at point α := 0.1, again for the problem from above,
and at different noise levels.

Model function approach for the modified L-curve method. For the modified L-curve
this is shown in Figure 3. We see similar properties of the model function, and the
original modified L-curve method, i.e. monotonicity and local convexity. Then, the
minimization of the model function based modified L-curve method is carried out
as in Algorithm 2 in [6]. It is interesting to note that at the 0.1% noise level, the
realized discrepancy is almost the same as to the true noise level. For a larger 1%
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Figure 3. Functional value Ψmodel
µ (α) in (51) and Ψµ(α) in (6) on

the model function based versus original modified L-curve functional.
(left) δ = 0.019, δ∗: 0.0238 (modified L-curve) vs. 0.0234 (model
function based);
(right) δ = 0.18, δ∗: 2.1287 (modified L-curve) vs. 2.0823 (model
function based).

noise level, the corresponding realized discrepancy is around 10 times larger as the
true noise level. This is in coincidence with Figure 2.

Model function approach for the Hanke–Raus type method. Concerning the Hanke–
Raus type functional, the minimization of the model function based Hanke–Raus
type functional is by a simple matlab function fminbnd which finds the minimum
of a uni-variate function on a given bounded interval, i.e. α ∈ [10−4, 0.5], for the
minimization of (52). More information will be given in § 5.3. The value on the
model function based and the exact Hanke–Raus functional can be found in Figure 4,
which shows the reliability the model functional based Hanke–Raus functional which
inherits the properties of the original Hanke–Raus functional. However, the realized
discrepancy of each method is about 10 times larger than the noise level. The above
numerical simulations show that the minimization of the model function based error
free principles (51) and (52) are actually quite reliable, and in comparison with the
original error free principles (6) and (7). Nevertheless, all these principles generate a
comparatively large realized discrepancy. Therefore, the error bounds in Theorems 4
and 5, will also be comparatively large.

5.2. Comparison with fixed point iteration from [1]. Here we shall briefly
compare the performance of the model function approach for the modified L-curve
methods with the fixed point iteration presented in [1]. We carried out the same
experiments as in [1, Example 1], and we shall use the same notation as there. In
addition, Algorithm 2 from [6] was used in this comparison.

Precisely, the problem shaw(64) was solved 500 times with random data. The no-
tation is as in [1], i.e., we let

• NL: noise level defined as ‖x∗ − x‖2/‖x‖2.
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Figure 4. Functional value Ψmodel(α) in (52) and Ψ(α) in (7) on
the model function based versus original Hanke–Raus type functional.
(left) δ = 0.019, δ∗: 0.234 (Hanke–Raus rule) vs. 0.26 (model function
based);
(right) δ = 0.18, δ∗: 2.347 (Hanke–Raus rule) vs. 2.01 (model function
based).

• λ̄: average values of the computed regularization parameter; for comparison
we let λ̄ :=

√
α∗;

• Emax, Emin, Ē: maximum, minimum, and average errors occurring in all
experiments;

• σ(E): standard deviation of computed errors;
• Imax, Imin, Ī: maximal, minimal and average number of iterations.

For this example all runs were successful, so we skipped this row. We summarize
the findings in Table 1. We observe that Algorithm 1 has a similar quality as the

NL = 1% NL = 5%

Alg. 1 Alg. 2 FP [1] Alg. 1 Alg. 2 FP [1]

Emax 0.2628 0.2537 0.2985 0.2818 0.3404 0.2867
Emin 0.0436 0.0452 0.0475 0.0945 0.0590 0.0939
Ē 0.1168 0.1278 0.1213 0.1735 0.1789 0.1728
σ(E) 0.0410 0.0413 0.0410 0.0333 0.0490 0.0335
λ̄ 0.0222 0.0164 0.0221 0.1155 0.0843 0.1155
Imax 6 6 11 6 3 12
Imin 3 6 5 3 3 7
Ī 4.4 6 ? 4.0 3 ?

Table 1. Comparison of the proposed model function approach with
the fixed point iteration from [1].

fixed point iteration. However, this quality is achieved with about half as many
iterations, see the average number Ī in the table. Actually, more than 60% of the
runs used 4 iterations in the 1% case, whereas in the 5% case this happend in
more than 90% of the trials. This points towards superiority of the model function
approach, in particular for large scale problems, since each iteration represents the
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solution of one ill-posed problem, and may be expensive. We mention one additional
point. Algorithm 2 has a similar performance as the other algorithms at lower noise
level, whereas, for NL = 5%, the maximum relative error Emax is larger compared
to both, Algorithm 1 and the fixed point iteration. However, Algorithm 2 uses a
smaller number of iterations.

5.3. One-step proposal method. As we can see from the Section 4, the key point
for the model function idea is to find a suitably approximating functional Ψµ or Ψ.

Simulation with the model function approach for the Hanke–Raus type functional (7)
revealed an interesting one–step method, which we will describe, next. While in the
analysis in Corollary 2, and the related model function approach from Theorem 7
we propose to start searching for a minimizer with some “large” value of α, in order
to make sure that (54) holds, one might as well start with a “small” value of α,
construct the corresponding model function Ψmodel at this point, and take as α∗
the minimizer of Ψmodel. This is depicted in the algorithm, below. It may be hard

Algorithm 2 (One step method)
Input: yδ, search range [αmin, αmax].
1: Choose initial guess α1 := αmin.
2: Calculate the x(α1) by the Tikhonov regularization; build the model func-

tion m(α) at α1.
3: Search for the minimum of the single-value function Ψmodel on the fixed

interval [αmin, αmax].
4: Return the minimal point α∗ as the chosen regularization parameter.
Output: Return x(α∗).

Figure 5. The one–step algorithm

to generally justify this method, but it works well as long as the functional Ψ is
“typical”, i.e., it has a steep negative slope for small α and becomes “flat” for
larger values. As was observed in the simulations, see Figure 6, the slope of the
model function Ψmodel closely follows the original function, and the function has a
minimizer to the right of the small initial guess α0. Again, simulations were carried
out for the function shaw(64).

The reliability of this approach was analyzed as follows, and we explain the details
of Figure 7. We generated perturbed right–hands sides with uniformly distributed
noisy data at 1% , 0.5% and 0.1% noise levels, with respect to the exact data. This
was repeated 50 times for each noise level. In Figure 7, each circle represents the

relative error
‖xα∗,δ−x‖

‖x‖ on a solution x. For the model function based Hanke–Raus

type functional, the element xα∗,δ is the solution by the Algorithm from Figure 5.
The minimization of the original Hanke–Raus type functional is performed on a
geometrically increasing discrete set of parameters {αi}100

i=1 ∈ [10−4, 0.5], i.e., with
common ratio. The minimal value of {Ψ(αi)}100

i=1 is considered as the minimizer of
the Hanke–Raus type functional, and here xα∗,δ is the solution at this minimizer.
Figure 7 shows that the one-step method (Algorithm 2) is quite reliable in compar-
ison with the original Hanke–Raus method.
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Figure 6. Comparison of the functionals Ψmodel(α) from (52) and
Ψ(α) from (7).
(upper left) α1 = 0.0001, (upper right) α1 = 0.001,
(bottom left) α1 = 0.01, (bottom right) α1 = 0.1.

Figure 7. Simulation with shaw(64) using the model function based
(MF) and original Hanke–Raus (HR) type functional. From bottom
to top the noise levels are 0.1%, 0.5% and 1% of the exact solution.

A technical problem arises when we try to use a large α to generate the model func-
tion under the framework of the model function based Hanke–Raus type principle.
The model function Ψmodel at large α does not inherit the properties of the original
functional Ψ. Figure 6 shows the numerical simulations, again from shaw(64), with
0.1% noise level. Here, we generated corresponding functions Ψmodel(α) with four
initial α1 = 10−l, l = 1, . . . , 4. Based on the model function approach, the functional
value of Ψmodel(α) and Ψ(α) must coincide at each initial α1.However, for the large
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value α1 := 0.1, the “corner” points of Ψmodel(α) and Ψ(α) differ essentially. Nev-
ertheless, for smaller values α1, as e.g. α1 := 0.0001, the model function Ψmodel(α)
models the original Ψ(α) quite well. We also stress, that even for large noise level
of 1%, the original and the model functions have a good degree of approximation
if α1 is small.

Remark 12. From the numerical point of view it is not desirable to solve the problem
for small values of α, as these are ill–conditioned. However, the advantage is, that
this has to be done only once to give the minimizer α∗, of the model function Ψmodel.
Finally, the problem has to be solved at α∗.

6. Conclusions

In this paper, we revisit two classical error free parameter choice rules, the modified
L-curve method (6) and some Hanke–Raus type method (7). A general error analysis
is performed for both methods. We emphasize that Theorem 4 is the first optimality
result for the L-curve type method. Considerations on the noise level and the
realized discrepancy are provided in Section 5. Then, the model function approach
is considered for both methods under consideration. Here we present some model
function based Hanke–Raus type method which is introduced as one-step method.
Numerical simulation for the comparison between this algorithm and the original
Hanke–Raus type method (7) shows the reliability of the proposed method.
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